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Résumé : Dans [5], nous avons développé une méthode générale, ayant permis de montrer
que les deux premiers espaces de la cohomologie de Chevalley locale de l’algèbre
des opérateurs différentiels sur une variété, à valeurs dans les fonctions, sont
isomorphes aux espaces correspondants de la cohomologie de de Rham. Nous
appliquerons à présent notre technique au calcul du troisième espace de coho-
mologie.
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Third cohomology space of the Lie algebra
of differential operators on a manifold,

with coefficients in the space of functions

Abstract : In [5], we constructed a general method, which allowed us to show that the first
and second term of the local Chevalley-Eilenberg cohomology of the algebra of dif-
ferential operators on a manifold, with coefficients in the space of functions, are
isomorphic to the corresponding spaces of the de Rham cohomology. It now will
be proved, by the same method, that this result also holds for the third cohomology
spaces.
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Classification : 17 B 56, 17 B 66

1 Introduction

Notons N l’espace C∞(M) des fonctions d’une variété M et désignons par E0 l’espace
gl(N)loc, n.c. des opérateurs locaux de N dans N - i.e. des opérateurs différentiels sur M -
qui sont nuls sur les constantes. Il est clair que E0 est une algèbre de Lie, admettant N
comme espace de représentation.
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Le crochet de Nijenhuis-Richardson [4] munit l’espace E des applications multi-
linéaires, antisymétriques de N × · · · ×N dans N , qui sont locales et nulles sur 1 ∈ N ,
d’une structure d’algèbre de Lie graduée.

Soient (∧(E0, N)loc, ∂) et (∧alt(E)−1,loc, ∂) les complexes associés à E0 représenté sur
N resp. à E opérant sur lui-même, toutes les cochâınes étant locales resp. locales et de
poids −1. Les cohomologies de ces espaces différentiels sont telles que [3]

Halt(E)−1,loc = H(ker θ)⊕H(E0, N)loc,

où θ désigne l’application “restriction des cochâınes alternées à E0 × · · · × E0”.
Dans [5], nous avons montré que les espaces de degré 0, 1 et 2 de la cohomologie de

E0 sont isomorphes aux espaces correspondants de la cohomologie HDR(M) de de Rham.
Nous utiliserons à présent la méthode et les résultats de [5], pour établir le

Théorème 1.1 Si M est une variété de classe C∞, de dimension m ≥ 3, séparée,
à base dénombrable et connexe, on a

Hp(E0, N)loc ≈ Hp
DR(M), ∀p ∈ {0, 1, 2, 3}.

On dispose alors d’une partie du calcul des premiers espaces de la cohomologie
graduée, intéressants en théorie des déformations. Cette motivation est plus que jamais
d’actualité, le résultat récent de M. Kontsevich [2], selon lequel l’algèbre des fonctions
des variétés de Poisson est toujours déformable, suggérant fortement l’existence, dans la
cohomologie graduée, de classes canoniques “universelles”, liées aux déformations de N
et à leur classification.

La technique de calcul développée dans [5], est basée sur la représentation symbolique
des dérivées par des formes linéaires sur IRm, la graduation de l’espace des p-cochâınes
et l’ordre total sur les termes homogènes.

La symbolisation de l’équation de cocycle conduit à une équation purement
algébrique, plus simple que l’original, dont la résolution fournit des conclusions-images,
qu’il suffit de réinterpréter.

Le terme homogène T~a
~r = T

a0...ap−1
r0...rp−1 (ai ∈ IN, ri ∈ IN∗) d’une p-cochâıne T , appelé

monôme de degré (~a/~r) de T , est la somme des termes d’ordre (a0, . . . , ap−1) de T évalué
sur des opérateurs différentiels homogènes d’ordres respectifs r0, . . . , rp−1. Ces monômes
sont ordonnés par l’ordre lexicographique associé à l’ordre total défini par

(ai/ri) < (aj/rj) ⇔ ai + ri < aj + rj ou (ai + ri = aj + rj et ri < rj).

Il importe que l’ordre sur les monômes soit compatible avec l’opération de cobord i.e.
que le plus petit des monômes de ∂T auxquels T~a

~r contribue, soit d’autant plus petit que
T~a

~r l’est. En effet, si T désigne un cocycle, nous le corrigeons par des bords et prouvons
que les monômes successifs du cocycle cohomologue sont nuls. On peut alors annuler
un monôme T~a

~r moyennant l’équation (∂T )
~A
~R

= 0, où (∂T )
~A
~R

est le plus petit monôme du

bord auquel T~a
~r contribue, cette équation ne renfermant en principe que T~a

~r .
Dans la suite, nous nous servirons des notations et résultats de [5], sans nous y

référer toujours explicitement.
Pour prouver 1.1, il suffit de démontrer la
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Proposition 1.2 L’espace de cohomologie H3(E0, N)loc (E0 = E0
Ω, N = C∞(Ω),

Ω : ouvert contractile de IRm) est nul en dimension m ≥ 3.

Ce calcul est plus technique que ceux des premier et deuxième espaces. L’invariance
sous gl(m, IR) n’apparâıt encore que graduellement, phénomène lié à l’absence dans E0

d’un idéal raisonnable, supplémentaire à gl(m, IR). De plus, des termes de bords formels
de cochâınes symétriques et deux familles de monômes critiques - difficiles à annuler
- apparaissent. La première ne peut être annulée que grâce à la construction d’une
cochâıne, châıne de “cochâınes élémentaires”, telle que le monôme minimum de son
bord soit la somme des contributions opposées de ses deux premiers maillons. Cette
compensation, réitérée jusqu’à épuisement des paires de maillons successifs, conduit
finalement à un monôme minimum, ayant exactement le degré et la forme requis. La
procédure annulant les monômes de la seconde famille, dépend de la valeur du paramètre.
S’il est pair, le monôme disparâıt après le choix convenable d’un coefficient arbitraire
dans un bord retranché préalablement. Sinon, le monôme engendre une “châıne de
survivants”, finalement entièrement annulée par l’effacement de son dernier maillon.

La preuve se fait en six étapes, chaque étape constituant l’objet d’une section. Les
raisonnements sont en principe valables pour tout m ≥ 3, mais l’argumentation nécessite
quelques raffinements ponctuels en dimension 3. Ces endroits seront marqués d’un
astérisque et les affinages seront donnés dans la section VII.

Afin de simplifier les notations au maximum, nous écrirons iDj et T a b c
r s t (0 1 2;

Xr
0 Xs

1 X t
2) (et même simplement T a b c

r s t , si aucune confusion n’est à craindre) au lieu de
ηiDηj resp. T a b c

r s t (η0, η1, η2; Xr
0 , X

s
1 , X

t
2).

2 Etude des monômes à une ou plusieurs colonnes (11)

Proposition 2.1 Tout 3-cocycle de E0 (E0 = E0
Ω, m ≥ 3) est cohomologue à un

cocycle T à coefficients constants, invariant sous l’action de gl(m, IR), sans colonne(
0
1

)
et tel que

T 1 1 1
1 1 1 = k tr ([., .].) (k ∈ IR),

T 1 1 t
1 1 t = 0 (t ≥ 2)

et

T 1 b c
1 s t =





(
b c
s t

)
6∈

{(
τ 1
1 τ

)
: τ ≥ 2

}
: 0

(
b c
s t

)
∈

{(
τ 1
1 τ

)
: τ ≥ 2

}
: X t

21(kX02X10 + k′X00X12) (k′ ∈ IR)

((
1
1

)
<

(
b
s

)
≤

(
c
t

)
,
∑

s
=

∑
i

)

(tr ([., .].) : trace antisymétrisée du produit de trois matrices).
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Soit T ∈ ∧3(E0, N)loc ∩ ker ∂. On sait qu’on peut supposer T être à coefficients

constants et sans colonne
(

0
1

)
.

Le monôme minimum T 1 1 1
1 1 1 de T est alors donné par

T 1 1 1
1 1 1 = k tr ([., .].) (k ∈ IR).

En procédant comme en [5, V.2] et en notant que ∧2
inv(gl(m, IR), IR) = {0}, on

constate que

T 1 1 c
1 1 t = 0

((
1
1

)
<

(
c
t

))
.

Etudions maintenant les monômes du type T 1 b c
1 s t

((
1
1

)
<

(
b
s

)
≤

(
c
t

))
.

Vu [5, IV.2.1], on a

(∂T )1 1 b c
1 1 s t = −∂ρT

1 b c
1 s t + I + II a

((
k
α

)
6=

(
1
1

))

+II b

((
k + l

α

)
6=

(
1
1

))
. (1)

Il est clair qu’il n’existe pas de compensation de type I (car une telle compensation

serait due à un monôme contenant une colonne
(

0
1

)
). S’il y avait une compensation

de type II a, elle serait obtenue par création de
(

b
s

)
et serait donc engendrée par le

monôme
T c+b−` 1 1

t+s−` 1 1 = T 1 1 1
1 1 1 (` ∈ {1, . . . , s}).

Par conséquent, on aurait ` = s, t = 1 et b + c = 1 + s. D’autre part, les conditions
k ≤ b0 et (k, α) 6= (0, `) donneraient b ≤ 1 resp. b 6= 0. Ainsi, b = 1, c = s et le monôme
étudié serait T 1 1 s

1 s 1 , ce qui est absurde. S’il existe une compensation de type II b, elle
est fournie par le monôme

T c+b−` 1 1
t+s−` 1 1 = T 1 1 1

1 1 1 (` ∈ {1, . . . , b}).

Comme k ≤ b0, on a k = 0 et ` = b ou k = 1 et ` = b− 1. La condition α ≤ s0 entrâıne
que s = 1 et l’exigence (k, α) 6= (b0, s0) implique que k = 0 et ` = b. Il s’ensuit que
c = 1 et t = b, de sorte que le monôme étudié est T 1 t 1

1 1 t (t ≥ 2). Inversement, si l’examen
porte sur un tel monôme, on a la compensation

X t
32 (X2DX3)T

1 1 1
1 1 1 (3 0 1; X3 X0 X1) = k X t

32 tr([0⊗X0, 1⊗X1] 3⊗X2).

Posons dans ce cas

B1 t 1
1 1 t(1 2 3; X1 X2 X t

3) = k X t
32 tr(1⊗X1 . 3⊗X2) = k X13 X21 X t

32
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et notons Bt la 3-cochâıne (à coefficients constants et sans colonne
(

0
1

)
) de E0 que four-

nit l’antisymétrisation de B1 t 1
1 1 t. On vérifie facilement que la précédente compensation

n’est autre chose que

(∂ρB1 t 1
1 1 t)(0⊗X0, 1⊗X1)(2 3; X2 X t

3)

(rappelons que conformément à la convention faite en I, 0, 1, 2 et 3 représentent des
formes linéaires η0, η1, η2, η3 sur IRm).

Si le monôme étudié T 1 b c
1 s t n’est pas du genre T 1 t 1

1 1 t , où t ≥ 2, (1) montre que

T 1 b c
1 s t ∈ Eb c

s t,inv ⊗ ∧1
inv(gl(m, IR), IR)

(à un bord près). Si T 1 b c
1 s t est de la forme T 1 t 1

1 1 t (t ≥ 2), l’application de [5, IV.2.3] au
monôme T 1 t 1

1 1 t − B1 t 1
1 1 t de la cochâıne T − Bt donne

T 1 t 1
1 1 t − B1 t 1

1 1 t ∈ Et 1
1 t,inv ⊗ ∧1

inv(gl(m, IR), IR)

(quitte à corriger par un bord). Par conséquent,

T 1 b c
1 s t =





∑
s 6=

∑
i : 0

∑
s =

∑
i





(
b c
s t

)
6∈

{(
τ 1
1 τ

)
: τ ≥ 2

}
: tr U b c

s t
(

b c
s t

)
∈

{(
τ 1
1 τ

)
: τ ≥ 2

}
: B1 t 1

1 1 t + tr U t 1
1 t

((
1
1

)
<

(
b
s

)
≤

(
c
t

))
,

où Uβ γ
σ τ est un invariant de l’espace de représentation correspondant. Remarquons que

quel que soit s ≥ 2, T 1 s s
1 s s = tr U s s

s s = 0 (argument de symétrie) et qu’ainsi T 1 b b
1 s s = 0,

pour tout
(

b
s

)
>

(
1
1

)
.

Passons à l’étude des monômes T a b c
r s t

((
1
1

)
<

(
a
r

)
≤

(
b
s

)
≤

(
c
t

))
.

Il découle de [5, IV.2.1] et des résultats ci-dessus que

(∂T )1 a b c
1 r s t = −∂ρT

a b c
r s t + · · · , (2)

où les termes compensateurs éventuels sont engendrés par les monômes T 1 1 1
1 1 1 et T

ν(1 β γ)
ν(1 σ τ)((

1
1

)
<

(
β
σ

)
<

(
γ
τ

)
,

∑
s =

∑
i

)
.

