Neural Symbolic Architecture for Normative Agents
(Extended Abstract)

Guido Boella

University of Torino

guido@di.unito.it

Valerio Genovese
University of Luxembourg
valerio.genovese@uni.lu

ABSTRACT

In this paper we propose a neural-symbolic architecture to represent
and reason with norms in multi-agent systems. On the one hand,
the architecture contains a symbolic knowledge base to represent
norms and on the other hand it contains a neural network to rea-
son with norms. The interaction between the symbolic knowledge
and the neural network is used to learn norms. We describe how
to handle normative reasoning issues like contrary to duties, dilem-
mas and exceptions by using a priority-based ordering between the
norms in a neural-symbolic architecture.

Categories and Subject Descriptors
1.2 [Artificial Intelligence]: Applications and Expert Systems

General Terms
Algorithms, Theory, Legal Aspects

Keywords

Norms, Computational architectures for learning, Emergent behav-
ior, Logic-based approaches and methods

1. NEURAL-SYMBOLIC ARCHITECTURE

Figure 1 visualizes the architecture of an agent adopting a neural-
symbolic system [2]. The agent builds a network from the symbolic
knowledge it possesses. The neural network is used to process the
data incoming from the surrounding environment. The output re-
sulting from the neural network are the actions the agent has to per-
form. Furthermore the network can be trained by feeding it with in-
stances representing the correct behaviors in certain situations that
the agent cannot perform due to its incomplete knowledge. After
the training, the resulting neural network can be used to improve
the symbolic knowledge of the agent as explained in details in [2].
The improved knowledge base can be used to build a new neural
network that the agent will use to interact with the environment.
The new neural network is an improvement over the old one due to
the new knowledge added within the existing symbolic knowledge
after the training. The normative agent is capable to automatically
Cite as: Neural Symbolic Architecture for Normative Agents (Extended
Abstract), G. Boella, S. Colombo Tosatto, A. d’Avila Garcez, V. Genovese,
D. Ienco and L. van der Torre, Proc. of 10th Int. Conf. on Autonomous
Agents and Multiagent Systems (AAMAS 2011), Tumer, Yolum, So-
nenberg and Stone (eds.), May, 2—-6, 2011, Taipei, Taiwan, pp. XXX-XXX.
Copyright (©) 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Silvano Colombo Tosatto
University of Luxembourg
colombotosatto.silva-

no@gmail.com

Dino lenco
University of Torino

ienco@di.unito.it

Artur d’Avila Garcez
City University London

aag@soi.city.ac.uk

Leendert van der Torre
University of Luxembourg
leon.vandertorre@uni.lu

improve its performance by interacting with the surrounding envi-
ronment.

AGENT

)
Symbolic Neural
Knowledge Network

(3) Update the KB

(2) Learn from
Examples

Actions

Figure 1: Normative Agent representation.

2. NORMATIVE AGENT

The normative agent has to reason with norms. To do so we use
I/0 logic [3] to represent the norms contained in the knowledge
base representing the symbolic knowledge. 1/O logic rules («, 3).
Both «v and S represent a set of literals in conjunction. [represents
the input, the antecedent of the rule and determines whenever § is
observed the activation of the rule. Instead « represents the output,
the consequent of the rule which is the obligation or permission
returned in the result whenever the rule is activated.

In order to allow the agent to efficiently reason about norms, we
have to handle some of the issues known in normative reasoning,
like contrary to duties, dilemmas and exceptions. We are going to
use a priority-based ordering in some of these problems in order to
handle them [1].

Priority-based ordering: By introducing a priority-based or-
dering between the rules, we are able to decide when two differ-
ent rules were activated at the same time which one has to be and
the one which should not. by enforcing a priority-based order-
ing between two rules, in the case where both are activated, then
only the one with the higher priority is. We use the negation as
failure to embed the priority concept within the rules. We are go-
ing to explain it with an example, we need to consider two rules:
r1 = aAb — O(c)and 72 = a Ad — O(e) and having a
priority-based ordering 71 > 72 which means that the first rule has
the priority over the second. We embed the priority within the rule
which is overcome because is the one that must be suppressed by
the activation of the other. To embed the priority we modify the
antecedent of the rule with the lower priority in a way that it is not
activated if the other is. To obtain so we add to the antecedent of
this rule the negation as failure of the literals which are only in-
cluded in the antecedent of the rule with the higher priority. By ap-
plying this process to our example we obtain a new modified rule:
ry = a A dA ~ b — O(e) which is not activated if b is observed,
because otherwise also 1 would be.

Contrary to duty: A contrary to duty is composed by two rules,
one is used to regulate the optimal situation and the other has to be

applied in a sub-optimal situation where the first cannot. A clas-
sic example due to Sergot [4] refers to a situation where a cottage
should not have a fence, the rule r1 : T — O(—f) describes the
ideal situation. Instead the rule r2 : f — O(w) can be used to
handle a sub-optimal situation where a cottage has a fence. The
rule states that if the cottage has a fence it should at least be white.
The problem with contrary to duties can be noted when considering
the sub-optimal situation. In the Sergot’s example the sub-optimal
situation refers to the case where the cottage has a fence f. If we
apply the rules to the sub-optimal situation we obtain two obliga-
tions: —f and w, the obligation to not have a fence is unfulfillable
because the cottage already has it. We want to avoid to produce
obligation that cannot be achieved. By setting a priority-based or-
dering between the rules r2 > 71 we state that we do not want
to apply the first rule whenever the second holds. This because, if
the second rule can be applied, means that we are in a sub-optimal
situation where the first rule consequent cannot be complied.

