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Abstract  
We designed an experiment in teaching the solving equations to 8th grades students. This 
experiment shows that students encounter many difficulties not really when passing through 
equations with the unknown in both members but rather when passing through equations with 
negatives. A clinical study was carried out with 13-14 year old pupils to investigate which obstacles 
students must overcome to solve equations with negatives. This article presents the principal results 
from experiment and from interview. The results show that the presence of negatives in the 
equations represents a cut with arithmetical knowledge and requires from students a formal 
reasoning in both semantic and formal aspects. The different levels of conceptualization of negative 
numbers proposed by Gallardo (1994) must be reached by the students in order they can give sense 
to the equations (with negatives) themselves and to the solving methods.  

INTRODUCTION 
In the research literature, we found authors such as Kieran (1981), Filloy and Rojano 
(1984), Sfard (1991), Colomb (1995), Linchevski and Herscovics (1996) who 
stressed cognitive obstacles met by students in their learning of first degree equations 
with one unknown : the algebraic sense of the equal sign, the presence of the 
unknown in both members (didactical cut), the complementarity of the 
procedural/structural conceptions of the expressions, the operations performed on the 
unknown, … In order to help the students to overcome these difficulties, we 
conceived a set of situations aimed to learn how to solve first degree equations with 
one unknown. These activities have been tested in two 8th-grade classes (aged 13-
14). They are built on students’ arithmetical knowledge and lead them to evolve 
towards algebraic methods, using among others the balance model. A particular 
attention was paid to the ‘didactical cut’ (Filloy and Rojano, 1984) – which occurs 
when the unknown appears on both sides of the equations – from a semantic as well 
as from a formal point of view. Our observations show that this demarcation point 
was passed through successfully for the resolution of equations resulting from the 
balance model, with such a structure : ax + b = cx + d. However, the presence of 
negative literal or numerical terms in the algebraic equations raised a lot of problems. 
In order to analyze more deeply the student reasoning in that context, we carried out 
several interviews with some pupils of the 8th and 9th grades.  
This article reports on the results of the experiment as well as on interviews. It also 
presents reflections about the student cognitive processes when they are required to 
solve equations with negatives.  

LEARNING SITUATIONS 
Presentation of the situations 
The whole of the activities proposed to the students of two 8th grade classes has been 
organized in two phases:   



 

 

1. The activities about equations with the unknown in one member (arithmetical 
equations). The main objectives of these activities are to lead the students to use 
their arithmetical knowledge in solving equations (substitution, inversion of 
operations and cover-up) and to initiate the first notions related to the concepts of 
equation, solution and unknown. In this article, we will not discuss about the 
results of the first phase.  

2. The activities about equations with the unknown in both members (algebraic 
equations). They are aimed to learn the formal method based on the equality 
properties (to perform the same operation in both members). Three situations have 
been designed :  

 Situation 1 : Solving a problem : This activity consists in solving a problem of 
which modeling leads to an algebraic equation. At that stage, no new solving 
method is introduced. In the state of the students’ knowledge, the solution can only 
be found by trials/errors. This situation is aimed to make students aware of 
arithmetic methods limits. 

 Situation 2 : Balances : That situation introduces the formal method based on the 
equality properties with balance-based activities. Students are required to find the 
unknown value of a weight present on both pans.  

 Situation 3 : Formalization : That step is aimed to systemize the formal process 
without the balance support. A set of 4 algebraic equations is presented without 
any context.   

Results and comments 
Data have been collected through observations in the classes and through students’ 
productions analysis. They reveal two phenomenon’s we would like to stress on :   
1. The interest of the balance model 
 Activities have been performed one after the other without raising any particular 

conceptual problems by the children until the formalization situation. When the 
balance situation has been got over, all the children were able to solve algebraic 
equations with additions, by performing the same operation in both members. 
Students productions analysis helped us to observe that the balance model offered 
a good mental picture of the required operations and the related concepts (sense 
and properties of equality). The recent interviews we propose hereafter confirm 
those results : after seven months of learning, students easily reactivate these 
techniques without needing any recall. A particular interest of using concrete 
models, like the balance model, is that students are able to reactivate at any 
moment that self-evident picture.   

