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General description of Nagin's model

We have a collection of individual trajectories.

We try to divide the population into a number of homogenous
sub-populations and to estimate a mean trajectory for each sub-population.

Hence, this model can be interpreted as functional fuzzy cluster analysis.
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The Likelihood Function (1)

Consider a population of size N and a variable of interest Y.
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Let Y; = yi,, Yi, .-, Yiy be T measures of the variable, taken at times
t1,...tT for subject number i.
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The Likelihood Function (1)

Consider a population of size N and a variable of interest Y.

Let Y; = yi,, Yi, .-, Yiy be T measures of the variable, taken at times
t1,...tT for subject number i.

P(Y;) denotes the probability of Y;

@ count data = Poisson distribution
@ binary data = Binary logit distribution

@ censored data = Censored normal distribution

Aim of the analysis: Find r groups of trajectories of a given kind (for
instance polynomials of degree 4, P(t) = B + B1t + Bat? + Bat3 + Bat*.
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The Likelihood Function (2)

7; . probability of a given subject to belong to group number j
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7; . probability of a given subject to belong to group number j

= m;j is the size of group j.
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The Likelihood Function (2)

7; . probability of a given subject to belong to group number j

= m;j is the size of group j.

We try to estimate a set of parameters Q2 = {5{;, {,ﬁfé,ﬁé, B{;,wj} which
allow to maximize the probability of the measured data.
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The Likelihood Function (2)
7; . probability of a given subject to belong to group number j

= m;j is the size of group j.

We try to estimate a set of parameters Q = {5{;, {,ﬁfé,ﬁé, B{;,wj} which
allow to maximize the probability of the measured data.

Pi(Y;) : probability of Y; if subject i belongs to group j
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The Likelihood Function (2)
7; . probability of a given subject to belong to group number j

= m; is the size of group j.

We try to estimate a set of parameters Q2 = {ﬁé, {,ﬁé,ﬂé, 6£,Wj} which
allow to maximize the probability of the measured data.

PJi(Y;) : probability of Y; if subject i belongs to group j

= P(Y) =) mP/(Y3). (1)

Jj=1

Finite mixture model (Daniel S. Nagin (Carnegie Mellon University))
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The Likelihood Function (2)
7; . probability of a given subject to belong to group number j

= m; is the size of group j.

We try to estimate a set of parameters Q2 = {ﬁé, {,ﬁé,ﬁé, ﬂi,ﬂ'j} which
allow to maximize the probability of the measured data.

PJi(Y;) : probability of Y; if subject i belongs to group j

= P(Y) =) mP/(Y3). (1)

Jj=1

Finite mixture model (Daniel S. Nagin (Carnegie Mellon University))

@ finite : sums across a finite number of groups

. . . >
@ mixture : population composed of a mixture of unobserved groups gt
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The Likelihood Function (3)

Hypothesis: In a given group, conditional independence is assumed for the
sequential realizations of the elements of Y;!!!
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where p/(y;,) denotes the probability of y;, given membership in group j.
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where p/(y;,) denotes the probability of y;, given membership in group j.

Likelihood of the estimator:
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The Likelihood Function (3)

Hypothesis: In a given group, conditional independence is assumed for the
sequential realizations of the elements of Y;!!!

= PJ H PJ(YI: (2)

where p/(y;,) denotes the probability of y;, given membership in group j.

Likelihood of the estimator:

RICERI|

r

-
Ty Hpj Yi)- (3)

i=1 i=1 j=1 t=1
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The case of a normal distribution (1)

Yio = By + B Age;, + BiAge? + BLAged + BiAget + <, (4)

where ¢;, ~ N(0,0), o being a constant standard deviation.
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The case of a normal distribution (1)

Yio = By + B Age;, + BiAge? + BLAged + BiAget + <, (4)

where ¢;, ~ N(0,0), o being a constant standard deviation.