Si
∑

s = a + b + c 6= ∑
i = r + s + t, le bord −∂ρT

a b c
r s t est l’unique contribution au

degré
(

1 a b c
1 r s t

)
(car un monôme (d’une cochâıne à coefficients constants) tel que

∑
s =

∑
i contribue dans le bord seulement à des degrés ayant la même propriété). Ainsi

T a b c
r s t ∈ Z0(gl(m, IR), Ea b c

r s t ) = Ea b c
r s t,inv, donc

T a b c
r s t = 0

((
1
1

)
<

(
a
r

)
≤

(
b
s

)
≤

(
c
t

)
,

∑
s
6= ∑

i

)
.
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Pour traiter le cas
∑

s = a + b + c =
∑

i = r + s + t, il est commode d’introduire les

cochâınes suivantes. Considérons les monômes Uβ γ
σ τ

((
1
1

)
<

(
β
σ

)
<

(
γ
τ

)
,
∑

s =
∑

i

)

(ils sont à coefficients constants et invariants) et les monômes C1 β γ
1 σ τ = tr Uβ γ

σ τ . Soient U
et C les cochâınes

U =
∑

αUβ γ
σ τ et C =

∑
α C1 β γ

1 σ τ

(où
∑

représente la somme sur tous les
(

β γ
σ τ

)
tels que

∑
s =

∑
i et

(
1
1

)
<

(
β
σ

)
<

(
γ
τ

)
et où α désigne l’opérateur d’antisymétrisation) et notons B resp. D les cochâınes

B = T 1 1 1
1 1 1 +

∑

v≥2

αB1 v 1
1 1 v et D =

∑
αT δ ε ζ

λ µ ν

(la dernière somme étant étendue à tous les ordres
(

δ ε ζ
λ µ ν

)
tels que

∑
s =

∑
i et

(
1
1

)
<

(
δ
λ

)
≤

(
ε
µ

)
≤

(
ζ
ν

)
). Comme T = B+ C+D, la relation (2) s’écrit, compte

tenu de [5, IV.3.1],

(∂T )1 a b c
1 r s t = (∂B)1 a b c

1 r s t + (∂C)1 a b c
1 r s t + (∂D)1 a b c

1 r s t

= (∂B)1 a b c
1 r s t − tr (∂U)a b c

r s t − ∂ρT
a b c
r s t . (3)

Prouvons que (∂B)1 a b c
1 r s t est nul. Pour cela, remarquons d’abord qu’il résulte de [5,

III.4.1] et des égalités

τηX
r = Xr

η+. −Xr
. =

r−1∑

k=0

Ck
rX

r−k
η Xk

. (η ∈ IRm∗
, X ∈ IRm, r ∈ IN∗)

et

(XDY )rY s =
s!

(s− r)!
XrY s−r (X, Y ∈ IRm, r, s ∈ IN, r ≤ s),

que

(∂B)(η0, η1, η2, η3; Xr0
0 , Xr1

1 , Xr2
2 , Xr3

3 )

=
3∑

i=0

(−1)iXri

i,η0+...̂ı...+η3 B(η0, . . . ı̂ . . . , η3; Xr0
0 , . . . ı̂ . . . , Xr3

3 )

+
∑

i<j

(−1)i+j
ri−1∑

`=0

C`
ri

rj!

(rj + `)!
Xri−`

ij (XiDXj
)`

B(ηi + ηj, η0, . . . ı̂ . . . ̂ . . . , η3; X
rj+`
j , Xr0

0 , . . . ı̂ . . . ̂ . . . , Xr3
3 )

+
∑

i<j

(−1)i+j+1
rj−1∑

`=0

C`
rj

ri!

(ri + `)!
X

rj−`
ji (XjDXi

)`

B(ηi + ηj, η0, . . . ı̂ . . . ̂ . . . , η3; Xri+`
i , Xr0

0 , . . . ı̂ . . . ̂ . . . , Xr3
3 )

=
3∑

i=0

(−1)iXri

i,η0+...̂ı...+η3 Br0...̂ı...r3(. . . ı̂ . . . ; . . . ı̂ . . .)
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+
∑

i<j

(−1)i−1
ri−1∑

`=0

C`
ri

rj!

(rj + `)!
Xri−`

ij (XiDXj
)`

Br0...̂ı...rj+`
(j)

...r3(. . . ı̂ . . . , η
i + ηj

(j)
, . . . ; . . . ı̂ . . . , X

rj+`
j
(j)

, . . .)

+
∑

i<j

(−1)j+1
rj−1∑

`=0

C`
rj

ri!

(ri + `)!
X

rj−`
ji (XjDXi

)`

Br0...ri+`
(i)

...̂...r3(. . . , η
i + ηj

(i)
, . . . ̂ . . . ; . . . , Xri+`

i
(i)

, . . . ̂ . . .). (4)

Etudions à présent les quatre cas suivants :

(i) r0 = 1; r1, r2, r3 ≥ 2

Alors - vu les degrés des monômes de B - (∂B)(η0, η1, η2, η3; X0, X
r1
1 , Xr2

2 , Xr3
3 ) = 0, de

sorte que (∂B)1 a b c
1 r s t est bien nul, si aucun des indices r, s et t n’est égal à 1.

(ii) r0 = r1 = 1; r2, r3 ≥ 2

Extrayons de (∂B)(η0, η1, η2, η3; X0, X1, X
r2
2 , Xr3

3 ) les termes d’ordre 1 en η0.

I : La définition de B montre que i ∈ {2, 3}. Les monômes contribuant à la valeur
Br0...̂ı...r3(. . . ı̂ . . . ; . . . ı̂ . . .) de B sont donc B1 r3 1

1 1 r3
et Br3 1 1

1 1 r3
resp. B1 r2 1

1 1 r2
et Br2 1 1

1 1 r2
. D’où

les termes d’ordre 1 contenus dans I (comme convenu, nous notons m au lieu de ηm) :

Xr2
2,1+3 B1 r3 1

1 1 r3
(0 1 3; X0 X1 Xr3

3 )−Xr3
3,1+2 B1 r2 1

1 1 r2
(0 1 2; X0 X1 Xr2

2 ).

II a : Ici i = 2 et j = 3 et les termes cherchés s’écrivent

−
r2−1∑

`=0

C`
r2

r3!

(r3 + `)!
Xr2−`

23 (X2DX3)
` B1 r3+` 1

1 1 r3+`(0 1 2 + 3; X0 X1 Xr3+`
3 ).

II b : Si i = 0, on a nécessairement ` = 0 et j = 2 ou j = 3. Or, dans ce cas, X
rj−`
ji = X

rj

j0

est d’ordre rj ≥ 2 en η0. Si i = 1, on a également ` = 0 et j = 2 ou j = 3. Ainsi, les
monômes contribuant à l’ordre 1 en η0 sont B1 r3 1

1 1 r3
resp. B1 r2 1

1 1 r2
. Si i = 2, j = 3 et les

B1 r2+` 1
1 1 r2+` sont les monômes qui conviennent. Les termes d’ordre 1 dans II b sont donc

−Xr2
21 B1 r3 1

1 1 r3
(0 1 + 2 3; X0 X1 Xr3

3 ) + Xr3
31 B1 r2 1

1 1 r2
(0 1 + 3 2; X0 X1 Xr2

2 )

+
r3−1∑

`=0

C`
r3

r2!

(r2 + `)!
Xr3−`

32 (X3DX2)
` B1 r2+` 1

1 1 r2+`(0 1 2 + 3; X0 X1 Xr2+`
2 ).

Compte tenu de la définition des B1 t 1
1 1 t (t ≥ 2), les termes du bord qui sont d’ordre 1 en

η0, s’écrivent finalement (à la constante multiplicative k près)

X03X10X
r2
2,1+3X

r3
31 −X02X10X

r2
21X

r3
3,1+2 −X03X10X

r2
21X

r3
3,1+2 + X02X10X

r2
2,1+3X

r3
31

7



−X0,2+3X10

(
r2−1∑

`=0

C`
r2

X`
21X

r2−`
23

)
Xr3

31 + X0,2+3X10X
r2
21

(
r3−1∑

`=0

C`
r3

X`
31X

r3−`
32

)

= X0,2+3X10X
r2
2,1+3X

r3
31 −X0,2+3X10X

r2
21X

r3
3,1+2

−X0,2+3X10(X
r2
2,1+3 −Xr2

21)X
r3
31 + X0,2+3X10X

r2
21(X

r3
3,1+2 −Xr3

31) = 0.

Il en découle évidemment que (∂B)1 a b c
1 r s t est nul, si exactement un des indices r, s, t vaut

1.

(iii) r0 = r1 = r2 = 1; r3 ≥ 2

Déterminons encore les termes d’ordre 1 en η0.

I : Le terme i = 0 étant d’ordre 0 en η0, on trouve

−X1,2+3B1 r3 1
1 1 r3

(0 2 3; X0 X2 Xr3
3 )

+X2,1+3B1 r3 1
1 1 r3

(0 1 3; X0 X1 Xr3
3 )−Xr3

3,1+2T
1 1 1
1 1 1 (0 1 2; X0 X1 X2).

II a : Comme i ∈ {0, 1, 2}, ri = 1 et ` = 0. Les monômes de valeur non nulle a priori
sont donc B1 r3 1

1 1 r3
et Br3 1 1

1 1 r3
. Pour i = 0, les termes d’ordre 1 s’écrivent

−
3∑

j=1

X0j(0Dj)B(0̂ . . . ; 0̂ . . .) (5)

et pour i ∈ {1, 2}, on obtient

2∑

i=1

(−1)i−1
3∑

j=i+1

XijB1 r3 1
1 1 r3

(0, . . . ı̂ . . . , i + j
(j)

, . . . ; X0, . . . ı̂ . . .).

II b : Si i = 0, la présence de X
rj−`
j0 implique que ` = rj−1. Ainsi les termes à déterminer

sont

3∑

j=1

(−1)j+1rj
1

rj!
Xj0 (XjDX0)

rj−1B( j
(0)

, . . . ̂ . . . ; X
rj

0 , . . . ̂ . . .)

=
3∑

j=1

(−1)j+1rjXj0B( j
(0)

, . . . ̂ . . . ; X0X
rj−1
j , . . . ̂ . . .)

=
3∑

j=1

rjXj0B(0̂ . . . ; 0̂ . . . , X0X
rj−1
j

(j)

, . . .). (6)

On remarquera que les termes (5) et (6) sont égaux à

−ρ(η0 ⊗X0)B(1 2 3; X1 X2 Xr3
3 ) = 0.

Si i = 1 et j = 2, ri = rj = 1 et ` = 0. Le seul monôme contribuant par un terme de
degré 1 en η0 est donc B1 r3 1

1 1 r3
et le terme en question s’écrit

−X21B1 r3 1
1 1 r3

(0 1 + 2 3; X0 X1 Xr3
3 ).
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Finalement, si i ∈ {1, 2} et j = 3, les monômes qui engendrent des termes d’ordre 1,
sont : pour ` = 0, T 1 1 1

1 1 1 et pour ` 6= 0, B1 1 1+`
1 1+` 1 ou B1 1+` 1

1 1 1+`, selon que i = 1 ou i = 2.
On trouve par conséquent,

Xr3
31T

1 1 1
1 1 1 (0 1 + 3 2; X0 X1 X2) + Xr3

32T
1 1 1
1 1 1 (0 1 2 + 3; X0 X1 X2)

+
r3−1∑

`=1

C`
r3

1

(1 + `)!
Xr3−`

31 (X3DX1)
`B1 1 1+`

1 1+` 1 (0 1 + 3 2; X0 X1+`
1 X2)

+
r3−1∑

`=1

C`
r3

1

(1 + `)!
Xr3−`

32 (X3DX2)
`B1 1+` 1

1 1 1+`(0 1 2 + 3; X0 X1 X1+`
2 ).

Ainsi, les termes d’ordre 1 en η0 de (∂B)(0 1 2 3; X0 X1 X2 Xr3
3 ) sont (de nouveau au

facteur k près)

−X03X1,2+3X20X
r3
32 + X03X10X2,1+3X

r3
31 −X02X10X21X

r3
3,1+2 + X01X12X20X

r3
3,1+2

+X03X12X20X
r3
3,1+2 + X0,1+3X13X20X

r3
32 −X0,2+3X10X23X

r3
31 −X03X10X21X

r3
3,1+2

+X02X10X2,1+3X
r3
31 −X0,1+3X12X20X

r3
31 + X0,2+3X10X21X

r3
32 −X01X1,2+3X20X

r3
32

−X0,1+3X12X20
∑r3−1

`=1 C`
r3

Xr3−`
31 X`

32 + X0,2+3X10X21
∑r3−1

`=1 C`
r3

X`
31X

r3−`
32 .