Dilemma: A dilemma is a controversial situation that can occur
in normative reasoning. It happens when analyzing a situation, two
different rules produces contradicting obligations that have to be
fulfilled. A classic example of dilemma is Sartre’s soldier, it can
be described with two rules, the first says that everyone should not
kill T — —=O(k) and the second states that a soldier has the duty
to kill his enemies s — O(k). The dilemma is generated when
both rules are applied in the same circumstance. If we consider
the case of an ordinary person (which is not a soldier) then only
the first rule is applied returning the obligation =k which does not
produce a dilemma. Instead if we consider the case where a soldier
is involved, both rules are applied and the outputs produced are
both -k and k£ which is a moral dilemma that the soldier has to
cope with. Having described the structure of a dilemma problem,
we have decided not to use a priority-based ordering between the
rules to enforce a decision. Instead, by considering that dilemmas
are part of everyday life decisions, we decided to leave to leave the
dilemma open for the agent which will have to make a decision
considering that both choices are suitable.

Exception: An exception refers to a situation where a rule should
be applied instead of another one. We can consider a clarifying ex-
ample, a general rule is that a person should not activate the fire
alarm r1 : T — O(—a) but in the case where someone spots a fire,
then he should activate the alarm r2 : f — O(a). If we consider
the two rules and a situation where someone spots a fire, then both
rules are activated producing the dilemma a and —a which is un-
desirable, because we want that when someone spots a fire he must
activate the alarm. To address this problem we use a priority-based
ordering between the rules r2 > 7. In this way by activating the
second rule, it inhibits the first one resulting in the single obligation
a to trigger the fire alarm.

Permissions: In normative reasoning the permission is another
important element, because in some scenarios it is important to de-
fine also when it is permitted to do something. We can suppose that
the symbolic knowledge of the agents contains both rules that pro-
duce obligations and rules that have permissions as consequents.
In our case we are going to consider that something is permitted if
not explicitly forbidden, so we do not explicitly represent permis-
sion in the neural network translation. We instead use rules that
produce permissions to undercut obligation rules with which they
are in conflict. To do so we use a priority-based ordering between
the rules. Considering two generic rules r; : a — O(—c) and
rg : b — P(c), we can see that the permission in the consequent of
the second rule is in contradiction with the obligation of the first.
By applying a priority-based ordering r2 > r1 we use the rule with
the permission to inhibit the first. After applying the translation on

r1 due to the priority-based ordering, r2 will not be translated into
the network.

3. NORMATIVE NETWORK

The neural network is built from the symbolic knowledge, in this
way the resulting network is already capable to analyze some sit-
vations and returning for those the correct behaviors without any
training. Due to using a symbolic knowledge containing normative
rules expressed with I/O logic [3], we have to use a variant of the
CILP translation algorithm already described in [2]. We keep the
inputs and the outputs of the neural network well separated as for
I/O logic, because we do not use feedback connections in the net-
work. This means that the outputs produced by the network are not
reused as input and fed again to the network. In this way we do not
need to wait for the network to stabilize but with a single step it is
sufficient to obtain the outputs for the situation that is being ana-
lyzed. Output neurons are interpreted as obligations when positive
and as denials when the label of the output is a classically negated
atom.

Normative-CILP is a (sound) algorithm to embed I/O rules into
a feedforward NN.

N-CILP

1. For each literal Qi (1 < 7 < m) in the input of the rule. If there
is no input neuron labeled Qg in the input level, then add a neuron
labeled cv;; in the input layer.

2. Add a neuron labeled Ny, in the hidden layer.

3. If there is no neuron labeled 3o, in the output level, then add a neu-
ron labeled /35, in the output layer.

4. For each literal ;. (1 < j < m); connect the respective input neu-
ron with the neuron labeled N in the hidden layer with a positive
weighted arc.

5. For each literal ~ «;, (n + 1 < j < m); connect the respective
input neuron with the neuron labeled Ny, in the hidden layer with a
negative weighted arc'.

6. Connect the neuron labeled N; with the neuron in the output level
labeled 3, with a positive weighted arc?

The N-CILP has been implemented and tested over a case study
based on RoboCup rules. A java implementation of N-CILP is
available at

http://www.di.unito.it/~genovese/tools.

Acknowledgements: Valerio Genovese and Silvano Colombo
Tosatto are supported by the National Research Fund, Luxembourg.

4. REFERENCES

[1] J. Broersen, M. Dastani, J. Hulstijn, and L. van der Torre.
Goal generation in the BOID architecture. cognitive science
quarterly. In Cognitive Science Quarterly, volume 2(3-4),
pages 428-447, 2002.

[2] A. d’Avila Garcez, K. Broda, and D. Gabbay.
Neural-Symbolic Learning Systems. Springer, 2002.

[3] D. Makinson and L. van der Torre. Input-output logics.
Journal of Philosophical Logic, 29, 2000.

[4] H. Prakken and M. J. Sergot. Dyadic deontic logic and
contrary-to-duty obligations, 1997.

!The connections between these input neurons and the hidden neu-
ron of the rule represents the priorities translated with the NAF.
“Each output in the rules is considered as a positive atom during
the translation, this means that if we have a rule with a negative
output =43, in the network we translate an output neuron labeled 3’
that has the same meaning of = but for the translation purpose can
be treated as a positive output.