2. The algebraic equations with negatives : beyond the balances 
 On the other hand, the next step of formalization (situation 3) was very difficult for 

a lot of students. As long as both members were composed of an addition and that 
the unknown value was a positive whole number, students solved it quite easily. 
They mentally used the balance model. But when the equation was composed of 



 

 

subtractions, a lot of difficulties appeared. We identified two different error 
origins:   

a) ‘The detachment from minus sign preceding a numeral or literal term’. That type 
of difficulty - identified by Herscovics and Linchevski (1991) - produced the 
following errors : 

 Some students simplified like this the given equation members:  
–3x + 6 = 2x + 16 
–2x↓  ↓–2x 
1x + 6 = 16 

2 – 3x + 6 = 2x + 18 
–2x ↓   ↓–2x 
 2 – 1x + 6 = 18 

 We can see that apparently, the students do not take into account the minus sign 
before 3x, no matter it is presented as a number attribute (first example) or as an 
operation sign (second example).   

b) Subtracting in order to neutralize a negative expression  
 In order to cancel a negative numerical (or literal) term, some students use 

subtraction. An equation such as 3x – 4 = x + 9 was solved like that :  
3x – 4 = x + 9 
–4↓ ↓–4 
3x = x – 5 

We can imagine two hypothesis to explain that error. The first one may come from an 
abusive generalization of the balance model. Stimulated by their previous success 
with the balance process, the children use the subtraction in order to cancel an 
expression, just like they did in order to withdraw some weight from the pans. The 
second hypothesis refers to the first type of error mentioned here above. It could be 
related to the inability of some students to consider the sign before the expression. 
For them, it is not –4 that is needed to be cancelled, but 4, the sign ‘–’ before 4 is not 
taken into consideration.  
Authors such as Filloy and Rojano (1984) and Linchevski and Herscovics (1996), 
who experimented learning situations about the same theme, also say that similar 
processes appear with their subjects when these are facing equations with negatives. 
Filloy and Rojano (1984) think that difficulty is related to the fact the students do not 
succeed in generalizing their knowing stemmed from their experiences with the 
model. These authors bring into question the use of those concrete models since they 
do not improve significantly the students competencies. On the basis of our analysis, 
we assert, on the contrary, that the balance model is a useful instrument to help 
students to understand notions such as the properties of equality and the related 
techniques.  
The introduction of negatives puts the equation solving at an abstract and formal 
level. In that case, we can no longer consider the equation terms just as weights 
needing to be withdrawn from the pans (what would it mean indeed to withdraw 
some weights –3x or –4?). New obstacles have indeed to be overcome. Balances are 
not designed to overcome that type of obstacle. We have to consider transition 
activities in order to help students to leave the model while keeping the principles it 
introduces. 



 

 

CLINICAL INTERVIEW  
Presentation of the interview  
We interviewed 7 students: five amongst them were in the beginning of the 9th grade 
and had learnt during the previous school year how to solve equations in the frame of 
our experiments. Two other students were at the beginning of the 8th grade and had 
not yet learnt equation solving. They were all of average ability.  
The topic of the interview was to go deeper in the analysis of the data we collected 
during the previous experiments. The questions concerned mainly:  
- Equations with the unknown in one member : i) a – x = b (with x< a); ii) a – x = b 

(with x>a), iii) –a – x = c and iv) –x = a. Numbers were whole numbers. 
- Equations with the unknown in both members. 
- Numerical operations, with for instance, ‘ 237 + 89 – 89 + 67 – 92 + 92 = ? ’ 

(Herscovics & Linchevski, 1991). 
- Expressions reductions, with for instance, ‘ 19n + 67 – 11n – 48 = ? ’ (Linchevski 

and Herscovics,1996).  
Results  
The most significant results obtained with this interview are the following :  
in arithmetic equations with negatives :  
Here is an example of each type of equation presented in the interview : 
i) 12 – x = 7 ;  ii) 4 – x = 5 ;  iii) -4 – x =10 ;  iv) –x = 7.   
1) Giving some sense to equations such ii), iii) et iv) 

