
Embedding Normative Reasoning into Neural Symbolic Systems
Guido Boella

University of Torino
guido@di.unito.it

Silvano Colombo Tosatto
University of Luxembourg

silvano.colombotosatto@uni.lu

Artur d’Avila Garcez
City University London

aag@soi.city.ac.uk

Valerio Genovese
University of Luxembourg
valerio.genovese@uni.lu

Leendert van der Torre
University of Luxembourg
leon.vandertorre@uni.lu

Abstract
Normative systems are dynamic systems because
their rules can change over time.
Considering this problem, we propose a neural-
symbolic approach to provide agents the instru-
ments to reason about and learn norms in a dynamic
environment.
We propose a variant of d’Avila Garcez et al. Con-
nectionist Inductive Learning and Logic Program-
ming(CILP) System to embed Input/Output logic
normative rules into a feed-forward neural network.
The resulting system called Normative-CILP(N-
CILP) shows how neural networks can cope with
some of the underpinnings of normative reasoning:
permissions, dilemmas, exceptions and contrary to
duty problems.
We have applied our approach in a simplified
RoboCup environment, using the N-CILP simula-
tor that we have developed. In the concluding part
of the paper, we provide some of the results ob-
tained in the experiments.

1 Introduction
In artificial social systems, norms and policies are mech-
anisms to effectively deal with coordination in normative
multi-agent systems. An open problem in AI is how to
equip agents to deal effectively with norms (and policies) that
change over time [Boella et al., 2009], either due to explicit
changes by legislators, or due to the interpretation process
by those agents who are in charge of applying the law (e.g,
judges).

In the work of [Corapi et al., 2010], they focused on re-
fine existing knowledge about the norms by using inductive
learning. Differently in game-theoretic approaches [Sen and
Airiau, 2007; Boella and van der Torre, 2006; Shoham and
Tennenholtz, 1997], few machine learning techniques have
been applied to tackle open problems like learning and/or re-
vising new norms in open and dynamic environments.

In this paper we use Input/Output (I/O) logic [Makinson
and van der Torre, 2000], a symbolic formalism used to rep-
resent and reason about norms. We study how to represent
I/O within the computational model of neural networks, in

order to take advantage of their ability to learn, by addressing
the following research question:

• How to define a formal framework combining I/O logic
and neural-symbolic computation for normative reason-
ing?

Among other formalisms used in normative systems, we
choose I/O logic because it presents a strong (and natural)
similarity with neural networks: both have a separate specifi-
cation of inputs and outputs. We exploit such similarity first
to encode knowledge expressed in terms of I/O rules into neu-
ral networks, and then to use the neural network to reason and
learn new norms in a dynamic environment.

Methodologically, we adopt the Neural-Symbolic
paradigm of [d’Avila Garcez et al., 2002] which embeds
(symbolic) logical programs into feed-forward neural
networks. Neural-symbolic systems provide translation
algorithms from symbolic logic to neural networks and
vice-versa. The network is used for robust learning and com-
putation, while the logic provides (i) background knowledge
to help learning (when the logic is translated into the neural
network) and (ii) high-level explanations for the network
models1 (when the trained neural network is translated into
the logic). A sound translation for the (i) step is done by
using the CILP system [d’Avila Garcez et al., 2002].

In normative reasoning there are some problems which
have to be handled. These problems are: permissions, dilem-
mas, contrary to duties and exceptions. A normative agent,
is an agent capable to behave within an environment regu-
lated by norms, must be able to handle the situations listed
above. A way to handle such situations is by using priorities.
A description about how a normative agent can handle such
situations with the use of priorities is described in [Boella et
al., 2011].

In particular, we address the following sub-questions:
• How to use priorities with I/O logic rules in order to han-

dle normative reasoning problems?
• How to translate I/O logic into neural networks by using

CILP and keeping the soundness of the logic?
We provide a description of the simulator used for testing

our approach. The simulator has been written in Java2 and
1We are not going to discuss this step in this paper.
2www.java.com/

using the package Joone3, a framework to model neural net-
works.

After describing the simulator we provide the results ob-
tained from some of the experiments made.

