
Efficient Implementation of NIST-Compliant
Elliptic Curve Cryptography for Sensor Nodes

Zhe Liu1, Hwajeong Seo2, Johann Großschädl1, and Howon Kim2

1 University of Luxembourg,
Laboratory of Algorithmics, Cryptology and Security (LACS),

6, rue R. Coudenhove-Kalergi, L–1359 Luxembourg-Kirchberg, Luxembourg
{zhe.liu,johann.groszschaedl}@uni.lu

2 Pusan National University,
School of Computer Science and Engineering,

San-30, Jangjeon-Dong, Geumjeong-Gu, Busan 609–735, Republic of Korea
{hwajeong,howonkim}@pusan.ac.kr

Abstract. In this paper, we present a highly-optimized implementation
of standards-compliant Elliptic Curve Cryptography (ECC) for wireless
sensor nodes and similar devices featuring an 8-bit AVR processor. The
field arithmetic is written in Assembly language and optimized for the
192-bit NIST-specified prime p = 2192 − 264 − 1, while the group arith-
metic (i.e. point addition and doubling) is programmed in ANSI C. One
of our contributions is a novel lazy doubling method for multi-precision
squaring which provides better performance than any of the previously-
proposed squaring techniques. Based on our highly optimized arithmetic
library for the 192-bit NIST prime, we achieve record-setting execution
times for scalar multiplication (with both fixed and arbitrary points) as
well as multiple scalar multiplication. Experimental results, obtained on
an AVR ATmega128 processor, show that the two scalar multiplications
of ephemeral Elliptic Curve Diffie-Hellman (ECDH) key exchange can
be executed in 1.75 s altogether (at a clock frequency of 7.37 MHz) and
consume an energy of some 42 mJ. The generation and verification of an
ECDSA signature requires roughly 1.91 s and costs 46 mJ at the same
clock frequency. Our results significantly improve the state-of-the-art in
ECDH and ECDSA computation on the P-192 curve, outperforming the
previous best implementations in the literature by a factor of 1.35 and
2.33, respectively. We also protected the field arithmetic and algorithms
for scalar multiplication against side-channel attacks, especially Simple
Power Analysis (SPA).

1 Introduction

Wireless Sensor Networks (WSNs) are a key technology of the 21st century, en-
abling new applications in such domains as infrastructure protection, industrial
automation and health monitoring, to name a few [1]. A WSN can be defined as
a network composed of autonomous, battery-powered computing devices (called
nodes) with sensing and wireless networking capabilities. The sensor nodes are

2 Z. Liu, H. Seo, J. Großschädl, and H. Kim

deployed in a certain environment or area of interest to monitor a phenomenon
or condition such as temperature, humidity, luminosity, etc. They cooperatively
collect and aggregate sensor readings and send them to a central unit (the base
station) for further processing and decision making. Unfortunately, WSNs face
all security threats inherent in any wireless network, plus additional ones that
are hard to protect against [24]. Since WSNs are often deployed in unattended
areas, an attacker may be able to access individual nodes and perform various
kinds of physical attacks, e.g. side-channel cryptanalysis [10]. The integration
of countermeasures against such attacks is a nontrivial task due to the resource
constraints (in particular limited energy) of battery-powered sensor nodes like
the MICAz mote [8]. These constraints make a good case for using lightweight
cryptosystems that can be effectively protected against side-channel attacks. In
the context of public-key cryptography, elliptic-curve based algorithms such as
ECDH and ECDSA are known to meet these requirements [15].

Energy is the most precious resource of a wireless sensor node. The MICAz
mote [8], for example, is powered by two 1.5 V AA batteries, which can not be
easily recharged or replaced after deployment. In general, the energy consump-
tion of cryptographic software depends primarily on the execution time of the
algorithm and the average power dissipation of the processor it is executed on
[11]. However, a cryptographic engineer can only influence the former since the
choice of the processor is normally not under his control. The overall execution
time of most elliptic curve cryptosystems is dominated by the time needed to
perform a scalar multiplication, which, in turn, depends on a number of factors
such as the order of the elliptic-curve group, the actual implementation of the
point arithmetic, and the efficiency of certain operations (e.g. multiplication) in
the underlying finite field [15]. Another important aspect is the concrete form
of the elliptic curve; for example, Montgomery curves [25] or Twisted Edwards
curves [16] allow for more efficient point addition/doubling than conventional
Weierstraß curves. Unfortunately, these special curve shapes are not standard-
ized, which prevents their use in commercial applications that need to undergo
a certification process. On the other hand, curves specified by standards bodies
like the NIST facilitate inter-operability and maximize access to resources and
services. Therefore, we decided to adopt the NIST-recommended elliptic curve
P-192 from [26] for our implementation.

Elliptic Curve Cryptography (ECC) has been exhaustively researched in the
past 25 years and is nowadays considered an excellent option for the implemen-
tation of key exchange and digital signatures. Virtually all ECC cryptosystems
of practical importance require to execute one (resp. two) of the following three
variants of scalar multiplication: (i) k · P where the point P is fixed and known
a priori (called fixed-point scalar multiplication), (ii) k · Q with Q being an ar-
bitrary point not known in advance, and (iii) k · P + l ·Q where P is fixed and
Q is an arbitrary point (called double scalar multiplication). For example, the
classical ECDH key exchange protocol consists of two stages; in the first stage
a key-pair is created, which comprises a fixed-point scalar multiplication by the
generator of an elliptic-curve group of prime order. The second stage involves

Efficient Implementation of NIST-Compliant Elliptic Curve Cryptography 3

a scalar multiplication by a point that, unlike to the first stage, is neither fixed
nor known in advance. Something similar holds for ECDSA since the signature-
generation process entails a fixed-point scalar multiplication like the first stage
of ECDH. However, the verification of an ECDSA signature requires to execute
a double scalar multiplication of the form k · P + l ·Q, whereby one of the two
points is not known in advance.

