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Dans [5], nous avons développé une méthode générale, ayant permis de montrer
que les deux premiers espaces de la cohomologie de Chevalley locale de ’algebre
des opérateurs différentiels sur une variété, a valeurs dans les fonctions, sont
isomorphes aux espaces correspondants de la cohomologie de de Rham. Nous
appliquerons a présent notre technique au calcul du troisieme espace de coho-
mologie.

Complexe de Chevalley, représentation symbolique.

17 B 56, 17 B 66

Third cohomology space of the Lie algebra
of differential operators on a manifold,
with coefficients in the space of functions

In [5], we constructed a general method, which allowed us to show that the first
and second term of the local Chevalley-FEilenberg cohomology of the algebra of dif-
ferential operators on a manifold, with coefficients in the space of functions, are
isomorphic to the corresponding spaces of the de Rham cohomology. It now will
be proved, by the same method, that this result also holds for the third cohomology
spaces.

Chevalley-FEilenberg complex, symbolic representation.

17 B 56, 17 B 66

1 Introduction

Notons N 'espace C*°(M) des fonctions d’'une variété M et désignons par £° espace
GU(N)joe, n.c. des opérateurs locaux de N dans N - i.e. des opérateurs différentiels sur M -
qui sont nuls sur les constantes. Il est clair que £° est une algebre de Lie, admettant N
comme espace de représentation.



Le crochet de Nijenhuis-Richardson [4] munit 'espace £ des applications multi-
linéaires, antisymétriques de NV x --- x N dans N, qui sont locales et nulles sur 1 € N,
d’une structure d’algebre de Lie graduée.

Soient (A(E% N)ipe, 0) et (Aait(E)_1.10e, 0) les complexes associés a 0 représenté sur
N resp. a & opérant sur lui-méme, toutes les cochaines étant locales resp. locales et de
poids —1. Les cohomologies de ces espaces différentiels sont telles que [3]

Halt<5>fl,loc = H(ker 9) ©® H((‘:O; N>1007

ol 6 désigne I'application “restriction des cochaines alternées a £ x --- x €97,

Dans [5], nous avons montré que les espaces de degré 0,1 et 2 de la cohomologie de
EY sont isomorphes aux espaces correspondants de la cohomologie Hpr(M) de de Rham.
Nous utiliserons a présent la méthode et les résultats de [5], pour établir le

Théoreme 1.1 St M est une variété de classe C*, de dimension m > 3, séparée,
a base dénombrable et connexe, on a

Hp(g[)’ N)ZOC ~ H%R<M)7 vp € {07 17 27 3}

On dispose alors d'une partie du calcul des premiers espaces de la cohomologie
graduée, intéressants en théorie des déformations. Cette motivation est plus que jamais
d’actualité, le résultat récent de M. Kontsevich [2], selon lequel Ialgebre des fonctions
des variétés de Poisson est toujours déformable, suggérant fortement 1’existence, dans la
cohomologie graduée, de classes canoniques “universelles”, liées aux déformations de N
et a leur classification.

La technique de calcul développée dans [5], est basée sur la représentation symbolique
des dérivées par des formes linéaires sur IR™, la graduation de I'espace des p-cochaines
et I'ordre total sur les termes homogenes.

La symbolisation de l'équation de cocycle conduit a une équation purement
algébrique, plus simple que l'original, dont la résolution fournit des conclusions-images,
qu’il suffit de réinterpréter.

Le terme homogene TS = Tre ' (a; € IN, 7; € IN*) d’une p-cochaine T', appelé
monome de degré (@/r) de T', est la somme des termes d’ordre (ao, . .., a,-1) de T évalué
sur des opérateurs différentiels homogenes d’ordres respectifs rg, ..., 7r,_1. Ces monomes

sont ordonnés par 'ordre lexicographique associé a l'ordre total défini par
(a;/r;) < (aj/r;) & ai+1; <aj+r; ou (a;+r;=a;+r; et r; <r;).

Il importe que l'ordre sur les mondémes soit compatible avec I'opération de cobord i.e.
que le plus petit des monomes de 9T auxquels T contribue, soit d’autant plus petit que
T¢ l'est. En effet, si T' désigne un cocycle, nous le corrigeons par des bords et prouvons
que les monomes successifs du cocycle cohomologue sont nuls. On peut alors annuler
un monéme 79 moyennant I’équation (GT)% =0, ou (OT)% est le plus petit monome du
bord auquel T¢ contribue, cette équation ne renfermant en principe que T2,

Dans la suite, nous nous servirons des notations et résultats de [5], sans nous y
référer toujours explicitement.

Pour prouver 1.1, il suffit de démontrer la



Proposition 1.2 L’espace de cohomologie H3(E N)i,e (E° = ES, N = C>(Q),
Q : ouvert contractile de IR™) est nul en dimension m > 3.

Ce calcul est plus technique que ceux des premier et deuxieme espaces. L’invariance
sous gl(m,IR) n’apparait encore que graduellement, phénomene 1ié & absence dans £°
d’un idéal raisonnable, supplémentaire a gl(m,IR). De plus, des termes de bords formels
de cochaines symétriques et deux familles de monomes critiques - difficiles a annuler
- apparaissent. La premiere ne peut étre annulée que grace a la construction dune
cochaine, chaine de “cochaines élémentaires”, telle que le monome minimum de son
bord soit la somme des contributions opposées de ses deux premiers maillons. Cette
compensation, réitérée jusqu’a épuisement des paires de maillons successifs, conduit
finalement a un monome minimum, ayant exactement le degré et la forme requis. La
procédure annulant les monomes de la seconde famille, dépend de la valeur du parametre.
S’il est pair, le mondme disparait apres le choix convenable d'un coefficient arbitraire
dans un bord retranché préalablement. Sinon, le monome engendre une “chaine de
survivants”, finalement entierement annulée par I'effacement de son dernier maillon.

La preuve se fait en six étapes, chaque étape constituant ’objet d’une section. Les
raisonnements sont en principe valables pour tout m > 3, mais I’argumentation nécessite
quelques raffinements ponctuels en dimension 3. Ces endroits seront marqués dun
astérisque et les affinages seront donnés dans la section VII.

Afin de simplifier les notations au maximum, nous écrirons iD; et 7220 1 2;

rst
Xr X X1) (et méme simplement 722, si aucune confusion n’est & craindre) au lieu de
i ) abc (1,0 1 2. YT s t
n'D,i resp. T2 ¢ (n°, ', Xg, X7, X5).

2 Etude des monomes a une ou plusieurs colonnes (})

Proposition 2.1 Tout 3-cocycle de E° (E° = &Y, m > 3) est cohomologue a un
cocycle T a coefficients constants, invariant sous Uaction de gl(m,R), sans colonne

( (1) ) et tel que

T ktr([.,.].) (ke€R),
Ty =0 (t=2)
et
c T 1
t>¢{<1 T).Tzz}.o
Tllftc =
b ¢ T 1 ¢ , ,
s t € 1 7 T > 27 Xgl(kXOZXlo + k XO0X12) (k’ S IR)
1 b c
((3)<(2)= (1) x-x)
(tr ([.,.].) : trace antisymétrisée du produit de trois matrices).



Soit T € A3(E% N)joe Nkerd. On sait qu’on peut supposer T étre a coefficients

constants et sans colonne < (1) >

Le monéme minimum 73} '} de T est alors donné par

En procédant comme en [5, V.2] et en notant que A? (gl(m,IR),IR) = {0}, on
constate que

T =0 ((1><<t>>

Etudions maintenant les monomes du type T} 2¢ (( i ) < ( g ) < ( ; ))
Vu [5, IV.2.1], on a

C c k 1
OTh1ef = —0,11)4 +I—|—]Ia<< . ) ”: ( . ))

a((2)+(1)

Il est clair qu’il n’existe pas de compensation de type I (car une telle compensation

. R . 0 ,. . )
serait due a un monome contenant une colonne 1 ). S’il y avait une compensation

de type II a, elle serait obtenue par création de ( g ) et serait donc engendrée par le
monome

T =T (Ce{l,...s}).
Par conséquent, on aurait £ = s, t =1 et b+ c =1+ s. D’autre part, les conditions
k <byet (k,a)# (0,¢) donneraient b < 1 resp. b # 0. Ainsi, b =1, ¢ = s et le monéme
étudié serait T} 17, ce qui est absurde. S’il existe une compensation de type II b, elle
est fournie par le monome

Tti:b—_eellll = Tllllll (Ce{l,...,b}).

Comme k <by,onak=0etl{=bouk=1et {=>b—1. La condition a < sy entraine
que s = 1 et 'exigence (k,a) # (bo, So) implique que k = 0 et ¢ = b. Il s’ensuit que
c=1et t =0, de sorte que le monéme étudié est T}'{} (t > 2). Inversement, si 'examen
porte sur un tel monome, on a la compensation

X§2 (XQDXs)Tllllll(3 0 1,X3 XO Xl) = k X§2 tr([O ® Xo, 1 ® Xl] 3 ® Xz)
Posons dans ce cas

B%i%(l 2 3,X1 X2 X;) = kX?t)Q tr(l ®X1 . 3®X2) = leg X21 X§2



et notons B, la 3-cochaine (a coefficients constants et sans colonne ( (1) )) de £° que four-

nit 'antisymétrisation de B} {1, On vérifie facilement que la précédente compensation

n’est autre chose que
(0,B111)(0® Xo,1® X1)(2 3; X, X})

(rappelons que conformément a la convention faite en I, 0, 1, 2 et 3 représentent des
formes linéaires n°, n', n? n* sur R™).

Si le mondme étudié T 2¢ n'est pas du genre T}, ot t > 2, (1) montre que

TV(f € Bl iy @ Ny (91(m, R), R)

s t,inv

(A un bord pres). Si T12¢ est de la forme Tj{} (t > 2), I'application de [5, IV.2.3] au

S
mondme T} {} — B} i1 de la cochaine T' — B; donne

T = Biit € By, @ Ni(gl(m, IR), IR)

1 t,inv

(quitte & corriger par un bord). Par conséquent,

ZS%Z’LO
b ¢ T 1 .
Tibe _ . 1 ¢ 1 - T > 2 :trUft
1st Z :Z
° 1 b ¢ T 1), . Rrltl t1
st ]€ 1 - cT>20 By +Htr Uy,

(3)=(2)=(2)

ot UP7Y est un invariant de l'espace de représentation correspondant. Remarquons que

quel que soit s > 2, TL3% =tr Us$ = 0 (argument de symétrie) et qu’ainsi T} 22 = 0,

b 1
pourtout(s>><1>.

Passons & 'étude des monémes T8¢ (( 1 ) < ( :f ) < ( g ) < ( ; ))
I1 découle de [5, IV.2.1] et des résultats ci-dessus que

(OT)i70f = =0T F + -+, (2)

s

TV(lﬁ'Y)

. ; ; - 111
ou les termes compensateurs éventuels sont engendrés par les monomes Ty et T, , )

((1)=<(2)<(7) =-2)
SiYy=a+b+c#Y;=r+s+t, le bord —9,T° ¢ est 'unique contribution au
degré ( Laboec
1 r s t
> = >, contribue dans le bord seulement a des degrés ayant la méme propriété). Ainsi

Tebe e Z%gl(m,R), E2b¢) = Eebe.  donc

rst rst r s t,inv’

wieo (1)<(1)=(2) = () £rx).

) (car un monome (d'une cochaine a coefficients constants) tel que



Pour traiter le cas >, =a+b+c=>, =r+ s+1, il est commode d’introduire les
cochaines suivantes. Considérons les monomes U? Y (( L ) < < b > < ( 7 > Y. = Z)

1 o
(ils sont & coefficients constants et invariants) et les monoémes C; 27 = tr U? 7. Soient U
et C les cochaines

U=YaUl? et C=>acC]}

loT

(ou Y représente la somme sur tous les ( 5 Z > tels que >, = >, et ( } ) < ( s ) <

g

( Z ) et ou a désigne l'opérateur d’antisymétrisation) et notons B resp. D les cochaines

B=T\{+> aBi}, et D= aT ToE¢

Apv
v>2

(la derniere somme étant étendue a tous les ordres ( f\ ; ZC/ > tels que Y, = >, et

( } ) < ( i ) < ( Z ) < ( g )) Comme T'= B+ C+ D, la relation (2) s’écrit, compte
tenu de [5, IV.3.1],
OT)i5sf = (OB 7.7+ (ACh 777+ (9D)17 35
= (OB)175f —tr (QU) 38— 9T (3)

Prouvons que (0B)12°%¢ est nul. Pour cela, remarquons d’abord qu’il résulte de [5,

I11.4.1] et des égalités
r—1 .
X =X, —X' =Y CGX7"XY (neR™, X e R™, r € NY)
k=0

et
|
(XDy)'Y* = o - 5 X'V (X,Y €R™, r,s €N, r < s),

que

OB)(n°, 0t P n® X0, X, X532, X5)

1=0
+Z( 1)z+jr§ CZ Tj! Xn—f (XD )Z
T 7 K3 X

i<j =0 (ry + 0! ¥

B+, n° . i3 ,7}3; X;jM,XgO,...i...j , X3%)
ri—1

+ z+]+1 X X D

;j Z rl—i—é) ( x)'
B(ni+nﬂ',n0,...z...]...,n D XTEX g, X5
3

= 20(_1>1XZ,§70+...€...+773 Brgiiwg(coitos oi0)



i<j = (Tj+€>
Bt X
() (4) )
Z +1er_1 ¢ r;!
+ j ¢ (D)
i<j =0 ](rz'f'f)
Brovittogms (o7 G X G), (4)

(©) (4) (z)
Etudions a présent les quatre cas suivants :
(1) To = 17 r,72,73 2 2

Alors - vu les degrés des monomes de B - (9B)(n°,nt, n?, n®; Xo, X711, X352, X33) = 0, de
sorte que (OB)}2%¢ est bien nul, si aucun des indices r, s et t n’est égal & 1.