Notations :
o Ft, = B} + Bl Age;, + ﬁéAge,t + ﬁéAge + 6, Age}.
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The case of a normal distribution (1)

Yio = By + B Age;, + BiAge? + BLAged + BiAget + <, (4)

where ¢;, ~ N(0,0), o being a constant standard deviation.

Notations :

o Bt = B + Bl Agei, + BiAge? + BiAged + B} Agel.
@ ¢: density of standard centered normal law.
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The case of a normal distribution (1)

Yie = By + Bl Agei, + BhAge; + BiAges + BiAgel + <ii, (4)
where ¢;, ~ N(0,0), o being a constant standard deviation.
Notations :
o Bt = B + B Age;, + BbAge? + BiAge} + Bl Age?.

@ ¢: density of standard centered normal law.

Hence,
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The case of a normal distribution (1)

Vi = By + Bl Ages, + ByAge} + BiAge] + fiAgel +ei  (4)
where ¢;, ~ N(0,0), o being a constant standard deviation.
Notations :
o Bt = B + B Age;, + BbAge? + BiAge} + Bl Age?.

@ ¢: density of standard centered normal law.

Hence,

pl) = 2o (e “f) (5)

g
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The case of a normal distribution (2)

So we get
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The case of a normal distribution (2)

So we get

QI'—‘

TS WJHQS(“_TM)‘ (6)

i=1 j=1 t=1
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The case of a normal distribution (2)

So we get

QI'—‘

TS WJHQS(“_TM)‘ (6)

i=1 j=1 t=1

The estimations of 7 must be in [0, 1].
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The case of a normal distribution (2)

So we get

N r i
i — Pt

i=1 j=1 t=1

QI'—‘

The estimations of 7 must be in [0, 1].

It is difficult to force this constraint in model estimation.
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A computational trick

Instead, we estimate the real parameters ¢; such that
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A computational trick

Instead, we estimate the real parameters ¢; such that

¥

7

= 3 s
>
Jj=1
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A computational trick

Instead, we estimate the real parameters ¢; such that

¥

= 3 s
>
Jj=1

7

Finally,

0; T . ARt
L:lHZ e H¢(ﬂTBJt~r) (8)
i=1 j=1 ol t=1
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A computational trick

Instead, we estimate the real parameters ¢; such that

¥

= 3 s
>
Jj=1

7

Finally,
N r T i
1 eej Yip — @t't
L= IS S TTe (52, ®
7= S e =1 g
== e
j=1
It is too complicated to get closed-forms equations. ]m‘t"

Jang SCHILTZ (University of Luxembourg) | An R-package for finite mixture models December 7, 2013 11 /38



Available Software

Jang SCHILTZ (University of Luxembourg)

An R-package for finite mixture models



Available Software

SAS-based Proc Traj procedure
By Bobby L. Jones (Carnegie Mellon University).
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Uses a quasi-Newton procedure maximum research routine.
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SAS-based Proc Traj procedure
By Bobby L. Jones (Carnegie Mellon University).

Uses a quasi-Newton procedure maximum research routine.

Since the likelyhood is nor convex, nor a contraction, there are issues with
local maxima.
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Available Software

SAS-based Proc Traj procedure
By Bobby L. Jones (Carnegie Mellon University).
Uses a quasi-Newton procedure maximum research routine.

Since the likelyhood is nor convex, nor a contraction, there are issues with
local maxima.

R-package crimCV
By Jason D. Nielsen (Carleton University Ottawa).
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Available Software

SAS-based Proc Traj procedure
By Bobby L. Jones (Carnegie Mellon University).

Uses a quasi-Newton procedure maximum research routine.

Since the likelyhood is nor convex, nor a contraction, there are issues with
local maxima.

R-package crimCV
By Jason D. Nielsen (Carleton University Ottawa).

