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Abstract:

The computation of the ocean loading indirect effects is
made at each station by using a corvolution between the Green’s
functions and a set of point mass-loads. These Green’s functions
are computed using a series expansion which presents convergence
difficulties. In the present paper the mathematical artifices
used by Farrell in 1872 are analysed and tested. A strategy is
then proposed and new Green's functions are computed. New theore-
tical models inside the Earth, thus new Love numbers, are intro-
duced to compute new numerical tables. :
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Introduction

The tidal gravimetric observations are collected at the
International Center for Earth Tides (ICET). After correction of
the local atmospheric pressure effects, when available, the time
series are transformed into the frequency domain where they are
corrected for the transfer function of the gravimeter itself. The
ocean loading effects are then removed. The corrected tidal
gravimetric factor & is so determined for about 270 stations.
Using the same definition as that of the ICET, latitude dependent
theoretical tidal gravimetric factors 6w can be obtained and
compared with the observed ones (Dehant & Ducarme, 1987). There
is still a systematic difference of about 0.7% (Figures 1 and 2}.
in order to understand and interpret the residuals in terms of
physics of the Earth interior, the precision of the ocean loading
corrections must be increased. These corrections include the
direct gravitational attraction of the fluid masses, the deforma-
tion of the Earth surface due to their weight and the induced
mass redistribution inside the Earth. The modelling of these
effects 8all together requires the knowledge of the ocean tides
everywhere on the Earth i.e. corange and cotidal maps which give
amplitudes and phases of the ocean tide at every points of =a
grid. TFarrell (1972) developed a method which allows to compute
the ocean loading effects at each station. These are usually
called the "indirect effects". The procedure is divided into two
steps.

The first one consists in computerizing the response of the
Earth to a point mass-load considering a particular model for the
internal structure of the Earth (see part 1). The different
components of the Earth response are tabulated in function of the
angular distance between the application point of the load and
the observation point. They are called the Green’s fumctions.

For the second step, one considers that an ocean is divided
into a set of cells to which & given tidal emplitude and phase
are assigned. The mass of each cell is then concentrated at the
associated center of figure and a convolution using these masses

‘and the Green's functions is performed in order to compute the
total response of the Earth (see part II).

It must =also be mentioned that the ocean and atmospheric
loading effects are not only perturbing gravity data but they are
also important for precise geophysical and geodetical data.

_In part I of this paper, we present a critical analysis of
the Farrell's method for the computation of the Green’s functions
and new mumerical values are obtained for different rheological
models inside the Earth. The new results are used in part II to
computerize indirect effects at different stations.




10180

DELTA Moy 0f

4170

1.130

4430

1150

DELTA MOY M2

16170

121350

12130

L)

659584

] I
-80 - =40 b BQ_
LATITUDE
Figure 1: Results for O: using the 1066A model like in (5).
Points = means computed for each span of 10 degrees irom the

observed tidal gravimetric factors (ICET date bank). Dashed line
= curve deduced from the observed § by regression; fine curve = §
from Wahr's definition; thick curve = § from the present paper
definition.
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Figure 2: Results for M: using the 1066A medel like in (5). Ssme
comments as in figure 1.
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1. Definition of Love pumbers and Green’s fumctions

The Love and Shida numbers have been introduced in the case
of a spherical non rotating Earth. They are dimensionless numbers .
which characterize the Earth's response to the luni-solar
attraction. One defines them as Earth’s transfer functions be-
tween these characteristics and the external tidal potential or
its derivative.

They have been generalized in the case of an external mass-—
load potential. In this case, they are called mass-load Love
numbers and are usually distinguished by & superscript prime.

The Earth response to a mass-load is computed by integrating
the equation of motion, the stress-strain relationship and Poig~
son’s equation inside the Earth, from the center to the surface.
These equations are parameterized by the rheological properties
of the Earth and thus loed Love numbers depend on the "seismolo-
gical model".

Because the mess-load potential can be developed in Legen-
dre’'s polynomials, a same expansion can be applied to transform
the vectorial equations (Partial Differential Equations) into
scalar equations (Ordinary Differential Equations of the first
order in d/dr). Mass-load Love numbers are obtained in this way
for each fixed degree of the potential.

The load Love numbers are used in the computation of the
Green's functions. These functions represent the response of the
Earth at an cobservation point to an external mass-load point at
an angular distance 6.