En groupant les termes en Xr3
31, en Xr3

32 et ceux en Xr3
3,1+2, on voit que cette somme est

nulle. Il s’ensuit que (∂B)1 a b c
1 r s t = 0, si exactement deux des indices r, s, t valent 1.

(iv) r0 = r1 = r2 = r3 = 1

Dans ce cas, B est - dans (4) - évalué partout sur trois des vecteurs X0, X1, X2, X3, de
sorte que

(∂B)(0 1 2 3; X0 X1 X2 X3) = (∂T 1 1 1
1 1 1 )(0 1 2 3; X0 X1 X2 X3).

Or, cette expression est nulle, T 1 1 1
1 1 1 étant un 3-cocycle de la cohomologie des champs de

vecteurs à valeurs dans les fonctions. Ainsi, (∂B)1 a b c
1 r s t est nul, si les trois indices r, s et

t valent 1.

Revenons à présent à (3) qui s’écrit désormais

∂ρT
a b c
r s t + tr (∂U)a b c

r s t = 0

((
1
1

)
<

(
a
r

)
≤

(
b
s

)
≤

(
c
t

)
,

∑
s
=

∑
i

)
.

Le premier membre appartenant à

B1(gl(m, IR), Ea b c
r s t )⊕ Ea b c

r s t,inv ⊗ ∧1
inv(gl(m, IR), IR),

on a l’annulation séparée de ses deux termes. D’un côté, T a b c
r s t est donc dans Z0(gl(m,

IR), Ea b c
r s t ) = Ea b c

r s t,inv, de manière que T est (globalement) invariant par gl(m, IR). De
l’autre, (∂U)a b c

r s t = 0, ce qui entrâıne que ∂U = 0. En effet, vu [5, IV.2.2], le plus

petit monôme de ∂U est (∂U)1 0 3
1 2 1 : les monômes de ∂U sont sans colonne

(
0
1

)
et

renferment 0 ou 1 colonne
(

1
1

)
. La nullité de ceux ne contenant pas de colonne

(
1
1

)
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vient d’être établie. Quant aux monômes possédant (exactement) une colonne
(

1
1

)
, ils

sont également nuls, car [5, IV.2.1] implique que

(∂U)1 a b
1 r s = −∂ρU

a b
r s = 0

((
1
1

)
<

(
a
r

)
≤

(
b
s

)
,

∑
s
=

∑
i

)
.

Ainsi, U est bien un 2-cocycle de E0. Comme il est à coefficients constants, invariant et

sans colonne
(

0
1

)
et

(
1
1

)
, il est de la forme [5, V.2]

U = ∂W, où W =
∑

σ≥1 W σ
σ et W σ

σ (η; Xσ) = cσX
σ
η (cσ ∈ IR).

Nous corrigeons maintenant T de sorte que les termes tr U b c
s t dans les T 1 b c

1 s t disparais-
sent.

En parlant vaguement, on peut dire que nous essayons d’obtenir un nouveau cocycle
T ′ = T − tr U = T − tr ∂W . L’application heuristique de [5, IV.3.1] montre alors qu’il
suffit de poser T ′ = T + ∂(tr W ). Cette idée motive les définitions suivantes.

Considérons les monômes W σ
σ (σ ≥ 2), les monômes V 1 σ

1 σ = tr W σ
σ et les cochâınes

W ′ =
∑

σ≥2 W σ
σ et V =

∑
σ≥2 αV 1 σ

1 σ (remarquer que V 1 1
1 1 = tr W 1

1 est symétrique) et
posons T ′ = T +∂V . Le cocycle T ′ est à coefficients constants, invariant et sans colonne(

0
1

)
(vu [5, IV.2.2], le monôme minimum de ∂V est (∂V )1 1 2

1 1 2). Afin de prouver que

T ′ conserve toutes les propriétés de T et en acquiert de nouvelles, nous étudions les
monômes de ∂V .

Etant donné que W = W 1
1 + W ′, le lemme IV.3.1 de [5] donne

(∂V )1 b c
1 s t = −tr (∂W ′)b c

s t = −tr U b c
s t + tr (∂W 1

1 )b c
s t

((
b
s

)
,

(
c
t

)
>

(
1
1

))
.

Si l’on utilise alors (4), on trouve, mutatis mutandis,

(∂W 1
1 )(0 1; Xs

0 X t
1) = Xs

01 W 1
1 (1; X t

1)−X t
10 W 1

1 (0; Xs
0)

−
s−1∑

`=0

C`
s

t!

(t + `)!
Xs−`

01 (X0DX1)
`W 1

1 (0 + 1; X t+`
1 )

+
t−1∑

`=0

C`
t

s!

(s + `)!
X t−`

10 (X1DX0)
`W 1

1 (0 + 1; Xs+`
0 ).

Pour s = t = 1 et pour s 6= 1 et t 6= 1, cette expression est nulle. Si s = 1 et t 6= 1,

elle vaut k′X01X
t
10 (où nous avons noté k′ le coefficient c1) et est donc de degré

(
t 1
1 t

)

(t ≥ 2). Enfin, si s 6= 1 et t = 1, on obtient −k′Xs
01X10, qui est de degré

(
1 s
s 1

)

(s ≥ 2). Ainsi

(∂V )1 b c
1 s t =





(
b c
s t

)
6∈

{(
τ 1
1 τ

)
: τ ≥ 2

}
: −tr U b c

s t
(

b c
s t

)
∈

{(
τ 1
1 τ

)
: τ ≥ 2

}
: −tr U t 1

1 t + k′X00X12X
t
21
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((
1
1

)
<

(
b
s

)
≤

(
c
t

)
,

∑
s

=
∑

i

)
.

Ceci établit la proposition 2.1, car (∂V )1 1 t
1 1 t = 0 (t ≥ 2), vu que

(∂V )1 1 t
1 1 t = −∂ρV

1 t
1 t , avec V 1 t

1 t = tr W t
t ∈ Et

t,inv ⊗ ∧1
inv(gl(m, IR), IR).

3 Annulation du coefficient k

En II, nous avons prouvé que

B = T 1 1 1
1 1 1 +

∑

v≥2

αB1 v 1
1 1 v = k(X10 X21 X02 −X01 X20 X12) +

∑

v≥2

α(k X02 X10 Xv
21)

est cocycle aux ordres
(

1 a b c
1 r s t

)
. Dans cette section, nous montrerons que k = 0.

Lemme 3.1 Soit V α β
ρ σ

((
0
2

)
<

(
α
ρ

)
<

(
β
σ

)
,

∑
s =

∑
i

)
un monôme à coeffi-

cients constants et invariant et soit V = V α β
ρ σ + V β α

σ ρ la cochâıne obtenue par antisymé-
trisation de V α β

ρ σ .
Le monôme minimum de ∂V est,

(i) si ρ = 1 et σ ≥ 2

(i1) et si
(

α β
ρ σ

)
=

(
2 1
1 2

)
,

(∂V )0 2 2
2 1 1 = X01 (X0DX1)V

2 1
1 2 (2 1; X2 X2

1 )−X02 (X0DX2)V
2 1
1 2 (1 2; X1 X2

2 ).

(i2) et si
(

α β
ρ σ

)
6=

(
2 1
1 2

)
,

(∂V )0 α β+1
2 1 σ−1 = − 2

σ
X02 (X0DX2)V

α β
1 σ (1 2; X1 Xσ

2 ).

(ii) si ρ ≥ 2,

(∂V )0 α+1 β
2 ρ−1 σ = −2

ρ
X01 (X0DX1)V

α β
ρ σ (1 2; Xρ

1 Xσ
2 ).

Examinons les contributions de type I au bord. Si l’on crée
(

0
1

)
, on obtient la

contribution nulle. Pour
(

0
2

)
, le degré minimum est

(
0 α + 1 β + 1
2 ρ σ

)
.
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La création d’une des colonnes
(

0
3

)
,

(
0
4

)
, . . . enfin, conduit à un degré dont la première

colonne est supérieure à
(

0
2

)
.

En II a et II b, la colonne
(

0
1

)
ne peut être créée. Pour

(
1
1

)
, ` = 1 et la

correction est
(

0
0

)
. On obtient donc les degrés

(
1 α β
1 ρ σ

)
,

(
1 β α
1 σ ρ

)
,

(
β 1 α
σ 1 ρ

)

et
(

α 1 β
ρ 1 σ

)
, mais, vu [5, IV.2.2], les monômes correspondants de ∂V sont nuls.

Prenons
(

0
2

)
(en II a seulement) : ` = 1, la correction vaut

(
+1
−1

)
et les degrés

engendrés sont
(

0 α + 1 β
2 ρ− 1 σ

)
,

(
0 β α + 1
2 σ ρ− 1

)
,

(
β 0 α + 1
σ 2 ρ− 1

)

(à condition que ρ ≥ 2) et
(

0 β + 1 α
2 σ − 1 ρ

)
,

(
0 α β + 1
2 ρ σ − 1

)
,

(
α 0 β + 1
ρ 2 σ − 1

)

(à condition que σ ≥ 2). Finalement, si l’on crée (en II a ou II b) une colonne supérieure

à
(

0
2

)
, la première colonne du degré est à son tour supérieure à

(
0
2

)
.

D’où le lemme (on notera que l’écart entre
(

α
1

)
et

(
β
σ

)
vaut 1 i.e. que

(
α
1

)
et

(
β
σ

)
sont deux colonnes consécutives (nous supposons que les colonnes sont rangées

par ordre croissant) si et seulement si
(

α β
1 σ

)
=

(
2 1
1 2

)
).

Proposition 3.2 Tout 3-cocycle de E0 (E0 = E0
Ω, m ≥ 3) est cohomologue à un

cocycle T à coefficients constants, invariant, sans colonne
(

0
1

)
, dont les monômes à

une ou plusieurs colonnes
(

1
1

)
sont nuls, sauf les T 1 t 1

1 1 t (t ≥ 2), qui valent

T 1 t 1
1 1 t = k′X00X12X

t
21 (k′ ∈ IR)

et dont le monôme T 0 2 2
2 1 1 est nul.

Soit un 3-cocycle arbitraire de E0 et soit T le cocycle cohomologue fourni par 2.1.
Tout d’abord, corrigeons T de sorte que T 0 2 2

2 1 1 = 0. Vu l’antisymétrie de ce monôme
en ses deux derniers arguments, on a

T 0 2 2
2 1 1 = A(X2

01 X12 X22 −X2
02 X11 X21) (A ∈ IR)

[5, Lemme IV.4.2]. Or, 3.1 permet d’affirmer que le monôme minimum du bord de
V = V 2 1

1 2 + V 1 2
2 1 , où V 2 1

1 2 = αX11X21X22 + βX12X
2
21, avec α, β ∈ IR, est donné par

(∂V )0 2 2
2 1 1 = α(X2

01 X12 X22 −X2
02 X11 X21).
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En prenant α = A et en posant T ′ = T − ∂V , on définit donc un nouveau 3-cocycle
(nous le noterons T dans la suite) ayant les propriétés de l’ancien, mais vérifiant de plus

T 0 2 2
2 1 1 = 0.