The paper is structured as follows. In Section 2 we intro-
duce the neural-symbolic approach, the I/O logic and the ar-
chitecture of a normative agent. In Section 3 we first describe
which restrictions need to be applied to I/O rules. Then how
we embed priorities within the rules and at last the role of
permissions in our approach. In Section 4 we describe the
case study used in the experiments. In Section 5 we describe
the simulator and the experiments. In Section 6 we present
the conclusions.

2 Related work
Neural-Symbolic approach
The main purpose of a neural-symbolic approach is to bring
together connectionist and symbolic approaches [d’Avila
Garcez et al., 2002]. In this way it is possible to exploit the
strengths of both approaches and to avoid their drawbacks.
With such approach we are able to formally represent the
norms governing the normative system. In addition we are
also capable to exploit the instance learning capacities of neu-
ral networks and their massive parallel computation.

Algorithms like KBANN[Towell and Shavlik, 1994] and
CILP[d’Avila Garcez and Zaverucha, 1999] provide a sound
translation of a symbolic representation of the knowledge
within a neural network. The advantage of CILP, is that it
uses the sigmoid function for its perceptrons. This allows the
use of backpropagation for learning. In what follows, we use
a variant of CILP since we are interested in the integration of
reasoning and learning capabilities.

I/O Logic
To describe the norms regulating the system we use I/O Logic
[Makinson and van der Torre, 2000]. Rules used in I/O logic
are defined in the shape R1 = (A,B). Both A and B rep-
resent sets of literals. The literals contained in A (or in B)
can be either in conjunction or disjunction between them. A
represent the antecedent of the rule, what must be considered
true in order to activate the rule. Instead B is the consequent,
what is considered true after the rule has been activated.

I/O logic provides some reasoning mechanisms to produce
outputs form the inputs. The first of this mechanisms is the
simple-minded output. This mechanism does not satisfy the
principle of identity. Instead the simple-minded output pos-
sess other features like strengthening input, conjoining out-
put and weakening output. The I/O logic also provides other
reasoning mechanisms, basic output, reusable output and
reusable basic output which allow additional features. Re-
spectively input disjunction for the basic output, reusability
for the reusable output and both for reusable basic output. A
detailed description of the I/O logic mechanisms and features
can be found in [Makinson and van der Torre, 2000].

In [Boella et al., 2010] it is described how a connectionist
approach like neural networks can embed the different fea-
tures of I/O logic. In this way it is possible by using transla-

3http://sourceforge.net/projects/joone/

Environment

Normative Agent

Neural
Network

Knowledge
Base

N-CILP

Knowledge
Update

Interaction

Figure 1: Neural-Symbolic Normative Agent.

tion algorithms like KBANN or CILP to reproduce the mech-
anisms of I/O logic.

Normative agent
An agent is defined as an entity that actively interacts with
its surrounding environment and with other agents if we con-
sider a multi-agent system. In this paper we will focus on
a single agent, more precisely a normative agent. Figure 1
shows a normative agent, an entity that has to act and behave
by following the norms regulating the environment where it
acts. A more detailed description of what is a normative agent
can be found in [Boella et al., 2011].

In this paper we do not focus on which action the agent
should execute in a particular situation. For situation we
mean a particular state of the environment, including all the
inputs that the agent can use to make its decisions. Instead
we concentrate our efforts into deciding what an agent ought
to do and can do while in a particular situation.

The normative agent must be capable to handle the prob-
lems that can arise. In normative reasoning some of this prob-
lems are dilemmas exceptions and contrary to duties. Dilem-
mas occurs when the agent is facing two contradictory obliga-
tions. With contradictory obligations we mean two different
obligations which cannot be accomplished both. An exam-
ple is the Sartre’s soldier, which has the moral obligation to
not to kill, but being the soldier he has to fight and kill his
enemies. The second problem that an agent may face is the
exception. An exception, like the name suggests, occurs dur-
ing exceptional situations. In these exceptional situations it is
possible that a rule which usually has to be applied is over-
ridden by a different one. We can provide an example by
considering the rules of a football match. The standard rule is
that the players cannot play the ball with their hands. In this
case we have an exception if we consider the goalkeeper. This
particular player while inside its own goal area, is allowed to
use its hands to play the ball. The last problem mentioned is
the contrary to duty[Prakken and Sergot, 1996]. In normative
reasoning the violation of a rule is not always to be consid-
ered a critical failure. In some circumstances is possible to
handle the violation by fulfilling alternative obligations. As
an example we can consider the situation where we are in a
pub with a friend. Supposing that our friend is drinking a
beer. The general rule is that we should not spill our friends
beer. Considering the unfortunate situation where we acci-
dentally (or not) spill our friend’s beer. Our friend has now
the possibility to severe our friendship due to our violation.
In this situation we still have the possibility to repair to the