1.1 Overview of Related Work and Motivation for Our Work

In the past ten years, a multitude of ECC implementations for 8-bit processors
appeared in the literature. The first milestone belongs to Gura et al [14], who
introduced highly-optimized ECC software for 8-bit AVR microcontrollers like
the ATmega128 [4] and reported an execution time of roughly 0.81 s and 1.24 s
for a 160-bit and 192-bit scalar multiplication, respectively (at a frequency of 8
MHz). They also found that the relative performance advantage of ECC versus
RSA increases with larger key sizes (i.e. larger groups). TinyECC [22] was one
of the first publicly available and, hence, widely used ECC libraries for wireless
sensor nodes. Most parts of TinyECC are implemented in nesC, but it contains
also numerous processor-specific optimizations (written in Assembly language)
for common 8-bit and 16-bit sensor platforms. It has been tested successfully on
MICA2/MICAz, TelosB/Tmote Sky, BSNV3, and the Imote2 node. TinyECC
supports the SECG-specified 128-bit and 160-bit domain parameters as well as
the NIST curve P-192 through dedicated field and curve arithmetic operations
[22]. There exist many other efficient ECC implementations for 8-bit AVR pro-
cessors, e.g. WM-ECC [33], Nano-ECC [31], MIRACL [6], NaCl [17] using prime
fields and RELIC [2] for binary fields.

All currently-existing prime-field based ECC libraries use either the hybrid
multiplication technique [14] (or a variant of it [6, 22, 33, 31, 20]) or employ the
Karatsuba method (e.g. NaCl [17]) for the performance-critical multi-precision
multiplication and squaring. Recently, the operand caching method [18] and its
successor, the consecutive operand caching method [28], were proposed as new
techniques to speed up multi-precision multiplication on embedded micro-con-
trollers, while Lee et al [21] developed several optimizations for multi-precision
squaring. However, these recent papers focussed exclusively on multi-precision
arithmetic and did not evaluate the impact of the described techniques on the
overall execution time of a scalar multiplication. It is, therefore, interesting to
combine these sophisticated multiplication and squaring techniques in order to
push the envelope of ECC on AVR micro-controllers. However, performance is
not our only goal since, as pointed out before, protection against side-channel
cryptanalysis (i.e. timing and SPA attacks) is similarly important. Most of the
previous ECC libraries, however, do not contain countermeasures; the only two
exceptions are the work from [20] and NaCl [17]. Lederer et al [20] implemented
ECDH for WSNs and protected the scalar multiplication against SPA attacks
by adopting highly “regular” variants of the comb and window method, respec-
tively. Their ECDH software uses a 192-bit prime field specified by the NIST as
underlying algebraic structure and needs 5.20 · 106 and 12.33 · 106 clock cycles

4 Z. Liu, H. Seo, J. Großschädl, and H. Kim

an ATmega128 processor to to compute a fixed-point and random-point scalar
multiplication, respectively. NaCl is a cryptographic library whose ECC part is
based on Curve-25519 [5] and, therefore, provides a (symmetric) security level
of about 128 bits. Unfortunately, a scalar multiplication on Curve-25519 needs
at least 22.95 · 106 clock cycles when executed on an ATmega128 micro-control-
ler (i.e. 3.11 s at a frequency of 7.37 MHz), which naturally raises the question
of how well Curve25519 is suited for battery-powered sensors nodes.

1.2 Our Contributions

We introduce a number of optimizations to improve both the performance and
security (i.e. resistance against timing and SPA attacks) of scalar multiplication
on the NIST curve P-192 when executed on an 8-bit AVR micro-controller. The
contribution of this paper is threefold.

– New approach for the efficient implementation of multi-precision squaring on
8-bit AVR micro-controllers. The novel “lazy doubling” method we describe
in this paper has been specially devised for multi-precision squaring. When
executed on the ATmega128, it needs merely 2, 064 clock cycles to square a
192-bit integer, which sets a new speed record for multi-precision squaring
on an 8-bit processor.

– Highly optimized arithmetic library for the NIST P-192 field. All operations
of our library (except inversion) are implemented in a highly regular fashion
independent of the value of the operands, which helps to thwart timing and
SPA attacks. Yet, our implementation of arithmetic operations modulo the
192-bit NIST prime is more than twice as fast as the widely-used TinyECC
library, the current de-facto standard for ECC in WSNs [22].

– Record-setting execution times for ECDH and ECDSA over a 192-bit prime
field. We employ a regular variant of the fixed-base comb technique for the
fixed-point scalar multiplication and a window method with a window size
of 4 when the point is not known a priori, while the double scalar multipli-
cation is executed in an interleaved fashion with joint doublings. Practical
results, obtained on an ATmega128, demonstrate that our work exceeds the
state-of-the-art in ECDH key agreement and ECDSA signature generation
(resp. verification), outperforming the best implementations reported in the
literature by a factor of 1.35 [20] and 2.33 [22], respectively.

The rest of the paper is organized as follows. In Section 2, we briefly discuss
the mathematical foundations of ECC and describe the basic properties of the
NIST curve P-192 we adopt in our implementation. Thereafter, we explain the
algorithms for fixed-point and arbitrary-point scalar multiplication (for ECDH)
as well as double-scalar multiplication (for ECDSA). In Section 3, we introduce
our implementation of the field operations for the 192-bit prime, including the
new “lazy doubling” method for multi-precision squaring. The implementation
results (e.g. execution time, energy consumption, RAM footprint) we achieved
are summarized in Section 4. Finally, we conclude the paper in Section 5.

Efficient Implementation of NIST-Compliant Elliptic Curve Cryptography 5

2 Elliptic Curve Cryptography

In this section, we first discuss some implementation aspects of ECC and then
present the domain parameters we used in our implementation. Thereafter, we
describe algorithms for fixed-point and arbitrary-point scalar multiplication as
well as double scalar multiplication.