Just implements a zero-inflation Poission model.
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Future Software

R-package FMM
By Jang Schiltz & Mounir Shal (University of Luxembourg).
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Future Software

R-package FMM
By Jang Schiltz & Mounir Shal (University of Luxembourg).
Uses the EM Algortihm.
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Future Software

R-package FMM
By Jang Schiltz & Mounir Shal (University of Luxembourg).
Uses the EM Algortihm.

Allows the estimation of a generalised version of Nagin's model, as well as
Muthen's model.
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Future Software

R-package FMM
By Jang Schiltz & Mounir Shal (University of Luxembourg).
Uses the EM Algortihm.

Allows the estimation of a generalised version of Nagin's model, as well as
Muthen's model.

Will take us probably another year before completion.
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Model Selection (1)

Bayesian Information Criterion:

BIC = log(L) — 0, 5k log(N), (9)

where k denotes the number of parameters in the model.
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Model Selection (1)

Bayesian Information Criterion:
BIC = log(L) — 0,5k log(N),
where k denotes the number of parameters in the model.

Rule:
The bigger the BIC, the better the model!
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Model Selection (2)

Leave-one-out Cross-Validation Apporach:
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Model Selection (2)

Leave-one-out Cross-Validation Apporach:

vi — 9571

|
CVE_ZZ

i=1 t=1

(10)
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Model Selection (2)

Leave-one-out Cross-Validation Apporach:

N
1 1 =i
CVE=1d 22 -3 (10)
l:l t:l
Rule:
The smaller the CVE, the better the model! J
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Their " proof " that CVE is better than BIC
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Their "proof " that CVE is better than BIC

TO1:
ngr llike AIC BIC CVE
1 | —13967.63 | 27945.26 | 27982.26 1.0902792
2 | —11929.40 | 23880.81 23962.22 0.9128347
3 | —11424.68 | 22883.37 | 23009.18 0.9592355
4 | —=11191.28 | 22428.55 | 22598.77 | 0.9052791
5 | —11016.19 | 22090.37 | 22304.99 | 0.8535441
6 | —10886.30 | 21842.61 22101.63 | 0.8334242
7 | —10805.59 | 21693.18 | 21996.60 | 0.8261734
8 | —10732.58 | 21559.16 | 21906.99 | 0.8123785
9 | —10684.54 | 21475.08 | 21867.31 | 0.8240060
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Posterior Group-Membership Probabilities
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Posterior Group-Membership Probabilities

Posterior probability of individual i's membership in group j : P(j/Y;).
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Posterior Group-Membership Probabilities

Posterior probability of individual i's membership in group j : P(j/Y;).

Bayes's theorem

= P(j/Y;) = M (11)

> P(Yi/i)R
j=1
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Posterior Group-Membership Probabilities

Posterior probability of individual i's membership in group j : P(j/Y;).
Bayes's theorem
. P(Yi/i)#;
= PG/ = (1)
> P(Yi/i)#;
j=1

Bigger groups have on average larger probability estimates.

N

Jang SCHILTZ (University of Luxembourg)

An R-package for finite mixture models

December 7, 2013 17 / 38



Posterior Group-Membership Probabilities

Posterior probability of individual i's membership in group j : P(j/Y;).
Bayes's theorem

= P/ = R ()

> P(Yi/i)R
j=1

Bigger groups have on average larger probability estimates.

To be classified into a small group, an individual really needs to be
strongly consistent with it.
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Model Fit (1)
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Model Fit (1)

Diagnostic 1: Average Posterior Probability of Assignment
AvePP should be at least 0,7 for all groups. J
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Model Fit (1)

Diagnostic 1: Average Posterior Probability of Assignment
AvePP should be at least 0,7 for all groups.

Diagonostic 2: Odds of Correct Classification

AvePP;/1 — AvePP; i)
i/ —7j

0CC; =
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Model Fit (1)

Diagnostic 1: Average Posterior Probability of Assignment

AvePP should be at least 0,7 for all groups.

Diagonostic 2: Odds of Correct Classification

0CC; =

AvePP;/1 — AvePP;

i/ —7j

OCGC; should be greater than 5 for all groups.