L’information “k = 0” peut alors être extraite de l’équation

(∂T )2 2 2 0
1 1 1 3 = 0. (7)

Monômes contribuant :

I :
(

0
3

) (
1 1 1
1 1 1

)

IIa :
(

2
1

)
` = 1
k = 2 ≤ b0

(
+1
0

) (
3 2 0
1 1 3

) (
3 2 0
1 1 3

)
/

(
2
1

) (
3 2 0
1 1 3

)
/

(
2
1

)
/

IIb :
(

2
1

)
` = 1
k = 1 ≤ b0

(
+1
0

) (
3 2 0
1 1 3

) (
3 2 0
1 1 3

) (
1 2 2
3 1 1

)

` = 2
k = 0

(
0
−1

)
/ /

(
0 2 2
2 1 1

)
= 0

(
2
1

) (
3 2 0
1 1 3

) (
1 2 2
3 1 1

)

/

(
0 2 2
2 1 1

)
= 0

(
2
1

) (
1 2 2
3 1 1

)

(
0 2 2
2 1 1

)
= 0

Ecriture de (7) (nous posons T ′ = T 2 0 3
1 3 1 et T ′′ = T 2 2 1

1 1 3 ) :

−6kX30X31X32(X02 X10 X21 −X01 X12 X20) (`1)

−1
2

X01(0D1)
2T ′(2 3 1; X2 X3

3 X1) (`2)

+1
2

X02(0D2)
2T ′(1 3 2; X1 X3

3 X2) (`3)

−1
2

X12(1D2)
2T ′(0 3 2; X0 X3

3 X2) (`4)

+X10(0D1)(X0DX1)T
′(2 3 1; X2 X3

3 X1) (`5)

(8)
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−X20(0D2)(X0DX2)T
′(1 3 2; X1 X3

3 X2) (`6)

+X21(1D2)(X1DX2)T
′(0 3 2; X0 X3

3 X2) (`7)

+X30(0D3)(X0DX3)T
′′(1 2 3; X1 X2 X3

3 ) (`8)

−X31(1D3)(X1DX3)T
′′(0 2 3; X0 X2 X3

3 ) (`9)

+X32(2D3)(X2DX3)T
′′(0 1 3; X0 X1 X3

3 ) = 0. (`10)

(9)

Or,

T ′(1 3 2; X1 X3
3 X2)

= AX11X21X
3
32 + BX11X22X31X

2
32 + CX12X21X31X

2
32 + DX12X22X

2
31X32

(A,B, C, D ∈ IR) et, vu l’antisymétrie de T ′′ en ses deux premiers arguments,

T ′′(0 2 3; X0 X2 X3
3 ) = E(X00 X20 X2

32 X33 −X02 X22 X2
30 X33)

+F (X00 X23 X30 X2
32 −X03 X22 X2

30 X32)

+G(X02 X23 X2
30 X32 −X03 X20 X30 X2

32) (10)

(E,F,G ∈ IR). Notons également que `2 (`5, `10) [`4 (`7, `8)] est l’opposé de `3 (`6, `9)
[`3 (`6, `9)], où l’on a échangé 1 et 2 [0 et 1]. Ceci entrâıne que le coefficient dans
`2 (`5, `10) [`4 (`7, `8)] d’un monôme (au sens ordinaire du terme) M(0, 1, 2, 3) en les
évaluations, est l’opposé du coefficient dans `3 (`6, `9) [`3 (`6, `9)] de M(0, 2, 1, 3)
[M(1, 0, 2, 3)]. Pour déterminer le coefficient d’un monôme M donné dans une ligne
`2 − `10 donnée, il est de plus intéressant de remarquer que seulement certains des
termes t′1− t′4 de T ′ et t′′1− t′′6 de T ′′ peuvent contribuer à M .

Coefficient de X01X12X20X30X31X32 dans (9) :

`1 : 6k
`2 : opposé du coefficient de X02X10X21X30X31X32 dans `3; t′3 : −2C
`4 : comme en `2 : −2C
`6 : t′3 : −2C

`8 : opposé du coefficient de X02X10X21X30X31X32 dans `9; t′′5 : 2G
`9 : t′′6 : 2G
`10 : comme en `8 : 2G

D’où [5, IV.4.2 (i)] :
k − C + G = 0. (11)

Coefficient de X01X12X21X
2
30X32 dans (9) :

`2 : opposé du coefficient de X02X12X21X
2
30X31 dans `3 : −C

`4 : opposé du coefficient de X02X10X20X
2
31X32 dans `3 : −D

`7 : opposé du coefficient de X02X10X20X
2
31X32 dans `6 : +D

`8 : opposé du coefficient de X02X10X20X
2
31X32 dans `9 : /

`10 : opposé du coefficient de X02X12X21X
2
30X31 dans `9 : G
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Finalement, on a donc
−C + G = 0. (12)

Vu (11) et (12), k = 0.

4 Etude des monômes à une ou plusieurs colonnes (02)

Lemme 4.1 Soit un degré
(

0 b c
2 s t

) ((
0
2

)
<

(
b
s

)
≤

(
c
t

)
,

∑
s =

∑
i

)
.

(i) Si s = 1 et c ≥ 1, le monôme minimum du bord de la cochâıne V = V b c−1
1 t+1 +V c−1 b

t+1 1

(V b c−1
1 t+1 : monôme invariant à coefficients constants) a le degré considéré et

(i1) si
(

0 b c
2 1 t

)
=

(
0 2 2
2 1 1

)
, il est donné par

(∂V )0 2 2
2 1 1 = X01 (X0DX1)V

2 1
1 2 (2 1; X2 X2

1 )−X02 (X0DX2)V
2 1
1 2 (1 2; X1 X2

2 ),

(i2) sinon, il vaut

(∂V )0 b c
2 1 t = − 2

t + 1
X02 (X0DX2)V

b c−1
1 t+1 (1 2; X1 X t+1

2 ).

(ii) Si l’écart entre
(

b
s

)
et

(
c
t

)
est au moins égal à 2 et si b ≥ 1, V = V b−1 c

s+1 t +

V c b−1
t s+1 (V b−1 c

s+1 t : monôme invariant à coefficients constants) est une cochâıne ayant sa
plus petite contribution à l’ordre considéré et on a

(∂V )0 b c
2 s t = − 2

s + 1
X01 (X0DX1)V

b−1 c
s+1 t (1 2; Xs+1

1 X t
2).

Simple transcription de 3.1.

Lemme 4.2 Soit t ∈ {3, 4, . . .}. Posons pour i ∈ {1, . . . , t− 1},

V2t−i i
i 2t−i = (−1)i+1βtX

i
12X

2t−i
21 (βt ∈ IR),

puis

Vt =
t−1∑

i=1

(
V2t−i i

i 2t−i + V i 2t−i
2t−i i

)
.

Alors le monôme minimum du bord de la cochâıne Vt est de degré
(

0 t + 1 t
2 t− 1 t

)
et il

est donné par
(∂Vt)

0 t+1 t
2 t−1 t = (−1)t+12βtX01X02X

t−1
12 X t

21.

Notons d’abord que 3.1 montre que le plus petit monôme du bord de la cochâıne
Vt,i = V2t−i i

i 2t−i + V i 2t−i
2t−i i (i ∈ {1, . . . , t− 1}) est

(∂Vt,1)
0 2t−1 2
2 1 2t−2 resp. (∂Vt,i)

0 2t−i+1 i
2 i−1 2t−i (i ∈ {2, . . . , t− 1}).
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Il s’ensuit évidemment que le monôme minimum de ∂Vt est de degré supérieur ou égal

à
(

0 2t− 1 2
2 1 2t− 2

)
.

L’objectif étant d’établir que ce monôme minimum est (∂Vt)
0 t+1 t
2 t−1 t, déterminons toutes

les contributions des Vt,i qui sont d’ordre

(
0 b c
2 s t

)
∈

[(
0 2t− 1 2
2 1 2t− 2

)
,

(
0 t + 1 t
2 t− 1 t

)]
.

Les contributions des Vt,i ont été trouvées dans la preuve du lemme 3.1. Les seules
(engendrées par Vt,i) dont le degré appartient à l’intervalle considéré, sont celles d’ordre

(
0 2t− i + 1 i
2 i− 1 2t− i

)
(i ∈ {2, . . . , t− 1})

et (
0 2t− i i + 1
2 i 2t− i− 1

)
(i ∈ {1, . . . , t− 1}),

obtenues par création de
(

0
2

)
en II a . Ainsi, les contributions cherchées sont toutes

d’un des degrés (
0 2t− i i + 1
2 i 2t− i− 1

)
(i ∈ {1, . . . , t− 1}).

On remarquera qu’il existe deux contributions à chacun de ces ordres, sauf pour i = t−1.
Ces contributions se compensent toujours. En effet,

(∂Vt)
0 2t−i i+1
2 i 2t−i−1

= − 2

i + 1
X01 (X0DX1)V2t−i−1 i+1

i+1 2t−i−1(1 2; X i+1
1 X2t−i−1

2 )

− 2

2t− i
X02 (X0DX2)V2t−i i

i 2t−i(1 2; X i
1 X2t−i

2 )

= (−1)i+32βtX01X02X
i
12X

2t−i−1
21 + (−1)i+22βtX01X02X

i
12X

2t−i−1
21 ,

où le premier terme est à omettre, si i = t − 1. Cela signifie évidemment que le plus
petit monôme de ∂Vt est

(∂Vt)
0 t+1 t
2 t−1 t = (−1)t+12βtX01X02X

t−1
12 X t

21.

Remarque 4.3 On ne peut pas prolonger la cochâıne Vt, châıne des cochâınes
élémentaires Vt,1, . . . ,Vt,t−1, par un maillon supplémentaire, de manière que ce prolonge-

ment vérifie l’équation de cocycle également à l’ordre
(

0 t + 1 t
2 t− 1 t

)
. Cette impossibilité

et celle de construire un prolongement-cocycle qui en découle, sont dues à l’absence d’un

monôme dont l’antisymétrisé ait sa plus petite contribution à l’ordre
(

0 t + 1 t
2 t− 1 t

)
.
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Proposition 4.4 Tout 3-cocycle de E0 (E0 = E0
Ω, m ≥ 3) est cohomologue à un

cocycle T à coefficients constants, invariant et sans colonnes
(

0
1

)
,

(
1
1

)
et

(
0
2

)
,

sauf que ses monômes T 1 t 1
1 1 t (t ≥ 2) ne sont pas nécessairement nuls, mais ont la forme

T 1 t 1
1 1 t = k′X00X12X

t
21 (k′ ∈ IR).

Considérons un 3-cocycle quelconque de E0 et notons T le cocycle cohomologue dont
l’existence est assurée par la proposition 3.2. Il suffit de prouver que T est (à des
corrections par des bords (qui conservent les propriétés déjà acquises) près) sans colonne(

0
2

)
.

Il est clair que
T 0 0 t+4

2 2 t = 0 (t ≥ 1)

(car ces monômes sont symétriques et antisymétriques en leurs deux premiers argu-
ments).

Le reste de la démonstration est une récurrence sur le degré. De manière plus précise,

nous prouverons qu’un quelconque des T 0 b c
2 s t

((
0
2

)
<

(
b
s

)
≤

(
c
t

)
,

∑
s =

∑
i

)
est nul

(modulo des bords de cochâınes invariantes et à coefficients constants, ayant leur plus
petite contribution à l’ordre étudié), si les monômes inférieurs de même type le sont.

(1) s = t = 1

Alors T 0 b c
2 s t = T 0 2 2

2 1 1 , qui est bien nul, vu 3.2.

(2) s = 1, t ≥ 2

Les hypothèses sur le monôme étudié T 0 b c
2 s t signifient que T 0 b c

2 s t = T 0 b c
2 1 t , avec b ≥

2, c ≥ 2, t ≥ 2 et
∑

s =
∑

i (et impliquent que
(

b
1

)
<

(
c
t

)
).

Equation :
(∂T )0 0 b c+1

2 2 1 t−1 = 0. (13)

Monômes contribuant :

I :
(

0
2

) (
0 b− 1 c
2 1 t− 1

)
= 0

IIa :
(

0
2

)
` = 1
k = 0

( −1
+1

)
/

(
b− 1 0 c + 1

2 2 t− 1

) (
c 0 b
t 2 1

)

(
0
2

) (
b− 1 0 c + 1

2 2 t− 1

) (
c 0 b
t 2 1

)

(
b
1

) (
. 0 0
. 2 2

)
= 0

IIb :
(

b
1

) (
. 0 0
. 2 2

)
= 0
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Ecriture explicite de (13) :

−X02 (X0DX2)T
0 b−1 c+1
2 2 t−1(1 2 3; X2

1 X2
2 X t−1

3 )

−2
t

X03 (X0DX3)T
0 b c
2 1 t (1 2 3; X2

1 X2 X t
3)

+X12 (X1DX2)T
0 b−1 c+1
2 2 t−1(0 2 3; X2

0 X2
2 X t−1

3 )

+2
t

X13 (X1DX3)T
0 b c
2 1 t (0 2 3; X2

0 X2 X t
3) = 0.

(14)

Corrigeons T , avant d’exploiter (14), par les bords des cochâınes (à coefficients cons-

tants et invariantes) ayant leur plus petite contribution à l’ordre
(

0 b c
2 1 t

)
. Vu 4.1, le

monôme minimum du bord de la cochâıne

V1 = V b c−1
1 t+1 + V c−1 b

t+1 1 ,

où
V b c−1

1 t+1 = αX11X
b−1
21 X t−b+2

22 + βX12X
b
21X

t−b+1
22 (α, β ∈ IR),

est donné par

(∂V1)
0 b c
2 1 t

= − 2

t + 1
(b− 1)αX01X02X11X

b−2
21 X t−b+2

22 − 2

t + 1
(t− b + 2)αX2

02X11X
b−1
21 X t−b+1

22

− 2

t + 1
bβX01X02X12X

b−1
21 X t−b+1

22 − 2

t + 1
(t− b + 1)βX2

02X12X
b
21X

t−b
22 . (15)

De plus, si l’écart entre
(

b
1

)
et

(
c
t

)
vaut au moins 2 i.e. si

(
0 b c
2 1 t

)
6=

(
0 3 2
2 1 2

)
,

la cochâıne
V2 = V b−1 c

2 t + V c b−1
t 2 ,

avec

V b−1 c
2 t = γX2

11X
b−3
21 X t−b+3

22 + δX11X12X
b−2
21 X t−b+2

22 + εX2
12 Xb−1

21 X t−b+1
22 (γ, δ, ε ∈ IR)

(où le premier terme est à omettre, si b = 2), a sa plus petite contribution au degré
examiné et on a

(∂V2)
0 b c
2 1 t

= −2γX2
01X11X

b−3
21 X t−b+3

22 − δX2
01X12X

b−2
21 X t−b+2

22

−δX01X02X11X
b−2
21 X t−b+2

22 − 2εX01X02X12X
b−1
21 X t−b+1

22 . (16)

(2.1)
(

0 b c
2 1 t

)
=

(
0 3 2
2 1 2

)

Dans ce cas, les monômes de T dans (14) sont les mêmes (à une permutation près)
et la cochâıne V1 = V 3 1

1 3 + V 1 3
3 1 est la seule qui convient. Etant donné que

T 0 3 2
2 1 2 = AX2

01X11X
2
22 + BX2

01X12X21X22 + CX01X02X11X21X22

+DX01X02X12X
2
21 + EX2

02X11X
2
21 (A,B,C,D,E ∈ IR)
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et que

(∂V1)
0 3 2
2 1 2 = −4

3
αX01X02X11X21X22 − 2βX01X02X12X

2
21 −

2

3
αX2

02X11X
2
21,

nous prenons α = −3
4

C et β = −1
2

D et nous posons

T ′ = T − ∂V1,

de manière à définir un cocycle cohomologue (que nous rebaptisons T ) tel que

T 0 3 2
2 1 2 (1 2 3; X2

1 X2 X2
3 )

= AX2
12X22X

2
33 + BX2

12X23X32X33 + CX2
13X22X

2
32 (A,B, C ∈ IR).