http://sourceforge.net/projects/joone/

violation, by considering to buy our friend a new beer.

3 Neural Networks for Norms
3.1 I/O logic for Norms
In order to use I/O logic to represent normative rules, we need
to add modalities. We add two different types of modalities,
the obligation (O) used to define what the agent is ought to
do or prohibited4 and the permission (P) use to define what
is permitted to the agent. We will consider the modalities
introduced are unary operators, acting over a single literal.
For example P(α) represents the permission to do α.

Considering again an I/O logic rule: R1 = (A,B) where
A and B are set of literals. By unfolding the set B we can
consider all the literals contained in the consequent: B =
{β1, β2, . . . , βn}. At each literal in the consequent, can be
added one of the possible modalities. By doing so what we
obtain is a normative rule, a rule which does not states facts
but, oughts, prohibitions and permissions for the normative
agent. For example: O(β1),P(β2),O(β3), a normative rule
with such consequent, would mean that β1 and β3 are oughts
and β2 is a permission instead.

3.2 I/O rules restrictions
For the translation we adopt a variant of the CILP algorithm.
We use N-CILP, that translates a knowledge base containing
I/O logic rules in a neural network.

In order to allow N-CILP to translate I/O logic rules, we
have apply some restrictions on the rules. However those re-
strictions are not crippling the expressivity of the logic.

1. First we need to restrict the antecedent (input) of the
rule. We want that the literals in the antecedent are con-
nected by conjunctions only. We see now how this does
not harm the expressivity of the logic. Considering a I/O
logic rule with a disjunction in the antecedent like the
following: (A1 ∨ A2, B) where A1 and A2 are sets of
conjuncted literals. For each disjunction we split the an-
tecedent. In this particular case we split the starting rule
into two rules with a new antecedent and the same con-
sequent. Obtaining in this case two rules: (A1, B) and
(A2, B) that considered together allow the same seman-
tics of the starting rule.

2. We restrict the consequent (output) to contain a single
literal. If we consider the set of consequents to be con-
stituted by conjuncted literals, then every literal in the
set produces a new rule, with itself in the consequent
and the same antecedent as the starting rule.
In this case the logic may lose some expressivity, it may
happen if we need disjunctions in the consequent. Dis-
junctions in the consequent can be used to introduce un-
certainty in the system. However due to the fact that
we consider normative systems, the rules are used to de-
scribe the norms governing the system. We can safely
assume that norms are meant to regulate the system and
not introduce uncertainty.

4By prohibition we mean the obligation of a negative literal. In
example we can have O(¬χ) which means the obligation to do not
χ, in other words the prohibition to do χ.

3. The last restriction regards the consequent. In addition
we have to restrict it to be a positive literal. We address
this problem by syntactically considering a negative lit-
eral as positive. In example the consequent ¬βi is con-
sidered as: β′

i. The newly created literal is semantically
still considered negative. Also in this case the logic does
not lose expressivity.

3.3 Priorities
Priorities are used to give a partial ordering between rules.
This ordering is useful because sometimes between two ap-
plicable rules we want to apply only one. This can happen
when considering for example exceptions.

Here we explain how we encode priorities within the rules
by using the negation as failure (∼). Considering for example
two rules: R1 = (A1 ∧A2,O(β1)), R2 = (A1 ∧A3,O(β2))
and a priority relation between them: R1 � R2, where the
first rule has the priority. Knowing A1, A2 and A3 are sets of
conjuncted literals, we embed the priority into the rule with
the lowest priority. To do so we include into the antecedent
of the rule with lower priority, the negation as failure of the
literals in the antecedent of the higher prioritized rule, that
does not appear in the antecedent of the lower priority rule.