(ii) ro =71 = 1; 12,73 > 2
Extrayons de (0B)(n°,n*,n%, n*; Xo, X1, X352, X3?) les termes d’ordre 1 en n°.

I : La définition de B montre que i € {2,3}. Les monomes contribuant & la valeur
By iws(ooie.s. i) de Bsont done By *,, et Bi* |, resp. Bii*}, et Bi*1,,. D’olt

les termes d’ordre 1 contenus dans I (comme convenu, nous notons m au lieu de n™) :

X33 BiT 1, (013 Xo X1 X5°) — X3 B1,,(012; X X1 X72).

I[Ta:Icii=2et j=3 et les termes cherchés s’écrivent

ro—1
— Z Ct, v +£) X537 (XaDx) BIPTE L, (01243 Xo Xy X520,
IIb: Siz=0, on anécessairement £ = 0 et j = 2 ou j = 3. Or, dans ce cas, X;-‘f*e = X;é
est dordre 7; > 2 en 7’ Sii =1, on a également £ = 0 et j = 2 ou j = 3. Ainsi, les

monomes contribuant & ordre 1 en 1° sont B} 73 i3 resp. Bi 2 }7 Sii=2, 7=3¢etles

Byt 12 +¢ sont les monomes qui conviennent. Les termes d’ordre 1 dans II b sont donc

— X3 BIP (01423 Xo Xy X))+ X5 B2, (01+32; Xo Xq X5?)
rg—1

+ Z Ct, +£) X537 (X3Dx,)" Bi2™ ) (012+3; Xo Xq Xp2T).

Compte tenu de la définition des Bi {1 (¢ > 2), les termes du bord qui sont d’ordre 1 en

n°, s’écrivent finalement (& la constante multiplicative k pres)

T2 r3 T2 r3 r2 r3 T2 T3
Xo3X10X5743X37 — XoaX10Xo7 X310 — Koz X10 X357 X571 + XoaX10X5% 13 X350



ro—1 rz—1
V4 14 ro—~ T T 14 14 r3—~
_X0,2+3X10 (Z Cr2 X21X2§ ) Xﬁ + X0,2+3X10Xzf <Z CT‘3 X31X3§ )
=0 =0
T T T Ts
= X0,2+3X10X2,21+3X3% - X0,2+3X10X2%X3§31+2
T T T T T T
—Xo.213X10( X325 — Xo7) X5} + Xo213X10X07 (X355 — X57) = 0.

Il en découle évidemment que (9B)12°%¢ est nul, si exactement un des indices r, s, t vaut

1.
(i) ro=r1=ro=1; r3 > 2
Déterminons encore les termes d’ordre 1 en n°.

I: Le terme i = 0 étant d’ordre 0 en 1°, on trouve

—X1 2+3B}I 13 (0 2 3; XO X2 X§3)
+Xo143B1 11, (0135 Xo Xy X5°) — X33 10 110125 Xo X1 Xo).

ITa: Comme i € {0,1,2}, , = 1 et £ = 0. Les monomes de valeur non nulle a priori

lrgl 11 : .
sont donc By 1? ., et By? .. Pour i = 0, les termes d’ordre 1 s’écrivent

_ixoj(opj)s((). 0. (5)

Jj=1

et pour ¢ € {1,2}, on obtient

2
> (=1t Z XiBi 2,0, i+ g, Xoy 0.
=1

j=i+1 (4)

IIb: Sii=0,laprésence de j ! implique que £ = r;—1. Ainsi les termes & déterminer
sont
3 ) 1
(=1 — Xjo (XiDxo)" "' B(j s Jes Xo'yeijen)
j=1 Ty (0)
3
= Z 1)+ X 0B( X XPTH 50
j=1 "
3
= er XjoB(0...;0..., XoX[7, ). (6)

(J)

On remarquera que les termes (5) et (6) sont égaux a
—p(n° ® X)B(123; X1 Xy X3?) =0.

Sit=1etj=2 11 =r;=1et{=0. Le seul monoéme contribuant par un terme de

. irg1 . .
degré 1 en n° est donc By 1* ., et le terme en question s’écrit

— X Bi 1, (01+23; Xo X; X5?).

8



Finalement, si ¢ € {1,2} et j = 3, les mondmes qui engendrent des termes d’ordre 1,
sont : pour £ =0, T} et pour £ #0, By, 1™ ou B} {1, selon que i =1 ou i = 2.
On trouve par conséquent,

XiTii1 (01432 Xo Xi Xo) + X377 1(012+3; Xo X1 Xo)
r3—1 1
+ Z C£3 (1 + g); nglgig (X3DX1)£B% %+€ 11+€(0 I1+3 2; XO XllJrz X2)
/=1 :
1

+ > G, ] X337 (XsDx,) B 71,0012+ 3, X0 Xy X3,

Ainsi, les termes d’ordre 1 en n° de (0B)(0 1 2 3; Xy X; Xy X3°) sont (de nouveau au
facteur k pres)

—X03X1,243X20 X35 + X3 X10X2,143X3] — X2 X10X01 X537 10 + X1 X12X20X3% 1o
+X03X12X20X§,31+2 + X0,143X13X20 X35 — Xo213X10X23 X357 — X03X10X21X§,31+2
+Xo02X10X2,143 X357 — Xo,143X12X00 X537 + Xo,243X10X21 X33 — X01.X1 2013 X00 X33
—Xo1+3X12X20 X727 Cfingi’_Kng + Xoo+3X10Xa1 Y25 C£3X§1X§§_£-

En groupant les termes en X3f, en X33 et ceux en X3 5, on voit que cette somme est

nulle. 11 s’ensuit que (9B)12%¢ = 0, si exactement deux des indices r, s,¢ valent 1.

(iv)ro=ri=ro=r3=1

Dans ce cas, B est - dans (4) - évalué partout sur trois des vecteurs X, X1, Xs, X3, de
sorte que

(88)(0 12 3, XO X1 X2 Xg) == (8T111111>(O 12 3, XO X1 X2 X3)

Or, cette expression est nulle, T} étant un 3-cocycle de la cohomologie des champs de

vecteurs & valeurs dans les fonctions. Ainsi, (9B)2%¢ est nul, si les trois indices 7, s et

t valent 1.

Revenons a présent a (3) qui s’écrit désormais

ozt rwopti-o ((1)<()=(2)=<(7) =-%)

Le premier membre appartenant a

B'(gl(m,R), E¢20) @ EX Yoy @ Al (gl(m, IR), R),

rst r s tainv

on a l'annulation séparée de ses deux termes. D'un coté, T2 est donc dans Z%(gl(m,

R), Eebe) = Eebe.  de maniere que T est (globalement) invariant par gl(m,IR). De

rst rstinv’
lautre, (OU)*%¢ = 0, ce qui entraine que OU = 0. En effet, vu [5, IV.2.2], le plus

petit monome de OU est (QU)}93 : les monomes de OU sont sans colonne ( (1) ) et

renferment 0 ou 1 colonne ( L ) La nullité de ceux ne contenant pas de colonne ( } )

1

9



vient d’étre établie. Quant aux mondmes possédant (exactement) une colonne ( 1 ), ils

sont également nuls, car [5, IV.2.1] implique que

otz =-ouzt =0 (()<(¢)<().x-%).

Ainsi, U est bien un 2-cocycle de £°. Comme il est & coefficients constants, invariant et
sans colonne ( (1) ) et ( } ), il est de la forme [5, V.2]

U=0W, ou W =35, W7 et WJ(n; X7) =c, X7 (c; € R).

Nous corrigeons maintenant 7" de sorte que les termes tr U?¢ dans les T’ ¢ disparais-
sent.

En parlant vaguement, on peut dire que nous essayons d’obtenir un nouveau cocycle
T'=T—tr U =T — tr 9W. L’application heuristique de [5, IV.3.1] montre alors qu’il
suffit de poser T" = T 4 O(tr W). Cette idée motive les définitions suivantes.

Considérons les monémes W7 (o > 2), les monémes Vi'7 = tr W7 et les cochaines
W'=Y, 50 WZ et V=3 ,50aV]? (remarquer que Vi'}! = tr W} est symétrique) et
posons T =T+ 0V. Le cocycle T” est a coefficients constants, invariant et sans colonne

( (1) ) (vu [5, IV.2.2], le monome minimum de 9V est (0V)112). Afin de prouver que

T’ conserve toutes les propriétés de T et en acquiert de nouvelles, nous étudions les
monomes de V.
Etant donné que W = W' + W', le lemme 1V.3.1 de [5] donne

Si l'on utilise alors (4), on trouve, mutatis mutandis,

(OW{)(01; X5 X)) = X& Wl(l' Xt) — X{, W (0; X§)
—Z é
+ch

=0

o (XoDx,) Wi (04 1; X{T)

Xfof (X1Dx, ) WO +1; X5,

Pour s =t =1 et pour s # 1 et t # 1, cette expression est nulle. Si s =1 et t # 1,
elle vaut &' Xo1 X?, (ot nous avons noté £’ le coefficient ¢;) et est donc de degré ( i 1 )
(t > 2). Enfin, si s # 1 et t = 1, on obtient —k'X§, X190, qui est de degré ( i 'i )

(s >2). Ainsi

boe 4 Tl cT>20 0 —tr UF
1be s t 1 7
(av)lst: b ¢ 1
s t S 1 7 T 2 2 —tI'U +I€X00X12X21

10



IN

((H()() -Z)

Ceci établit la proposition 2.1, car (V)i 1! =0 (t > 2) vu que

OVt = —(9lelt , avec V1! = tr W} € El,

t,inv

® Agny(9L(m, R), R).

3 Annulation du coefficient £
En II, nous avons prouvé que

B=T'!+ Z aBi i, = k(X1 Xo1 Xo2 — Xo1 Xo0 X12) + Z ok Xog X10 X57)
v>2 v>2

a b c

r s

t

est cocycle aux ordres ( 1

). Dans cette section, nous montrerons que k£ = 0.

P
cients constants et invariant et soit V = Vpaf + pro‘ la cochaine obtenue par antisymé-
trisation de Vpo‘f.

Le monome minimum de OV est,

Lemme 3.1 Soit Vpo‘f (( (2) > < ( “ ) < ( f ) D Zi) un monome a coeffi-

(i)sip=1leto>2
. . a O 2 1
(11)etsz(pa>(12),
(V)11 = X1 (XoDx,)V75 (2 1; Xo X7) — Xoz (XoDx,) Vi (125 X1 X3).
. . 2 1
(12)etsz(j§>7é(12);

a 2 o .
(av)glafll = _; X02 (XODXQ)‘/l aﬁ(l 2, Xl XQ)

(i) sip > 2,

a 2 N .
(aV)gpjllf = _; Xo1 (XoDxl)V (1 2; X7 X9).

Examinons les contributions de type I au bord. Si l'on crée ( (1) ), on obtient la

contribution nulle. Pour ( (2) >, le degré minimum est

0 a+1 g+1
2 p o ’

11



0 0

N R ) ,...enfin, conduit a un degré dont la premiere

La création d’une des colonnes (

colonne est supérieure a < (2) )

En IT a et II b, la colonne (1) ne peut étre créée. Pour i , L =1c¢etla
correction est ) On obtient donc les degrés ( Lo f >, < L 6 a ), < g1 a )
1 p o 1 o p o 1 p

(a 18 ), mais, vu [5, IV.2.2], les monomes correspondants de 0V sont nuls.

Prenons (

engendrés sont

(en II a seulement) : ¢ = 1, la correction vaut ( Jj ) et les degrés

0 a+1 0 g a+1 6 0 a+1
2 p—1 o)\ 2 0 p—1)"\o 2 p—-1

(a condition que p > 2) et

0 B+1 « 0 o B+1 a 0 g+1
2 0-1p)°\2 po-1)"\p 2 -1

(a condition que o > 2). Finalement, si ’on crée (en II a ou II b) une colonne supérieure

< ), la premiere colonne du degré est a son tour supérieure a )

D’oti le lemme (on notera que 1’écart entre ( (f ) et ( f > vaut 1 i.e. que ( (f ) et

( g ) sont deux colonnes consécutives (nous supposons que les colonnes sont rangées

par ordre croissant) si et seulement si ( (f g ) = ( ? ; )) ]

Proposition 3.2 Tout 3-cocycle de E° (E° = £, m

cocycle T a coefficients constants, invariant, sans colonne

) est cohomologue a un

), dont les monomes a

N 1V
o - O w

une ou plusieurs colonnes < 1 > sont nuls, sauf les T} } (t ), qui valent

T i} =K XXXy (K €R)
et dont le monome T9?% est nul.

Soit un 3-cocycle arbitraire de £° et soit T le cocycle cohomologue fourni par 2.1.
Tout d’abord, corrigeons T' de sorte que Ty 2 = 0. Vu Iantisymétrie de ce monome
en ses deux derniers arguments, on a

77 = A(XG X2 X2 — X3 X1t Xo1) (A€R)

[5, Lemme IV.4.2]. Or, 3.1 permet d’affirmer que le monéme minimum du bord de
V = V2 + V2 ou V2 = aX1 X9 Xoy + BX12X3,, avec «, 3 € IR, est donné par

(8‘/)%%% = 0‘<Xgl Xig Xog — ng Xn X21)-

12



En prenant « = A et en posant 7" = T — 9V, on définit donc un nouveau 3-cocycle
(nous le noterons T dans la suite) ayant les propriétés de 1’ancien, mais vérifiant de plus

022 _

L’information “k = 0”7 peut alors étre extraite de I’équation

(07)i115=0.