Réécrivons à présent (14) sous la forme

X02 (X0DX2)T
0 3 2
2 1 2 (1 3 2; X2

1 X3 X2
2 )−X03 (X0DX3)T

0 3 2
2 1 2 (1 2 3; X2

1 X2 X2
3 )

−X12 (X1DX2)T
0 3 2
2 1 2 (0 3 2; X2

0 X3 X2
2 ) + X13 (X1DX3)T

0 3 2
2 1 2 (0 2 3; X2

0 X2 X2
3 ) = 0

et observons que le 1er (3ème, 4ème) terme est - éventuellement au signe près - le 2ème
terme, où l’on a échangé 2 et 3 (0 et 1 ainsi que 2 et 3, 0 et 1).

Coefficient de X2
02X

2
13X22X33 : 4A

Coefficient de X2
02X

2
13X23X32 : 2B

Coefficient de X02X03X
2
12X23X33 : 2C

Vu [5, IV.4.2], il s’ensuit que A = B = C = 0.

(2.2)
(

0 b c
2 1 t

)
6=

(
0 3 2
2 1 2

)

Ici V1 et V2 conviennent. La comparaison de (15), (16) et de l’égalité

T 0 b c
2 1 t = AX2

01X11X
b−3
21 X t−b+3

22 + BX2
01X12X

b−2
21 X t−b+2

22

+CX01X02X11X
b−2
21 X t−b+2

22 + DX01X02X12X
b−1
21 X t−b+1

22

+EX2
02X11X

b−1
21 X t−b+1

22 + FX2
02X12X

b
21X

t−b
22 (A,B,C,D,E, F ∈ IR)

(où le premier et le dernier termes sont à négliger, si b = 2 resp. c = 2), nous conduit à
poser

T ′ = T + ∂V1 + ∂V2

et à écrire le système





2γ = A (à condition que b ≥ 3)
δ = B

2
t+1

(b− 1)α + δ = C

2
t+1

bβ + 2ε = D

2
t+1

(t− b + 2)α = E

2
t+1

(t− b + 1)β = F (à condition que c ≥ 3).

19



On constate qu’il est possible d’annuler les termes de coefficient A (s’il existe), B, C, F
(s’il existe) et D :

T 0 b c
2 1 t (1 2 3; X2

1 X2 X t
3) = AX2

13X22X
b−1
32 X t−b+1

33 (A ∈ IR).

Afin d’expliciter (14), nous posons

T 0 b−1 c+1
2 2 t−1 (1 2 3; X2

1 X2
2 X t−1

3 ) = X2
12T

(1) + X12X13T
(2) + X2

13T
(3),

où le premier terme manque, si b = 2, où T (i) (i ∈ {1, 2, 3}) est indépendant de X1 (et
de η1) et où

T (3) = T
(3) b−1 c−1

2 t−1(2 3; X2
2 X t−1

3 )

= BX2
22X

b−3
32 X t−b+2

33 + CX22X23X
b−2
32 X t−b+1

33 +DX2
23X

b−1
32 X t−b

33 (B, C,D ∈ IR),

le premier et le dernier termes disparaissant, si b = 2 resp. c = 2. Finalement, (14)
devient

−X02(X
2
12 (X0DX2)T

(1) + X12X13 (X0DX2)T
(2) + X2

13 (X0DX2)T
(3))

−2

t
(b− 1)AX02X03X

2
13X22X

b−2
32 X t−b+1

33

+X12(X
2
02 (X1DX2)T

(1) + X02X03 (X1DX2)T
(2) + X2

03 (X1DX2)T
(3))

+
2

t
(b− 1)AX2

03X12X13X22X
b−2
32 X t−b+1

33 = 0.

Coefficient de X02X03X
2
13X22X

b−2
32 X t−b+1

33 : −C − 2
t
(b− 1)A = 0

Coefficient de X2
02X

2
13X23X

b−2
32 X t−b+1

33 : −C = 0

(3) s ≥ 2

Il s’agit donc de prouver que T 0 b c
2 s t , avec

(
0
2

)
<

(
b
s

)
≤

(
c
t

)
,

∑
s =

∑
i et s ≥ 2

(ce qui entrâıne que b + s ≤ c + t et s + t + 2 = b + c, donc que c ≥ 3), est nul.

Equation :
(∂T )0 0 b+1 c

2 2 s−1 t = 0. (17)

Monômes contribuant :

I :

(
0
2

) (
0 b c− 1
2 s− 1 t

)
= 0

IIa :

(
0
2

)
` = 1
k = 0

( −1
+1

)
/

(
b 0 c
s 2 t

) (
c− 1 0 b + 1
t + 1 2 s− 1

)
= 0

(
0
2

) (
b 0 c
s 2 t

) (
c− 1 0 b + 1
t + 1 2 s− 1

)
= 0

(
b + 1
s− 1

) (
. 0 0
. 2 2

)
= 0

IIb :

(
b + 1
s− 1

) (
. 0 0
. 2 2

)
= 0
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Ecriture explicite de (17) :

X02 (X0DX2)T
0 b c
2 s t (1 2 3; X2

1 Xs
2 X t

3) = X12 (X1DX2)T
0 b c
2 s t (0 2 3; X2

0 Xs
2 X t

3). (18)

Cette égalité implique que (X0DX2)T
0 b c
2 s t (2 3; X2

1 Xs
2 X t

3) est divisible par X12, donc
que

T 0 b c
2 s t (2 3; X2

1 Xs
2 X t

3) = X12T
′0 b−1 c
1 s t (2 3; X1 Xs

2 X t
3). (19)

En substituant dans (18), on obtient

X02X12 (X0DX2)T
′0 b−1 c
1 s t (2 3; X1 Xs

2 X t
3) = X02X12 (X1DX2)T

′0 b−1 c
1 s t (2 3; X0 Xs

2 X t
3),

de sorte que

T ′0 b−1 c
1 s t (2 3; X1 Xs

2 X t
3) = (X1DX2)T

′′b−1 c
s+1 t (2 3; Xs+1

2 X t
3)

Finalement,

T 0 b c
2 s t (2 3; X2

1 Xs
2 X t

3) = X12 (X1DX2)T
′′b−1 c
s+1 t (2 3; Xs+1

2 X t
3) (20)

et l’équation (18) est vidée.

Le lemme 4.1 motive la discussion suivante :

(3.1) b = 0

Alors T 0 b c
2 s t = T 0 0 c

2 s t = 0, vu (19).

(3.2) b ≥ 1 et l’écart entre
(

b
s

)
et

(
c
t

)
est nul

Dans ce cas, on a T 0 b c
2 s t = T 0 t+1 t+1

2 t t (t ≥ 2) et, le monôme étant divisible par X12, il
est de la forme

T 0 t+1 t+1
2 t t = X2

12

t−1∑

i=0

AiX
i
22X

t−i
23 X t−i−1

32 X i+1
33 + X12X13

t∑

i=0

BiX
i
22X

t−i
23 X t−i

32 X i
33.

Or, cette expression est nulle, en vertu de son antisymétrie en ses deux derniers argu-
ments.

(3.3) b ≥ 1 et l’écart entre
(

b
s

)
et

(
c
t

)
vaut un

Ici le monôme à annuler est T 0 b c
2 s t = T 0 t+1 t

2 t−1 t (t ≥ 3).

Equation :
(∂T )0 0 t+1 t+1

2 2 t−1 t−1 = 0. (21)
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Monômes contribuant :

I :
(

0
2

) (
0 t t
2 t− 1 t− 1

)
= 0

IIa :
(

0
2

)
` = 1
k = 0

( −1
+1

)
/

(
t 0 t + 1
t 2 t− 1

) (
t 0 t + 1
t 2 t− 1

)

(
0
2

) (
t 0 t + 1
t 2 t− 1

) (
t 0 t + 1
t 2 t− 1

)

(
t + 1
t− 1

) (
. 0 0
. 2 2

)
= 0

IIb :
(

t + 1
t− 1

) (
. 0 0
. 2 2

)
= 0

Ecriture explicite de (21) :

X02 (X0DX2)T
0 t+1 t
2 t−1 t (1 3 2; X2

1X
t−1
3 X t

2)−X03 (X0DX3)T
0 t+1 t
2 t−1 t (1 2 3; X2

1X
t−1
2 X t

3)

−X12 (X1DX2)T
0 t+1 t
2 t−1 t (0 3 2; X2

0X
t−1
3 X t

2) + X13 (X1DX3)T
0 t+1 t
2 t−1 t (0 2 3; X2

0X
t−1
2 X t

3) = 0.

Comme (19) entrâıne que

T 0 t+1 t
2 t−1 t (1 2 3; X2

1 X t−1
2 X t

3)

= X2
12T

(1) t−1 t
t−1 t(2 3; X t−1

2 X t
3) + X12X13T

(2) t t−1
t−1 t (2 3; X t−1

2 X t
3)

= X2
12

t−1∑

i=0

AiX
i
22X

t−i−1
23 X t−i−1

32 X i+1
33 + X12X13

t−1∑

i=0

BiX
i
22X

t−i−1
23 X t−i

32 X i
33,

la relation (21) devient finalement (avec des notations simplifiées, évidentes)

X02 (X0DX2)(X
2
13T

(1)(3 2) + X12X13T
(2)(3 2))

−X03 (X0DX3)(X
2
12T

(1)(2 3) + X12X13T
(2)(2 3))

−X12 (X1DX2)(X
2
03T

(1)(3 2) + X02X03T
(2)(3 2))

+X13 (X1DX3)(X
2
02T

(1)(2 3) + X02X03T
(2)(2 3)) = 0.

Les termes

X2
02X

2
13DX22T

(1)(3 2) = X2
02X

2
13

t−1∑

i=0

Ai(i + 1)X i
22X

t−i−1
23 X t−i−1

32 X i
33

ne pouvant être compensés que par des termes de

X2
02X

2
13DX33T

(1)(2 3) = X2
02X

2
13

t−1∑

i=0

Ai(i + 1)X i
22X

t−i−1
23 X t−i−1

32 X i
33,

on a T (1) = 0. Prenons maintenant les termes

X2
02X12X13DX22T

(2)(3 2) = X2
02X12X13

t−1∑

i=0

Bi iX i−1
22 X t−i

23 X t−i−1
32 X i

33

22



et remarquons qu’ils ne sont pas compensables :

T 0 t+1 t
2 t−1 t (0 1 2; X2

0 X t−1
1 X t

2) = B0X01X02X
t−1
12 X t

21

(on vérifie aisément que cette expression est solution de l’équation (21)). Or, si on pose
T ′ = T − ∂Vt, où Vt est la cochâıne - châıne de cochâınes élémentaires - définie en 4.2
et si on choisit βt = (−1)t+1 B0

2
, on a affaire à un cocycle cohomologue (notons-le de

nouveau T ) tel que
T 0 t+1 t

2 t−1 t = 0.

(3.4) b ≥ 1 et l’écart entre
(

b
s

)
et

(
c
t

)
vaut au moins deux

Le lemme 4.1 stipule que le monôme minimum du bord de la cochâıne V = V b−1 c
s+1 t +

V c b−1
t s+1 est donné par

(∂V )0 b c
2 s t(2 3; X2

1 Xs
2 X t

3) = X12 (X1DX2)
[
− 2

s + 1
V b−1 c

s+1 t (2 3; Xs+1
2 X t

3)
]
. (22)

La comparaison de (20) et (22) permet alors de voir que

T 0 b c
2 s t = 0,

quitte à corriger par un bord.