2.1 NIST Curve P-192

Let Fp be a prime field. An elliptic curve E over Fp can be defined through a
short Weierstraß equation of the form y2 = x3 + ax + b, whereby a, b ∈ Fp and
4a3 + 27b2 6= 0. In order to improve efficiency, it is common practice to fix the
curve parameter a to −3 (i.e. a = p− 3) since this choice allows for optimizing
the point arithmetic, as will be discussed in more detail below. All prime-field
curves standardized by the NIST in [26] adopt this approach; consequently, the
so-called “NIST curves” can be defined via a short Weierstraß equation of the
following form

E : y2 = x3 − 3x + b (1)

Before an elliptic curve cryptosystem can actually be carried out, the involved
parties need to agree on a set of domain parameters, which specifies besides the
curve and field to be used also a base point G = (xG, yG) that generates a large
cyclic subgroup of E(Fp), the order n of this subgroup (which is a prime), and
the co-factor h = #E(Fp)/n [15]. All five NIST curves over prime fields have a
co-factor of h = 1; consequently, any point P whose x and y coordinates fulfill
Equation 1 has prime order n. This property prevents small subgroup attacks
and, therefore, simplifies the implementation of ECDH key agreement. On the
other hand, Edwards curves and Montgomery curves require specific measures
to thwart these attacks since they always have a co-factor of h ≥ 4. Among the
five prime-field curves specified in [26], the curve P-192 is the most suitable one
for resource-constrained sensor nodes as it offers a reasonable balance between
security and execution time (i.e. energy consumption). This curve uses the field
Fp defined by the generalized-Mersenne (GM) prime

p = 2192 − 264 − 1 (2)

as underlying algebraic structure to facilitate the modular reduction. As shown
in [15], the product of two 192-bit integers can be reduced via three additions
modulo p by exploiting the relation 2192 ≡ 264 + 1 mod p. The parameter b, the
base point G, and the order n of curve P-192 can be found in [26].

In order to avoid expensive inversions in Fp, we represent the points on the
curve using projective coordinates. According to [15, Table 3.3], Jacobian pro-
jective coordinates yield the most efficient formula for point doubling, whereas
mixed Jacobian-affine coordinates allows for the fastest point addition on curve
P-192. Based on [15, Algorithm 3.22], a mixed addition needs 8 multiplications
(8M) and 3 squarings (3S) in the underlying field. The doubling of a point costs
only 4 multiplications and the same number of squarings (i.e. 4M + 4S).

6 Z. Liu, H. Seo, J. Großschädl, and H. Kim

2.2 Algorithms for Scalar Multiplication

The Elliptic Curve Diffie-Hellman (ECDH) key exchange technique has much in
common with the “classical” Diffie-Hellman scheme, but operates in an elliptic
curve group E(Fp) instead of Z∗p [15]. There exist two principal variants of the
ECDH protocol, namely static ECDH and ephemeral ECDH. The latter is com-
putationally more demanding, but provides the important advantage of forward
secrecy. Ephemeral ECDH requires each of the two involved parties to perform
two scalar multiplications; the first to generate an ephemeral key pair, and the
second to obtain the shared secret. The first scalar multiplication takes a fixed
and a-priori-known point as input, namely the generator G, whereas the second
scalar multiplication has to be carried out with an arbitrary point not known in
advance. Consequently, ephemeral ECDH key agreement requires each party to
execute both a fixed-point and an arbitrary-point scalar multiplication.

A fixed-point scalar multiplication can be efficiently performed through the
so-called fixed-base comb method as described in Section 3.3.2 of [15]. The idea
is to pre-compute and store 2w multiples of the base point P and then process
w bits of the scalar k at once, thereby reducing the number of point doublings
by a factor of w and the number of point additions by roughly w/2 compared to
the straightforward double-and-add method. A window size of w = 4 represents
a good trade-off between performance and storage requirements since only 16
points need to be pre-computed. In this case, a fixed-point scalar multiplication
on curve P-192 requires 48 point doublings and up to 48 point additions. The
multiples of the base point to be pre-computed are linear combinations of the
form d3 · (2144P) + d2 · (296P) + d1 · (248P) + d0 · P with di ∈ {0, 1}. As indi-
cated before, our comb method represents (and processes) a 192-bit scalar k in
4-bit digits Ki = 8k144+i + 4k96+i + 2k48+1 + ki for 0 ≤ i < 48 (see [15] for an
in-depth description of the fixed-base comb method).

A straightforward implementation of the comb method described above has
an irregular execution pattern (and, hence, succumbs to Simple Power Analysis
(SPA) attacks [19, 15]) since the point addition is only carried out for non-zero
digits Ki. Consequently, an attacker able to distinguish point additions from
point doublings in the power consumption profile can get the position of 0 bits
in the scalar k. One possibility to prevent this SPA leakage is to represent the
4-bit digits using a digit set not containing 0, e.g. D′ = {±1,±3, . . . ,±15}, in-
stead of the ordinary set D = {0, 1, . . . , 15} and adapting the pre-computation
of multiples of P accordingly. When doing so, the comb technique executes the
same number of point additions and point doublings, independent of the actual
value of k, since all Ki are non-zero. Liu et al introduced in [23] a simple (and
highly regular) algorithm for the conversion of radix-24 integers represented via
the canonical digit set D into an equivalent representation based on the zero-free
digit set D′. We apply their algorithm to obtain the Ki ∈ {±1,±3, . . . ,±15} in
an SPA-resistant fashion. Using D′ instead of D also allows one to reduce the
storage requirements of the comb method by half since we need to pre-compute
only the multiples of P corresponding to the eight positive elements of D′. The
negative multiples can be generated “on the fly” via the regular point-negation

Efficient Implementation of NIST-Compliant Elliptic Curve Cryptography 7

Algorithm 1. Regular window method for scalar multiplication (w = 4)