(12)
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Model Fit (2)

Diagonostic 3: Comparing 7; to the Proportion of the Sample
Assigned to Group j

The ratio of the two should be close to 1.
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Model Fit (2)

Diagonostic 3: Comparing 7; to the Proportion of the Sample
Assigned to Group j

The ratio of the two should be close to 1.

Diagonostic 4: Confidence Intervals for Group Membership
Probabilities

The confidence intervals for group membership probabilities estimates
should be narrow, i.e. standard deviation of 7; should be small.
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An application example
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An application example

The data : first dataset Salaries of workers in the private sector in
Luxembourg from 1940 to 2006.
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About 7 million salary lines corresponding to 718.054 workers.
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The data : first dataset Salaries of workers in the private sector in
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About 7 million salary lines corresponding to 718.054 workers.

Some sociological variables:
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@ nationality and residentship (luxemburgish residents, foreign residents,
foreign non residents)
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An application example
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Some sociological variables:
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An application example

The data : first dataset Salaries of workers in the private sector in
Luxembourg from 1940 to 2006.

About 7 million salary lines corresponding to 718.054 workers.

Some sociological variables:
@ gender (male, female)

@ nationality and residentship (luxemburgish residents, foreign residents,
foreign non residents)

@ working status (white collar worker, blue collar worker)

@ year of birth
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An application example

The data : first dataset Salaries of workers in the private sector in
Luxembourg from 1940 to 2006.

About 7 million salary lines corresponding to 718.054 workers.

Some sociological variables:
@ gender (male, female)

@ nationality and residentship (luxemburgish residents, foreign residents,
foreign non residents)

@ working status (white collar worker, blue collar worker)
@ year of birth

@ age in the first year of professional activity
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Result for 9 groups (dataset 1)
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Result for 9 groups (dataset 1)

Outcome
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Results for 9 groups (dataset 1)

Group Parameter

1 Intercept
Linear
Quadratic
Cubic
Quartic

2 Intercept
Linear
Quadratic
Cubic
Quartic

3 Intercept
Linear
Quadratic
Cubic
Quartic

Maximum Likelihood Estimates
Model: Censored Normal (CNORM)

Estimate

589.
387.
-14.
-0.
0.

784,
277.
-28.
1
-0.

709,
318.
-21
0.
-0.

03067
72145
36621
01563
00856

78156
63602
36731

17739

01635

28728
88029

.54540

62010
00440

Standard
Error

18.46813
11.31617
2.12997
0.15109
.00358

[=]

75938
78078
83236
12972
00307

oo+ wwm

-

[= =T

90545
97948
69611
12002
.00284

T for

HO:

Parameter=0

31

49.
28.
-15.
9.
-5

a4,
35.
=122
5.
554

-1

.894
34.
-6.
-0.

2.

263
745
103
395

798
386
481
078
330

594
512
703
167

Prob = |T|
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© Generalizations of the basic model
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Predictors of trajectory group membership
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Predictors of trajectory group membership

x; : vector of variables potentially associated with group membership
(measured before t7).
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Predictors of trajectory group membership

x; : vector of variables potentially associated with group membership
(measured before t7).

Multinomial logit model:

ex,-Gj

mi(xi) = (13)

e
Y e
k=1

where 6; denotes the effect of x; on the probability of group membership.
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Predictors of trajectory group membership

x; : vector of variables potentially associated with group membership
(measured before t7).
Multinomial logit model:

ex,-Gj

mi(xi) = ———, (13)

Y e
k=1

where 6; denotes the effect of x; on the probability of group membership

S y e ()

N
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Group membership probabilities
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Group membership probabilities

The Wald test which indicates whether any number of coefficients is
significally different, allows the statistical testing of the predictors.
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Group membership probabilities

The Wald test which indicates whether any number of coefficients is
significally different, allows the statistical testing of the predictors.