The Green's functions form three groups:

(a) the horizontal and vertical displacements,
{b) the horizontal and vertical sccelerations,
(c) the strain tensor components,

Some of the mathematical expressions can be found in Far-
rell’s paper (1872). The others can be found in Melchior (1883).
We reproduce them in table 1.




radial displace.ment :
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TABLE 1: Mathematical expression of the Green's functions

u(f) = :E— Z fop P (cost)

¢ n=0

horizontal displacement :

i , O P, (coed)

a
v = ey

¢ n=0

gravity acceleration :

o0
g(0) = L S (#+ 2hp — nin =+ 1)kn) Pa{cosb)
n

¢t p=0
tilt :
HB) = 1 §(1+k' h,)BP,.(cosH)
( ) - —mc hrt n # EY)
astronomical tilt : . éP (cosf)
1 . . ' |CO8
Ay === (1+kn— la)—o—
¢ p=p
strain : w1 &, 8P, (cosb)
Ut Sy 7
£ p=0

where & is the mean radius of the Earth, me is the total mess of
the Earth normalised with respect to unit mass , 9 is the angular
distance, hy, ke and li are the load Love numbers and . Pn are the
Legendre's polynomials.

2. Numerical Computations

2.1. Inputs:

In order to compute the Green’s functions all the elements
of the mathemstical expressions presented in Table 1 must be
nmerically evalusted. These elements are some fundamental
constants, the Love numbers and the Legendre polynomials.

a) The constants:

The mmerical computation of the Green’s functions requires
the knowledge of the mean radius of the Earth a, the mean gravity
at the surface g and the Earth total mass me. Different reasona-
ble values of the constants have been considered. We found rela-

tive errors up to 5 10-4 on the Green’s functions which corres--

pond to the precision on the constant me. For the finsl computa-
tions, we take a = 6371 km and g = 8.82 m sec7! as usually and
5974 1024 kg for me.

(1

(2)

(3)

(8)

(©)
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b) The load Love numbers:

In the numerical evaluation, the Love numbers for all de~
grees up to a fixed number N are required. But Farrell (1872)
gives only a list of a few Love numbers in which he suggests to
interpolate the missing values. By using different interpolation
methods, polynomials or cubic spline interpolation, applied to
the rew Love numbers or to their logarithm, we got different
results. Due to the repartition of the Love numbers computed by
Farrell, =an interpolation on the logarithmic values seems to be
safer. This is illustrated in Figure 3. In the logarithm case,
the relative difference on the Green’'s functions obtained by
using the 6 points Lagrange interpolation and by the cubic-spline
interpolation is of the order of 5 10-3.

c) The Legendre polynomials:

In order to compute the Legendre polynomials, we use a
formula relating one degree, n, to the two previous degrees, n-1
and n-2. The stability of this formula could be verified using
the +true values of the Legendre polynomials at different orders
for B = 90° and 6 = 180" which are well known. The results are
presented in Table 2 and 3 respectively. It can be concluded that
the relative error is of the order of 5 10-1° and is thus ne-
gligeable.

Table 2: Numerical velues of the Legendre polynomials
' corresponding to & = 90°.

n " Pp exact P, obtained from the recursive formula
101 0 0.41023 ... 10-2¢
1001 0 -0.12888 ... 1019
5001 0 -0,28790 ... 10-®
10001 0 -0.,39694 ... 10-®

Teble 3: Numerical values of the Legendre polynomials
' corresponding to 8 = 1807 '

n | Pa exact l P obtained from the recursive formula
101 1 1.00000000000000173

1001 1 1.00000000000019887

5001 1 1.00000000000518078
10001 1

1.00000000002076986
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2.2. Summation method

To obtain the Green's functions, it is necessary to compute
infinite series of Legendre polynomials weighted by the mass-load
Love numbers. All these inputs are described in the previous

paragraph.

There sare difficulties in the mumerical evaluation of the
sum due to the slow convergence of the series. These difficulties
are related to:

{1) the computer round off errors,

(2) the convergence errors due to truncetion in the infinite
series,

{3) the amplification in the summation of the errors inherent in
the inputs.

Among all the inputs the errors on the Love numbers have the
most important pert in this amplification (3). These loed Love
numbers are provided with an absolute error of the order of
5 104 in Farrell's paper.

One of us (Francis, 1987) computed the maximum absolute
errors on the sum. In all the cases except for small 8 (see
below) these maximm absolute errors are greater than the final
results.

The first difficulty (1) can be removed easily by increasing
the mmber of digits in the computation. As far as the next two
difficulties are concerned, & compromise must be found because,
in order to reduce the convergence errors {(2), & meximm of terms
in the series should be summed up; on the other hand, the re-
duction of the third kind of errors (3) requires & minimum of
terms. . For that purpose, mathematical "artifices” must be used,
as Farrell (1972) already mentioned.