Input: n-bit scalar k = (kn−1, . . . , k1, k0)2, point P ∈ E(Fp).
Output: Scalar product R = k · P .
1: Convert k into radix-24 representation k′ = (Ks−1, . . . ,K1,K0)16 where s = dn/4e

and Ki ∈ {±1,±3, . . . ,±15} for 0 ≤ i ≤ s− 1 as described in [23].
2: Generate look-up table T consisting of 8 points T [i] = (2i + 1) · P for 0 ≤ i ≤ 7.
3: R← T [(Ks−1 − 1)/2] {Ks−1 is always positive}
4: for i from s− 2 by 1 down to 0 do
5: R← 16 ·R { four point doublings}
6: R← R + sign(Ki) · T [(|Ki| − 1)/2] { one point addition}
7: end for
8: return R

technique described in [23]. In this way, the 4-bit comb method requires a mere
384 bytes in read-only memory (i.e. ROM or Flash) as the pre-computed points
are stored in affine coordinates so that we can use the efficient mixed-addition
formula given in [15, Algorithm 3.22]

Besides a fixed-point scalar multiplication, each of the two parties involved
in an ECDH key agreement also has to perform a scalar multiplication with an
arbitrary base point not known in advance. Unfortunately, the comb method in-
volves an expensive pre-computation phase and is, therefore, only useful when
the base point is fixed. If this is not the case, it is generally more efficient to
employ a window method [15] such as shown in Algorithm 1 for a window size
of w = 4. First, we convert the scalar k into a radix-24 representation based on
the signed digit set D′ = {±1,±3, . . . ,±15}. Similar to the comb method, we
follow the approach introduced in [23] to ensure this conversion does not leak
any SPA-relevant information. The next step is then the generation of a table
containing eight multiples of P , namely P , 3P , 5P , . . . , 15P . Since all of these
points are needed in affine coordinates, it makes sense to do a simultaneous in-
version [15, page 44] of the Z coordinates so as to reduce the cost of the table
computation. The loop in Algorithm 1 is similar to that of the double-and-add
method, but we process a 4-bit digit Ki of k in each iteration instead of just a
single bit. At line 6, the pre-computed point from table T corresponding to the
absolute value of Ki is loaded from RAM. Even though the index for this table
access depends on the secret scalar, there is no information leakage since load
operations always have the same latency on an ATmega128. Depending on the
sign of Ki, the loaded point is added to R either directly or negated. We again
refer to [23] for a description of how this can be carried out in a regular fashion
without the need to execute conditional statements. The window method with
w = 4 performs 192 point doublings and 48 point additions, independent of the
actual value of k. It occupies 384 bytes in RAM for table T .

The Elliptic Curve Digital Signature Algorithm (ECDSA) is a variant of the
DSA signature scheme operating in an elliptic curve group [15]. From an arith-
metic point of view, the major operation of an ECDSA signature generation is
a scalar multiplication by a fixed and a-priori-known base point, similar to the

8 Z. Liu, H. Seo, J. Großschädl, and H. Kim

Algorithm 2. Double scalar multiplication with joint doublings

Input: Two n-bit scalars k and l, two points P,Q ∈ E(Fp).
Output: Scalar product R = k · P + l ·Q.
1: (k′, l′)← JSF(k, l) { calculate JSF of (k, l) using [15, Algorithm 3.50]}
2: R← O, S ← P + Q, T ← P −Q
3: for i from n by 1 down to 0 do
4: R← 2R
5: if (k′i = 1) and (l′i = 1) then R← R + S
6: else if (k′i = 1) and (l′i = −1) then R← R + T
7: else if (k′i = −1) and (l′i = 1) then R← R− T
8: else if (k′i = −1) and (l′i = −1) then R← R− S
9: else if (k′i = 1) and (l′i = 0) then R← R + P

10: else if (k′i = 0) and (l′i = 1) then R← R + Q
11: else if (k′i = −1) and (l′i = 0) then R← R− P
12: else if (k′i = 0) and (l′i = −1) then R← R−Q end if
13: end for
14: return R

first stage of ECDH key exchange. The fixed-base comb method with w = 4 is
the natural choice to perform this operation in an efficient and secure (i.e. SPA-
resistant) fashion. On the other hand, the verification of an ECDSA signature
requires a so-called double scalar multiplication of the form k · P + l · Q where
one of the points is fixed and the other not. To reduce execution time, the two
scalar multiplications k ·P and l ·Q can be carried out simultaneously (i.e. in an
“interleaved” fashion) so that n point doublings suffice to get the result. Algo-
rithm 2 shows a possible realization of this approach, sometimes referred to as
Shamir’s Trick (see e.g. [15, p. 109]). We represent the n-bit scalars k and l in
Joint Sparse Form (JSF) [30], which means roughly n/2 point additions have to
be performed. In our case, i.e. 192-bit scalars, the cost of Algorithm 2 amounts
to 192 point doublings and some 96 point additions, not taking into account the
pre-computation of P + Q and P −Q in line 2. Note that the verification of an
ECDSA signature is a public-key operation and, therefore, does not need to be
protected against side-channel attacks.

3 Efficient Field Arithmetic for Curve P-192

In the following, we describe our implementation of basic arithmetic operations
modulo the 192-bit generalized-Mersenne prime p = 2192 − 264 − 1.

3.1 Addition and Subtraction

To add two elements a, b ∈ Fp, we firstly perform a conventional multi-precision
addition of the two byte-arrays A and B representing them. As result we get a
sum-array S consisting of 24 bytes and a carry bit c, which is either 0 or 1. The
carry bit c is then used to generate a mask M that, depending on c, is either an

Efficient Implementation of NIST-Compliant Elliptic Curve Cryptography 9

A[23]B[0]

A[0]B[0]

A[0]B[23]

A[23]B[23]

C[0]C[23]C[47]

btop

bbottom

bmiddle

1

1

2

2

3

3

4

4

1

A[23]A[0]

A[0]A[0]A[23]A[23]

C[0]C[23]C[47]

1

2
34

5

Fig. 1. COC multiplication (left) and “lazy doubling” squaring (right)

“all-1” byte (i.e. has the value 255) or an “all-0” byte. A mask of this form can
be simply obtained via negation of the carry bit; we get the “all-1” byte if c is
1 and the “all-0” byte otherwise. Then, we perform two “masked” subtractions
of the prime p, which means we do a logical “AND” of prime-byte P [i] and the
mask M before we actually subtract it from the corresponding byte of S. Two
such subtractions are required to get a result of at most 192 bits, whereby the
carry bit c must be updated after the first subtraction. In this way, always the
same sequence of instructions is executed, independent of the value of the two
operands a and b. Note, however, that the final result may not be fully reduced
(even though it is always smaller than 2192), but this is no problem because all
functions of our arithmetic library can process incompletely reduced operands
[34]. The modular subtraction is implemented in a very similar way.