Monoémes contribuant :

1

Ila

1Ib

(5) (i)

(3) e (3) (6
(1) (;
(1)

(3) e (3)

(3
(2

— — N
w o w o
~

DN

w o
~~_
/N
=W

— N

w o
~
Y
W =

2 2
1 1

2 2
1 1)‘0

Ecriture de (7) (nous posons 7" =T293 et T" = T?23) :

— N
w O
N——

= N
w O
N————

[N} — N
=N — N
N————

~
I
o

—6k X 30 X351 X52(Xo2 X10 Xo1 — Xo1 Xi2 Xog) (€1)

—% X01(0D1>2T/(2 3 1, XQ Xg) Xl)
+1 X2(0D2)*T' (13 2; Xy X5 Xo)

—% X12<1D2)2T/(0 3 2, XO X:? XQ)

+X10<0D1)(X0DX1>T/(2 3 17 XQ X?? X1>

13
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(¢4)
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wW =
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= N

=N



+X51(1D9)(X1Dx,)T7(0 3 2; X X3 Xo) (£7)
+Xao(0D3)(XoDx, ) T"(123; X, X5 X3)  (48) (9)
—X31<1D3)(X1DX3)TH(O 2 3, X() X2 Xg) <£9)

Or,
T'(132; X; X5 Xy)
= AX11 X0 X5, + BX 11 X00 X31 X3, + CX19X01 X351 X5, + DX 19 X090 X2, X3
(A, B,C,D € R) et, vu 'antisymétrie de 7" en ses deux premiers arguments,
T”(O 2 3, XO X2 Xg) = E(XOO X20 X§2 X33 — X02 XQQ X??O X33)
+F (Xoo Xo3 X30 X35 — Xoz Xoo X3 X30)
+G(Xo2 Xoz X350 X32 — Xog Xoo X0 X35) (10)
(E,F,G € R). Notons également que 2 (¢5,¢10) [¢4 (¢7,£8)] est I'opposé de £3 (£6,(9)
(€3 (£6,09)], ou l'on a échangé 1 et 2 [0 et 1]. Ceci entraine que le coefficient dans
02 (£5,010) [¢4 (¢7,£8)] d’'un monome (au sens ordinaire du terme) M (0, 1,2,3) en les
évaluations, est l'opposé du coefficient dans (3 (¢6,¢9)[¢3 (¢6,¢9)] de M(0,2,1,3)
[M(1,0,2,3)]. Pour déterminer le coefficient d’'un monéme M donné dans une ligne

(2 — (10 donnée, il est de plus intéressant de remarquer que seulement certains des
termes t'1 — t'4 de T" et t”"1 — "6 de T” peuvent contribuer a M.

Coefficient de X01X12X20X30X31X32 dans (9) .

/1 . 6k
2 . opposé du coefficient de X9 X10X21 X30X31 X392 dans £3; '3 : —2C
/4 : comme en £2: —2C
6 t'3:-=-2C
8 : opposé du coeflicient de X0 X19X21 X30X351X32 dans ¢9; t5 : 2G
9 t'6:2G
¢10 : comme en /8 : 2G
D'ou [5, IV.4.2 (i)] :

E-C+G=0. (11)
Coeflicient de X01X12X21X§0X32 dans (9) .
£2  : opposé du coefficient de Xoo X1 X091 X2, X3 dans £3 : —C
¢4 : opposé du coefficient de XogX19Xo0 X5 X32 dans €3 : —D
07 : opposé du coefficient de XooX19Xo0X5 X3 dans €6 : +D
(8 : opposé du coefficient de XpgX9Xo0 X5 X3o dans €9 : /

010 : opposé du coefficient de XooX19Xo1 X2 X3, dans (9 : G

14



Finalement, on a donc

—-C+G=0. (12)
Vu (11) et (12), k = 0. n

4 Etude des monémes & une ou plusieurs colonnes (3)

Lemme 4.1 Soz’tundegré(g i i) ((g)<(z>s<§>,zs=zi>.

(i) Sis =1 etc > 1, le monéme minimum du bord de la cochaine V = V£ + VY,
f’{f;ll : monéme invariant & coefficients constants) a le degré considéré et

(i1) sz'(g 11) §>:<g ? ?),z’lestdonnépar
(OV)311 = Xoi (XoDx,)V75 (2 1; Xo X7) = Xoo (XoDx,) Vi (12 Xy X3),
(i2) sinon, il vaut
2

(OV)33¢ = ) Xoz (XoDx,) VP51 27 Xy X5,

S

(i) Si l’écart entre < b > et ( ¢ ) est au moins égal ¢ 2 et sib> 1,V = VI +
s t

1@0513:11 sb;llf : mondme invariant & coefficients constants) est une cochaine ayant sa

plus petite contribution a ’ordre considéré et on a

2
(OV)5os = S r1 Xor (XoDx V2 (12, X3P XT).

Simple transcription de 3.1. |
Lemme 4.2 Soit t € {3,4,...}. Posons pouri € {1,...,t—1},
VI = (DM AXLXGTT (6 € R),
PULS
V=Y (VA Ve ).
i=1

Alors le monome minimum du bord de la cochaine V; est de degré < (2) it} i ) et il

est donné par
(OVi)oitit = (=1)11203, X1 Xoo X15 ' X3y

Notons d’abord que 3.1 montre que le plus petit monome du bord de la cochaine
V=V Ve B e {1, t—1}) est

(V)21 oie tesp. (Via)yh ((€{2,. .t 1)),

15



Il s’ensuit évidemment que le mondéme minimum de 9V, est de degré supérieur ou égal

A 0 2t-1 2
2 1 2t—2 )°
0Ot+1t

L’objectif étant d’établir que ce mondéme minimum est (0V;)5 17| i, déterminons toutes
les contributions des V;; qui sont d’ordre

ObcEOZt—12 0 t+1 ¢
2 st 2 1 2t=-2 )7\ 2 t—-1 1t )|

Les contributions des V,; ont été trouvées dans la preuve du lemme 3.1. Les seules
(engendrées par V. ;) dont le degré appartient a 'intervalle considéré, sont celles d’ordre

0 2—i+1 .
(2 o 2t_@,>(ze{2,...,t—1})

0 2—i i+l 4
(2 Z. 2t_z._1>(z€{1,...,t—1}),

obtenues par création de ( 0

5 ) en II a . Ainsi, les contributions cherchées sont toutes

d’un des degrés
0 2t—1 1+ 1 .
<2 ; 2t—i—1> (ie{l,...,t —1}).
On remarquera qu’il existe deux contributions a chacun de ces ordres, sauf pour i = t—1.
Ces contributions se compensent toujours. En effet,
(OVi)a "5y
2 —i—1i i —i—
= i1 Xon (XODX1)VZ‘2$1 12211171(1 2; X1+1 X22t 1)
2 —ii i —i
—57— Koo (Xo D)V 5 i(125 X X5)
= (—1)"™20, X1 X2 X1, X5 + (—1)"226, X 01 Xoa X, X5,

ol le premier terme est a omettre, si ¢ =t — 1. Cela signifie évidemment que le plus
petit monome de 9V est

(V)91 = (—1)"128, X1 Xoo X {5 ' X3,
-

Remarque 4.3 On ne peut pas prolonger la cochaine V,, chaine des cochaines

élémentaires V1, ..., V1, par un maillon supplémentaire, de maniere que ce prolonge-
0 t+1 ¢ . 1 1ol 2
9 t-1 i > Cette impossibilité
et celle de construire un prolongement-cocycle qui en découle, sont dues a ’absence d'un
0 t+1 ¢
2 t—1 ¢t

ment vérifie I’équation de cocycle également a ’ordre (

monome dont 'antisymétrisé ait sa plus petite contribution a I'ordre (

16



Proposition 4.4 Tout 3-cocycle de E° (E° = &Y, m > 3) est cohomologue a un

cocycle T a coefficients constants, invariant et sans colonnes < (1) >, < 1 > et ( g ),

sauf que ses monomes T} (t > 2) ne sont pas nécessairement nuls, mais ont la forme
Ti{} =K XXX} (K €R).

Considérons un 3-cocycle quelconque de £Y et notons T le cocycle cohomologue dont
I'existence est assurée par la proposition 3.2. Il suffit de prouver que T est (a des

corrections par des bords (qui conservent les propriétés déja acquises) pres) sans colonne
0
2

Il est clair que
T =0 (t=1)

(car ces monomes sont symétriques et antisymétriques en leurs deux premiers argu-
ments).
Le reste de la démonstration est une récurrence sur le degré. De maniere plus précise,

nous prouverons qu’un quelconque des T3¢ (( g ) < ( b ) < ( i ) s s = ZZ) est nul

S
(modulo des bords de cochaines invariantes et a coefficients constants, ayant leur plus
petite contribution a l'ordre étudié), si les monomes inférieurs de méme type le sont.

(1)

Alors TRt =TI22 qui est bien nul, vu 3.2.

@

Les hypotheéses sur le mondéme étudié T20¢ signifient que T2b¢ = T9b¢ avec b >
yp 25t q 25t 21t

2, c>2,t>2et >y, =3, (et impliquent que ( 117 ) < (g))

Equation :
(0735151 = 0. (13)

Monoémes contribuant :

() ()

mo (0 2 () (e (e
(4) (i) ()
(1) (133)=

e (1) (22)-



Ecriture explicite de (13) :
—Xoz (XoDx,) T3y (12 3; XF X5 X571

—2 Xog (XoDx,)T9P¢(123; X2 Xp X1)
(14)
+ X120 (XiDx,)T95 ' 5102 3; X2 X3 X571)

+2 X3 (X1 Dx,)T975(0 2 3; X§ Xy X5) =0.
Corrigeons T, avant d’exploiter (14), par les bords des cochaines (a coefficients cons-

0 b C). Vu 4.1, le

tants et invariantes) ayant leur plus petite contribution a l'ordre ( 9 1 1

monodme minimum du bord de la cochalne
. bc—1 c—1b
Vi=Win +Viy,
ou
be—1 b—1 yt—bt2 b yt—btl
Vi = aXuXg Xo + BX12X5, X5, (a, B € R),

est donné par

(OVA)3%¢
2 )
= ———(b—1)aXgXoo X1 Xo 2 X502 — = (t — b+ 2)a XX X5 XL
t+1 t+1
2 2
1 bBX 01 X X 1o X1 X0+ — m(t — b+ 1)BXE X1 X5 X5 (15)

C 1y b c . . .0 b ¢ 0 3 2
Deplus,sﬂecartentre(1)et<t>vautaum01n821.e.81<2 1 t)7é<2 1 2),
la cochaine

b—1 b—1
Vo=V i+ Vs,
avec

Vy ol = g XTGP0, X X X2 X 5, T o e X X XS, (1,0, € TR)

(ou le premier terme est a omettre, si b = 2), a sa plus petite contribution au degré
examiné et on a

(9V2)31¢
= =2y X5 X0 Xp X" - X X1 Xp P X5y
—6X01X02X11X§f2Xégb+2 - 2€X01X02X12X§;1X§5b+1. (16)

ey i)-(573)

Dans ce cas, les monomes de T' dans (14) sont les mémes (a une permutation pres)
et la cochaine V; = V2 + VJ!? est la seule qui convient. Etant donné que

T20i322 = AXngllXQQQ + BX31X12X21X22 + CX01X02X11X21X22
+DX01X02X12X221 + EX32X11X221 (A, B, C, D, E e ]R,)
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4 2
(OV1)93 5 = —3 aXo1 X0aX11 X1 Xag — 26X01 X2 X12 X5, — 3 aX5 X1 X3,

nous prenons o = —% Cetp= —% D et nous posons
T' =T — 0V,
de maniére a définir un cocycle cohomologue (que nous rebaptisons T') tel que
T373(123; X{ X, X3)
= AX} X0 X3 + BX7,X03 X350 Xs3 + CX13 X0 X5 (A, B,C € R).
Réécrivons a présent (14) sous la forme
Xoo (XoDx;)T375 (13 25 X§ X3 X3) — Xog (XoDx,) 1575 (12 3 X7 Xy X3)
—Xi2 (X1Dx,) 37303 25 X3 X3 X3) + Xi3 (X1 Dx,) 137702 35 X5 Xz X5) =0

et observons que le ler (3eme, 4éme) terme est - éventuellement au signe pres - le 2eme
terme, ou l'on a échangé 2 et 3 (0 et 1 ainsi que 2 et 3, 0 et 1).

Coefficient de X2, X% Xo9 X33 : 44
Coefficient de X2, X% X03X30 : 2B
Coefficient de X02X03X122X23X33 :2C

Vu [5, IV.4.2], il s’ensuit que A =B =C =0.

2|51 5)#(8 7 3)

Ici V) et Vi conviennent. La comparaison de (15), (16) et de 1'égalité

T9: = AXGXuX5PXe" + BXG X1o Xo 2 X5 0
+C X1 Xoa X 11 X572 X2 1 DXy Xoo X 1o XoT X5, 0
+EXL X X5 XS 4 PX2, X1, X8 X155 (A,B,C,D,E,F € R)

(ou le premier et le dernier termes sont a négliger, si b = 2 resp. ¢ = 2), nous conduit a
poser
T'=T+0Vi + 0V,

et a écrire le systeme

2y = A (& condition que b > 3)
) = B
Zb-1a+ds = C
25 b3+ 2e = D

2Z{t-b+2)a = E

2 (t—b+1)3 = F (i condition que ¢ > 3).
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On constate qu'il est possible d’annuler les termes de coefficient A (s'il existe), B, C, F’
(sl existe) et D :

TOPe(123; X2 Xy XE) = AXE X0 XITIXIEMT (A€ R).
Afin d’expliciter (14), nous posons
IOV tetl(123; X2 X2 X471 = XAETW 4 X, X13T® + XAT®),

ol le premier terme manque, si b = 2, ou T® (i € {1,2,3}) est indépendant de X, (et
de n') et ol

O — 7O e XX
= BXLXEAXIEM? 4 CXop Xos X2 X + DX X5 XEY (B,C,D € R),

le premier et le dernier termes disparaissant, si b = 2 resp. ¢ = 2. Finalement, (14)
devient

—X02(X% (XoDx,)TW 4+ X15X13 (XoDx,)T® + X2 (XoDx,)T®)
=26 1) A Xy X, X X2 X85

+X12(X3, (X1 Dx,)TY + X2 X (X1 Dx,)T® + X3y (X1 D, ) TW)

+?(b — DAXZ X 15X 13 X0 X5 2X T = 0.