Considering for example the two rules given, we have to
modify R2. In this case we need to include in the antecedent
ofR2 the part of the antecedent ofR1 that differs, in this case
A2. After embedding the priority within the second rule, it
becomes: R′

2 = (A1∧ ∼ A2 ∧A3,O(β2)).

3.4 Permissions
An important distinction between oughts and permissions, is
that the second ones are not explicitly encoded in the neural
network. In our approach we consider that something is per-
mitted to the agent if not explicitly forbidden5. Due to this
we consider rules with a permission in their consequent to
implicitly have the priority over the rules that forbid the same
action.

For example considering two rules R1 = (A1,P(β1)),
R2 = (A2,O(¬β1)). The first rule permits β1 and the second
forbids it. In this case we consider implicitly the following
priority relation R1 � R2 to hold.

4 Case study
To test the performance of our approach to normative reason-
ing we use the RoboCup scenario. For simplicity we focused
on the reasoning of a single robot, leaving out the multi-agent
aspect of the scenario.

With our approach, the robot does not plan the sequence
of the actions. Instead the robot analyzes the current sit-
uation and by taking into consideration the rules of the
game[Menegatti, 2007], it knows what is ought and what is
prohibited.

If we consider that the robot makes its decisions taking into
account only the rules, then the robot is acting within a static
environment. Because the rules does not change in the middle
of the game. In order to add dynamism into the environment

5We consider the ought of a negative literal as a prohibition.

N-CILPKnowledge
base

Inputs OutputsNeural
Network

Figure 2: Neural-Symbolic simulator.

we add an additional ruling element. The first ruling element
is the referee, which enforces the rules of the game. The ad-
ditional ruling element is the coach, which demands to the
robots to play in a specific way. The coach can introduce new
rules or lift some of the existing ones during the game. In this
way, a robot that acts in an environment where the coach is
involved, sometimes needs to adapt its behavior.

4.1 Knowledge base structure
The knowledge base used by the robot contains both the rules
of the game and the coach directions. Both the rules and the
directions are shaped in I/O logic rules format. The knowl-
edge base used in the experiments contains 29 rules, includ-
ing the rules which have a permission in their consequent.

The knowledge base also contains the priority relations be-
tween the rules, which are used to resolve possible conflicts
among them (like the production of contradicting oughts).

We show some of the rules contained in the knowledge
base:

R1 : (>6,O(¬impact opponent))
R2 : (>,O(¬use hands))
R3 : (goalkeeper ∧ inside own area,P(use hands))

R4 : (ball ∧ opponent approaching,O(pass))

The first rule states that a robot should never impact into an
opponent. The second rule is again a prohibition, that states
that a robot should not use its hands to play the ball. The third
rule is different, because states that the goalkeeper is allowed
to use its hands while inside its own goal area. The last rule is
not from the RoboCup ruling, instead is one of the rules that
the coach may have given to robots, to influence their playing
behavior. The fourth rule states that if an opponent is ap-
proaching the robot handling the ball, then that robot should
pass the ball.

5 Simulator and experimental results
5.1 The simulator
In Figure 2 it is shown how the simulator works. The knowl-
edge base contains the the rules that the robot knows. We
consider that the priorities are embedded within the rules as
described in the previous section. The knowledge base is used
as the input for the N-CILP translation algorithm.

6> means that the antecedent is always true, in other words the
rule is always applied.

¬α β γ

R1 R2

˜

φ¬φ

ρ σ

R3

˜

ψ

Figure 3: Example of Embedding

N-CILP
Given a knowledge base KB for each rule Rk = (αi1 ∧ . . .∧
αin∧ ∼ αin+1 ∧ . . .∧ ∼ αim,O(βo1))in KB do:

1. For each literal αij (1 ≤ j ≤ m) in the input of the rule.
If there is no input neuron labeled αij in the input level,
then add a neuron labeled αij in the input layer.