Confidence intervals for the probabilities of group membership can be
computed by a parametric bootstrap technique.
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Adding covariates to the trajectories (1)
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Adding covariates to the trajectories (1)

Let z1...z; be covariates potentially influencing Y.
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Adding covariates to the trajectories (1)

Let z1...z; be covariates potentially influencing Y.

We are then looking for trajectories

Yi, = B{;—Fﬁ{/\ge;t+ﬁ£Ageif+ﬁéAgei3t+ﬁ£Agef:—i—af’izﬁ—...—i-oszzL—FE,-t, (15)

where ¢;, ~ N(0,0), o being a constant standard deviation and z; are
covariates that may depend or not upon time t.

N
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Adding covariates to the trajectories (1)

Let zy...z; be covariates potentially influencing Y.

We are then looking for trajectories
Yi, = Bé—kﬁ{/\ge;t+ﬁ£Age,f+ﬁéAgei3t+ﬁ£Agef:—i—af’izl+...+oszzL+€,-t, (15)

where ¢;, ~ N(0,0), o being a constant standard deviation and z; are
covariates that may depend or not upon time t.

Unfortunately the estimation of parameters a’, is not implemented in proc
traj procedure; it is just possible to plot the impact of the covariates.
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Adding covariates to the trajectories (1)

Let zy...z; be covariates potentially influencing Y.

We are then looking for trajectories
Yi, = B{)—Fﬁ{/\ge;t+ﬁ£Age,%+ﬁéAgei3t+ﬁ£Agef:—i—af’izl+...+oszzL+€,-t, (15)

where ¢;, ~ N(0,0), o being a constant standard deviation and z; are
covariates that may depend or not upon time t.

Unfortunately the estimation of parameters a’, is not implemented in proc
traj procedure; it is just possible to plot the impact of the covariates.

Moreover, the influence of the covariates is limited to the intercept of the
trajectory.
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An application example

The data : second dataset Salaries of all workers in Luxembourg which
began to work in Luxembourg between 1980 and 1990 at an age less than
30 years.
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An application example
The data : second dataset Salaries of all workers in Luxembourg which
began to work in Luxembourg between 1980 and 1990 at an age less than

30 years.

1.303.010 salary lines corresponding to 85.049 workers.
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An application example

The data : second dataset Salaries of all workers in Luxembourg which

began to work in Luxembourg between 1980 and 1990 at an age less than
30 years.

1.303.010 salary lines corresponding to 85.049 workers.

Some sociological variables:

e gender (male, female)
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An application example

The data : second dataset Salaries of all workers in Luxembourg which

began to work in Luxembourg between 1980 and 1990 at an age less than
30 years.

1.303.010 salary lines corresponding to 85.049 workers.

Some sociological variables:
e gender (male, female)

@ nationality and residentship
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An application example

The data : second dataset Salaries of all workers in Luxembourg which

began to work in Luxembourg between 1980 and 1990 at an age less than
30 years.

1.303.010 salary lines corresponding to 85.049 workers.

Some sociological variables:
e gender (male, female)
@ nationality and residentship
@ sector of activity
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An application example

The data : second dataset Salaries of all workers in Luxembourg which

began to work in Luxembourg between 1980 and 1990 at an age less than
30 years.

1.303.010 salary lines corresponding to 85.049 workers.

Some sociological variables:
e gender (male, female)
@ nationality and residentship

@ sector of activity

@ year of birth
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An application example

The data : second dataset Salaries of all workers in Luxembourg which
began to work in Luxembourg between 1980 and 1990 at an age less than
30 years.

1.303.010 salary lines corresponding to 85.049 workers.

Some sociological variables:
e gender (male, female)
@ nationality and residentship
@ sector of activity

@ year of birth

@ age in the first year of professional activity
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An application example

The data : second dataset Salaries of all workers in Luxembourg which
began to work in Luxembourg between 1980 and 1990 at an age less than
30 years.

1.303.010 salary lines corresponding to 85.049 workers.