Coefficient de Xgp X3 X% Xop X by 2 X 50T —C — %(b - 1H)A=0
Coefficient de X2, X2, X3 X252 X0 . ¢ =0

®

Il s’agit donc de prouver que T9?2¢, avec ( g ) < < b > < ( ; ), .=, et s>2

S

(ce qui entraine que b+ s < c+tets+t+2=>b+c, donc que ¢ > 3), est nul.

Equation :
(0T)35:51¢ = 0. (17)

Monoémes contribuant :

0 0 b c—1
o () (5l )=

Ila (
0 b 0 c c—1 0 b+1 0
2 s 2 t t+1 2 s—1 -
b+1 0 0 =0
s—1 .2 2 -
b+ 1 00\

o (5]) (-5 3)=0



Ecriture explicite de (17) :
Xoz (XoDx,) T30 £(12 37 XP X5 X;3) = Xuo (XaDx,) T3/ £(0 2 3; X5 X5 X5).  (18)
Cette égalité implique que (XoDx,)T9 (2 3; X2 X5 X1) est divisible par X5, donc

que
TP(23; X7 X5 X5) = X101 6(2 3 Xy X5 X35). (19)

En substituant dans (18), on obtient
XooX12 (XoDx, )T 6(23; X1 X5 XE) = XooX12 (X1 Dx, )T 6(2 3; X X5 X5,
de sorte que
TR 3 X0 X5 XD) = (XD ) T E(2 3 X3
Finalement,
T900(23; X7 X5 Xp) = X (Xa D, )0 (235 X570 X) (20)
et I’équation (18) est vidée.

Le lemme 4.1 motive la discussion suivante :

(3.1)

Alors TPl e =T905 =0, vu (19).

(3.2) |b > 1 et I'écart entre ( z > et ( ; ) est nul

Dans ce cas, on a T9°¢ = Ty 41 (¢ > 2) et, le monome étant divisible par X, il

est de la forme

t—1 t
0441 t4+1 _ 12 i vt yt—ie] it i vt iy
Ly = X122AiX22X23 X3 ™ X33 +X12X13ZBiX22X23 X3o ' X33
=0 i=0

Or, cette expression est nulle, en vertu de son antisymétrie en ses deux derniers argu-
ments.

(3.3) |b > 1 et I'écart entre ( i) > et ( ¢ > vaut un

Ici le monome & annuler est 790 = T3/} (t > 3).

Equation :
(0T3¢5 5 = 0. (21)
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Monodémes contribuant :

0 0 ¢t ¢
() ()

0 (=1 -1 t 0 t+1 t 0 t+1
Ha'<2> k=0 <+1> / <t t—1) (t2t—1>

0 t 0 t+1 t 0 t+1

2 t 2 t-1 t 2 t-1

t+1 L0 0 _

t—1 22 )7

o t+1

I (tl)

Ecriture explicite de (21) :
KXoz (XoDx,) T3 71/ (132 XPXE'XE) — Xog (XoDx,) T35/ (12 3; X7X57'X5)

N O

()

N
o O
N O
~~_
I

— X120 (X1Dx,)) T34 03 2; XEX5'XE) 4+ X3 (X1 Dx, )19/ /(02 3; XgX57'XE) =0.

Comme (19) entraine que
T (123 X7 X5t XY)
= XIQQT( ):711:(23 Xt 1 Xt)—l—XnglgT( )t 1t (23 Xt 1 Xt)

t—1 t—1
_ 2 i t—i—1 yt—i—1 yi+1 g t—i—1 yt—i i
- XlZZAiX22X23 X32 X33 +X12X13ZB1X22X23 X32 X337
=0 i=0

la relation (21) devient finalement (avec des notations simplifiées, évidentes)

Xoz (XoDx, ) (XETW (3 2) + X1, X157 (3 2))
—Xos (XoDx,)(XZTW(2 3) + X1, X157 (2 3))
—X15 (X1Dx,)(XZTW (3 2) + X2 X037 (3 2))
+X13 (X1Dx, ) (X2TW (2 3) + X2 X0 T (2 3)) = 0.

Les termes
t—1

XXty D, T(32) = XX 3 Aili + 1) X5, X055 X551 XG,
=0

ne pouvant étre compensés que par des termes de
XEXE D TV(28) = X5XE Y A+ XXX,
=0
on a T) = 0. Prenons maintenant les termes
X X12X13Dx, TP (3 2) = X3 X12X13 tzi B iXi X5 XL X
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et remarquons qu’ils ne sont pas compensables :
7320012 X§ X{71X5) = BoXor Xoo X15 ' X5,

(on vérifie aisément que cette expression est solution de I’équation (21)). Or, si on pose
T =T — 0V, ou V; est la cochaine - chalne de cochaines élémentaires - définie en 4.2
et si on choisit § = (—1)""'22, on a affaire & un cocycle cohomologue (notons-le de
nouveau 71') tel que

(3.4) |b > 1 et I'écart entre ( z > et ( ; > vaut au moins deux

Le lemme 4.1 stipule que le monome minimum du bord de la cochaine V' = Vb+11tc +

Vel est donné par

S

V523 XE X3 XE) = X (D) - V@3 X5 )] 22)

La comparaison de (20) et (22) permet alors de voir que
TQOS 2 07
quitte a corriger par un bord. |

Remarques 4.5 (i) Observons que pour annuler 75172 (¢ > 3), on ajoute notam-
ment 9V;, avec V; = VIt + V}H et VI, = aX11X21X22 + BX12 X5 1a valeur
de [ étant arbitraire. Cette “anomalie” est due au fait que les cochaines V;; et V.,
obtenues par antisymétrisation de Vit' L, = BXp X5 resp. Vi2 = e X% XY, ont des

plus petites contributions du méme type :
(Vi) 7 = —28X01 X2 X12 X5 et (OVi2)s 77 = —2e X1 X2 X12X3,.

(ii) Voici le résumé - utile plus tard - des corrections par des bords effectuées lors de
0pv 0 " v _
I'étude des monomes T5 ), (( 9 ) < ( p ) < ( o ), ZS_Zl).

(1) Annulation de 7932 : soustraction de OV, V = V2 + VI 2 V2 = a Xy Xo X+
BX12X2,, 3 quelconque.

(2) Annulation de T9{7 : soustraction de 9Vy, Vi = V3! + VI3 Vi3 = a X1 X3,
Xog + 8X12 X5

1 o
tion de dV; et OVh, V; = Vf;f + V”+111“,3V2 =Vt vy “2 ' W;gf @X%X;
L BX 1 X5 X5y %, Vi, = X X XS, + 5X11X12X51 X5+ eXH X0 X5,
(premier terme & omettre, si u = 2), B arbitraire si v = 2.

(3) Annulation de T3/ (,u,ya>22 Zz,<0 K V)%(g f ;)) : addi-
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. 0 pv 0 14 ,
(4) Annulation de Ty )'; (( 5 ) < ( /; ) < ( . >, o= pu>1, p> 2, bcart
entre ( ’; ) et ( Z ) supérieur ou égal a 2) : soustraction de 9V, V = Vp’ﬁr_llgu + V) L
—1lv —1lv
Viis = =5 T

(5) Annulation de T3 7%} (0 > 3) : soustraction de V,, V, = S (V2" .+

20-10

) i oo i oo
Véa—iia l)a Vig l%a—i = (_1)Z+150Xi2X2f "

5 Annulation du coefficient £’

Proposition 5.1 Tout T € A*(E% N)pe Nkerd (EY = &Y, N = C®(Q), m >
3) est cohomologue a un cocycle a coefficients constants, invariant et sans colonnes

( (1J ),( 1 ) et < g > De plus, le monome de degré( ? f ;) > de ce cycle cohomologue

est nul.

Renommons T' le cocycle obtenu en 4.4. 11 suffit alors de démontrer que &' = 0 et

que T2} = 0.

Equation :
(0T)3112=0. (23)

Monoémes contribuant :

Cy ()
mas (3) 4 2h (4

Ecriture explicite de (23) :

2k’ X1 X3 X11 X3 X5 — 2K X9 X 03X 13 X200 X5
+Xo1 (XoDx,)T?13(213; Xy X2 X2)
—Xoz2 (XoDx,)TE52(123; X, X5 X3)
2
—3 Xog (XoDx)T7£5(123; X1 Xz X3) =0 (24)

(noter que la 2eme ligne est - au signe pres - la 3éme ou l'on a échangé 1 et 2).
Posons
TPy3(123; Xy X3 X3) = X3V + X1 XooV? + X1 Xog VP + Xpp XV + X3,V°
et (cf. (10))

T221(123; X1 Xy X3) = X2, XaoW + X2, X3 W2 + X1 X2 W3 + X2, X33 W
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Les termes de (24) en X2, et ceux en X2 n’étant pas compensables, V? = V4 = W? =
W* =0, de sorte que

TPy3 = v X1 X3 X5 + 05 X13X5 X Xg3
+UfX11X21X23X32X33 + U§X12X21X23X31X33 + U§X13X21X23X31X32
+07 X1 X35 X531 X0 + 05 X 19 X5, X5,

et
T121231 = F(X11X23X31X§2 - X13X22X§1X32) + G(X12X23X321X32 - X13X21X31X§2)-

Déterminons les coefficients des monomes M (0, 1,2, 3) suivants (entre parentheses, nous
indiquons les monoémes M (0,2, 1,3)) :

Coefficient de X1 Xo3X12X21 X32 X33 (X2 X03X12 X1 X351 X33) :
vy = 0.
Coefficient de X1 Xo3X12X20X31 X33 (Xo2X03X11 X021 X350 X33) :
v? = 0.
Coeflicient de X1 X2 X13X21 X350 X33 (X1 X02X12X23X31 X33) :
—2vy = 0.
Coefficient de X1 Xo3X11 X23X 3% (X02X03X13X22X3,) :

2y—§F:0 (25)

Coefficient de Xo1 Xo3X12X23X31 X532 (X02X03X13X21 X351 X30) :

4
v3— - G=0. (26)
3
Coefficient de X01X03X13X21X§2 (X02X03X12X23X§1) :
2
2®+§G:0 (27)
Coefficient de Xo1 Xo3X13X20X31 X352 (X2 Xo03X11X23X31X30) :
5 4
20} + 5 F=0. (28)

L’équation (24) ne contient pas d’information supplémentaire. Elle fournit donc les
égalités
T53(123 Xi X5 X3)
= 01 X12X5 X35 4 v X13X21 X3 X531 X3
+’U?X11X223X31X32 + USX12X223X§1 (29)
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et

T121231(0 13; Xo Xy X??)
= F(XooX13X30X5 — Xo3X11 X5 X31)
+G(X01X13X§0X31 - X03X10X30X§1)

et les relations (25), (26), (27) et (28).

Equation
(0T)i122=0.

Monomes contribuant :

e . (2 (=1 +1 31 1 2 2
@1 k=2<b 0 12 2 2 1
p p 1 2 2
1 2 1 2 2 1
1 (=1 0 12 2
2 k=1<b +1 31 1
(=2 1 02 2\ _,
E=1<b 0 21 1)~

(2 t=1 +1 311 2 2 1
Hb'<1> k=1<b (0)(122) (212
(=2 0 12 1

k=0 -1 / 11 2

2 2 2 1 2 2 1

1 2 1 2 2 1 2

12 1 12 1

11 2 11 2

() v (&) (57

Ecriture explicite de (31) :

— DN
N————

—% Xo1 (0D1)2T212113(2 31 X22 X?? Xi) ()
+% Xog (0D2)?T755(132; Xy X5 X3) (£2)

—3 Xos (0D3)°T733(123; Xy X3 X3) (¢3)
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—% X12 (1D2)2T122122(0 32; Xo X§ ng) (¢4)
+5 Xis (1D3)°T755(02 3; Xo X3 X3) (45)
—3§ Xog (2D3)(XaDx, ) TT75(0 1 3; Xo X X3)  (46)
+X10 (0D1)(XoDx,)T57(231; X3 X3 X1)  (47)
—Xa20 (0D2)(XoDx,)TT55 (132 X1 X3 X3)  (£8)
+Xz0 (0D3)(XoDx,)TT55(123; X X3 X3)  (£9)
—k'X02X13X220X321 (¢10)
+]€/X03X12X221X§0 (¢11)
X1 (1D5) (X, D, ) T2I2(03 2 Xo X2 X2)  (£12)
—Xa1 (1D3)(X1Dx,)T253(02 3; Xo X3 X3)  (¢13)

K X3 X1 X2, X2, (£14)

(32)
+1 X3 (XoDx,)*TE24(013; Xo X1 X3) =0 (£16)
on a - avec des notations évidentes - £2 = (¢2)(0 1 2 3) = —(¢3)(0 1 3 2), ¢4 =
103

(
(63)(1 032), 65 =—(£3)(1 023), €8 =—(£9)(0132), (12 = (£9)(1 0 3 2), (13
—(£9)(1 02 3)).