Remarques 4.5 (i) Observons que pour annuler T 0 t+1 2
2 1 t (t ≥ 3), on ajoute notam-

ment ∂V1, avec V1 = V t+1 1
1 t+1 + V 1 t+1

t+1 1 et V t+1 1
1 t+1 = αX11X

t
21X22 + βX12X

t+1
21 , la valeur

de β étant arbitraire. Cette “anomalie” est due au fait que les cochâınes Vt,1 et Vt,2

obtenues par antisymétrisation de V t+1 1
1 t+1 = βX12X

t+1
21 resp. V t 2

2 t = εX2
12X

t
21, ont des

plus petites contributions du même type :

(∂Vt,1)
0 t+1 2
2 1 t = −2βX01X02X12X

t
21 et (∂Vt,2)

0 t+1 2
2 1 t = −2εX01X02X12X

t
21.

(ii) Voici le résumé - utile plus tard - des corrections par des bords effectuées lors de

l’étude des monômes T 0 µ ν
2 ρ σ

((
0
2

)
<

(
µ
ρ

)
≤

(
ν
σ

)
,

∑
s =

∑
i

)
.

(1) Annulation de T 0 2 2
2 1 1 : soustraction de ∂V, V = V 2 1

1 2 +V 1 2
2 1 , V 2 1

1 2 = αX11X21X22+
βX12X

2
21, β quelconque.

(2) Annulation de T 0 3 2
2 1 2 : soustraction de ∂V1, V1 = V 3 1

1 3 + V 1 3
3 1 , V 3 1

1 3 = αX11X
2
21

X22 + βX12X
3
21.

(3) Annulation de T 0 µ ν
2 1 σ

(
µ, ν, σ ≥ 2,

∑
s =

∑
i,

(
0 µ ν
2 1 σ

)
6=

(
0 3 2
2 1 2

))
: addi-

tion de ∂V1 et ∂V2, V1 = V µ ν−1
1 σ+1 + V ν−1 µ

σ+1 1 , V2 = V µ−1 ν
2 σ + V ν µ−1

σ 2 , V µ ν−1
1 σ+1 = αX11X

µ−1
21

Xν−1
22 + βX12X

µ
21X

ν−2
22 , V µ−1 ν

2 σ = γX2
11X

µ−3
21 Xν

22 + δX11X12X
µ−2
21 Xν−1

22 + εX2
12X

µ−1
21 Xν−2

22

(premier terme à omettre, si µ = 2), β arbitraire si ν = 2.
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(4) Annulation de T 0 µ ν
2 ρ σ (

(
0
2

)
<

(
µ
ρ

)
≤

(
ν
σ

)
,

∑
s =

∑
i, µ ≥ 1, ρ ≥ 2, écart

entre
(

µ
ρ

)
et

(
ν
σ

)
supérieur ou égal à 2) : soustraction de ∂V , V = V µ−1 ν

ρ+1 σ + V ν µ−1
σ ρ+1 ,

V µ−1 ν
ρ+1 σ = −ρ+1

2
T ′′µ−1 ν

ρ+1 σ .

(5) Annulation de T 0 σ+1 σ
2 σ−1 σ (σ ≥ 3) : soustraction de ∂Vσ, Vσ =

∑σ−1
i=1 (V2σ−i i

i 2σ−i +
V i 2σ−i

2σ−i i ), V2σ−i i
i 2σ−i = (−1)i+1βσX

i
12X

2σ−i
21 .

5 Annulation du coefficient k′

Proposition 5.1 Tout T ∈ ∧3(E0, N)loc ∩ ker ∂ (E0 = E0
Ω, N = C∞(Ω), m ≥

3) est cohomologue à un cocycle à coefficients constants, invariant et sans colonnes(
0
1

)
,

(
1
1

)
et

(
0
2

)
. De plus, le monôme de degré

(
2 2 1
1 1 3

)
de ce cycle cohomologue

est nul.

Renommons T le cocycle obtenu en 4.4. Il suffit alors de démontrer que k′ = 0 et
que T 2 2 1

1 1 3 = 0.

Equation :
(∂T )0 2 2 2

2 1 1 2 = 0. (23)

Monômes contribuant :

I :

(
0
2

) (
1 2 1
1 1 2

) (
2 1 1
1 1 2

)

IIa :

(
0
2

)
` = 1
k = 0

(
−1
+1

) (
1 2 2
2 1 2

) (
1 2 2
2 1 2

) (
1 2 2
3 1 1

)

Ecriture explicite de (23) :

2k′X01X03X11X23X
2
32 − 2k′X02X03X13X22X

2
31

+X01 (X0DX1)T
2 1 2
1 2 2 (2 1 3; X2 X2

1 X2
3 )

−X02 (X0DX2)T
2 1 2
1 2 2 (1 2 3; X1 X2

2 X2
3 )

−2

3
X03 (X0DX3)T

2 2 1
1 1 3 (1 2 3; X1 X2 X3

3 ) = 0 (24)

(noter que la 2ème ligne est - au signe près - la 3ème où l’on a échangé 1 et 2).

Posons

T 2 1 2
1 2 2 (1 2 3; X1 X2

2 X2
3 ) = X2

21V
1 + X21X22V

2 + X21X23V
3 + X22X23V

4 + X2
23V

5

et (cf. (10))

T 2 2 1
1 1 3 (1 2 3; X1 X2 X3

3 ) = X2
31X32W

1 + X2
31X33W

2 + X31X
2
32W

3 + X2
32X33W

4.
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Les termes de (24) en X2
02 et ceux en X2

03 n’étant pas compensables, V 2 = V 4 = W 2 =
W 4 = 0, de sorte que

T 2 1 2
1 2 2 = v1

1X12X
2
21X

2
33 + v1

2X13X
2
21X32X33

+v3
1X11X21X23X32X33 + v3

2X12X21X23X31X33 + v3
3X13X21X23X31X32

+v5
1X11X

2
23X31X32 + v5

2X12X
2
23X

2
31

et

T 2 2 1
1 1 3 = F (X11X23X31X

2
32 −X13X22X

2
31X32) + G(X12X23X

2
31X32 −X13X21X31X

2
32).

Déterminons les coefficients des monômes M(0, 1, 2, 3) suivants (entre parenthèses, nous
indiquons les monômes M(0, 2, 1, 3)) :

Coefficient de X01X03X12X21X32X33 (X02X03X12X21X31X33) :

v3
2 = 0.

Coefficient de X01X03X12X22X31X33 (X02X03X11X21X32X33) :

v3
1 = 0.

Coefficient de X01X02X13X21X32X33 (X01X02X12X23X31X33) :

−2v1
2 = 0.

Coefficient de X01X03X11X23X
2
32 (X02X03X13X22X

2
31) :

2k′ − 2

3
F = 0. (25)

Coefficient de X01X03X12X23X31X32 (X02X03X13X21X31X32) :

v3
3 −

4

3
G = 0. (26)

Coefficient de X01X03X13X21X
2
32 (X02X03X12X23X

2
31) :

2v5
2 +

2

3
G = 0. (27)

Coefficient de X01X03X13X22X31X32 (X02X03X11X23X31X32) :

2v5
1 +

4

3
F = 0. (28)

L’équation (24) ne contient pas d’information supplémentaire. Elle fournit donc les
égalités

T 2 1 2
1 2 2 (1 2 3; X1 X2

2 X2
3 )

= v1
1X12X

2
21X

2
33 + v3

3X13X21X23X31X32

+v5
1X11X

2
23X31X32 + v5

2X12X
2
23X

2
31 (29)
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et

T 2 2 1
1 1 3 (0 1 3; X0 X1 X3

3 )

= F (X00X13X30X
2
31 −X03X11X

2
30X31)

+G(X01X13X
2
30X31 −X03X10X30X

2
31) (30)

et les relations (25), (26), (27) et (28).

Equation
(∂T )2 2 1 1

1 1 2 2 = 0. (31)

Monômes contribuant :

IIa :
(

2
1

)
` = 1
k = 2 ≤ b0

(
+1
0

) (
3 1 1
1 2 2

) (
2 2 1
2 1 2

) (
2 2 1
2 1 2

)

(
2
1

) (
2 2 1
2 1 2

) (
2 2 1
2 1 2

)

(
1
2

)
` = 1
k = 1 ≤ b0

(
0

+1

) (
1 2 2
3 1 1

)

` = 2
k = 1 ≤ b0

( −1
0

) (
0 2 2
2 1 1

)
= 0

IIb :
(

2
1

)
` = 1
k = 1 ≤ b0

(
+1
0

) (
3 1 1
1 2 2

) (
2 2 1
2 1 2

) (
2 2 1
2 1 2

)

` = 2
k = 0

(
0
−1

)
/

(
1 2 1
1 1 2

) (
1 2 1
1 1 2

)

(
2
1

) (
2 2 1
2 1 2

) (
2 2 1
2 1 2

)

(
1 2 1
1 1 2

) (
1 2 1
1 1 2

)

(
1
2

)
` = 1
k = 0

(
0

+1

) (
1 2 2
3 1 1

)

Ecriture explicite de (31) :

−1
2

X01 (0D1)
2T 1 1 3

2 2 1 (2 3 1; X2
2 X2

3 X1) (`1)

+1
2

X02 (0D2)
2T 2 1 2

1 2 2 (1 3 2; X1 X2
3 X2

2 ) (`2)

−1
2

X03 (0D3)
2T 2 1 2

1 2 2 (1 2 3; X1 X2
2 X2

3 ) (`3)
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−1
2

X12 (1D2)
2T 2 1 2

1 2 2 (0 3 2; X0 X2
3 X2

2 ) (`4)

+1
2

X13 (1D3)
2T 2 1 2

1 2 2 (0 2 3; X0 X2
2 X2

3 ) (`5)

−2
3

X23 (2D3)(X2DX3)T
2 2 1
1 1 3 (0 1 3; X0 X1 X3

3 ) (`6)

+X10 (0D1)(X0DX1)T
1 1 3
2 2 1 (2 3 1; X2

2 X2
3 X1) (`7)

−X20 (0D2)(X0DX2)T
2 1 2
1 2 2 (1 3 2; X1 X2

3 X2
2 ) (`8)

+X30 (0D3)(X0DX3)T
2 1 2
1 2 2 (1 2 3; X1 X2

2 X2
3 ) (`9)

−k′X02X13X
2
20X

2
31 (`10)

+k′X03X12X
2
21X

2
30 (`11)

+X21 (1D2)(X1DX2)T
2 1 2
1 2 2 (0 3 2; X0 X2

3 X2
2 ) (`12)

−X31 (1D3)(X1DX3)T
2 1 2
1 2 2 (0 2 3; X0 X2

2 X2
3 ) (`13)

+k′X03X12X
2
21X

2
30 (`14)

−k′X02X13X
2
20X

2
31 (`15)

+1
3

X32 (X2DX3)
2T 2 2 1

1 1 3 (0 1 3; X0 X1 X3
3 ) = 0 (`16)

(32)

(on a - avec des notations évidentes - `2 = (`2)(0 1 2 3) = −(`3)(0 1 3 2), `4 =
(`3)(1 0 3 2), `5 = −(`3)(1 0 2 3), `8 = −(`9)(0 1 3 2), `12 = (`9)(1 0 3 2), `13 =
−(`9)(1 0 2 3)).

(∗) Coefficient de X00X13X20X22X
2
31 :

−2v1
1 = 0 (33)

(`5 (`13) : coefficient de −X03X11X21X22X
2
30 dans `3 (`9); `8 : coefficient de −X00X12

X2
21X30X33 dans `9).

(∗) Coefficient de X02X13X
2
20X

2
31 :

−2k′ = 0 (34)

(`2 (`5, `8, `13) : coefficient de −X03X12X
2
21X

2
30 dans `3 (`3, `9, `9)).

Vu (25) et (28), k′ = 0 entrâıne F = 0 et v5
1 = 0.

(∗) Coefficient de X03X12X
2
20X

2
31 :

−2v5
2 = 0 (35)
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(`4 : coefficient de X03X12X
2
20X

2
31 dans `3; `8 (`13) : coefficient de −X02X13X

2
21X

2
30

dans `9 (`9)).

Il découle alors de (27) (et (26)) que G = 0 (et v3
3 = 0). Finalement, on a donc bien

k′ = 0 et T 2 2 1
1 1 3 = 0 (et T 2 1 2

1 2 2 = 0).

6 Etude des monômes restants

Ci-dessous, nous établirons la proposition I.2 (comme annoncé, les parties de la
preuve exigeant un raffinement en dimension m = 3, seront marquées d’un astérisque et
remplacées à la section VII).