3.2 Multiplication and Squaring

Multiplication and squaring are two extremely performance-critical arithmetic
operations in ECC [2]. Our implementation employs an improved variant of the
Consecutive Operand Caching (COC) method [28] for the former and a novel
“lazy doubling” technique to speed up the latter. We use the following notation:

– n: operand size (192 bits in our case)
– w: word size of the processor (8 bits)
– m: number of elements in an operand-array, i.e. m = n/w = 24
– e: number of operand words (i.e. bytes) to be cached (10 in our case)
– r: number of row sections, r = bm/ec
– A, B: operands represented by byte arrays: A = (A[m − 1], . . . , A[1], A[0])

and B = (B[m− 1], . . . , B[1], B[0])
– C: 2n-bit product C = A ·B whereby C = (C[2m− 1], . . . , C[1], C[0])

As shown in Figure 1, we describe the execution flow using a rhombus and
triangular forms. Each dot represents a byte-product of the form A[i]×B[j] or
A[i] × A[j]. The rightmost corner of the rhombus indicates the lowest indices
(i.e. i, j = 0), whereas the highest indices (i.e. i, j = m− 1) can be found at the
leftmost corner. All bytes C[k] of the product C are located at the bottom edge
of the rhombus, whereby C[0] is at the right and C[2m− 1] at the left.

10 Z. Liu, H. Seo, J. Großschädl, and H. Kim

A[23]A[0]

A[0]A[0]A[23]A[23]

C[0]C[23]C[47]

1

2

34
5

A[23]A[0]

A[0]A[0]A[23]A[23]

C[0]C[23]C[47]

1

2

34
5

A[23]A[0]

A[0]A[0]A[23]A[23]

C[0]C[23]C[47]

1

2

34
5

A[23]A[0]

A[0]A[0]A[23]A[23]

C[0]C[23]C[47]

1

2

34
5

A[23]A[0]

A[0]A[0]A[23]A[23]

C[0]C[23]C[47]

1

2

34
5

A[23]A[0]

A[0]A[0]A[23]A[23]

C[0]C[23]C[47]

(a) (b)

(c) (d)

(e) (f)

Fig. 2. Execution flow of the novel “lazy doubling” technique

To speed up the multiplication, we combine the COC method [28] with the
so-called carry-once technique described in [29]. The COC method reduces the
number of load instructions by re-scheduling the byte-multiplication sequences
so that each byte is loaded only once (i.e. it fully prevents re-loadings). On the
other hand, the carry-once technique minimizes the number of add instructions
by first delaying and then updating intermediate results at once instead of do-
ing it one-by-one. The execution flow is illustrated on the left of Figure 1. We
have r = b 2410c = 2, which means there are two row sections, namely bbottom and
bmiddle. First, we calculate the 16 byte-products in block btop at the top of the
rhombus; this requires to load the operand bytes A[20 − 23] and B[0 − 3]. The
latter four bytes are cached as they are used again in the next block, which is
bbottom. This block consists of four regions (labeled 1© to 4© in Figure 1) and is
processed from right (i.e. region 1©) to left (i.e. region 4©). The computations
in the regions 1© to 3© involve the loading of the bytes A[0− 9], B[4− 23], and
A[10 − 19]. Following the carry-once strategy, we load in region 2© and 3© the
intermediate-result bytes C[20− 27] and update them pair-wise in the following
order: C[20, 21], C[22, 23], C[24, 25], and C[26, 27]. In this way, we save an add
instruction in the processing of each of these pairs. Once bbotton is finished, we
pass the bytes A[10− 19] to the block bmiddle, which is processed similarly.

We describe now our novel “lazy doubling” approach for squaring. Unlike to
multiplication, an optimized squaring algorithm does not need to calculate all
m2 byte products since there exist a large number of pairs that have the same
value, e.g. A[1] ·A[0] and A[0] ·A[1]. After elimination of these “duplicates,” we
get a squaring algorithm with a triangular execution flow as illustrated on the
right of Figure 1. Figure 2 shows the main steps of the our squaring algorithm

Efficient Implementation of NIST-Compliant Elliptic Curve Cryptography 11

in more detail. At first, in step (a), all byte products on the top of the triangle
are computed, which includes to load operand bytes A[20− 23] and to load and
cache bytes A[0− 3]. In step (b), all byte products of region 2© are formed and
the bytes A[0 − 8] are cached. Thereafter, in step (c), we apply the carry-once
technique, indicated by yellow dotted lines in Figure 2. This step uses operand
bytes A[9 − 17] and A[0 − 8], but only the former ones are cached. The bytes
C[10 − 18] of the intermediate result are computed and updated in a pair-wise
fashion, thereby saving one clock cycle per pair. In step (d), byte products are
generated using bytes A[10 − 23] and A[0 − 13], and in step (e), computations
are continued with A[13 − 23] and A[6 − 23], and the intermediate results are
updated. Finally, in step (f), we double the whole intermediate result we got so
far and then compute the remaining byte products. Our lazy doubling method
requires only 2064 clock cycles to square a 192-bit integer, which improves the
best previous result in the literature [21] by about 2%.

The result of a multiplication (or squaring) is a 384-bit integer, which must
be reduced modulo p = 2192 − 264 − 1 to get a 192-bit residue. As mentioned in
Subsection 2.1 (and explained in more detail in [15, Section 2.2.6]), it is possible
to perform this reduction via three 192-bit additions modulo p. However, in the
worst case, three subtractions of p are necessary to get a reduced result, which
can considerably slow down this operation, especially if one aims for resistance
against SPA or timing attacks. Therefore, we use the “sum scanning” method
for reduction modulo p proposed in [13, Algorithm 2] so that at most one final
subtraction of p has to be carried out. We perform this final subtraction in an
“unconditional way” using a byte-mask as described in Subsection 3.1.