(%) Coefficient de XX 13X00X20 X%, :
—20] =0 (33)

(65 (£13) : coefficient de —Xo3X711 X071 X090 X2, dans £3 (£9); /48 : coefficient de — X9 X2
X221X30X33 dans 69)

(%) Coefficient de X X13X5, X2, :
K =0 (34)
(€2 (05,18, 013) : coefficient de —Xo3X12 X2, X2, dans £3 (£3, (9, (9)).
Vu (25) et (28), k' = 0 entraine F = 0 et v? = 0.
(%) Coefficient de Xo3X12 X5, X5 :

—2v5 =0 (35)
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(04 : coefficient de Xo3X19X%, X2, dans £3; (8 (¢13) : coefficient de — Xy X13X3 X2,
dans (9 (£9)).

Il découle alors de (27) (et (26)) que G = 0 (et v3 = 0). Finalement, on a donc bien
=0 et Ti2i=0 (et T}yZ=0).

6 Etude des monomes restants

Ci-dessous, nous établirons la proposition 1.2 (comme annoncé, les parties de la
preuve exigeant un raffinement en dimension m = 3, seront marquées d’un astérisque et
remplacées a la section VII).

Soit T € A3(E%, N)je Nkerd (E° = £3, N = C~(Q), m > 3). Vu 5.1, on peut

supposer que 1" soit a coefficients constants, invariant, sans colonnes ( (1) ),( 1 ) et

5 ) et que T22) = 0. Nous démontrerons que 7' = 0 en prouvant que tout monome

Tobe <( (2) ) < ( i ) < < b > < ( ;: >, > Zi> est nul, si ceux du méme type qui le

S
précedent, le sont. Il est clair que 'hypothese de récurrence implique que tout monome
inférieur au monome étudié est nul. On notera également que nous ne retrancherons
plus de bord dans la suite.

6.1 Etude de l'organigramme des cas a considérer

Pour commencer, considérons le monome de référence

e ((1)=<(2)=<(7) =.-%)

- ce qui signifie que les monomes qui le précedent sont supposés étre nuls - et
déterminons les écritures explicites de deux équations - obtenues, I'une par création

de ( g ), I’autre par création de ( ? > - utiles ci-dessous.

Lemme 6.1 Soit le monome de référence

i ((7)=(2)=(1) S-xoeze)

(0T)312¢ =0

Lidentité
s’éerit alors
Xoi (XoDx,)Ty 2051 (123; X7 X5 X571

2
+s—{—71 Xoo (XODX2)T125b-‘:11th_11(1 23 X1 X5 X5

2
+¥ Xos (XoDx,)T226(123; X, X5 XL) =0,
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ot la 2eme ligne est a négliger, si b= 0.

De fait, les monomes contribuant au degré considéré, sont :

I 2/

e . (O =1 -1 1 b c+l b—1 2 c+1\" (e 2 b
‘ 2 k=0 +1 2 s t—1 s+1 1 t-1 t 1 s

b« /

(+) : monome a omettre, si b = 0.

Lemme 6.2 5%

i ((1)=(2)<() mog )

est le monome de référence, l’équation
22b-1
(0T)17 st =0
admet l’écriture détaillée
1 —1cC S 1 Cc S
—5 Xon (0Dy)*T307}e(123; X1 X5 XE) — 5 Xo2 (0Do)*T20e(123; X; X5 X%)

1 — s
+5 X1 (1D2)?T2b (02 3; Xo X5 X4) 4+ X0 (0D1)(XoDx,)TE71¢(123; X1 X5 XY)

+ X290 (0D2)(XoDx,)T20(123; X1 X5 XL) — Xo1 (1D5)(X1Dx,) T2 £(023; Xo X5 XL) =0,

le 2eme et le 3eme termes étant a supprimer, si b= 1.

11 suffit encore de chercher les mondmes contribuant :

I

(Sib:louc:o,onpeutcréer(2) (s > 3) resp. (O

; > (t > 3). Les monomes

11
deux degrés supérieurs au moins, ils sont nuls)

+)
_ 2 =1 +1 3 b—1 ¢ b 2 ¢
H“'(l) k=2<b (0) (1 5 t) <s1t> 0
2 b 2 ¢ ) 0
1 s 1 t
<b—1) 0
S
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2 (=1 1Y (3 b-1¢) (b2
me (1) e (0) () (010) o
(=2 0
k=0 (-1) / o0
2 (=1 +1 b 2 ¢ 0
1 k=1<b |\ 0 s 1t
(=2 0
k=0 (—1) ! ’

<b—1> 0
s
(+) : monomes a omettre, si b = 1. |

Preuve 6.3 Considérons un monome arbitraire

e ((9)<()<(2)<(¢) =.=%)

et montrons qu’il est nul sous ’hypothese de récurrence.

0

Equation :
(0T 1 sf = 0. (36)

Monomes contribuant :

I :/

(Silon crée 0 ), les mondmes cherchés s’obtiennent & partir de ( ¢ Loboe

2 -1 s t
soustraction de 1 de deux degrés supérieurs : ils sont donc tous nuls. Si b = 0 ou

¢ = 0, la création de ( S ) (s > 3) resp. ( g ) (t > 3) conduit a des mondmes de

par

lere colonne (2) ), qui sont évidemment nuls)

0 /=1 -1 a b ¢
Ha <2> k=0 (—l—l) (7’ s t) 0 0

(Les monomes associés a ( ifi ) ou < 2 ) renferment ( (2) ))

I : /
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Ecriture explicite de (36) :
2

—= Xo1 (XoDx,)T2e(123; XT X5 X5 =0.
-
En faisant Xy = X, on trouve
Tﬂsbtc = V.

(2)
2

Monodme de référence :

Iyl¢ ((T)§(2>S<§>>ZS=Z,&23>-

Equation :

Monoémes contribuant :

Ecriture explicite de (37) :
1
—5 Xot (0D))*Tere(123; X1 X5 X2)
+X10 (0D1)(XoDx,)TEE(123; X; X5 XE) =0. (38)
Faisons 7 = n! et Xy = X;. 1l vient alors
1
—ia(a — DX T (123 Xy Xy XH 4 aXTe0(123; X1 X5 X =0

ou encore

211)

Dans ce cas,

(3—a)Tylr(123; Xy X5 X3) = 0.

abc __
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(%) (2.1.2) |r=1,a=3
Il découle de (38) que T32¢(1 2 3; X, X5 X1) est divisible par X :
TP0f = Xu(X5T! + Xor X T? + X5, T°),

olt le terme en X3, (X2)) est & omettre, si s =1 (t = 1) et ot les T% (i € {1,2,3}) sont
indépendants de n' et de X;. Comme

(0D)T32¢ = Xio(...) + X11(2X 00 X1 T + X0 X351 T? + Xoy X30T? 4 2X 30 X5, T?),
la substitution dans (38) donne

—3 Xot [2X10(2X00Xo1 T + X0 X51T? + Xo1 X350T? + 2X350 X5, 7)
X 2XLT 4 2X 00 Xs0T? + 2X2T9)]
X0 [Xeo(XATY + Xot Xan T + X2,T9)
+ Xo1(2Xa0 Xt T + Xao X1 T? + Xy XsoT? + 2X50 X1 T%)] = 0.

(39)

Les termes en Xgo n’étant pas compensables, TH = T? = T3 = 0 et ainsi
Tlgftc =0.

(22)[r=1a=2

(221)[r=1,a=2, s >2|

Monome de référence :
T2be ((f)s(ﬁ)g(g’) Y =3 322).

(0T)31 15 =0. (40)

Equation :

Monomes contribuant :

I
e (3) 150 (3) (o) ()
I/
Ecriture explicite de (40) :
—Xo1 (XoDx )Tyl e(123; X2 X571 XY)
= i Xoz (XoDx,)T228(123; X, X5 X1E). (41)

Cette identité montre que Ty °T} ¢ est divisible par X5 et T2°¢ par Xy,

T215bj11tc = Xlﬂﬁ Zfltc = X{czQ et Tfsbtc = X21311 571 tc = Xnga (42)
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ou k et ¢ sont maximaux et égaux a 1 ou 2. Si on remplace dans (41), on obtient
~Xoi(k Xoo X3y ' Q+ X7, (XoDx,)Q)

2
= = Xoo(0 Xoy X57'T + X2, (XoDx,)T). (43)

Il s’ensuit que (XoDx,)Q est divisible par Xgs et (XoDx,)7 par Xo; :
(2 - ]C)Q = XlgR et (8 - 6)7 = Xglz/{. (44)

2211)[r=1a=2 5s>2 b=0]

Alors k =1, de sorte que Ty !, ¢ =10 ((44),(42)) et
lesotc =0
((41)).
(2212)[r=1a=25>2 b>1]

Les identités (44) montrent que k =2 et £ = 2.

(22121)[r=1,a=25>3 b>1]

Dans ce cas (44) et (42) impliquent que

2bc __

(22122)[r=1,a=2 5s=2b>1]

I1 découle de (43)
—2X01 X02X12Q = 2X01 Xo2 X1 T

et (42) que
Ty = AXP X Xgy ' Xy et 175 = —AX X5 Xy ' X (45)
L’équation (40) est ainsi vidée. Examinons a présent la relation
(0T)i15' 7 =0. (46)

Si b =1, elle contient la méme information que (40), de sorte qu’il s'impose de traiter
ce cas a part.

(221221)[r=1,a=2 s=2,b>2]

L’écriture explicite de (46) est fournie par le lemme 6.2. Compte tenu de (45), son
2eme et son Heme termes (12 et t5) s'écrivent

1 .
5 AXo2 X5 X55(2(0 — 1) X10X30X357 + (b= 1)(b — 2) X712 X5X55°) (47)
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resp.
—2AX01 X0 X1 X55( X190 X0+ (b — 1) X 15 Xao X52). (48)

Coefficient de XX 10 X3 X2, X 5,2 X5, (pour b > 3) :

1
SAb-1)(-2)

(t3 (t6) : coefficient de —Xo X120 X2, X2 X552 X5, dans 2 (t5)).

(+) (2212211)[r=1,a=2 s=2, b >3]

Alors,

1345 =0,
(2212212)|r=1,a=2 s=2, b=2

Vu (45), les monomes de (46) sont donnés par
TPy (123 Xy X3 X5) =T, 7f(213; X7 X X§) = —AX 15 X3 X5 X5,

et
TP3E(123; Xo X3 X5) = —AX1p X5 Xap X5 (49)

On vérifie facilement que I’équation (46) est alors triviale.

Etudions maintenant 722 ¢ (son degré étant bo et tel que >, = 3, on a nécessaire-
ment ¢ > 3) moyennant la relation

(0T)37371 = 0. (50)

En utilisant le lemme 6.1 et 1'égalité (49), on voit que le terme ¢3 de (50) est égal a
2
—g AX03X12X221(X02 X§3 —I— C X()g X32X§51).

Le second terme de cette expression n’étant pas compensable et ¢ valant au moins 2, il
s’ensuit que
22c¢c __

(221222)[r=1,a=2 5s=2b=1

Vu (45), le monome a annuler a la forme

T2 ¢ =T = —AX12X5 Xy (t>2).

Choisissons 'équation
(0T)312¢51 =0, (51)

dont I'écriture détaillée est encore obtenue & ’aide de 6.1. Comme ¢3 s’écrit ici
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et comme ce terme ne peut de nouveau étre compensé, on en déduit que

21c __

(222)[r=1,a=2 s=1

C’est le dernier cas a traiter.

Monodme de référence :

TiY¢ ((?)S(f)é(j),zszzijbzzc21,t23)_

Equations :
(0T)211it1 =0 (52)
et
(OT)IITE =0 (sib>3). (53)
Nous nous servirons d’abord de (52), qui est une fois de plus un cas particulier
du lemme 6.1. Décomposons les monomes Ty ¢! et TEL™'¢t! contribuant & 1'ordre
( (2) ? 11) ;i_i >, comme suit :
Tytitl = X1 XU + X1 X13U% + X5,UP + X190 X 13U + X3,U°
et

T2 4l = X2V 4 Xy Xo V2 4 Xy Xog VP + XLV + Xop XosV® + X2V,
olt le terme en X2, est & supprimer, si b = 2. Les termes t1 et 2 de (52) s’écrivent donc

XnguU1 + Xo1 X X11U' + X§1X13U2 + Xo1 X3 X1,U?
+2X01 X2 X12U? + Xo1 X2 X13U* + Xo1 X3 X12U* 4+ 2X01 X3 X13U°

resp.

2X01 X02 X1 V! + X1 X2 X22V? + X§2X21V2 + Xo1 X2 Xo3V?
+ X2 X03 X201 V2 4 2X2, Xoo VA 4 X2, X3V + X2 X3 X202V + 2 X9 X3 X03VE,

Comme les termes en X2, et ceux en X3, ne sont pas compensables, on a
Ul=0*=V*=Vv*=V>=0.
Par conséquent, (52) devient
Xo1 X0z [2X12U% + X13U* 4 2X1 V! + X3V + Xog | Xoy X120
L2X 1 X13U? + X Xot VP + 2X0p Xag VO 4  (XoDx,) T2 } -0,

ce qui signifie évidemment que les expressions entre crochets sont nulles.
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Soient (E1) et (E2) les équations ainsi obtenues.
Vu que

U3 = XU+ XooU3 + Xo3US  (20me terme a omettre, si b = 2),
Ut = XUl + XooUj + Xo3U3,

U = XU+ XoUS + Xo3UJ  (3eme terme & omettre, si ¢ = 1),
Vi = XoVoh+ X3V,

Vi o= X VP + X V5 4 X3V,

Ve = X VP + XV + X13V0  (3eme terme a omettre, si ¢ = 1)
01 b—1 c+1
0 1 1 t—1
en X11Xs3 ne sont pas compensables, de sorte que

Us =Uf =V =0

et que (F1) est d’ordre ( >, les termes en X9 X99, en X;3X9 et ceux

Finalement, (E1) s’écrit
X12Xo01 QU 4 2V3) + X192 Xo3(2U3 4+ V3¥) + X13Xo1 (U + 2V3) + X13Xo3(Uy + V) =0
ie.