Soit T ∈ ∧3(E0, N)loc ∩ ker ∂ (E0 = E0
Ω, N = C∞(Ω), m ≥ 3). Vu 5.1, on peut

supposer que T soit à coefficients constants, invariant, sans colonnes
(

0
1

)
,

(
1
1

)
et

(
0
2

)
et que T 2 2 1

1 1 3 = 0. Nous démontrerons que T = 0 en prouvant que tout monôme

T a b c
r s t

((
0
2

)
<

(
a
r

)
≤

(
b
s

)
≤

(
c
t

)
,

∑
s =

∑
i

)
est nul, si ceux du même type qui le

précèdent, le sont. Il est clair que l’hypothèse de récurrence implique que tout monôme
inférieur au monôme étudié est nul. On notera également que nous ne retrancherons
plus de bord dans la suite.

6.1 Etude de l’organigramme des cas à considérer

Pour commencer, considérons le monôme de référence

T 2 b c
1 s t

((
2
1

)
≤

(
b
s

)
≤

(
c
t

)
,

∑
s
=

∑
i

)

- ce qui signifie que les monômes qui le précèdent sont supposés être nuls - et
déterminons les écritures explicites de deux équations - obtenues, l’une par création

de
(

0
2

)
, l’autre par création de

(
2
1

)
- utiles ci-dessous.

Lemme 6.1 Soit le monôme de référence

T 2 b c
1 s t

((
2
1

)
≤

(
b
s

)
≤

(
c
t

)
,

∑
s
=

∑
i
, t ≥ 2

)
.

L’identité
(∂T )0 2 b c+1

2 1 s t−1 = 0

s’écrit alors

X01 (X0DX1)T
1 b c+1
2 s t−1 (1 2 3; X2

1 Xs
2 X t−1

3 )

+
2

s + 1
X02 (X0DX2)T

2 b−1 c+1
1 s+1 t−1 (1 2 3; X1 Xs+1

2 X t−1
3 )

+
2

t
X03 (X0DX3)T

2 b c
1 s t (1 2 3; X1 Xs

2 X t
3) = 0,
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où la 2ème ligne est à négliger, si b = 0.

De fait, les monômes contribuant au degré considéré, sont :

I : /

IIa :
(

0
2

)
` = 1
k = 0

( −1
+1

) (
1 b c + 1
2 s t− 1

) (
b− 1 2 c + 1
s + 1 1 t− 1

)(+) (
c 2 b
t 1 s

)

IIb : /

(+) : monôme à omettre, si b = 0.

Lemme 6.2 Si

T 2 b c
1 s t

((
2
1

)
≤

(
b
s

)
≤

(
c
t

)
,

∑
s
=

∑
i
, b ≥ 1, b + s ≥ 4

)

est le monôme de référence, l’équation

(∂T )2 2 b−1 c
1 1 s t = 0

admet l’écriture détaillée

−1
2

X01 (0D1)2T 3 b−1 c
1 s t (1 2 3; X1 Xs

2 Xt
3)−

1
2

X02 (0D2)2T 2 b c
1 s t (1 2 3; X1 Xs

2 Xt
3)

+
1
2

X12 (1D2)2T 2 b c
1 s t (0 2 3; X0 Xs

2 Xt
3) + X10 (0D1)(X0DX1)T

3 b−1 c
1 s t (1 2 3; X1 Xs

2 Xt
3)

+X20 (0D2)(X0DX2)T
2 b c
1 s t (1 2 3; X1 Xs

2 Xt
3)−X21 (1D2)(X1DX2)T

2 b c
1 s t (0 2 3; X0 Xs

2 Xt
3) = 0,

le 2ème et le 3ème termes étant à supprimer, si b = 1.

Il suffit encore de chercher les monômes contribuant :

I : /

(Si b = 1 ou c = 0, on peut créer
(

0
s

)
(s ≥ 3) resp.

(
0
t

)
(t ≥ 3). Les monômes

à trouver s’obtenant alors à partir de
(

2 2 .
1 1 .

)
par soustraction de 1 au moins, de

deux degrés supérieurs au moins, ils sont nuls)

IIa :

(
2
1

)
` = 1
k = 2 ≤ b0

(
+1
0

) (
3 b− 1 c
1 s t

) (
b 2 c
s 1 t

)(+)

0

(
2
1

) (
b 2 c
s 1 t

)(+)

0

(
b− 1

s

)
0
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IIb :

(
2
1

)
` = 1
k = 1 ≤ b0

(
+1
0

) (
3 b− 1 c
1 s t

) (
b 2 c
s 1 t

)
0

` = 2
k = 0

(
0
−1

)
/ 0 0

(
2
1

)
` = 1
k = 1 ≤ b0

(
+1
0

) (
b 2 c
s 1 t

)
0

` = 2
k = 0

(
0
−1

)
0 0

(
b− 1

s

)
0

(+) : monômes à omettre, si b = 1.

Preuve 6.3 Considérons un monôme arbitraire

T a b c
r s t

((
0
2

)
<

(
a
r

)
≤

(
b
s

)
≤

(
c
t

)
,

∑
s
=

∑
i

)

et montrons qu’il est nul sous l’hypothèse de récurrence.

(1) r ≥ 2

Equation :
(∂T )0 a+1 b c

2 r−1 s t = 0. (36)

Monômes contribuant :

I : /

(Si l’on crée
(

0
2

)
, les monômes cherchés s’obtiennent à partir de

(
a + 1 b c
r − 1 s t

)
par

soustraction de 1 de deux degrés supérieurs : ils sont donc tous nuls. Si b = 0 ou

c = 0, la création de
(

0
s

)
(s ≥ 3) resp.

(
0
t

)
(t ≥ 3) conduit à des monômes de

1ère colonne
(

0
2

)
, qui sont évidemment nuls)

IIa :

(
0
2

)
` = 1
k = 0

(
−1
+1

) (
a b c
r s t

)
0 0

(Les monômes associés à
(

a + 1
r − 1

)
ou

(
b
s

)
renferment

(
0
2

)
)

IIb : /
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Ecriture explicite de (36) :

−2

r
X01 (X0DX1)T

a b c
r s t (1 2 3; Xr

1 Xs
2 X t

3) = 0.

En faisant X0 = X1, on trouve
T a b c

r s t = 0.

(2) r = 1

(2.1) r = 1, a ≥ 3

Monôme de référence :

T a b c
1 s t

((
a
1

)
≤

(
b
s

)
≤

(
c
t

)
,

∑
s
=

∑
i
, a ≥ 3

)
.

Equation :
(∂T )2 a−1 b c

1 1 s t = 0. (37)

Monômes contribuant :

I : /

IIa :

(
2
1

)
` = 1
k = 2 ≤ b0

(
+1
0

) (
a b c
1 s t

)
0 0

IIb :

(
2
1

)
` = 1
k = 1 ≤ b0

(
+1
0

) (
a b c
1 s t

)
0 0

` = 2
k = 0

(
0
−1

)
/ 0 0

Ecriture explicite de (37) :

−1

2
X01 (0D1)

2T a b c
1 s t (1 2 3; X1 Xs

2 X t
3)

+X10 (0D1)(X0DX1)T
a b c
1 s t (1 2 3; X1 Xs

2 X t
3) = 0. (38)

Faisons η0 = η1 et X0 = X1. Il vient alors

−1

2
a(a− 1)X11T

a b c
1 s t (1 2 3; X1 Xs

2 X t
3) + aX11T

a b c
1 s t (1 2 3; X1 Xs

2 X t
3) = 0

ou encore
(3− a)T a b c

1 s t (1 2 3; X1 Xs
2 X t

3) = 0.

(2.1.1) r = 1, a ≥ 4

Dans ce cas,
T a b c

1 s t = 0.
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(∗) (2.1.2) r = 1, a = 3

Il découle de (38) que T 3 b c
1 s t (1 2 3; X1 Xs

2 X t
3) est divisible par X11 :

T 3 b c
1 s t = X11(X

2
21T

1 + X21X31T
2 + X2

31T
3),

où le terme en X2
21 (X2

31) est à omettre, si s = 1 (t = 1) et où les T i (i ∈ {1, 2, 3}) sont
indépendants de η1 et de X1. Comme

(0D1)T
3 b c
1 s t = X10(. . .) + X11(2X20X21T

1 + X20X31T
2 + X21X30T

2 + 2X30X31T
3),

la substitution dans (38) donne

−1
2

X01 [2X10(2X20X21T
1 + X20X31T

2 + X21X30T
2 + 2X30X31T

3)
+X11(2X

2
20T

1 + 2X20X30T
2 + 2X2

30T
3)]

+X10 [X00(X
2
21T

1 + X21X31T
2 + X2

31T
3)

+X01(2X20X21T
1 + X20X31T

2 + X21X30T
2 + 2X30X31T

3)] = 0.

(39)

Les termes en X00 n’étant pas compensables, T 1 = T 2 = T 3 = 0 et ainsi

T 3 b c
1 s t = 0.

(2.2) r = 1, a = 2

(2.2.1) r = 1, a = 2, s ≥ 2

Monôme de référence :

T 2 b c
1 s t

((
2
1

)
≤

(
b
s

)
≤

(
c
t

)
,

∑
s
=

∑
i
, s ≥ 2

)
.

Equation :
(∂T )0 2 b+1 c

2 1 s−1 t = 0. (40)

Monômes contribuant :

I : /

IIa :

(
0
2

)
` = 1
k = 0

(
−1
+1

) (
1 b + 1 c
2 s− 1 t

) (
b 2 c
s 1 t

)
0

IIb : /

Ecriture explicite de (40) :

−X01 (X0DX1)T
1 b+1 c
2 s−1 t (1 2 3; X2

1 Xs−1
2 X t

3)

=
2

s
X02 (X0DX2)T

2 b c
1 s t (1 2 3; X1 Xs

2 X t
3). (41)

Cette identité montre que T 1 b+1 c
2 s−1 t est divisible par X12 et T 2 b c

1 s t par X21 :

T 1 b+1 c
2 s−1 t = X12¶1 b c

1 s−1 t = Xk
12Q et T 2 b c

1 s t = X21S1 b c
1 s−1 t = X`

21T , (42)
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où k et ` sont maximaux et égaux à 1 ou 2. Si on remplace dans (41), on obtient

−X01(k X02 Xk−1
12 Q+ Xk

12 (X0DX1)Q)

=
2

s
X02(` X01 X`−1

21 T + X`
21 (X0DX2)T ). (43)

Il s’ensuit que (X0DX1)Q est divisible par X02 et (X0DX2)T par X01 :

(2− k)Q = X12R et (s− `)T = X21U . (44)

(2.2.1.1) r = 1, a = 2, s ≥ 2, b = 0

Alors k = 1, de sorte que T 1 1 c
2 s−1 t = 0 ((44),(42)) et

T 2 0 c
1 s t = 0

((41)).

(2.2.1.2) r = 1, a = 2, s ≥ 2, b ≥ 1

Les identités (44) montrent que k = 2 et ` = 2.

(2.2.1.2.1) r = 1, a = 2, s ≥ 3, b ≥ 1

Dans ce cas (44) et (42) impliquent que

T 2 b c
1 s t = 0.

(2.2.1.2.2) r = 1, a = 2, s = 2, b ≥ 1

Il découle de (43)
−2X01X02X12Q = 2X01X02X21T

et (42) que

T 1 b+1 c
2 1 t = AX2

12X21X
b−1
32 Xc

33 et T 2 b c
1 2 t = −AX12X

2
21X

b−1
32 Xc

33. (45)

L’équation (40) est ainsi vidée. Examinons à présent la relation

(∂T )2 2 b−1 c
1 1 2 t = 0. (46)

Si b = 1, elle contient la même information que (40), de sorte qu’il s’impose de traiter
ce cas à part.

(2.2.1.2.2.1) r = 1, a = 2, s = 2, b ≥ 2

L’écriture explicite de (46) est fournie par le lemme 6.2. Compte tenu de (45), son
2ème et son 5ème termes (t2 et t5) s’écrivent

1

2
AX02X

2
21X

c
33(2(b− 1)X10X30X

b−2
32 + (b− 1)(b− 2)X12X

2
30X

b−3
32 ) (47)
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resp.
−2AX01X20X21X

c
33(X10 Xb−1

32 + (b− 1)X12 X30 Xb−2
32 ). (48)

Coefficient de X02X12X
2
21X

2
30X

b−3
32 Xc

33 (pour b ≥ 3) :

1

2
A(b− 1)(b− 2)

(t3 (t6) : coefficient de −X02X12X
2
20X

2
31X

b−3
32 Xc

33 dans t2 (t5)).

(∗) (2.2.1.2.2.1.1) r = 1, a = 2, s = 2, b ≥ 3

Alors,
T 2 b c

1 2 t = 0.