' The objective of the present section is to review and test
these artifices in order to deduce & more appropriate strategy
for the computation of the Green's fumctions.

2.2.1. Kumer'’s transformation

Based on the well known asymptotic behaviour of the Love
numbers (precisely of hi, nks and nl.), the Green’s functions can
be rewritten. The radial displacement, for example is expressed
by _

she ®© - a © '

I Pulcos 8) + — I (he - ha) Pp{cos 6) (8)
me n=0 me. n=0

Ur =

where a, m, 8 are defined in Table 1 and he is the asymptotic
value.

The advantasge of this procedure is that the first part can be
evaluated exactly and the Legendre polynomials in the second part
are now weighted by (hz-hs)} which is a more rapidly decressing
function of n. Thus, for the same fixed precision, the nmumber of
terms in the summation will be smaller.
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Table 4 displays the Green’s functions computed using the
Kumer's transformation alone. It can be seen that the values are
not coherent with respect to the Farrell's results which include
other mathematical artifices. Moreover, for the tilt, the values
are even out of range when 8 > 5°.

2.2.2. Euler’s transformation

The Kummer’s transformation is the first step in the compro-
mise we are looking for. The second step is to apply the Euler’s
transformation. This method is a standard technique to rapidly
sum alternating series. Thus the Green's functions must be trans-
formed into alternating series. The most logical way is to
construct them by using the cosine-like behaviour of the Legendre
polynomials. .

Our first idea was to make a test on the sign on the polyno-
mials. But Farrell (1972) uses the following formula:

M
u = I a (6)
i=0
, 8 .
where M = N <->, the symbol <> indicates the nearest integer,
n
k(i)
a (8) = T (h's - h'=) Pa{cos 8)
' n=j(i)
with j(0) = 0, Jj(i} = k(i-1) + 1,
bl n
K(0) = ¢(=> and k(i) = j(i} + <>
48 @

In this formula, the number of terms in each partial sum,
ai (8), is always the same because one always incrementes by the
constant <x/6>; however, if one uses a sign test to construct the
partial sums , one sees that the number of successive Legendre
polynomials of the same sign in each sub-sum 2 (8) is not cons-
tant. But then, in the Farrell’s case and when the number of
terms in the partial sum is small (when 6 is large, =/6 becomes
emall), the ai have no more the same magnitude. In addition, the
sign alternation is no more respected. .

For smell angular distances 6, both methods give the same
results (see Table 5). But for angles higher than about 1007,
there are some differences at the second or third decimal. The
corresponding number of partial sums in the numerical computation
becomes very different.

 To discreminate between both choices, let us write down the
necessary conditions to apply the Euler’s transformation:
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Table 4: Green’'s functions computed by using only the Kixomer’s
+ransformation. The same pormalisation as Farrell (1972} is
adopted. Only the elastic pert of the Green's function =are
tabulated as Farrell did. This is noticed by the subscript E.

The lines show-thé decimals from which the abaolute differences

with respect to Farrell's results mre higher than 0.5,

8 ,geg. B(O) g=(8) af(g)
L0001 -33.991 -TB.B02 . OG0
00010 -330 -7 «HE] -BDD
. 010D —32 -754632 .05
.0200 -314801 ~734782 .010
00300.-31- —72c3“7 .015
.0uD0 -3C. -704213 .C19
. D600 -2B. . ~p6 4503 .028
.Dan0 -26. -62 4843 L0237
.lﬁUU. _25. ”59-805 00“5
-.1600 ~21. -E14263 067
.2000 -20.047 -47.298 .078
.250D0 -18. -42 .0%1
. 3000 —-17.164 ~404388 .1C2
L4000 -15. -3k, .122
5000 -14. -2y, $183
L6000 -14 -32.8 .165
.8000 -13. ~3C .214
1.0000 -13 -26 + 264
1.2000 -12. -26 « 218
1.6000 ~10. -23 LuLC3
ZODDDD -9, -210 .1-1'75
2.5000 -&. -18.7 . 546
3.000D0 -=7.531 -1l&.6 .6DD
4£,0000 -6.13% =13 677
5.0000. =-5.257 -11. . 728
6.0000 =4. -1C.2 LTES
7.000D -k.2 =9.1 210
B-DDDD -309 8 -8.4 0’855
9.00D0 ~3.3 -7.8 .9Du
10.0000  -3.¢ -7, 956
12.C000  -3.39 -6.6 1.080
IBODDDU -2.0D «“5.5 1-363
20.0000 -~2. -4 .7 1.678
25.0000 -2. -2.c 2.07¢&
30.C0D0 -1.5 2.9 Z2.489
“DODDUD -029 _lcq 2-918
50.00DD - 84 -.2PL 2.7ES8
£0.0000 1 1 2.0D2
70.0D00 p4 & » 730
EC.O00D 2 LA -.78%
¢0.DDOD 1 - 7 -2.288
100.000D - 2 -3.5¢81
11C¢.0D00 - ~1.37¢8 -4 .53%
120.00003 -1.1§32 ~2.015 -5.101
130.0003 -2.212B -2 6 -£.281
140.0000 -Z2.439 ~X.p35 -4,994
150,0000 -—-4.5]18 ~I.p%6 -4,348
1¢0.0600 -5.4f62 ~Z.PEZ -2.321
180.0000 6. -£.153 .000
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Teble 5: The gravimetric Green's function computed wusing
Farrell's intervals (gr) are compared to those obtained using &
sign test {(gr}. '