In order to solve those equations, all the students tried to give them some sense. No 
student of the 9th grade did solve spontaneously those equations through a formal 
method. We can reasonably assume that the numbers simplicity as well as the 
resolution of the first equation (i) 12 – x = 7, incited the students to use arithmetic 
methods based on a concrete meaning. 
‘ Inhibitory mechanisms ’ (Gallardo & Rojano, 1994) then appeared. On the one 
hand, most students were amazed before an equation such as (ii) : ‘It is impossible 
to subtract a number to 4 to obtain a bigger result!’. On the other hand, that 
difficulty to give some sense to those equations led to the inability to generalize the 
inversion of operations, even if it was widely used for (i). Either children did not 
think to use that method for (ii) et (iii), or they thought they were using it when 
adding 4 and 5 in 4 – x = 5 (ii) and adding –4 and 10 in –4 – x =10 (iii). 
After having hesitating before ‘the subtraction which makes bigger’, the students 
who explicitly asked the question like that : ‘By which number have I to substitute x 
in order to obtain a bigger result?’ succeeded in finding the solution, remembering 
the rule ‘minus by minus gives plus’. 
Only one student solved 12 – x = 7 with the substitution method (‘which is the 
number which, when subtracted to 12, gives 7?’). The same student solved 
spontaneously and easily items (ii) and (iii) with the same method. 



 

 

This observation supports our hypothesis (Fagnant & Vlassis, in press), according 
which the substitution process involves thinking structures that help students to 
conceptualize more easily the notions involved in the equations. Kieran (1988 and 
1990) also supports that position.  

2) Solving ‘–x =7 ’ 
That equation was the most difficult. No student could solve it spontaneously. Five 
of them began by giving 7 as a solution. Some of them understood it was not 
possible since they had then –7 = 7, but they could not find the solution.  
This difficulty has of course its origin in the absence of sense given by the students 
to an equation like –x = a. But why is that particular equation more difficult to solve 
for the students than equations such as (ii) and (iii)? We think the main reason is 
that students consider –x statically, just as –4, for instance. That representation leads 
to confusion in the minus signs. For them, the ‘–’ sign before the x is the same that 
the ‘–’ sign in –4. In numeric cases, the numbers written behind ‘–’ are ‘naturals’, so 
the students consider that x can only be a natural. 
Some students who proposed the correct solution x = –7 explained that the solution 
could not be –7 because if it was, it should be written --7. When we proposed to 
other students the solution –7, they answered that the ‘–’ was already written, they 
refused our argument and suggested x = 7 again. Cortès (1993) also indicates that in 
that type of equation, the unknown considered by the student is not x but –x. 
In order to give some sense to an equation such as –x = 7, it is required the students 
can make the distinction between the minus sign and x. Two different thinking 
procedures can be considered: 
- Considering the expression –x = 7, in a procedural manner, like –1 . x = 7. This 

raises the following question ‘Which is the number that, when multiplied by –1, 
gives 7’. During the interview, we tried to involve the students in that way of 
thinking. But none of them seemed to understand where we wanted them to go.  

- The equation –x = 7 can be considered with the idea of opposite numbers. That 
perspective leads to express the equation like this : ‘–x means it is needed to take 
the opposite of the number x ; thus, which is the number of which the opposite is 
7’. That perspective makes possible the idea that x could be a negative. Since it is 
required to take the opposite of a number, that number can be a negative. That 
second way of reasoning seems to be easier for the students. It helps them to keep 
their static conception of the expression while leading them to the correct solution. 
That method was used to find the solution by the two students who answered 
correctly.   

in algebraic equations (for the 5 students of the 9th grade) 
We were surprised to observe that algebraic equations with negatives raised fewer 
difficulties than the arithmetical ones. The students indeed did not try to give some 
sense to the algebraic equations to solve them. The presence of the unknown in both 
members seemed to act as a starter of the solving method consisting in performing 
the same operation in both members. The students did not meet any particular 



 

 

difficulty in the application of that method. But the presence of negatives 
nevertheless produced the following errors:  

4) ‘ The detachment from minus sign ’  
One student made that error. But no student did subtract a negative term to cancel it. 
That observation is surprising when we consider the results of our previous 
experiments. We’ll need to interview more pupils to analyze more deeply the 
problem.  

5) Going from –ax=b to x=-b/a (like in –5x = 10) 
It is the most important difficulty we observed in the algebraic equations. We 
noticed two main obstacles for the students who apply completely the method 
consisting in performing the same operation in both members: 
- Finding the right operation which links –5 with x. Whereas going from 6x = 7 to  

x = 7/6 seems easy (the students explicitly explain they divide by 6 in each 
member), it is surprising to observe they do not know which operation they have to 
perform in order to transform -5x into x. Some of them think they have to make +5 
in each side. Others do not know at all what to do. It seems that the multiplication 
sign between -5 and x is not evident when the coefficient of the unknown is a 
negative number. The students are not able to decode easily the expression –5x in 
terms of –5 . x.  