2. Add a neuron labeled Nk in the hidden layer.
3. If there is no neuron labeled βo1 in the output level, then

add a neuron labeled βo1 in the output layer.
4. For each literal αij (1 ≤ j ≤ n); connect the respective

input neuron with the neuron labeled Nk in the hidden
layer with a positive weighted arc.

5. For each literal αih (n + 1 ≤ j ≤ m); connect the
respective input neuron with the neuron labeled Nk in
the hidden layer with a negative weighted arc7.

6. Connect the neuron labeled Ni with the neuron in the
output level labeled βo1 with a positive weighted arc8

In [d’Avila Garcez et al., 2002] it is shown how the weights
of the resulting neural network can be calculated.

In Figure 3 we show the structure of a neural network
constructed with the N-CILP algorithm from the translation
of four rules. The rules are R1 = (¬α ∧ β ∧ γ,O(¬φ)),
R2 = (γ ∧ ρ,O(φ)), R3 = (γ,O(¬ψ)) and the permis-
sion rule R4 = (γ ∧ σ,P(ψ)) . Between the rules we
have a priority ordering R2 � R1 that inhibits the activa-
tion of the first rule whenever the second is activated. This
priority is embedded within the rules as described earlier
in this section and as a result we obtain a new first rule:
R′

1 = (¬α ∧ β ∧ γ∧ ∼ ρ,O(¬φ)). The implicit priority
ofR4 overR3 embeds within the latter the negation as failure
obtaining a new rule R′

3 = (γ∧ ∼ σ,O(¬ψ)) . The neu-
ral network is built from rules R′

1, R2 and R′
3

9, notice the
dotted lines in the network which are negative weighted arcs
representing the negation as failures in the rules R′

1 and R′
3,

with the task to inhibit the rules if the respective negation as
failure given in input is activated.

7The connections between these input neurons and the hidden
neuron of the rule represents the priorities translated with the nega-
tion as failure.

8Each output in the rules is considered as a positive atom during
the translation, this means that if we have a rule with a negative
output ¬β, in the network we translate an output neuron labeled β′

that has the same meaning of ¬β but for the translation purpose can
be treated as a positive output.

9Rule with a permission P in the consequent are not encoded in
the neural network.

5.2 Experimental results
We describe some experiments used to test the capabilities of
neural networks constructed with N-CILP. We introduce the
measures used to evaluate the behavior of the networks and
the parameters used.

To evaluate the evaluate the performance of the neural net-
work, we use two distinct measures: tot and part.

tot =

∑n
i=1 I(

∧k
j=1(cij == oij))

n

part =

∑n
i=1

∑k
j=1 I(cij == oij)

n ∗ k
n refers to the cardinality of the test set and k indicates the

number of output neurons of the neural network. oij indicates
the value of j-th output of the NN for the i-th test instance.
cij indicates the true value (desired value) of the j-th literal
of the i-th test instance. I(·) is the indicator, a function re-
turning 1 if the argument is true and zero otherwise. The tot
measure evaluates how many instances were processed en-
tirely correctly. Instead part considers the number of single
output neurons correctly activated.

By having 16 output neurons in the neural networks used
in the test, using only tot to measure the accuracy could be
misleading. To clarify this point we can consider an example.
We can assume that by processing two instances, the neural
network have produced for the first, 15 correct outputs out of
the total 16. For the second it managed to return all the correct
outputs. If we take into account the tot measure, we obtain an
accuracy of 50% that does not seems a great result. Instead by
considering the part measure, we obtain an accuracy higher
than the 96%. Which better underlines that the network only
missed one output out of 32 produced for the two instances
given.

In our experiments we train the neural network using a
10fold cross validation. We divide the initial data set of in-
stances in ten distinct subsets. Each subset is then used as
test set while the others are used together as training set. In
this way the instances seen during training are left out of the
testing phase to train ten networks and the results averaged.

In all the experiments we set the training parameters for the
neural networks as follows: learning rate: 0.8, momentum:
0.3 and training cycles: 100 [Haykin, 1999].