V) = U}, V=203, Vi= 3 U} et Vi = U3

Passons a (E2). 1l s’agit de I’équation

2
T (XoDx,) T3}

= X1 X12(Xo1Uf' + Xo3Us) + 2X01 X13(X21 U7 + Xo2U3 + Xo3U3)
+ X0 X1 (X12V5' — X13U3) + 2X 00 Xo3(X11 VP + X12Vy + X13V5) (54)

(termes en U3 et V3 & supprimer, si ¢ = 1). En faisant X, = X3, on trouve

=210 = X1oXa1(Xa1U + X23U3) 4 2X13X51 (X1 U7 + XooUs + Xo3Us)

+ X501 X2 (X12V5' — X13U3) + 2 X3 X3 (X1 VP + X12Vy + X13V5)

et en substituant dans (54), on obtient
(1—1) [X(nXlQ(leUf1 + X03U3) + 2X01 X13(X01 U7 + XpoU3 + Xp3U3)

+ Xoa Xo1 (X12V5 — X13U3) + 2X00 Xo3(X1: VY + X2V + X13V36)}

+X12X31 [X21 (XoDx,)Uy 4 Xa3 (Xong)Ugﬂ +2X13X31 [le (XoDx,)Uy

+ X2 (XoDx,)U3 + Xas (XoDxy US| + Xo1 Xa [ X1z (XoDx,)Vi — X3 (XoDx,)Us3 |

+2X93X32 {Xn (XoDx, )V + X12 (XoDx,)Vy + Xu3 (XODX;;)VE;G} =0 (55)

(termes renfermant U3 et V3 & négliger, si ¢ = 1). Remarquons - en vue de I'exploitation
0 2 b

complete de (55), équation d’ordre ( L 11

c
f 1 ),avecb—l—c:t—que
4 _ dyb-lyc 4 _ 4 b—1yre—1
Ul = u Xy Xgg, Uy = uz X Xgp Xz
5 _ .5yb yel 775 _ 5 b—1ye—1 775 _ 5 b ye—2
U = wXpXg, Uy =wpXaXg X5, Uy = ugXn X X557 (¢ > 2),
3 _ .3 b—2 yre
Vo = 0 Xa X X,
6 _ 6 b—lye-1 176 _ 632 yb—2ye-1l 1/6 _ 632 yb—1yec—2
VI = i XXy Xago, Vy = 0p X5 Xgp " X, V' = 0 Xy Xy Xig™ (c>2).
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Coefficient de Xo1 X 10 X0 X5y ' X5,
(1 —t)uf +v3 =0,
Coefficient de X02X12X21X31X§2_2X§3 :
(b—1Duf +(b—t—1)v3 =0.
Coefficient de X3 X 1o X0 X3 Xoy ' X5
uy + vy = 0.
Dow : uf =v3 =0.
Coefficient de Xy X190 X3 X3 X5 ' X5
(2 — t)ug + 4v5 = 0. (56)
Coefficient de X02X13X21X31X§2_1X§3_1 :
(t — b)uz + 2bu’ = 0. (57)
Coefficient de Xy X13X0 X2 X531
us 4+ 2(t — 1)ub = 0. (58)
Coefficient de Xgp X190 X093 X2 X552 X5
(b—1Du3 +2(b—t—1)v5 =0. (59)
Coefficient de X03X12X23X§1X§2_1X§52 :
(c—1)(uz +2v5) =0 (c>2).
Coefficient de X3X13X01 X531 X5 X552
(1—c)(us —2u}) =0 (c>2).

Sic > 2, on trouwve uy = u3 = v5 = 0. Sic =1, les équations (56) et (59) sont
équivalentes et il en est de méme de (57) et (58) (b+ ¢ =t); le systéeme s’écrit donc

(2 —t)us + 405 =0
u3 +2(t — uj = 0.

Coeflicient de X01X13X22X31X§2_1X§3_1 .
2(2 — t)uj = 0.
Dot : u3 = 0.
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Coefficient de X1 X13X03 X531 X5 X532

(2—t)uj +205 =0 (c>2).
Coefficient de X X13 X3 X2 X5 1 X572

buj + (b—t)vs =0 (c>2).
Coefficient de X3X13X03 X2 X5, X552

(c—2)(u3 +5) =0 (c>3).

(60)

(61)

Si ¢ > 3, il résulte de ces équations que u3 = v§ = 0. Sic = 2, (60) et (61) sont

équivalents, de sorte que le systeme se réduit a
(2 — t)ud + 2v5 = 0.
Coefficient de Xy X171 Xo3 X3 Xoy ' X5
(b—t)wd =0.
Dot : 0§ = 0.

La relation (55) ne contient pas d’information supplémentaire.

(2221)[r=1,a=2,s=1, ¢c>3|

Alors
T2l =0
(2222)[r=1,a=2,s=1, c=2]

Dans ce cas, les résultats ci-dessus entrainent

_ _ t
TP =T = CiXisXas X5 X557 (1> 4, Cy = —5 u3).
Remarquons que

2b2 222 2 2
Trii=Ti1; = CaX13 X3 X5 X35 = 0,

vu la symétrie et 'antisymétrie de ce monome en ses deux premiers arguments.

L’équation (52) étant vidée, utilisons (53) (ce qui est possible, car b > 3), qui est un

cas particulier du lemme 6.2. Le terme ¢2 de (53) s’écrivant
1 _
—5 Gt =2)(t - 3) Xoa X 13 X23 X5 X5 X35
et n’étant pas compensable, on a
(x) THP=0 (t=5).
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(2223)[r=1,a=2 s=1,¢c=1

Ici, il vient

TR =T = Ct,1X12X23X§1X§2_2 + Ct,2X13X21X31X§2_17 (64)
avect >3, Cpy = —tuget Cpp = ﬁ u3. On notera que
Cro= 2 (65)
t,2 — 1_¢ t,1,

que
17 =17 =0
(cf. 5.1) et que
2512 2t-22
T12 t—-1 - T12 t—1
= U%X12X221X§53X§3

t—2 B ~
+uz (4 Xio X2, X2, X153 — X3 Xop Xog X3 X§22> (t > 3).

La relation (52) étant triviale et I'identité (53) ainsi que d’autres équations comme
(OT)y1y " =0
par exemple, ne permettant pas non plus de conclure, ce dernier cas exige une étude
plus approfondie.
6.2 Cas critique
Remarque 6.4 Déterminons les monomes contribuant au degré

2t—p p * 1
(1 p t—p+1)(t24’p€m’p§t§(<t_1))-

1 /
I 2 =1 +1 t—p+1 p p+1 t—op
a 1 k=2<bg 0 P t—p+1 t—p+1 p
t—p Le{l,...,p} t—p—1¢ t—4 2
k=t—p<bgy p—4 t—f+1 1
2
ITb (1

t—p te{l,...,t—p}
k=t—p—0<bo

(+) : mondéme & omettre, si p = 1.
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: t—p+1 . . L
Soient t > 4, p € IN* N {1, %[ et VPP, un mondme de cochaine invariant &
coefficients constants. Vu ce qui précede,

2t—
t—p+1p v t—p+1 pp

o(vIP +V

|: ( V4 t*erl t*erl p ) 1p t*]H*l

1 _ -
= =5 Xor (0D VL0 (12 X7 X

+X10 (0D1)(XoDx, )V, P70 (125 XP X770, (66)
Donc, si
VP L0120 X XS = B, XX T (B € R),
il vient
t—p+1 t—p+1y]2 PP
[O(Vp P ffp+1 + foerl P P )} 1p t—p+1

1 e _ _
= ~3 Bip(t —p+1)(t — p)X01Xf2X220X§1p t4 Bepp(t — p + 1) X2 X190 X1, 1X20X§1p

et si de plus, on évalue le monome de bord sur des arguments indexés par 1,2,3 et on
choisit

—1)\P
ﬁ%m ::i&t {?{i t,1,
alors
{a(vfgfpﬂ Fptr Vi ?H)ﬁ ;ﬁp}:ﬁ—p-&-l
N (_1)“1(?(251)& TP 6y X X X2 X
T G X XX (67

Lemme 6.5 Soit
THT (e 5T}

le monome de référence. La relation

t—1

s’écrit alors

Xo1 (XoDx, )Ty PPN123; X2 X5 X5P)

2p t-p

2 o _
i Koo (XoDx,) TP 01PN (123 Xy X5 X57P)

+1 t—p
2 - —
e (XoDx,)TEPP (123 Xy X3 X477 =0,
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En effet, les monomes contribuant a ’ordre considéré sont :

c/
e 0 (=1 -1 1 t—p p+1 t—p—1 2 p+1 » 2 t—p
@ 2 k=0 +1 2 p t—p p+1 1 t—p t—p+1 1 p
I R

|

Preuve 6.6 (suite de 6.3) Rappelons qu'il s’agit d’établir que 7271} (¢t > 4) est
nul sous I’hypothese de récurrence.

(22231)|r=1,a=2,s=1,c=1,t € {4,6,8,...}

Remarquons que si
—2
V{% == m Ct,1X12X§17
ot C;; est le coefficient de X5 X3 X2 X55? dans TP} (cf. (64)), on a en vertu de
(64), (65) et (67),

_ _ 2 _
T121t 1tl = Ct,1X12X23X§1X§22 + 1-¢ Ct,lX13X21X31X§2 !
2¢-11

= [oovii +viD)]

11 ¢

Or, la soustraction de ce bord est (évidemment) impossible, son monéme minimum étant

, 0 ¢t 2
dedegre(2 1 t—l)'
2

Il résulte de 4.5 (ii), qu'on annule le monéme 73 {2 | en corrigeant le cocycle par 9V,
et V5, avec

Vi = VIV V= aXn X5 Xog + X1 XY,

_ t—12 2 t—1 t—12 _
V2 - V2 t—1+V1;—12 » V2o =1 — 7

le réel  étant quelconque. On voit facilement qu’un choix convenable de (3 permet de
donner au coefficient de X1 X3 X2 X452 dans T7{';', une valeur arbitraire B. Pour
cela, il suffit de prendre

2(A—-B)

tt—1) "
ou A désigne la valeur du coefficient en question, avant 1’addition des bords 0V} et 0V5.
En effet, d'un coté, (66) montre que

6=

OV 123 X1 Xy XE) = (B — A)X 15 X3 Xa, X524+
les termes représentés par - - - étant non semblables au premier; de 'autre, il découle de

6.4 que
V)2t 1123 X7 Xy XE) =0.
11t 3
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Ainsi, si 'on note T" le cocycle corrigé, on a

TR = TN V)T (V)i
= AX1p X X5 X572+ -+ (B — A) X192 X03 X5 X572+ -+ 0.

Ceci étant, nous choisissons évidemment # de maniere que le coefficient de X12X23X§1
_ : <1 0
X!5? dans T2 =1} soit nul apres I'étude de 7§ f 2 . Cependant, lors de 'examen des T} Do

(( g ) < ( /; ) < ( Z ) .= Zi) supérieurs A T9 {2 | on retranche/ajoute encore des

bords, ce qui pourrait réintroduire un terme en X5 X3 X2 X452 Vérifions que tel n’est
pas le cas.

Soit donc T /' <( (2) ) < ( l; ) < ( v ) 5 ZZ') un monome supérieur a TP {2 .
Remarquons d’abord que Tj * 5 0e differe de TP77 et de T97F et que les degrés des

2 t—1 1 .
L1 > sont (cf. 6.4) :

(i 1><§ t11><til t11><tf2-€1 %) (Cefl,....t—1}).

Trois situations peuvent se présenter (cf. 4.5 (ii)) :

2-monomes contribuant & ’ordre (

() T4y =Ty (nv,0>2)
Alors v—1 v—1 2t=11 —1v v u—1 2t=11
Vi +viah) L = oy V] =0

De fait,

- differe de < i ; >, sinon TQO;LUV =T92  [t=1],

- differe de < ? t;l ), sinon t = 1 {Tgo,f: = 20f71t3—1}>

- differe de < o ) sinon ¢ = 2 [TQOKU” =T},

- differe de < . t;fl ) ) (¢ e {1,. —1}), sinon t = ¢ [Tzoé‘a” Ty 2" z”l]

et les ordres
w—1 v v p—1
different eux aussi (visiblement) des degrés précédents.

(ii) Tzoli‘(f est tel que u > 1 et p > 2, Pécart entre ( ’I; > et ( ; > valant au moins 2.
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Notons que les hypotheses sur ( (2) ‘; Z ) impliquent v > 3 et prouvons que
1y b u_1a]2t-11
vy + v ], =0

Il suffit de nouveau d’observer que

(o))

- differe de 1 ) sinon p =0 [Tfp“g” =T92 .1 quin’est pas bo},

4
1
2 t— 0pv 03 t—1
" > sinon Ty ,; =Ty 11 [p=10],

- differe de f_1 20

_ differe de (
( ),sinon ThY = T2t 21 [P:O]>

t— 0 .
—d1fferede< i1 1)(66{1 ,t—1}), sinon v =2 [p=10].