- Dividing by a negative : Once the students succeeded in decoding correctly the 
expression, another obstacle appeared : they had some difficulty to accept the idea 
of dividing by –5.   

in operations with numerical or literal terms  
6) Detaching from the minus sign 

- For two students, the expression 6 + n – 2 + 5 is simplified in –1 + n. They justify 
it by explaining that if 2 + 5 = 7 then 6 – 7 = -1.  

- A student makes 237 + 89 – 89 + 67 – 92 + 92 like that : he crosses out +89 et –89 
and makes : 237 + 67 – (92 + 92) = 304 – 184 = 120  

7) Considering the sign which follows the numerical or literal terms  
- For two students, the reduced expression of 6 + n – 2 + 5 is ‘13 + n’ because  

2 + 5 = 7 so 6 + 7 = 13. They consider the sign ‘+’ which follows 6. 
- In 19n + 67 - 11n – 48 = ?, we find the following errors, the same ones already 

identified by Linchevski et Herscovics (1996) (3 students) :  
« Jumping off with the posterior operation »: in order to reduce the expression 19n 
+ 67 – 11n – 48 = ?, some students grouped 19n and 11n by making an addition 
rather than a subtraction. The considered sign is the ‘+’ sign which follows 19n. 
« Inability to select the appropriate operation for the partial sum »: 
For some students, 19n + 67 – 11n – 48 = 8n – 19, because 67 is followed by the ‘–
’ sign. 
We attribute these three different types of errors to the same trend as the 
detachment from the minus and which consists, over all in that particular case, in 



 

 

paying more attention to the sign which follows the operation rather than to the one 
which precedes it.   
According to Linchevski and Herscovics (1991), the difficulties related to the 
detachment from the minus sign, could possibly come from confusion in the 
priority rules of the operations. Our interviews do not confirm that hypothesis. The 
students did not propose any explanation of that kind. We tend to explain those 
difficulties by the arithmetical practices of the students. According to Vergnaud 
(1989), it seems that there is confusion between the numbers without signs 
(measures of size or quantities) and the numbers with signs (quantification of 
transformations and relations). In the primary school, over all the components of 
an operation, that is the numbers without signs (we make the operations with 
meters, francs, etc.) are stressed on, but not so often are the relations intervening in 
the operations. In the same way, we can also mention the ambiguity of the minus, 
which can be considered in a procedural way, as a sign of the operation to be 
performed, or in a static way, as the attribute of a number. It seems that, in this 
particular case, the students do not consider the second possibility.   
8) Confusing the algebraic rules  
A student wrote 19n + 67 – 11n – 48 = 8n – 19 with a quite distinct justification 
from the other students’one. To our question ‘Why –19?’, he answered  
‘+67 – 48 = –19 because plus by minus gives minus ’.  

DISCUSSION   
The operations with the negative whole numbers present a lot of difficulties for the 
students. With the introduction of negatives, a formal reasoning, which goes most 
often into contradiction with the arithmetical knowledge, becomes necessary. In case 
of solving equations, that difficulty turns out to be still more important because that 
context makes it necessary for the students to have perfectly integrated the distinct 
levels of conceptualization of the negatives stressed by Gallardo (1994) : subtraction, 
signed number (plus or minus sign is associated with the number), relative (or 
directed) number (idea of opposite and symmetry) and isolated number (result of an 
operation or solution of an equation). The consideration of the various negative 
dimensions is needed to give some sense to the equations with negatives themselves, 
as well as to the formal solving procedures. For instance, the conception of ‘relative 
number’ enables to give sense to an equation such as –x = a, or to the procedure of 
neutralization of a term (canceling a numerical or a literal term); the idea of ‘signed 
number’ is essential to avoid errors of ‘detachment of the minus sign’, ... 
Moreover, with the presence of negatives, algebraic equations resolution can no 
longer be considered concretely : for example, it becomes impossible to maintain the 
‘subtraction’ idea (withdrawing some weights from the balance pans) to neutralize a 
term. The letter has to be given a mathematical interpretation and no longer an 
intuitive one, as an object (a weight) in the meaning of Kuchemann (1981). Students 
have to be taught to abstract, from the concrete manipulations, the general 
mathematical method needed to solve all types of equations with one unknown. 



 

 

Solving equations with negatives, means thus crossing the formalizing gap. This 
transition cannot be left in the students’hands. It needs a teaching performing 
explicitly the transition towards the abstract concepts involved by the formal solving 
methods. The data collected through the studies presented here above will help us to 
modify our learning sequence. Further experiments will be carried out.  
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