Non symbolic approach comparison
We compare the learning capacity of a network built with N-
CILP with a non symbolic neural network. One of the well
known issues of neural networks is deciding the number of
neurons to use in the hidden level. To not to put the non
symbolic neural network in excessive disadvantage, we de-
cided to adopt the same number of hidden neurons for both
networks10. The difference between the networks involved in
this test lies in their connection weights. The neural network
built with N-CILP sets its weights according to the rules in
the knowledge base. Instead the non symbolic network has
its weights randomly initialized. One advantage of a network

10The number of hidden neurons to use in the neural networks is
equal to the number of rules used for the network construction with
N-CILP.

built with N-CILP is that even without any training, it is capa-
ble to correctly process instances by applying the rules con-
tained in the knowledge base.

The network built with N-CILP uses a starting knowledge
base containing 20 rules. During the training phase the net-
work tries to learn 9 additional rules from the instances pro-
vided. The non symbolic network during the training phase
is provided with the same instances, the difference is that this
network have to learn all the 29 rules applied in the instances.

The results from the experiments show that the non sym-
bolic neural network obtains the following accuracies: tot:
5,13% part: 45,25%. Instead the network built N-CILP: tot:
5,38% part: 49,19%. We can see that under exactly the same
conditions, N-CILP improves the training-set performance of
the network.

Enhancing the knowledge base
The second experiment measures how the neural network per-
forms by increasing the number of rules in the knowledge
base. This test is important because the goal of a Neural-
Symbolic System, is not only to construct a neural network
capable to compute the same semantics as rule into the knowl-
edge base. Another important objective is to exploit the learn-
ing capabilities of the neural networks, allowing the robot to
increase the number of rules in its knowledge base from what
it learned[d’Avila Garcez et al., 2002].

The test is done incrementally. From the full set of 29 rules,
the experiment first step starts with a knowledge base contain-
ing 20 rules and tries to learn the remaining 9. Successively 2
rules are incrementally added into the initial knowledge base
during each step. In this way the unknown rules that the net-
work has to learn decreases by 2 each step. In example at the
second step of the experiment the starting knowledge base
contains 22 rules and the network tries to learn 7 rules during
the training phase.

During each step the neural network is tested over instances
where the full set of rules is applied. In this way the network
continues to process using the rules already known, reducing
the risk to forget them and in the meantime it tries to learn of
the unknown rules.

The results of this experiment are shown in Figure 4. We
can see that for the first two steps of the experiment the accu-
racies measured quite low. instead for the last two steps the
performance of the neural network increases, reaching an ac-
curacy peak of 98,01% for the part measure and 91,18% for
the tot.

From the experiment proposed we observed a direct corre-
lation between the number of the rules in the starting knowl-
edge base and the performance of the neural network. An-
other thing that can be noticed is that the smaller becomes
the number of rules that the network does not know, w.r.t.
the number of rules in the initial knowledge base can impact
the performances of the network, also due to the fact that a
network built from a larger knowledge base possesses more
connections.

6 Conclusion
In this paper we presented a way to combine a connection-
ist and a symbolic approach that can be used for normative

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 18 20 22 24 26 28

A
c
c
u

ra
c
y

of Rules

tot
part

Figure 4: Accuracy of tot and part measures increasing the
number of rules

reasoning. In this way agents behaving in normative environ-
ments, are able to adapt themselves to the normative evolution
of the world. An important step that has not been covered by
this paper concerns rules extraction. Rules extraction refers
to the process where a new knowledge base is recompiled
from the trained network. A method to achieve this task has
already been proposed in [d’Avila Garcez et al., 2002].

For a normative agent is important to be able to cope with
normative problems. Here we have show how the priorities,
used to achieve this task, can be embedded within the rules
and translated using the N-CILP algorithm.

In the paper we provided some of the results obtained with
the simulator by using our approach for a normative agent.
We are aware that more experiments are needed in order to
claim the validity of the approach. However we believe that
the results obtained so far are promising. We show a compar-
ison between our approach and a (not so disadvantaged) non
symbolic neural network. Further comparisons with other ap-
proaches for dynamic normative system should be made. In
example like comparing the pure symbolic approach used by
[Corapi et al., 2010], based on inductive learning, and our
neural-symbolic approach.