Some sociological variables:
e gender (male, female)
@ nationality and residentship
@ sector of activity
@ year of birth

@ age in the first year of professional activity

@ marital status
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An application example

The data : second dataset Salaries of all workers in Luxembourg which
began to work in Luxembourg between 1980 and 1990 at an age less than
30 years.

1.303.010 salary lines corresponding to 85.049 workers.

Some sociological variables:
e gender (male, female)
nationality and residentship
sector of activity
year of birth
age in the first year of professional activity
marital status
year of birth of children N
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Adding covariates to the trajectories (3)
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Adding covariates to the trajectories (3)
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What's really going on

Salary
4000 6000 8000
|

2000
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Our model

Let xq...x, and z;,

, Zi; be covariates potentially influencing Y.
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Our model

Let x1...x; and z;, ..., zi; be covariates potentially influencing Y.

We propose the following model:
. L . . . L . .
Yie = (/B{) + Z X+ ”Ycl)zit> + (511 + Z a1+ ”lezit> Agei,
I=1 I=1

L L
N (ﬁ’z P adt w) Age? + (5J3 P adt v) Age?

=1 =1
. L . .
+ (ﬁ; + Z o X + %’;Zit> Age,f: + €,y
=1

where ¢;, ~ N(0,0), o being a constant standard deviation.

N
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An alternative analysis (1)

Salary trajectories of the men

Outcome
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An alternative analysis (2)

Salary trajectories of the women

Outcome
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Muthén’s model (1)

Muthén and Shedden (1999): Generalized growth curve model
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Muthén’s model (1)

Muthén and Shedden (1999): Generalized growth curve model

Elegant and technically demanding extension of the uncensored normal
model.

L
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Muthén’s model (1)

Muthén and Shedden (1999): Generalized growth curve model

Elegant and technically demanding extension of the uncensored normal
model.

Adds random effects to the parameters 3/ that define a group’s mean
trajectory.

N
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Muthén’s model (1)

Muthén and Shedden (1999): Generalized growth curve model

Elegant and technically demanding extension of the uncensored normal
model.

Adds random effects to the parameters 3/ that define a group’s mean
trajectory.

Trajectories of individual group members can vary from the group
trajectory.
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Muthén’s model (1)

Muthén and Shedden (1999): Generalized growth curve model

Elegant and technically demanding extension of the uncensored normal
model.

Adds random effects to the parameters 3/ that define a group’s mean
trajectory.

Trajectories of individual group members can vary from the group
trajectory.

Software:
Mplus package by L.K. Muthén and B.O Muthén. J

ISE
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Muthén’s model (2)

Advantage of GGCM J

Fewer groups are required to specify a satisfactory model.
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Muthén’s model (2)

Advantage of GGCM

Fewer groups are required to specify a satisfactory model.

Disadvantages of GGCM
O Difficult to extend to other types of data.
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Muthén’s model (2)

Advantage of GGCM

Fewer groups are required to specify a satisfactory model.

Disadvantages of GGCM

O Difficult to extend to other types of data.
@ Group cross-over effects.
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Muthén’s model (2)

Advantage of GGCM

Fewer groups are required to specify a satisfactory model.

Disadvantages of GGCM

O Difficult to extend to other types of data.
@ Group cross-over effects.

© Can create the illusion of non-existing groups.
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@ Research Agenda
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Outlook

@ Relationship between finite mixture models and hierarchical cluster
analysis of functions.
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Outlook

@ Relationship between finite mixture models and hierarchical cluster
analysis of functions.

@ Stability of the trajectories in finite mixture models.
» Using classical statistics.
» Using statistical shape analysis.
» Using functional data analysis.
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Outlook

@ Relationship between finite mixture models and hierarchical cluster
analysis of functions.

@ Stability of the trajectories in finite mixture models.

» Using classical statistics.
» Using statistical shape analysis.
» Using functional data analysis.

@ Handling missing data.

N
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