Ni+ is the number of partial sums needed to get a fixed precision
of 5 10 -+,

B, deg. gE(B) N, gELEJ N,
.0DD] -78.802 -7&.802
.0D1D -78.4B1 -78.4E1
.0100 -75.£32 —75.622
.0200 -73.782 ~73.7€2
.0300 -72.013 3 =72.347 3
.04nh -70.111 b/ -7C.213 8
. D600 —66.4B4 4 ~66.502 B
.DB00 -62.9321 B -62.843 1l
.10D0 -59.869 6 «~LG5.66E 5
. 1600 -51.486 13 ~51.486 7
.20D0 -47.351 7 -47.2512 7
L2500 -~43.4D03 7 ~43.403 7
300D —4D.4E2 g —u4b:483 8
L4000 -36.640 8 -36.640 8
500D -34.352 . B ~34.252 ¢
6000 -22.EB14 9 -22.8l4 10
.8000 -20.573 10 -30.572 11
1.0D0D -28.7D6 10 -2&.708 1
1.2000 -27.D26 11 ~27.026 1D
1.6000 -23.9&3 11 -22.983 10
2.DD00 ~2:1.373 11 =21.273 10
2.5000 -18.734 11 -18.734 1D
3.00D0D0 -16.650 12 -16.£30 10
&.0000 -13.606 10 -13.6D5 10
5.000C -11.598 11 -11.598 10
6&.0DD0 -1D0.211 9 -10.211 1D
7.0D00D -9.20% 0 -2.206 11
£.DDDD  ~E.4&6 10 -5.442 1D
9.DDDD -7.853 1D -7.853 11
10.000D -7.375 10 -7.375 112
16,0000 -5.571 9 -5.577 10
20.DDDD  -4.739 12 -4, 74D 11 -
25.0000 ~-3.821 10 -3.825 12
30.00D0. -2.962 11 -2.962 11
40.0000 ~-1.437 18 -1.451 67
£0.0D00 $ 369 z 359 11
70.D0000D 535 50 .532 157
80.000D +318 24 .342 £7
90.000D -.143 36 -.143 10
10D.D0DDD -.728 37 -.726 101
110.0000 -1.36% 32 -1.351 11y
120.0080 -2.012 pi -1.964 307
130.00D0 =-2.615 17 ~-2.638 147
.140.00D00 +<3,145 . 14 -3.141 2321
150.0000 -3.593 12 -2.595 136
160.0000 -3.966 13 -3.568 62
170.0000 -4.282 11 -4.28B2 11
180.00D0 =-4.55% 14 -4,555 ig




8973
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For the alternsate series I (-1) as

n=0

with an > 0 for all n.

if the an decrease to 0 (1)
if the Aap (=ap-8n-1) decrease to 0 (2)

if the A? an (= Aan - Amn-1) decrease to 0 (3)
and an+1 1
if >~ {4)
Bn 2

Then the BEuler’s transformation speeds the convergence.

Condition (4) is verified independently of the determination
of the intervals which can be based either on the sign test or on
‘Farrell’s choice. In both cases, conditions (1), (2) and (3) are
not verified because ar have a cyclic behaviour. But at the
desired precision, the mumber of partial sums is sufficiently
small in Farrell’'s case to stay in the first cycle and so (1) and
(2) are satisfied but (3) is not. The reason why it stops so
quickly is that the alternation is not respected. In the sign
test case, for the same precision, a higher number of terms must
" be used as previously mentioned. This number is out of range and
this is the reason why we prefer the Farrell choice of interval
although there are objections against this method because the
hypotheses needed for Buler’s transformation, especially the
alternation of the series, are not satisfied.

However, this problem of choice arises only for angular
distances bigger than about 100°.