3.3 Inversion

When using projective coordinates, it is generally necessary to invert the Z co-
ordinate of the point obtained at the end of the scalar multiplication to have a
final result in affine coordinates. The Extended Euclidean Algorithm (EEA) is
commonly used for computing multiplicative inverses in Fp. Unfortunately, the
EEA has a very irregular execution profile and, therefore, may leak information
about Z, which, in turn, could be used by an attacker to recover parts of the
secret scalar. To thwart such attacks, we firstly multiply Z by a random value
R, invert this product, and then multiply (ZR)−1 again by R to get Z−1.

4 Implementation Results

In this section, we firstly report the execution times of our implementation and
compare them with the results of previous work. Then, we analyze the memory
footprint and energy consumption of our ECC software.

4.1 Execution Time

We implemented all field operations (except of a few parts of the inversion) in
AVR Assembly language and the rest (i.e. point addition, point doubling, and

12 Z. Liu, H. Seo, J. Großschädl, and H. Kim

Table 1. Execution time of 192-bit arithmetic operations (in clock cycles)

Implementation mod-add mod-sub mod-mul mod-sqr mod-inv

Liu et al [22] 832 786 8, 152 7, 493 1, 305, 616

Chu et al [7] 632 632 4, 845 4, 052 476, 055

This work 378 378 4, 042 2, 658 280, 829

the scalar multiplication algorithms) in ANSI C. In order to achieve peak per-
formance, we unrolled the loops of all field operations except inversion. Table 1
summarizes the execution times of the five basic arithmetic operations modulo
the 192-bit NIST prime. The modular addition takes exactly the same time as
the modular subtraction, namely 378 clock cycles on an 8-bit AVR ATmega128
processor. Our modular multiplication executes in about 4,000 cycles, whereas
the modular squaring has an execution time of 2,658 clock cycles, which means
the squaring requires merely two-third of the multiplication cycles. This result
impressively demonstrates the efficiency of our “lazy doubling” technique since
modular squaring is typically only about 20% faster than modular multiplica-
tion. A comparison with Liu et al’s widely-used TinyECC software [22] shows
that our implementation of modular addition, subtraction and multiplication is
more than twice as fast as theirs, while the modular squaring gains a speed-up
by a factor of roughly 2.8. Our implementation is also significantly faster than
that of Chu et al [7], who used a 192-bit Optimal Prime Field (OPF) but did
not unroll the loops. The inversion modulo p has an (average) execution time
of roughly 280k cycles, which means it is approximately 70 times slower than a
modular multiplication. However, our inversion needs only 56% of the execution
time reported in [7] and 21% of the time of the TinyECC inversion.

Table 2. Execution time (in cycles) of point addition and point doubling

Implementation Point addition Point doubling

Liu et al [22] (NIST P-192) 80, 774 63, 355

Chu et al [7] (Tw. Edwards) 54, 158 41, 630

This work (NIST P-192) 43, 604 29, 914

Table 2 shows the execution time of point addition and doubling. Compared
to TinyECC, our addition achieves a speed-up of slightly below 2.0x, whereas
the speed-up factor of point doubling is a bit above 2.0x. Interestingly, we are
also faster than Chu et al [7], who used a twisted Edwards curve that features
more efficient addition and doubling formulae than our NIST curve.

We also simulated the execution times of fixed-point and variable-point sca-
lar multiplication as well as double scalar multiplication; they amount to some
3.67, 9.23, and 10.4 million cycles, respectively. Considering the MICAz mote’s
clock frequency of 7.37 MHz [8], these cycle counts translate to execution times

Efficient Implementation of NIST-Compliant Elliptic Curve Cryptography 13

Table 3. Comparison of fixed-point and arbitrary-point scalar multiplication, double
scalar multiplication, ECDH, and ECDSA on an ATmega128 clocked at 7.37 MHz

Implementation Field k ·P l ·Q k ·P + l·Q ECDH ECDSA

Gura et al [14] 160 b 0.88 s 0.88 s n/a 1.76 s n/a

Wang et al [33] 160 b 1.34 s 1.46 s 3.09 s 2.80 s 4.43 s

Szczechowiak et al [31] 160 b 1.27 s 1.27 s n/a 2.54 s n/a

Ugus et al [32] 160 b 0.57 s 1.03 s n/a 1.60 s n/a

Liu et al [22] 160 b 2.05 s 2.30 s 2.60 s 4.35 s 4.65 s

Großschädl et al [12] 160 b 0.74 s 0.74 s n/a 1.48 s n/a

Chu et al [7] 160 b 0.78 s 0.78 s n/a 1.56 s n/a

Liu et al [22] 192 b 2.99 s 2.99 s n/a 5.98 s n/a

Gura et al [14] 192 b 1.35 s 1.35 s n/a 2.70 s n/a

Lederer et al [20] 192 b 0.71 s 1.67 s n/a 2.38 s n/a

Chu et al [7] 192 b 1.27 s 1.27 s n/a 2.54 s n/a

This work 192 b 0.50 s 1.25 s 1.41 s 1.75 s 1.91 s

of 0.5 s, 1.25 s, and 1.41 s. Each run of the (ephemeral) ECDH key agreement
protocol requires the two involved parties to execute both a fixed-point and an
arbitrary-point scalar multiplication; adding them up gives an execution time
of 12.9 · 106 clock cycles (1.75 s) altogether. On the other hand, the two main
operations of ECDSA signature generation and verification, namely fixed-point
scalar multiplication and double scalar multiplication, have an overall execution
time of some 14 · 106 cycles (1.91 s). Table 3 compares our work with previous
ECC implementations for 8-bit AVR-based processors. We are much faster than
any other ECC software using a 192-bit prime field and outperform even some
160-bit implementations. For example, our ECDH key exchange improves the
best result in the literature (which can be found in [20]) by a factor of 1.35. On
the other hand, our ECDSA implementation is 2.33 times faster than the best
ECDSA software reported in the literature, namely the one in [33].