(iii) 7917 est de la forme T92H 2 (0 > 3)

On a encore
2¢-11

o—1
[a Z(Vfa 1210 7 + VQU 7 le_i)] = O
i=1

11 ¢
20 —1 1 1 20 —1
7 20 —1 20 —1 7

1
t

En effet,

Ge{l,....,0—1})

- differe de ( |
te{4,6,8,...};sit€{57,9,...}, on trouve

20 — 1 1 t 1 0pv 0 tHlyq t1
( 1 20—1>:<1 t) Tope =Ty s

ce qui n’est nullement contradictoire),

, sinon t = 20 — 1 [car 20 — i > 4] (c’est ici que joue 'hypothese

- differe évidemment de ( 2 tzl ) [idem],

t
- differe de ( L ), car 20 — 1 > 4 [smon TyHY = TOEHE,qui est inférieur a
t—1 1 po =Ayi g1
T201tt2—1}7
- differe de < th_l ) > (¢ e{1,. —1}), car 20 — i > 4 [idem)].

. . , 0
Finalement, les corrections par des bords effectuées pour annuler les T ;f o

<< g > < < /; > < < Z ) D Zi) supérieurs a 79} 2 |, ne modifient pas 77{~*;'. Plus
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. . N ‘ A N 0 .
aucun bord n’étant retranché apres I’étude de ces monomes a une colonne ( 5 (voir

également la suite), le coefficient C;; de X2 X3 X2 X4 2 dans T2/} est nul et (64) et
(65) permettent de conclure.

(22232)|r=1,a=2,s=1,¢c=1,t€{57,9,...}

Rappelons que (52)
(aT)O 2t-1 271 =0

(monéme de référence : T2/~1}!) a fourni les résultats

_ _ 2 _
T12f 1t1 = Ct,1X12X23X§1X§22 + 71 —¢ Ct71X13X21X31X§2 1

(= oot vl Vi = e CoXX (e (67)
et
TP
= XX X53X2 — ﬂ Cia X120 X35 X35 X143 + j Ci1X13X01 X3 X31 X152
(= vXX3XE X+ [W 2LV T
Virl2 = 75(7:2—1) Coa XEXET (cf. (67))).

Il est clair que la méthode de (2.2.2.3.1) n’est pas valable ici, le terme en X5 X03 X2 X£52
dans T7{™*} se réintroduisant (¢ impair !) lors de ’étude de
0441 L

1 t+ +
1 t41 -
2ty

Cependant, le lemme 6.5 permet de constater que le coefficient de X2, X2 X5 X 13 Xa3
dans

(8T)0 2t—2 3_2 =0

(mondéme de référence : T~} vaut il vs, de sorte que vi = 0.

Considérons 1’énoncé E(p) (p € { t—} (t impair ! ) suivant (valable pour p =
letp=2):

)Pt —p+1)(t —

th pp +1 — ( ) ( p+ )( ) Ct 1X12X23X321Xt p— 1
P tt—1)
—1)?P2p(t—p+1 _ _
1) t(f(_ 1)7’ ) o XX Xy X X
t—p+1 t—pt1y]2t—PP
( - [a(Vp b tlip—i-l +th p+1p ;7 )}1;0 tprrl’
bty (1P

. t—1
P t—p+1 — WC’“X tp+17 Slpe{l,...,}).
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Nous établissons a présent 'implication

E(p)= E(p+1), VpG{Q,...,H}.

Utilisons I’équation de 6.5 et posons

p—1 P ) p+1
17,7 pil tlp;;H X3 ZXész TV X Y X3, X5 V2 + > X5, Xoy e
=0 j=0 k=0
ol le terme £ = p + 1 est a négliger, si p = % et ou les V] sont indépendants de Xj.

Le terme t2 de ’équation considérée s’écrit alors

2 i— 7 i—
. Xog (2)(01)(21 Z XL,XPTW 4 X0 X2 Z DD (o T
+ X3 X3 Z — 1) X5, X5V}

+ X012X52X23 ‘/‘;‘2 +X[)2X21 Z]Xg;ngg_]V]Q
J J
+ Xo3Xo1 Z(p — j)X X 1V2

J

+  Xoz Z EX5 XETVE + Ko Y (p—k+ 1)X§2X§§ka3> :
k

Comme les termes en X2, ne sont pas compensables, on a

VI=V2=V2=0, Vijk#D0.

j
Alinsi,
Ti it 15 = X5 X0V + X X5V + X035V,
avec
Vo = g X1 Xa" X5 4 0, X13 X5 " Xas,
Vi = v X X5 X, + v 2 X120 X351 X557 * Xz + vg, 0 X 13 X5 X577 et
Ve = v XnXan X5 4 ol o X X5 X577 (68)

Cela étant, t2 devient

2 _ _
il Xo2 <2X01X21X53 1vol + (p— 1) X3 X5, X35 2Vo1

+ X1 X5V + pXos Xon X557V + (p+1)X03X§3V03)

et, vu que F(p) est supposé exact, t3 s’écrit

_ 2
t—p+1
+€t(;) X3 X1 X85 (X1 X557 + (t — )onXletf 71)} ;

Xos [€1)) X2 XB(2Xn X X557 + (t — p — 1) Xoo X5 X357 °)
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ou l'on a posé

(—1)P(t —p+1)(t —p) (1) 2p(t —p+1)

oW _ C t 0@ Chy. 69
P t(t—1) Bl % T t(t—1) e (69)
Coefficient de Xy X3 X10 X2 X5 2 X577 X2,
2 1 1
Coefficient de X02X03X13X221X§3_2X§5p_1X33 .
2 1 1
ﬁ (p— 1)”0,2 =0: Voo = 0. (71)
Coefficient de X02X03X11X21X§371X§;p71X33 .
2 2 2
]m P UO,l =0: UO,l = 0. (72)
Coefficient de X02X03X12X21Xg?lengé;piQX:gg .
2 2 2
Coefficient de X02X03X13X21X§)3_1X31X§;p_1 .
2 pda+——— (t—pre? =0 74
p+1pvo’3+t—p—|—1( p)<€iyp (74)
Coefficient de X02X03X11X§3X31X§2_p_1 .
205, =0:v5, =0. (75)
Coefficient de Xy X3 X120 X5 X2 X572
Notons que (69), (74) et (76) permettent d’écrire
» _ (D20 +1)( - p) s _ (=DM —p)(t—p—1)
= C t = Ciy. (77
Y03 tt— 1) R tt— 1) b (77)

Il résulte alors de (68), (70), (71), (72), (73), (75) et (77) qu'on a bien E(p+1) (I’équation
de 6.5 ne renferme pas d’autre information intéressante).
L’énoncé E (%) étant ainsi valable,

o t=1 i1 B3 1 =1
T, v vin = CriXiaXog X51 X595 + CraX13 X1 Xog X1 Xy (78)
2 2
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avec

~1)F(t+1 —1) T (t+1)?
Ct,l = ( ) 4t< ) Ct,l et Ct,Q = ( 2)1';( (_1) ) Otl (79)
Examinons enfin 'identité L
221 2L
(OT)1 | % % =0 (80)

I o/
=1 t—1 t+1 t=1 il 1
. ( 2 ) =1 ( +1 ) 35 5 2 3 . 23
a H
1 k=2<bg 0 S RS tFl ot 41 g il
2 P} 2 2 2

o~ -
w‘-‘r w‘+
- —
- [\
- -
m‘+ w‘ |
= -
SN—
—
o~ -

w‘+ M‘Jr N
- -
— N
o~ -
w‘-‘r m‘ |
- —
v

IIb:(

= DN
~—
ENIRN

|
—_
A
I~
S

= w
o« -
M‘Jr m‘ |
- [

- -
w‘+ w‘ |
= =
v
VN
o« -
o+ o+
= =
— )
- -
m‘+ m‘ i
- —
SN—
—
- -
v+ +
= =
— )
- -
m‘+ w‘ |
- =
v

~
[e=]
o

VR
- o«
w‘+ wlE
— -
— [\
- o«
M‘Jr w‘ |
= -
SN—
7N
m‘i m‘i
- =
— )
- o«
m‘-‘r w‘ |
- =
~_—

~
= N
~——
RN
I
-
A |
o
(=]
~/~ /~ e S

=2 0
k=0 -1 0 0
-1
2 L2 2
=0
() (1)
=
—1 t—1 —1 1
Si 1 T =T’ A et T2 =T 2 .4, (80) s'écrit :
ilonpose T" =T ./ .3 e =T, A o1, (80) s’éerit
2 2 2 2
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X0 (0D1)(XoDx,) T (123; X1 X, Xy0 ) (46)

— X0 (0D5)(XoDx,) T* (132 Xy Xy X, P ) (£7)
+
+X50 (0D3)(XoDx,) 2(123 X1 X7 X, ) (8)
3

+Xo1 (1D5)(X1Dx,) T? (o 2 Xy XoF X,° ) (€9)

—X31 (1D3)(X,Dx,) T? (023 Xo X,® Xt ):0. (£10)

Donnons la forme explicite de £3 et ¢8. Vu (78), il vient

1 t+1t—
—5 X (Con T T X XB X XR XS
1 =3 t—11- 3
resp.
t+1 =1 =5 t—3 ) 5t
X3 <Ct,1 X12X00Xo3 [2X01X31X32 + —— X2 X5 X35 }

t—1 t—1

t=1 t—1 t—
+ Cio X [X10X232 {X(nng +— 2 X02X31X32 }

t—1 t—1 13
t—1
Coefficient de X03X13X20X21X23 X31X32
t—1t-3 t+1t-3
N oY 4
(*) Ctz 5 5 TG 5 =0 (84)

(05 (£10) : coefﬁment de —X03X13X20X21X23 X30X32 dans ¢3 (£8); (7 : coefﬁment de

—X02X12X21X23 X30X31X32 dans 68 £9 : coefficient de X02X12X20X23 X30X31X32
dans ¢8).

Comme (79) donne

1—-1
t,1 — m t,29
I'égalité (84) devient
Ci2 =0,
de sorte que (79) fournit finalement
Ciqp=0.
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Commentaire 6.7 L’apparition des termes en k et en &' (cf. 2.1), la nécessité
de soustraire le bord de la chaine V; (cf. 4.2), lors de I'étude de Ty 1} (t > 3) et
'annulation du monéme critique 771" (t > 4) méritent quelques remarques.

(i) On vérifie que les termes en k i.e. les termes de la cochaine B (cf. preuve de 2.1)
a b c
st

la “cochaine symétrique” Vl 1 = kX12X9;. Ce fait suggere évidemment 'existence d'un
cocycle, mais on peut montrer que 9 [A(OV} {)] (olt A est 'opérateur d’antisymétrisation)
n’est pas nul.

- qui est cocycle aux ordres 1 - font partie des termes du bord formel de

De maniere analogue, les termes en k' sont les monomes de degré ( bl > (t €

1 1 ¢
{2,3,4,...}) du bord de la “cochaine” VI =KX Xoo.

(ii) L’application de la méthode générale, utilisée ci-dessus pour étudier un 3-cocycle
arbitraire, au cocycle

T = ath, ou th —AW% 12% 1 :A(CX12 XQt 1) (tZS, CGR),

rend plus claire I'intervention de V;. Dans la suite, nous nous servirons des résultats de
la preuve de 4.2, sans nous y référer explicitement. Le mondéme minimum de 7" étant

02112 22
15 519 = —20X01 X2 X12X5] 7,

il est du type (2.2) (cf. preuve de 4.4) et on a (avec les notations de cette démonstration)

vy=0=a=0et f+e=—c. Ici, il s'impose évidemment de choisir § = —c et ¢ =0 i.e.
de poser 7" =T + 0A(—c X2 X2t b= OW,1 — OW,1 = 0. Cependant, si I'on prend
B # —cet e =—c— [ #0, on obtient (apres correction) le cocycle

2
T =0 Vi, avec Vi; = A((—=1)"(c+ B) XL, X57).

i=1

Un cocycle T vérifiant 'énoncé E(k) (k € {2,...,t —2}),

k
T = GZVW;, ou Vt,i = A(( 1)Z+1<C+ ﬁ) Xb X2t Z),

i=1

admettant

T02t k2kt+%¢ — (_1)k+2 (C—i_ﬁ)XOlXOQXk X2t k—1

2(c + 0)

= Xy (XoD —1)k+2
o (XoDx,) | (=) =

k+1 y2t—k—1
X12 X21

comme plus petit monome, il découle de (22) que sa correction conduit & un cocycle
vérifiant £(k+1). Finalement, on trouve donc un 7" satisfaisant a £(t —1). Son mondme
minimum étant donné par

TR = (=) 2(c + 8) X1 Xoo XT3 ' X5,
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il est du genre (3.3) (cf. preuve de 4.4) et on pose 7" =T — OV}, avec By = ¢+ (3, de
sorte que

t—1
=0 Z A((=D)"™ e+ B)X1pX517") = 93 A((=1)" (e + B) X1, X57) = 0.

i=1

C’est donc la correction “erronée” du cocycle lors de 'étude de T8 2712 | qui est &

I'origine de I'apparition de la chaine V; et la soustraction de 9V, n’est rien d’autre que
la correction des “erreurs de correction” successives.

(iii) Le dernier monéme critique 72{ '} (t > 4) disparait différemment, selon que ¢
est pair ou impair.
Pour t € {5,7,9,...}, on obtient une “chaine de survivants”

t+1
B (pefi )

et I'annulation de son dernier maillon entraine la nullité de la chaine entiere : le “systeme
d’équations” n’est donc pas exactement triangulaire.

Sit € {4,6,8,...}, on annule T{{™'} grace & un choix convenable du coefficient 3
dans V! | = ﬁX12X21, lors de I'étude de TQOftQ_l.