2.2.3. Disk factor

The third artifice used by Farrell is the introduction of a
disk factor in the second part of the Green’'s function expression
(8). The Green’'s functions corresponding to a disk load of radius
@ can be expended in the same way as in the case of the point
mass-load, by adding a weight in all the terms of the expansion.
This weight is equal to 1 when a tends to zero i.e. for a point
mass-load. The second part of expression (8) can than be replaced

by
a2 w0
— T lim Fn{a) (ha — h=) Pa{cos 8) (9)

me n=0 ag—0
' -(1l+cos a) dPn{cos a)

with Fa (Ol) =
n{n+ilsin « da

If the limit and the sum are exchenged, the second part of the
expression of the Green’'s fumctions becomes: '
a o
1lim -~ I Fu(a) (ha - ha’ Pu(cos 8) - (10)
a—0 me n=0
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The introduction of the disk factor Fn(a) speeds up the
convergence of the series, by providing a weight decreasing as
n-3/2 if @ is not too small. At this point arises the question:
for ¢ tending to zero, how is the limit mmerically estimated?

In Farrell's paper (1972) two methods are suggested:

- First, to compute the Green's functions for different disk
factor angles a and extrapolate for a tending to zero.
Using this method, we have not been able to reproduce the exact
results published by Farrell. Table 6 displays differences at
the third decimal in the Green’s functions. In this table, one
can salso notice that it wes not necessary to extrapolate when
small values of & are chosen. Farrell did not comment on this
peculiarity. Thus it seems that he did not use this method.

- Secondly, he suggests a simplest way to compute the Green's
function, without any limit evaluation. In this case, the disk
factor is left in the summation with a particular o angle. The
choice of this angle is related to the value of the angular
distance §. Farrell suggests a ratio between the two from 10 to
30. Farrell justifies this choice reasoning in a much simpli~
fied case, the Boussinesg plane approximation. In this way, we
have been able to reproduce the values tabulated by Farrell
except for very small angular distances (see section 2.24).
Some examples are given in Table 7. However, two objections can
be formulated:

1) The Jjustification for the choice of the ¢ angle is not
correct in the spherical case. Even more, the behaviour of
the radisl displacement u(8) for example is different in the
two cases: when a increases, in the Boussinesq plane appro-
ximation u{@) increases, whereas it decreases in the spheri-
cal Earth case.

2) The second objection is that the disk factor has only been
introduced in the second part of the sum for the computation
of the Green’s function {8). But it is necessary to intro-

duce it in the first part of the sum to satisfy the Kummer's
transformation. However, if the disk factor is introduced in
this part, it becomes impossible to fTind an exact expres-
sion.




Table 6:
u(8)

B875

Comparison between the results of the Green's
obtained by extrapolation for ¢ tending to zero and the

Farrell’s results (1872).
For the signification of the lines, see Table 4.

1.p000
1.2000
1.6000
2.02000
2.5000
2.000D
4.00D00
5.0000
6.000C0C
7.0000
g.000D
9.0000
10.0000
12.0000
16.0000
20.00D0
25.0000
30.0000
40.0000
. 50.0D000
60.00D0
70.0000
8C.000D
%0.0000
100.0000
110.0000
120.D0D0
l3c.pn00C
140.0D0D

150.0000
160.0000

170.00D00
180.0000

Example :

p.c3pd
D.0200
0.DO1C
0.pooRl
L.DD01
D.4D03

function

u,(6)

-15.730

-15.7274412898932504
-15.7286051758054264
~15.729744356DE73320
-15.7300292912036536
~—15.73004926382998uy4
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Table 7: ur is the Green’s function of the radial displacement
tabuled by Farrell (1872), ua, the value of the same Green’'s
function computed with a disk factor of radius a.

B = 180 degree uF(B Y = - 6.663 £ =170 degree uF( B) = - 6.161
o¢, degl u{8) _ o, deg| y(€)
-6.604 8 -6.101
-6.630 7 -6.122
-6.653 6 -6.143
5,5 | -6.663 5 -6.161
-6.688 4 -6.175

B = 100 degree uF(B) = 0.920

of, degl y{®)

5 0.938
0.630
0.923
2,5 10.920
0.917

Table 8: Comparison between the Green’s functions of the radial
displacement obtained by the raw sum {ur), tebuled by Farrell
(ur) and using the Boussinesqg's approximation (us).

