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General description of Nagin’s model

We have a collection of individual trajectories.

We try to divide the population into a number of homogenous
sub-populations and to estimate a mean trajectory for each sub-population.

Hence, this model can be interpreted as functional fuzzy cluster analysis.
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The Likelihood Function (1)

Consider a population of size N and a variable of interest Y .

Let Yi = yi1 , yi2 , ..., yiT be T measures of the variable, taken at times
t1, ...tT for subject number i .

P(Yi ) denotes the probability of Yi

count data ⇒ Poisson distribution

binary data ⇒ Binary logit distribution

censored data ⇒ Censored normal distribution

Aim of the analysis: Find r groups of trajectories of a given kind (for
instance polynomials of degree 4, P(t) = β0 + β1t + β2t

2 + β3t
3 + β4t

4.
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The Likelihood Function (2)

πj : probability of a given subject to belong to group number j

⇒ πj is the size of group j .

We try to estimate a set of parameters Ω =
{
βj0, β

j
1, β

j
2, β

j
3, β

j
4, πj

}
which

allow to maximize the probability of the measured data.

P j(Yi ) : probability of Yi if subject i belongs to group j

⇒ P(Yi ) =
r∑

j=1

πjP
j(Yi ). (1)

Finite mixture model
(
Daniel S. Nagin (Carnegie Mellon University)

)
finite : sums across a finite number of groups

mixture : population composed of a mixture of unobserved groups
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The Likelihood Function (3)

Hypothesis: In a given group, conditional independence is assumed for the
sequential realizations of the elements of Yi !!!

⇒ P j(Yi ) =
T∏
t=1

pj(yit ), (2)

where pj(yit ) denotes the probability of yit given membership in group j .

Likelihood of the estimator:

L =
N∏
i=1

P(Yi ) =
N∏
i=1

r∑
j=1

πj

T∏
t=1

pj(yit ). (3)
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The case of a normal distribution (1)

yit = βj0 + βj1Ageit + βj2Age
2
it + βj3Age

3
it + βj4Age

4
it + εit , (4)

where εit ∼ N (0, σ), σ being a constant standard deviation.

Notations :

βj tit = βj0 + βj1Ageit + βj2Age
2
it

+ βj3Age
3
it

+ βj4Age
4
it

.

φ: density of standard centered normal law.

Hence,

pj(yit ) =
1

σ
φ

(
yit − βj tit

σ
.

)
(5)
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The case of a normal distribution (2)

So we get

L =
1

σ

N∏
i=1

r∑
j=1

πj

T∏
t=1

φ

(
yit − βj tit

σ

)
. (6)

The estimations of πj must be in [0, 1].

It is difficult to force this constraint in model estimation.
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A computational trick

Instead, we estimate the real parameters θj such that

πj =
eθj
r∑

j=1

eθj

, (7)

Finally,

L =
1

σ

N∏
i=1

r∑
j=1

eθj
r∑

j=1

eθj

T∏
t=1

φ

(
yit − βj tit

σ

)
. (8)

It is too complicated to get closed-forms equations.
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Available Software

SAS-based Proc Traj procedure

By Bobby L. Jones (Carnegie Mellon University).

Uses a quasi-Newton procedure maximum research routine.

Since the likelyhood is nor convex, nor a contraction, there are issues with
local maxima.

R-package crimCV

By Jason D. Nielsen (Carleton University Ottawa).

Just implements a zero-inflation Poission model.
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Future Software

R-package FMM

By Jang Schiltz & Mounir Shal (University of Luxembourg).

Uses the EM Algortihm.

Allows the estimation of a generalised version of Nagin’s model, as well as
Muthen’s model.

Will take us probably another year before completion.
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Model Selection (1)

Bayesian Information Criterion:

BIC = log(L)− 0, 5k log(N), (9)

where k denotes the number of parameters in the model.

Rule:

The bigger the BIC, the better the model!
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Model Selection (2)

Leave-one-out Cross-Validation Apporach:

CVE =
1

N

N∑
i=1

1

T

T∑
t=1

∣∣∣yit − ŷ
[−i ]
it

∣∣∣ . (10)

Rule:

The smaller the CVE, the better the model!
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Their ”proof ” that CVE is better than BIC

Jang SCHILTZ (University of Luxembourg) joint work with Jean-Daniel GUIGOU (University of Luxembourg), & Bruno LOVAT (University of Lorraine) ()An R-package for finite mixture models December 7, 2013 16 / 38



Their ”proof ” that CVE is better than BIC

Jang SCHILTZ (University of Luxembourg) joint work with Jean-Daniel GUIGOU (University of Luxembourg), & Bruno LOVAT (University of Lorraine) ()An R-package for finite mixture models December 7, 2013 16 / 38



Posterior Group-Membership Probabilities

Posterior probability of individual i ’s membership in group j : P(j/Yi ).

Bayes’s theorem

⇒ P(j/Yi ) =
P(Yi/j)π̂j
r∑

j=1

P(Yi/j)π̂j

. (11)

Bigger groups have on average larger probability estimates.