Revenons a présent a I’ “anomalie” révélée en 4.5. Vu ce qui précede, on corrige donc
le cocycle par

OAV! | = 0A(BX12XE) (t€{4,6,8,...}),

avec un coefficient 3 bien déterminé. De plus, en retranchant 0V, (¢t > 3), on corrige en
particulier par

OAVHL = 0A(BX , XHY (2t —1€{5,7,9,...}),
ou [ est encore bien déterminé. Quant a

DAV} 3 = 0A(BX12X5,),

il est soustrait au cours de 'étude de T9 32 (cas limite “¢ = 27, ot les monomes T3 213,

(correction par OA(aX11 X5 *Xo)) et Ty T/} (correction par dA(BX 2 X5t~ 1)) coinci-
dent). Le bord
DAV} = 0A(BX12X3,)

enfin, n’a pas été retranché (avec un coefficient bien déterminé, cf. preuve de 3.2) et
I'inventaire des bords enlevés montre qu’il en est de méme uniquement des bords

DAV = 0A(VXT,Xg,) (> 1)

Ce fait n’a cependant rien d’étonnant, V21 et les V3 1™ (t > 1) étant les “tétes” des
bords OW}! = 9(8X11) resp. WL = 8( X”l) [5, Lemme V.2.1].
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7 Affinage de la preuve en dimension m = 3

Sim = 3, cinq parties de notre démonstration exigent un raffinement : cf. (31), (37),
(46), (53) et (80).

Toutes ces équations étant du type P = (8T)%Z‘f: = 0, les hypotheses de [5, IV.4.2
(ii)] sont satisfaites par exemple avec X;; = Xoo. Ainsi,

A A A | A
A Ay Agy Ay Asz | Ay 4
A= = e R
v < Ay | Aoo ) Asp Asy Asz | Asg 4

AOl A02 A03 ‘ AOO

et on a l'identité polynomiale

~

Q = (det A)Py — (det vA — Aggdet A") Py = 0,

ot Py (P,) est la somme des termes de P qui sont de degré 0 (1) en Ay (dans laquelle
on a substitué 1 a Agg) et ou det vA — Aggdet A" est le déterminant de vA privé de ses
termes en Agy. Nous nous référerons aux termes de () obtenus a partir de P, (pl), en
utilisant I'appellation “termes de type 1 (2)”.

7.1 Equation (31)
Les lignes €3 et £9 de cette équation P = (0T)3%11 = 0 s’écrivent
_XOS(U%X12X221X§0 + UgX10X20X21X31X32 + UlelezoXle:sQ + USX12X220X§1) (85)
resp.

+X30(201 XooX12X3) X33 + 201 X3 X12 X3, X30
+v3 X01 X10 X021 Xo3 X3 + v X1 X13X20X21 X32 + v3 X02X10X01 X3 X31
+3 X1 X10 X021 X3 X3 + 207 X1 X 11 X020 X23X32 + 205 X2 X11X20X23X31
+405 X1 X12X20 X 23 X31). (86)

Le terme —2v] AggA13A20A22 A%, (cf. (33)) fait partie de la somme P et ainsi
—QU%A(BAHA13A20A§2A30A§1 (87)
est un terme de ). Montrons que ce terme n’est pas compensé.
Compensations de type 1

Soit un terme t” de P. S’il engendre une compensation de type 1, il existe un terme t’ de
det A’, tel que #'t” soit semblable a (87). Etant donné que ¢’ est du genre sign(v) Ay, Az,
Asy,, Ou v est une permutation de 1,2, 3, on a nécessairement

t' = —A1340A3 et "= —CAyzA11A20A92A30A31.
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Il s’ensuit que les seules lignes de (32) susceptibles de produire une compensation de
type 1, sont £3, ¢8, (9 et £13. Vu (85) et (86), £3 et ¢9 ne fournissent pas de terme de
type 1, semblable a (87). Comme (8 = —(¢9)(0 13 2) et £13 = —(¢9)(1 0 2 3) et comme
/9 ne contient pas de terme, ni en A02A11A20A21A30A33, ni en AO0A13A21A22A30A31, (8
et 13 n’engendrent pas non plus de compensation de type 1.

Compensations de type 2

Si un terme t” de P donne une compensation de type 2, il existe un terme ¢’ de — det v A,
indépendant de Ag, tel que t't"” (t” désigne le terme t” dans lequel on a supprimé Ag)

soit semblable & (87). Le degré de ¢ étant < (1) ? ; ; >, on a

t' = Ags A1 AgpAsy et 17 = CA13A90 A0 A3,

de sorte que
t// - CAOOAlgAQOAQQA%l.

Or, le terme de P en AggA13A20A20A3; a le coefficient —2v{ (cf. (33)) : il engendre (87)
et 17 autres termes, non semblables.

Finalement, (87) n’est pas compensable et
vl = 0. (88)
L’expression —2k' Agy A13A%,A2, étant un terme de P,
—2k' Agp A11 A13 A%, Agg A Ass (89)
est un terme de type 1 de Q).
Compensations de type 1
Un terme du premier type, semblable a (89) est un produit t't”, avec
t' = A ApAss et ' = CAypAzAs A2,

ou
t/ = —A13A22A31 et t// = —CA02A11A§0A31A33.

Or, le terme de P en AgA13A42,A3, est de coefficient —2k" (cf. (34)) et engendre
(89) et 5 termes non semblables. Quant aux termes de P en AgAq; A3 A3 Ass, Te-
marquons que les lignes (2, (8 et (13 de (32) sont les seules a examiner. Vu que
2 =—(03)(0132) (L8 =—(¢9)(0132), £13 =—(£9)(1 02 3)) et que £3 (¢9,09)
ne contient pas de terme en AgzAiyAg As A2, (Agz A1y Ao1 Asg A2y, AggA12 A3, AzgAss)
(cf. (85), (86) et (88)), P ne renferme pas de terme en Agp A1 A2;Az1 Ass.
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Compensations de type 2

Le degré de Pl étant ( 12 11 ), on trouve ici

01 2 2
t' = AppA11AnAss et 1 = OA13A20A22A§1

ou
t' = —ApA13A%0As et = —C A1 AzgAgp Azi Ass.

Ainsi, les termes de P qui ne sont ni en AggA;3A90A20A43,, ni en AggA1; AggAgg Azy Azs,
ne produisent pas de compensation du deuxieme type. Il découle de (33) et (88) que
le terme de P en AggAi3As0A A2, est nul. En ce qui concerne les termes de P en
AgoA11 A0 Az Ay Ass, on observe que seulement les lignes ¢8 et £13 de (32) contiennent
éventuellement de tels termes. En réalité, il n’en est rien, car £9 ne renferme pas de
terme en Agy.

Par conséquent,
K =0
et, vu (25) et (28), on a également
F =] =0.
Soient enfin le terme —2v5 Ag3A12A43,A% de Py et le terme
—205 Ags A1 A1 A A3, Ass (90)
de (). De nouveau, il n’existe pas de terme semblable. En effet :

Compensations de type 1

On a, avec les notations habituelles,
t/ = A11A22A33 et t” = CAogAlgAgoAgl.

Cependant, le terme de P en Agz3A12A43,A% a le coefficient —2v3 (cf. (35)) et engendre
(90) et 5 autres termes, non semblables.

Compensations de type 2
On obtient

th = AggA12AxAgr et 1" = C Ay AggAx Az Ass,

de sorte que les termes de P en AggAi11AxgAxnAzi Asz sont les seuls qui peuvent fournir
une compensation de la seconde espece. Or, on sait (voir plus haut) que le polynome P
ne possede pas de tel terme.

Ainsi,

vy =0

et les équations (26) et (27) donnent alors
G =vd=0.
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7.2 Equation (37)

Posons
T3P = X\ T+ X077 4 X373,

ou les termes en X et Xi3 sont a omettre, si b = 0 resp. ¢ = 0. Le ler terme de
P = (9T)22°¢ fait partie de Py (cf. (38)) et le 2eme s’écrit

X10(Xo0T " + Xo1 (0D) T + Xog (0D1)T? + Xo3 (0D1)7T?).
Ceci étant, I'identité (Q = 0 devient
1
(det A') (—2 Aot (0D1)2T30¢ 4 Agi Avy (0D)T" + AgpAro (0D1)T?
+A03A10 (ODl)T3> — (det vA — AOO det A/)AloTl = O,

les dérivées directionnelles et 7' étant évalués sur les variables indépendantes Aj;. 1l
découle alors du lemme de divisibilité [5, IV.4.4] que

(0D1)2T13:tc = Alo.R,

ou R désigne un polynome en les Ay (kK € {0,1,2,3}, ¢ € {2,3}). Finalement, on a
donc
TPt = X0 R= X1 (X3 T 4+ Xon X1 T? + X3,T%),

les termes en X3, et X2, étant & supprimer, si s = 1 resp. ¢ = 1. Le ler membre de (39)
ne dépendant pas de toutes les évaluations, on termine comme au cas m > 4.

7.3 Equation (46)
Considérons le terme 1 A(b — 1)(b — 2)ApA12A3 A3 AP AS, (b > 3) de P =
(OT)22571¢ et le terme
; A(b —1)(b — 2) Agp A1 A2 A3 Agp A5 A, 2 AGEH (91)
de Q.
Compensations de type 1

1l suffit évidemment d’examiner les termes de P qui sont en AgyA2,. Les termes t1, t4
et t5 de (46) (cf. 6.2) ne contiennent pas de tels termes. Il en est de méme de t3 =
—(t2)(1 02 3) et de t6 = —(t5)(1 0 2 3), car il résulte de (47) et (48) que les termes de
t3 et t6 sont en A3, resp. en AjgAy. Quant A ¢2, son second terme engendre (91) et 5
autres termes, non semblables.

Compensations de type 2

Si P, # 0, ses termes proviennent de t4 : ils sont donc en Ajq et ne fournissent pas de
compensation.
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7.4 Equation (53)

Ici, P = (OT)32%712 et les termes a considérer dans P et () sont respectivement

1
—5 Ct (t — 2)(t — 3)A02A11A13A22A23A§0A§1A354A33. (92)

Compensations de type 1

Cherchons les termes de P en AgA%,. De nouveau, les termes t1, t4 et t5 de (53) (cf.
6.2) ne conviennent pas. Comme T2}2 = C; X13X03X2% X552 (cf. (62)), les termes 2 et
t5 sont en Aj3 et ainsi, t3 et t6 renferment Ayz. Enfin, il découle de (63) que t2 donne
(92) et des termes non semblables.

Compensations de type 2
Meéme argument qu’en VII.3.

D’ou

7.5 Equation (80)

=N

Soient le polynéme P = (BT)i zz (t € {5,7,9,...}) et le terme

1 t—1t—3 t+1t—3
(—2 Cot o S G )A03A11A13A20A21A22A23 ApAsp Az (93)

de Q.
Compensations de type 1

Les lignes (1, €2, (6 et (8 de (81) ne contiennent pas de terme en AgzA3,. Vu (82) et
(83), 5 = —(£3)(1 0 2 3), €7 = —(£8)(0 1 32) et £10 = —(¢8)(1 0 2 3) sont a leur
tour sans tels termes. Les termes en Ag3A3, contenus dans ¢3, ¢4 = (£3)(1 0 3 2) et
09 = (¢8)(1 0 3 2) étant

t+1t—
_Ctl 9 a8 A03A12A20A23 A§1A322
—1t-3 t+1t— t—1
(— Ctz 5 T‘f‘ct,l 5 >A03A13A20A21A23 A Asd

ils ne produisent pas de compensation.
Compensations de type 2

Si P; # 0, ses termes proviennent de ¢6, renferment Ay et ne fournissent pas de com-
pensation.
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Finalement, on a donc bien

t—1¢t—-3 t+1t-3

C crT-
5 b2 —5— 2+t,12 5

7.6 Meéthode alternative

Voici un deuxieme procédé permettant d’établir (notamment) (94).
29 t—1 1 t—

Si P = (0T)] 1t+1 tﬁl (t € {5,7,9,...}), il découle de [5, IV.4.3 (i)] qu’en dimension
m = 3, il existe un entler positif, non nul p et un polynéme @ tels que

PP(*A) = det A.Q('A), VA€ TR} (95)
(avec la convention habituelle). Notons que P(*A) contient le terme
1 t—11¢t— t+1t—
b = <—2 Ct2 5 3 + Ci1 5 3 )A03A13A20A21A23 A31A32

et posons
P
= Z tka
k=1
les ¢, étant non semblables. L’identité (95) s’écrit alors
p
> Covrr T t7F — det A.Q(*A) = 0. (96)
p1te+pp=p k=1

Nous allons montrer que le terme
p P AP A2P AP 520 P Sto
— P 2 2
1= (...)  Ajs Al3 A0 A Ags ~Af Agj

de (96) n’est pas compensé (ce qui implique évidemment (94)). Il ne l'est pas par
un terme de det A.Q(*A), ces derniers contenant un facteur du type Ag,, A1, Aou, Az,
(v : permutation de 0,1,2,3). Il ne l'est pas non plus par un terme de P?(*A). De
fait sinon il existe un produit [[;_, t* (avec p1 + --- 4+ p, = p et (p1,p2,...,pp) #
(p,0,... 1)) semblable a t]. Soit alors k # 1, tel que pp # 0. Le terme t;, étant de degré

[ )
( i % i1tk ), il est en Ag3A;3 et indépendant de Ags, A3y et Ass. Il s’ensuit qu’on
2 2

a nécessairement
te = CAgAzAs AL A A AL (C €TR, a,b,c,de € IN)
= CA03A13A30A31A;3%5 AglAZ?
= CApAuAlAnAy AnAg .
ce qui est absurde, t; et t; n’étant pas semblables.
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