8, deg. | ug(B)| v(8)] u ()
D.0001 | -33.09 | -33.64 | -34.00
0.001 -33.86 |-33.36 |-34.00
0.01 ~32.65 |-31.75 | -34.00
0.02 ~31.80 |-30.86 | -34.00
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2.2.4. Alternative method for small angular distances

For angular distances smaller than 0°02, the wmethods for
series convergence acceleration developed by Farrell (1872) and
presented sbove, cannot be applied. Indeed, in this case, the
- interval of alternation is so big that the 10 000 first Legendre
polynomials have all the same sign. Farrell (1872) suggests to
compute the Green’s function for small angles replacing the sum
by an integral. To mumericelly evaluate this integral, he sug-
gested the Simpson’s rule. Other methods have also been used. We
have obtained almost the same results as using the raw summation
(see Table 8). In this table, our computations are also compared
with Farrell’s published results. There are big differences be-
tween both sets of values. Nevertheless, Farrell’s results could
be reproduced by extrapolation. In order to select between all
these results, the Boussinesg’'s solution for.a plane approxima-
tion, appropriate in the small angles case, can be used. One can
see in Table 8 that these results are much closer to our results
without extrapolation than to Farrell's ones. It must be men-
tioned that the Boussinesqg’s solution appears to be constant
because of the normalisation introduced as Farrell did.

A second argument in favour of our results is the study of
errors propagation. The absolute error on the final result is
deduced from the precision of the Love mumbers because the other
ere negligeable.

For example, the gbsolute error on the Green’s function ur
given by eguation (8) is computed using the rules of sums and
products of errors. An error on one Love number, eps and &n error
of one lLegendre polynomial epn are propagated as follows:

e 10000
gor =— £ (e 4+ 2e ) Pa{cos 8)
me n=0 ha he
a o©
+— T (ha -ha)e
me n=0 Pr

considering that the errors on Pr are practically zero and using
5 10-1 for err and ey's {(see mbove, section 2.1}, eur is eva-
luated at 1.5 10-!7 m for unnormelised values. For examples, for
6 = 0,0001° and 6 = 0.02°, this gives meximm releative errorz of
5 10-¢ and 10-?, respectively. Up to an angle of 0.02°, the raw
summation gives then sufficiently precise results. From the angle
0.1° there are sufficient alternations to use the Euler’s trans-
formation. The problem arises for the angular distances comprised
between 0.02° and 0.1°. This is because, firstly, the relative
error can be bigger than 10~? so that the raw summation would not
be appropriate; secondly, for these angles, the mumber of alter-
nations is not sufficient to use the Euler’s transformation, for
the. required precision. One can thus not select between both.
solutions.  We decide to take the same solution as Farrell i.e.
Euler’s transformation until the precision on the load Love
numbers increases,
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2.3. Conclusion and strategy

Theoretically, the methods developed by Farrell are very
advisable, but, on the basis of mumerical tests, some criticisms
can be formulated. :

‘First, we reject the disk factor artifice because it has
been introduced to speed up the convergence and decrease the
number of operstions in the computer. This reduced the computer
time and this is no more necessary at present. Moreover, as
previously shown, this procedure is not guite correct mathemati-
cally. :

Secondly, the ZEuler's transformation causes some troubles
for +the smell angular distances as well as for the large ones.
The small sngular distances are divided into different catego-
ries. For sangles less +than 0.02°, we recomnand. to use the
Kummer's transformation alone because the alternation intervals
are too large to apply the Euler’'s transformation. Moreover, the
integral method proposed by Farrell does not improve anything.
Farrell's results have probably been obtained by extrapolation
and are unrelisble compared to the results of the Boussinesq's
plane approximation. Between 0.02° and 0.1°, the situation is
mich more embarrassing becsuse the raw summation is not precise
enough while there are no sufficient alternations for the Euler's
transformstion. As Farrell, we use the Euler’s transformation.
For angular distences larger than 0.1°, there is no problem for
the Buler's transformation up to 100°. For angles over 1007,
differences at the second or third decimal could be noted when
‘using different choices of alternation interval (Ferrell’s for-
mala or sign test). This had no influence for smaller angular
distances becsuse the choice of alternance intervals does not
change much the pertial sums as they contain a large number of
terms. In our tsbles, the Farrell’s intervals are wused. This
choice is led by the fact that for = given precision the results
are obtained by using much less partial sums with respect to the
number of intervels comsiructed on the sign test, although this
is not the most logical choice. The whole strategy adopted 1s
presented in Table S.

In order to solve the problem for the small anguler distan-
ces (between 0.02° and 0.1°), much more and more precise Love
numbers must be provided. It should then be possible to apply the
rav summstion to angles larger than 0.02°. It must be mentioned
-at this point that, in practice, the Green's functions corres-
ponding to angular distances smaller than 0.1 are generally not
used except for the stations close to the coast {distance <
10km).- For these stations, the Farrell’s method is no more relie~
ble becsuse the cells are too large in the corange and cotidal

maps.