4.2 Memory Footprint

Low memory footprint is another very important requirement on ECC software
for sensor nodes, which becomes evident when considering that the ATmega128
on a MICAz mote has only 4 kB RAM and 128 kB flash ROM [3]. Our imple-
mentation occupies about 1.4 kB in RAM; this includes the two 384-bit tables
of the comb and windows method for scalar multiplication. However, there are
several options to reduce the RAM footprint. For example, when executing the
comb method, it is not necessary to have the full table of pre-computed points
in RAM since, at any time, only one entry of the table is required. Optimizing
our implementation in this direction would reduce the RAM footprint by some
350 bytes at the expense of a slight performance degradation. The binary exe-
cutable of our ECC software has a size of 28 kB, which leaves about 100 kB in
flash memory for the operating system and applications.

14 Z. Liu, H. Seo, J. Großschädl, and H. Kim

4.3 Energy Consumption

According to [8], the ATmega128 processor of a MICAz mote draws an average
current of about 8.0 mA (at a supply voltage of 3.0 V) when it is active. Since
the clock frequency of the mote is known to be 7.37 MHz, we can evaluate the
energy consumption of a scalar multiplication algorithm by simply forming the
product of average power consumption, supply voltage, and execution time. In
this way, the energy cost of a fixed-point scalar multiplication, arbitrary-point
scalar multiplication, and double scalar multiplication amounts to roughly 12.0
mJ, 30.0 mJ, and 33.84 mJ, respectively. The energy consumption of the two
scalar multiplications of ECDH key exchange is approximately 42.0 mJ, while
the overall energy cost (for both nodes) is about 84.0 mJ. Normally, one also
has to take into account the energy required for transmitting (i.e. sending and
receiving) the public keys, but previous work in [9, 20, 27] shows that ECDH is
clearly dominated by the computation energy cost. The energy required for the
scalar multiplications to generate/verify an ECDSA signature is 45.84 mJ.

5 Conclusions

We introduced a carefully-optimized implementation of NIST-compliant ECC
for sensor nodes equipped with an 8-bit AVR processor. Our software achieves
record-setting execution times for fixed-point scalar multiplication, arbitrary-
point scalar multiplication, and double scalar multiplication. For example, we
outperform the best implementation of ephemeral ECDH key agreement in the
literature by a factor of 1.35 and improve the state-of-the-art in ECDSA by a
factor of 2.33. These speed-ups are mainly due to the performance of our field
arithmetic, which is implemented in Assembly language and protected against
SPA and timing attacks. We also conducted a simple energy evaluation for the
ATmega128 and found that (ephemeral) ECDH key agreement consumes some
42.0 mJ per node. On the other hand, the two scalar multiplications needed to
generate and verify an ECDSA signature have an energy cost of 45.84 mJ. The
RAM footprint of our ECC software is 1.4 kB, which is just slightly more than
one third of the total RAM of the MICAz mote. In summary, our results show
that an efficient and secure (i.e. SPA-resistant) implementation of ECC on the
NIST curve P-192 is possible.

References

1. I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Çayirci. A survey on sensor
networks. IEEE Communications Magazine, 40(8):102–114, Aug. 2002.

2. D. F. Aranha, R. Dahab, J. C. López, and L. B. Oliveira. Efficient implementation
of elliptic curve cryptography in wireless sensors. Advances in Mathematics of
Communications, 4(2):169–187, May 2010.

3. Atmel Corporation. ATmega128(L) Datasheet (Rev. 2467O–AVR–10/06). Avail-
able for download at http://www.atmel.com/dyn/resources/prod_documents/

doc2467.pdf, 2006.

Efficient Implementation of NIST-Compliant Elliptic Curve Cryptography 15

4. Atmel Corporation. 8-bit ARVR© Microcontroller with 128K Bytes In-System Pro-
grammable Flash: ATmega128, ATmega128L. Datasheet, available for download
at http://www.atmel.com/dyn/resources/prod_documents/doc2467.pdf, 2008.

5. D. J. Bernstein. Curve25519: New Diffie-Hellman speed records. In Public Key
Cryptography — PKC 2006, vol. 3958 of Lecture Notes in Computer Science, pp.
207–228. Springer Verlag, 2006.

6. CertiVox Corporation. CertiVox MIRACL SDK. Source code, available for down-
load at http://www.certivox.com, 2012.

7. D. Chu, J. Großschädl, Z. Liu, V. Müller, and Y. Zhang. Twisted Edwards-form
elliptic curve cryptography for 8-bit AVR-based sensor nodes. In Proceedings of
the 1st ACM Workshop on Asia Public-Key Cryptography (AsiaPKC 2013), pp.
39–44. ACM Press, 2013.

8. Crossbow Technology, Inc. MICAz Wireless Measurement System. Data sheet,
available for download at http://www.xbow.com/Products/Product_pdf_files/

Wireless_pdf/MICAz_Datasheet.pdf, Jan. 2006.
9. G. de Meulenaer, F. Gosset, F.-X. Standaert, and O. Pereira. On the energy cost

of communication and cryptography in wireless sensor networks. In Proceedings
of the 4th IEEE International Conference on Wireless and Mobile Computing,
Networking and Communications (WIMOB 2008), pp. 580–585. IEEE Computer
Society Press, 2008.

10. G. de Meulenaer and F.-X. Standaert. Stealthy compromise of wireless sensor
nodes with power analysis attacks. In Mobile Lightweight Wireless Systems —
MOBILIGHT 2010, vol. 45 of Lecture Notes of the ICST, pp. 229–242. Springer
Verlag, 2010.

11. J. Großschädl, R. M. Avanzi, E. Savaş, and S. Tillich. Energy-efficient software
implementation of long integer modular arithmetic. In Cryptographic Hardware
and Embedded Systems — CHES 2005, vol. 3659 of Lecture Notes in Computer
Science, pp. 75–90. Springer Verlag, 2005.