A related line of research involves the area of Argumenta-
tion. Argumentation has been proposed, among other things,
as a method to help symbolic machine learning. It would be
interesting to investigate the links between the work presented
here, argumentation applied to law, and the neural symbolic
approach to argumentation introduced in [d’Avila Garcez et
al., 2005].

Acknowledgements
Silvano Colombo Tosatto and Valerio Genovese are sup-
ported by the National Research Fund, Luxembourg.

References
[Boella and van der Torre, 2006] Guido Boella and Leendert

van der Torre. A game theoretic approach to contracts in
multiagent systems. IEEE Transactions on Systems, Man,
and Cybernetics, Part C, 36(1):68–79, 2006.

[Boella et al., 2009] Guido Boella, Gabriella Pigozzi, and
Leendert van der Torre. Normative framework for norma-
tive system change. In 8th Int. Joint Conf. on Autonomous

Agents and Multiagent Systems AAMAS 2009, pages 169–
176. IFAAMAS, 2009.

[Boella et al., 2010] Guido Boella, Silvano Colombo
Tosatto, Artur S. d’Avila Garcez, and Valerio Genovese.
On the relationship between i-o logic and connectionism.
In 13th International Workshop on Non-Monotonic
Reasoning, 2010.

[Boella et al., 2011] Guido Boella, Silvano Colombo
Tosatto, Artur S. d’Avila Garcez, Dino Ienco, Valerio
Genovese, and Leendert van der Torre. Neural symbolic
systems for normative agents. In 10th International Con-
ference on Autonomous Agents and Multiagent Systems,
2011.

[Corapi et al., 2010] Domenico Corapi, Marina De Vos, Ju-
lian Padget, Alessandra Russo, and Ken Satoh. Norm re-
finement and design through inductive learning. In 11th In-
ternational Workshop on Coordination, Organization, In-
stitutions and Norms in Agent Systems COIN 2010, pages
33–48, 2010.

[d’Avila Garcez and Zaverucha, 1999] Artur S. d’Avila
Garcez and Gerson Zaverucha. The connectionist induc-
tive learning and logic programming system. Applied
Intelligence, 11:59–77, July 1999.

[d’Avila Garcez et al., 2002] Artur S. d’Avila Garcez,
Krysia B. Broda, and Dov M. Gabbay. Neural-Symbolic
Learning Systems. Perspectives in Neural Computing.
Springer, 2002.

[d’Avila Garcez et al., 2005] Artur S. d’Avila Garcez, Dov
M. Gabbay, and Luis C. Lamb. Value-based argumenta-
tion frameworks as neural-symbolic learning systems. J.
of Logic and Computation, 15(6):1041–1058, 2005.

[Haykin, 1999] Simon Haykin. Neural Networks: A Com-
prehensive Foundation. Prentice Hall, 1999.

[Makinson and van der Torre, 2000] David Makinson and
Leendert van der Torre. Input-output logics. Journal of
Philosophical Logic, 29, 2000.

[Menegatti, 2007] Emanuele Menegatti. Robocup soccer hu-
manoid league rules and setup, 2007.

[Prakken and Sergot, 1996] Henry Prakken and Marek Ser-
got. Contrary-to-duty obligations. Studia Logica, 57,
1996.

[Sen and Airiau, 2007] Sandip Sen and Steṕhane Airiau.
Emergence of norms through social learning. In Procs.
of the 20th International Joint Conference on Artificial In-
telligence - IJCAI, pages 1507–1512, 2007.

[Shoham and Tennenholtz, 1997] Yoav Shoham and Moshe
Tennenholtz. On the emergence of social conventions:
Modeling, analysis, and simulations. Artificial Intelli-
gence, 94(1-2):139–166, 1997.

[Towell and Shavlik, 1994] Geoffrey G. Towell and Jude W.
Shavlik. Knowledge-based artificial neural networks. Ar-
tif. Intell., 70:119–165, October 1994.

	Introduction
	Related work
	Neural Networks for Norms
	I/O logic for Norms
	I/O rules restrictions
	Priorities
	Permissions

	Case study
	Knowledge base structure

	Simulator and experimental results
	The simulator
	Experimental results

	Conclusion