To solve the problem of the large angular distances, we
should concentrate our efforts to find another method to sum
alternate series. ' '
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3. NWMERICAL RESULTS

Computer programs setting up the strategy discussed sbove
have been developed at the Royal Observatory of Belgium (Francis,
1987). They allow us to compute the Green's functions using the
same rheological property profiles inside the Earth as Farreil
i.e. the Guttenberg-Bullen profile (G-B). The results presented
in Table 10 are compared with Farrell’s ones.

Other rheological profiles e.g. the 1066A model (Gilbert &
Dziewonski, 1975) or the PREM (Dziewonski, 1881), have been
integrated by respectively Xianhue {(1986) and Zschau and Rabbel
(personal communication to Melchior, 1882) in order to obtain
load Love numbers. New Green's functions are computerized using
these different inputs. The results are presented in Teble 11 and
plotted in Figure 4.
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TABLE 9: Strategy for the computation of the Green’s function

1) Kumper's transformation is applied;

2) no disk factor is used;

3} Euler's transformation or raw summation?

Oc

0.02°

0.02°

0.1°

0.1°

100°

100° 4

180° -

—

raw summation {the results are equal to those obtained
by using the integral proposed by Farrell)

If many more Love numbers and much more
. precise ones are available then: raw summation
PROBLEM

If not, then: )

1) form an alternative series using either
Farrell's interval or the change of sign
NO PROBLEM . test (same results)

2} apply the Euler’s transformation

PROBLEM . Farrell’s intervels ¥ sign test intervals
mmber of terms <{ number of terms
» YES NO

Find = new method.
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Table 10: Green’s functions for the Gutenberg-Bullen profile
{Francis, 1987).

er ule) V(e Loy tEe)  w(e)
.00NY -33.991 -11.367 -Tg.g02 S4-D06 . 000
L0010 -33.557 ~-11.3e6 ~TB.ugl =4.005 .00D0
L0100 -32.651 -11,289 =75.632 33.764 .005
.0200 -31.801 =-11.177 -73.782 33.981 -010
.0300 -30.983 -11.125 =72.013 33.727 - 015
.040D0 -30.120 ~-11.05¢ ~—70.111 33.688 019
.0600 —-2B.4575 —-10.%ug —66.484 33.343 »029
L0800 -26.886 -1D.634 =—62.931 32.997 -037
L1000 -25.u424 =-10.367 =59.669 32.396 + D45
L1600 -21.2818 =9.372 -51.48p6 29.844 - 067
.2000 -20.037 =§.706 =47.351 27.7B6 078
.2500 -18.381 <-B8.026 ~-43.403 25.283 -0%1
L3000 -17.199 ~7.470 -4D.483 23117 -102
L4000 -15.730 ~6.731 <36.640 19-867 -122
.5000 -14.93) -6.343 ~=34,352 17.B73 <143
L6000 ~14.430 -—-6.164 =32.814 16.875 -165
.800D -13.689 ~-6.061 =3D0.573 16.347 <214
1.0000 -12.999 =-5.989 -28.706 16.27D .265
1.2000 -12.316 -5.86D0 =-27.D26 16.207 +324
1.6000 -1D.972 -5.478 -23.983 15.928 +H03
2.0000 -9.761 -4.999 =-231.373 15.033 4T
2.5000 =-B.520 -4.39] =-1B.733 13.64D .546
3.0000 =-7.583 ~-3.§¢5 -16.650 12.368 600
£,00D0 -6.136 -3.069 =-13.606 10-116 677
5.0000 =-5.248 =-2.523 =-131.593 B.255 - T2E
6.0000 =-4.671 -2.3158 =-1D.211 6-948 +770
7.0000 -4.280 ~-1.916 —9.205 S5.974 .B11
£.0DD0  -4.003 -1.759 —B.446  5.279 -855
9.000C -3.79% -3j.&53 -7.853  4.755 «902
10.0000 -3,641 ~1.580 ~7.375  &.374 . 957
12.0000 -3.399 =-1.501 —6.638 3.915 1.D80
16.0DD0 -3.DD4 ~-1.4%8 =~5.571 3.556 1.368
20.0D00  -2.624 ~1.368 —4.740 3,385 1.679
25,0000 -2.:112 -}.311 -3.821 3.333 £.D77
30.0000 -1.537 =-1.212 =2.962 3,320 2.449
4D.00D6 -.296 ~.925 -1,437 2.966 2916
$0.DD0OD L8435  -.590 Z.29p  1.949 2.782
£0.0D00  i.674  -,321 L369 .421 2.004
70.D000  2.07&8  ~.Z1E .537 -—1.263 .732
80.000BD 2.050  ~.305 .318 -2.706 =--7B3
$0.000Q  1.637  -,554 -.143 —3.713 -2.29D
100.0DDD ‘913  -.E897 —.729 —H4.262 =-3.584
110.00D0 -.036 -1.252 =1.369 4416 -L4.539
120.D002 =-1.131 =1.547 -2,p12 ~—4.221} -5.097
130.00083 -2.29%9% -1.718 =-2.,€15 ~—2.736 -5.248
140.0000 -3.442 =-1.726 ~3.1u44 —3.065 —4.998
15C.0000 -%.537 -1.548 =~3,592 ~—2.517 ~4.356
160.0000 -5.457 -1.186 -3.9pp ~—1.567 —3.222
170.0000 -6.206 -.658 =-4,282  —-816 ~—1.879
180.00D0 -6.71¢6 .DD0 ~4.555 ] s]s! .000
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Table 11: GCravimetric Green's function for the Gutenberg-Bullen,
10664 and PREM models, respectively.