12. J. Großschädl, M. Hudler, M. Koschuch, M. Krüger, and A. Szekely. Smart elliptic
curve cryptography for smart dust. In Quality of Service in Heterogeneous Networks
— QSHINE 2010, vol. 74 of Lecture Notes of the ICST, pp. 548–559. Springer Ver-
lag, 2010.

13. J. Großschädl and E. Savaş. Instruction set extensions for fast arithmetic in finite
fields GF(p) and GF(2m). In Cryptographic Hardware and Embedded Systems —
CHES 2004, vol. 3156 of Lecture Notes in Computer Science, pp. 133–147. Springer
Verlag, 2004.

14. N. Gura, A. Patel, A. S. Wander, H. Eberle, and S. Chang Shantz. Comparing
elliptic curve cryptography and RSA on 8-bit CPUs. In Cryptographic Hardware
and Embedded Systems — CHES 2004, vol. 3156 of Lecture Notes in Computer
Science, pp. 119–132. Springer Verlag, 2004.

15. D. R. Hankerson, A. J. Menezes, and S. A. Vanstone. Guide to Elliptic Curve
Cryptography. Springer Verlag, 2004.

16. H. Hişil, K. K.-H. Wong, G. Carter, and E. Dawson. Twisted Edwards curves
revisited. In Advances in Cryptology — ASIACRYPT 2008, vol. 5350 of Lecture
Notes in Computer Science, pp. 326–343. Springer Verlag, 2008.

17. M. Hutter and P. Schwabe. NaCl on 8-bit AVR microcontrollers. In Progress
in Cryptology — AFRICACRYPT 2013, vol. 7918 of Lecture Notes in Computer
Science, pp. 156–172. Springer Verlag, 2013.

18. M. Hutter and E. Wenger. Fast multi-precision multiplication for public-key cryp-
tography on embedded microprocessors. In Cryptographic Hardware and Embedded

16 Z. Liu, H. Seo, J. Großschädl, and H. Kim

Systems — CHES 2011, vol. 6917 of Lecture Notes in Computer Science, pp. 459–
474. Springer Verlag, 2011.

19. P. C. Kocher, J. Jaffe, and B. Jun. Differential power analysis. In Advances in
Cryptology — CRYPTO ’99, vol. 1666 of Lecture Notes in Computer Science, pp.
388–397. Springer Verlag, 1999.

20. C. Lederer, R. Mader, M. Koschuch, J. Großschädl, A. Szekely, and S. Tillich.
Energy-efficient implementation of ECDH key exchange for wireless sensor net-
works. In Information Security Theory and Practice — WISTP 2009, vol. 5746 of
Lecture Notes in Computer Science, pp. 112–127. Springer Verlag, 2009.

21. Y. Lee, I.-H. Kim, and Y. Park. Improved multi-precision squaring for low-end
RISC microcontrollers. Journal of Systems and Software, 86(1):60–71, Jan. 2013.

22. A. Liu and P. Ning. TinyECC: A configurable library for elliptic curve cryptogra-
phy in wireless sensor networks. In Proceedings of the 7th International Conference
on Information Processing in Sensor Networks (IPSN 2008), pp. 245–256. IEEE
Computer Society Press, 2008.

23. Z. Liu, E. Wenger, and J. Großschädl. MoTE-ECC: Energy-scalable elliptic curve
cryptography for wireless sensor networks. In Applied Cryptography and Network
Security — ACNS 2014, vol. 8479 of Lecture Notes in Computer Science, pp. 361–
379. Springer Verlag, 2014.

24. J. Lopez and J. Zhou. Wireless Sensor Network Security, vol. 1 of Cryptology and
Information Security Series. IOS Press, 2008.

25. P. L. Montgomery. Speeding the Pollard and elliptic curve methods of factorization.
Mathematics of Computation, 48(177):243–264, Jan. 1987.

26. National Institute of Standards and Technology (NIST). Recommended Elliptic
Curves for Federal Government Use. White paper, July 1999.

27. K. Piotrowski, P. Langendörfer, and S. Peter. How public key cryptography influ-
ences wireless sensor node lifetime. In Proceedings of the 4th ACM Workshop on
Security of Ad Hoc and Sensor Networks (SASN 2006), pp. 169–176. ACM Press,
2006.

28. H. Seo and H. Kim. Multi-precision multiplication for public-key cryptography on
embedded microprocessors. In Information Security Applications — WISA 2012,
vol. 7690 of Lecture Notes in Computer Science, pp. 55–67. Springer Verlag, 2012.

29. H. Seo, Y. Lee, H. Kim, T. Park, and H. Kim. Binary and prime field multipli-
cation for public key cryptography on embedded microprocessors. Security and
Communication Networks, 7(4):774–787, Apr. 2014.

30. J. A. Solinas. Low-weight binary representations for pairs of integers. Technical
Report CORR 2001-41, University of Waterloo, Waterloo, Canada, 2001.

31. P. Szczechowiak, L. B. Oliveira, M. Scott, M. Collier, and R. Dahab. NanoECC:
Testing the limits of elliptic curve cryptography in sensor networks. In Wireless
Sensor Networks — EWSN 2008, vol. 4913 of Lecture Notes in Computer Science,
pp. 305–320. Springer Verlag, 2008.

32. O. Ugus, D. Westhoff, R. Laue, A. Shoufan, and S. A. Huss. Optimized implemen-
tation of elliptic curve based additive homomorphic encryption for wireless sensor
networks. In Proceedings of the 2nd Workshop on Embedded Systems Security
(WESS 2007), pp. 11–16, 2007.

33. H. Wang and Q. Li. Efficient implementation of public key cryptosystems on mote
sensors. In Information and Communications Security — ICICS 2006, vol. 4307
of Lecture Notes in Computer Science, pp. 519–528. Springer Verlag, 2006.

34. T. Yanık, E. Savaş, and Ç. K. Koç. Incomplete reduction in modular arithmetic.
IEE Proceedings – Computers and Digital Techniques, 149(2):46–52, Mar. 2002.