To be classified into a small group, an individual really needs to be
strongly consistent with it.
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Model Fit (1)

Diagnostic 1: Average Posterior Probability of Assignment

AvePP should be at least 0, 7 for all groups.

Diagonostic 2: Odds of Correct Classification

OCCj =
AvePPj/1− AvePPj

π̂j/1− π̂j
. (12)

OCCj should be greater than 5 for all groups.
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Model Fit (2)

Diagonostic 3: Comparing π̂j to the Proportion of the Sample
Assigned to Group j

The ratio of the two should be close to 1.

Diagonostic 4: Confidence Intervals for Group Membership
Probabilities

The confidence intervals for group membership probabilities estimates
should be narrow, i.e. standard deviation of π̂j should be small.
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An application example

The data : first dataset Salaries of workers in the private sector in
Luxembourg from 1940 to 2006.

About 7 million salary lines corresponding to 718.054 workers.

Some sociological variables:

gender (male, female)

nationality and residentship (luxemburgish residents, foreign residents,
foreign non residents)

working status (white collar worker, blue collar worker)

year of birth

age in the first year of professional activity
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Result for 9 groups (dataset 1)
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Outline

1 The Basic Finite Mixture Model of Nagin

2 Generalizations of the basic model

3 Muthén’s model

4 Research Agenda
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Predictors of trajectory group membership

xi : vector of variables potentially associated with group membership
(measured before t1).

Multinomial logit model:

πj(xi ) =
exiθj
r∑

k=1

exiθk

, (13)

where θj denotes the effect of xi on the probability of group membership.

L =
1

σ

N∏
i=1

r∑
j=1

exiθj
r∑

k=1

exiθk

T∏
t=1

φ

(
yit − βj tit

σ

)
. (14)
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Group membership probabilities

The Wald test which indicates whether any number of coefficients is
significally different, allows the statistical testing of the predictors.

Confidence intervals for the probabilities of group membership can be
computed by a parametric bootstrap technique.
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Adding covariates to the trajectories (1)

Let z1...zL be covariates potentially influencing Y .

We are then looking for trajectories

yit = βj0+βj1Ageit +β
j
2Age

2
it +β

j
3Age

3
it +β

j
4Age

4
it +α

j
1z1+...+αj

LzL+εit , (15)

where εit ∼ N (0, σ), σ being a constant standard deviation and zl are
covariates that may depend or not upon time t.

Unfortunately the estimation of parameters αj
l is not implemented in proc

traj procedure; it is just possible to plot the impact of the covariates.

Moreover, the influence of the covariates is limited to the intercept of the
trajectory.
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An application example

The data : second dataset Salaries of all workers in Luxembourg which
began to work in Luxembourg between 1980 and 1990 at an age less than
30 years.

1.303.010 salary lines corresponding to 85.049 workers.

Some sociological variables:

gender (male, female)

nationality and residentship

sector of activity

year of birth

age in the first year of professional activity

marital status

year of birth of children
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Adding covariates to the trajectories (3)
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Adding covariates to the trajectories (3)
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What’s really going on
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Our model

Let x1...xL and zi1 , ..., ziT be covariates potentially influencing Y .

We propose the following model:

yit =

(
βj0 +

L∑
l=1

αj
0lxl + γj0zit

)
+

(
βj1 +

L∑
l=1

αj
1lxl + γj1zit

)
Ageit

+

(
βj2 +

L∑
l=1

αj
2lxl + γj2zit

)
Age2it +

(
βj3 +

L∑
l=1

αj
3lxl + γj3zit

)
Age3it

+

(
βj4 +

L∑
l=1

αj
4lxl + γj4zit

)
Age4it + εit ,

where εit ∼ N (0, σ), σ being a constant standard deviation.
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An alternative analysis (1)

Salary trajectories of the men
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An alternative analysis (2)

Salary trajectories of the women

Jang SCHILTZ (University of Luxembourg) joint work with Jean-Daniel GUIGOU (University of Luxembourg), & Bruno LOVAT (University of Lorraine) ()An R-package for finite mixture models December 7, 2013 32 / 38



Outline

1 The Basic Finite Mixture Model of Nagin

2 Generalizations of the basic model

3 Muthén’s model

4 Research Agenda
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Muthén’s model (1)

Muthén and Shedden (1999): Generalized growth curve model

Elegant and technically demanding extension of the uncensored normal
model.

Adds random effects to the parameters βj that define a group’s mean
trajectory.

Trajectories of individual group members can vary from the group
trajectory.

Software:

Mplus package by L.K. Muthén and B.O Muthén.
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Muthén’s model (2)

Advantage of GGCM

Fewer groups are required to specify a satisfactory model.

Disadvantages of GGCM

1 Difficult to extend to other types of data.

2 Group cross-over effects.

3 Can create the illusion of non-existing groups.
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Outlook

Relationship between finite mixture models and hierarchical cluster
analysis of functions.

Stability of the trajectories in finite mixture models.
I Using classical statistics.
I Using statistical shape analysis.
I Using functional data analysis.

Handling missing data.
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