B, deg.

Ee-p E+068n Epren

.0001 -76.802 ~1BB.497 ~9&,DBY
.0010 -78.481 -187.381 ~97.663
-0100 -75.632 ~176.498 92,464
.0200 -732.782 -166.00% -BE.856
.0300 -72.013 -155.,053 -84.351
L0400 ~70.111 ~144 ,647 -79.986
08600 -66.484 -124,910 -71.E1E
».0800 -62.931 -106.972 —~6u,562
.1600 -51.48¢ ~C1.289 -45.568
.2000 -47.351 S50. 423 -40,854
.2500 -43,403 43,063 -27.487

« 300D ~4D.483 —3%,5486 -
L4000 —36+640 -35,.822 -T32,721
.5000 -34.352 -35, 464 -32.5D¢
.60DD -32.814 34,263 -31.434
».BDDD -30.573 -22,25¢% ~2%,40C
1.0D0OC -28.706 -30.080 ~27.72¢E
1.200D0 -27.026 28,177 -26.167
1.6000 ~23.983 -24,842 -23.56%
2.0000 -21.373 -21.95%2 -21.32311
2.5000 ~1B.734 19,116 -18.55%
3.000D ~16.650 16,878 16,476
4.DD0D -13.606 ~13.642 -13.528
£.0000 -11.598 -11.543 -11.431
6.0000 -10.211 -10.12¢ -9.859
7.0000 -9.205 —c,lul —-E.BET
£.0DDD -B.uib —£.5423 -£.023
$.0000 -7.853 -7.873 —T ubE
1C.00DD  -T7.375 -T.837 —g.5LT
12.0000 ~6.637 -5.751 -£.212
16,0000 ~5.571 -5, 705 -5,138
20.0000 —4.739 Ceg,ga2 -L,25%8
25.00D0 -3,521 —I.E&O -2.391
30.0000 -2.982 —2.577 -2.566
40.0000 =1.u437 —1.3E2 -1.128&
50.0000  -.290 -.199% -.078
£0.0000 L3853 L4586 WLES
70.0000 .536 .605 +577
£ED.00D0 «31E « 376 « 231
S0.000D ~.1283 -. 107 ~s18€E
i00.D00D -2728 - 717 —.T23
110.0000 -1.36°% -1,250 -1.,3u5
120.0000 =~2.012 -i.e7p -1.e0¢
130.08000 -Z2.615 -2.,52¢L -2.,LE8
140.0000 =-3.1&3 -2.007 -2.91%
150.00D00 -3.5%3 -T,. 423 -3,.3314
160.5000 -3.9%56 -3.7E% -3.858
170.0C800 —&.282 -4,08% -2.65k4
180.0000 =-4.555 —t.358 —5.209
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Figure 4: Gravity Green’s functions for different models.
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Convolutions between these resulting Green’s functions and
the complex vector representing the ocean tide amplitudes and
phases are performed at five stations as examples. From the
comparison = between the results of the three different models
{Teble 12) it can be concluded for gravity that:

1) There are practically no differences between the G-B model and
the 10664, although the Green’'s functions are very different
for small angular distances (Figure 4). This small influence
is normal because, as already mentioned, the small angular
distance Green’s functions are only used for coastal stations.

2) However, the differences . are more important for the PREM
model. This is due to the systematic difference between G-B -
and PREM- Green’s functions.

The new theoretical results for the ocean indirect effects
are very promising because the new residuals are much smaller. In
the future, we plan to recompute all the residusls for all the
stetions availeble at the ICET, using the Green'’s functions of
the new PREM model or of the Zschau's new inelastic model (Zschau
and Wang, 1985).
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