(2.2.1.2.2.1.2) r = 1, a = 2, s = 2, b = 2

Vu (45), les monômes de (46) sont donnés par

T 3 1 c
1 2 t (1 2 3; X1 X2

2 X t
3) = −T 1 3 c

2 1 t (2 1 3; X2
2 X1 X t

3) = −AX12X
2
21X31X

c
33

et
T 2 2 c

1 2 t (1 2 3; X1 X2
2 X t

3) = −AX12X
2
21X32X

c
33. (49)

On vérifie facilement que l’équation (46) est alors triviale.

Etudions maintenant T 2 2 c
1 2 t (son degré étant bo et tel que

∑
s =

∑
i, on a nécessaire-

ment t ≥ 3) moyennant la relation

(∂T )0 2 2 c+1
2 1 2 t−1 = 0. (50)

En utilisant le lemme 6.1 et l’égalité (49), on voit que le terme t3 de (50) est égal à

−2

t
AX03X12X

2
21(X02 Xc

33 + c X03 X32X
c−1
33 ).

Le second terme de cette expression n’étant pas compensable et c valant au moins 2, il
s’ensuit que

T 2 2 c
1 2 t = 0.

(2.2.1.2.2.2) r = 1, a = 2, s = 2, b = 1

Vu (45), le monôme à annuler a la forme

T 2 1 c
1 2 t = T 2 1 t

1 2 t = −AX12X
2
21X

t
33 (t ≥ 2).

Choisissons l’équation
(∂T )0 2 1 t+1

2 1 2 t−1 = 0, (51)

dont l’écriture détaillée est encore obtenue à l’aide de 6.1. Comme t3 s’écrit ici

−2AX2
03X12X

2
21X

t−1
33
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et comme ce terme ne peut de nouveau être compensé, on en déduit que

T 2 1 c
1 2 t = 0.

(2.2.2) r = 1, a = 2, s = 1

C’est le dernier cas à traiter.

Monôme de référence :

T 2 b c
1 1 t

((
2
1

)
≤

(
b
1

)
≤

(
c
t

)
,
∑

s
=

∑
i
⇒ b ≥ 2, c ≥ 1, t ≥ 3

)
.

Equations :
(∂T )0 2 b c+1

2 1 1 t−1 = 0 (52)

et
(∂T )2 2 b−1 c

1 1 1 t = 0 (si b ≥ 3). (53)

Nous nous servirons d’abord de (52), qui est une fois de plus un cas particulier
du lemme 6.1. Décomposons les monômes T 1 b c+1

2 1 t−1 et T 2 b−1 c+1
1 2 t−1 contribuant à l’ordre(

0 2 b c + 1
2 1 1 t− 1

)
, comme suit :

T 1 b c+1
2 1 t−1 = X11X12U

1 + X11X13U
2 + X2

12U
3 + X12X13U

4 + X2
13U

5

et

T 2 b−1 c+1
1 2 t−1 = X2

21V
1 + X21X22V

2 + X21X23V
3 + X2

22V
4 + X22X23V

5 + X2
23V

6,

où le terme en X2
22 est à supprimer, si b = 2. Les termes t1 et t2 de (52) s’écrivent donc

X2
01X12U

1 + X01X02X11U
1 + X2

01X13U
2 + X01X03X11U

2

+2X01X02X12U
3 + X01X02X13U

4 + X01X03X12U
4 + 2X01X03X13U

5

resp.

2X01X02X21V
1 + X01X02X22V

2 + X2
02X21V

2 + X01X02X23V
3

+X02X03X21V
3 + 2X2

02X22V
4 + X2

02X23V
5 + X02X03X22V

5 + 2X02X03X23V
6.

Comme les termes en X2
01 et ceux en X2

02 ne sont pas compensables, on a

U1 = U2 = V 2 = V 4 = V 5 = 0.

Par conséquent, (52) devient

X01X02

[
2X12U

3 + X13U
4 + 2X21V

1 + X23V
3
]
+ X03

[
X01X12U

4

+2X01X13U
5 + X02X21V

3 + 2X02X23V
6 +

2

t
(X0DX3)T

2 b c
1 1 t

]
= 0,

ce qui signifie évidemment que les expressions entre crochets sont nulles.
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Soient (E1) et (E2) les équations ainsi obtenues.
Vu que

U3 = X21U
3
1 + X22U

3
2 + X23U

3
3 (2ème terme à omettre, si b = 2),

U4 = X21U
4
1 + X22U

4
2 + X23U

4
3 ,

U5 = X21U
5
1 + X22U

5
2 + X23U

5
3 (3ème terme à omettre, si c = 1),

V 1 = X12V
1
2 + X13V

1
3 ,

V 3 = X11V
3
1 + X12V

3
2 + X13V

3
3 ,

V 6 = X11V
6
1 + X12V

6
2 + X13V

6
3 (3ème terme à omettre, si c = 1)

et que (E1) est d’ordre
(

0 1 b− 1 c + 1
0 1 1 t− 1

)
, les termes en X12X22, en X13X22 et ceux

en X11X23 ne sont pas compensables, de sorte que

U3
2 = U4

2 = V 3
1 = 0.

Finalement, (E1) s’écrit

X12X21(2U
3
1 + 2V 1

2 ) + X12X23(2U
3
3 + V 3

2 ) + X13X21(U
4
1 + 2V 1

3 ) + X13X23(U
4
3 + V 3

3 ) = 0

i.e.

V 1
2 = −U3

1 , V 3
2 = −2U3

3 , V 1
3 = −1

2
U4

1 et V 3
3 = −U4

3 .

Passons à (E2). Il s’agit de l’équation

−2

t
(X0DX3)T

2 b c
1 1 t

= X01X12(X21U
4
1 + X23U

4
3 ) + 2X01X13(X21U

5
1 + X22U

5
2 + X23U

5
3 )

+X02X21(X12V
3
2 −X13U

4
3 ) + 2X02X23(X11V

6
1 + X12V

6
2 + X13V

6
3 ) (54)

(termes en U5
3 et V 6

3 à supprimer, si c = 1). En faisant X0 = X3, on trouve

−2T 2 b c
1 1 t = X12X31(X21U

4
1 + X23U

4
3 ) + 2X13X31(X21U

5
1 + X22U

5
2 + X23U

5
3 )

+X21X32(X12V
3
2 −X13U

4
3 ) + 2X23X32(X11V

6
1 + X12V

6
2 + X13V

6
3 )

et en substituant dans (54), on obtient

(1− t)
[
X01X12(X21U

4
1 + X23U

4
3 ) + 2X01X13(X21U

5
1 + X22U

5
2 + X23U

5
3 )

+ X02X21(X12V
3
2 −X13U

4
3 ) + 2X02X23(X11V

6
1 + X12V

6
2 + X13V

6
3 )

]

+X12X31

[
X21 (X0DX3)U

4
1 + X23 (X0DX3)U

4
3

]
+ 2X13X31

[
X21 (X0DX3)U

5
1

+X22 (X0DX3)U
5
2 + X23 (X0DX3)U

5
3

]
+ X21X32

[
X12 (X0DX3)V

3
2 −X13 (X0DX3)U

4
3

]

+2X23X32

[
X11 (X0DX3)V

6
1 + X12 (X0DX3)V

6
2 + X13 (X0DX3)V

6
3

]
= 0 (55)

(termes renfermant U5
3 et V 6

3 à négliger, si c = 1). Remarquons - en vue de l’exploitation

complète de (55), équation d’ordre
(

0 2 b c
1 1 1 t− 1

)
, avec b + c = t - que

U4
1 = u4

1X
b−1
32 Xc

33, U4
3 = u4

3X31X
b−1
32 Xc−1

33 ,

U5
1 = u5

1X
b
32X

c−1
33 , U5

2 = u5
2X31X

b−1
32 Xc−1

33 , U5
3 = u5

3X31X
b
32X

c−2
33 (c ≥ 2),

V 3
2 = v3

2X31X
b−2
32 Xc

33,

V 6
1 = v6

1X31X
b−1
32 Xc−1

33 , V 6
2 = v6

2X
2
31X

b−2
32 Xc−1

33 , V 6
3 = v6

3X
2
31X

b−1
32 Xc−2

33 (c ≥ 2).
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Coefficient de X01X12X21X
b−1
32 Xc

33 :

(1− t)u4
1 + v3

2 = 0.

Coefficient de X02X12X21X31X
b−2
32 Xc

33 :

(b− 1)u4
1 + (b− t− 1)v3

2 = 0.

Coefficient de X03X12X21X31X
b−1
32 Xc−1

33 :

u4
1 + v3

2 = 0.

D’où : u4
1 = v3

2 = 0.

Coefficient de X01X12X23X31X
b−1
32 Xc−1

33 :

(2− t)u4
3 + 4v6

2 = 0. (56)

Coefficient de X02X13X21X31X
b−1
32 Xc−1

33 :

(t− b)u4
3 + 2bu5

1 = 0. (57)

Coefficient de X01X13X21X
b
32X

c−1
33 :

u4
3 + 2(t− 1)u5

1 = 0. (58)

Coefficient de X02X12X23X
2
31X

b−2
32 Xc−1

33 :

(b− 1)u4
3 + 2(b− t− 1)v6

2 = 0. (59)

Coefficient de X03X12X23X
2
31X

b−1
32 Xc−2

33 :

(c− 1)(u4
3 + 2v6

2) = 0 (c ≥ 2).

Coefficient de X03X13X21X31X
b
32X

c−2
33 :

(1− c)(u4
3 − 2u5

1) = 0 (c ≥ 2).

Si c ≥ 2, on trouve u4
3 = u5

1 = v6
2 = 0. Si c = 1, les équations (56) et (59) sont

équivalentes et il en est de même de (57) et (58) (b + c = t); le système s’écrit donc

{
(2− t)u4

3 + 4v6
2 = 0

u4
3 + 2(t− 1)u5

1 = 0.

Coefficient de X01X13X22X31X
b−1
32 Xc−1

33 :

2(2− t)u5
2 = 0.

D’où : u5
2 = 0.

37



Coefficient de X01X13X23X31X
b
32X

c−2
33 :

(2− t)u5
3 + 2v6

3 = 0 (c ≥ 2). (60)

Coefficient de X02X13X23X
2
31X

b−1
32 Xc−2

33 :

bu5
3 + (b− t)v6

3 = 0 (c ≥ 2). (61)

Coefficient de X03X13X23X
2
31X

b
32X

c−3
33 :

(c− 2)(u5
3 + v6

3) = 0 (c ≥ 3).

Si c ≥ 3, il résulte de ces équations que u5
3 = v6

3 = 0. Si c = 2, (60) et (61) sont
équivalents, de sorte que le système se réduit à

(2− t)u5
3 + 2v6

3 = 0.

Coefficient de X02X11X23X31X
b−1
32 Xc−1

33 :

(b− t)v6
1 = 0.

D’où : v6
1 = 0.

La relation (55) ne contient pas d’information supplémentaire.

(2.2.2.1) r = 1, a = 2, s = 1, c ≥ 3

Alors
T 2 b c

1 1 t = 0.

(2.2.2.2) r = 1, a = 2, s = 1, c = 2

Dans ce cas, les résultats ci-dessus entrâınent

T 2 b 2
1 1 t = T 2 t−2 2

1 1 t = CtX13X23X
2
31X

t−2
32 (t ≥ 4, Ct = − t

2
u5

3). (62)

Remarquons que
T 2 b 2

1 1 4 = T 2 2 2
1 1 4 = C4X13X23X

2
31X

2
32 = 0,

vu la symétrie et l’antisymétrie de ce monôme en ses deux premiers arguments.

L’équation (52) étant vidée, utilisons (53) (ce qui est possible, car b ≥ 3), qui est un
cas particulier du lemme 6.2. Le terme t2 de (53) s’écrivant

−1

2
Ct(t− 2)(t− 3)X02X13X23X

2
30X

2
31X

t−4
32 (63)

et n’étant pas compensable, on a

(∗) T 2 b 2
1 1 t = 0 (t ≥ 5).
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(2.2.2.3) r = 1, a = 2, s = 1, c = 1

Ici, il vient

T 2 b 1
1 1 t = T 2 t−1 1

1 1 t = Ct,1X12X23X
2
31X

t−2
32 + Ct,2X13X21X31X

t−1
32 , (64)

avec t ≥ 3, Ct,1 = − t
4

u4
3 et Ct,2 = t

2(t−1)
u4

3. On notera que

Ct,2 =
2

1− t
Ct,1, (65)

que
T 2 b 1

1 1 3 = T 2 2 1
1 1 3 = 0

(cf. 5.1) et que

T 2 b−1 2
1 2 t−1 = T 2 t−2 2

1 2 t−1

= v1
2X12X

2
21X

t−3
32 X2

33

+u4
3

(
t− 2

4
X12 X2

23 X2
31 X t−3

32 −X13 X21 X23 X31 X t−2
32

)
(t ≥ 3).

La relation (52) étant triviale et l’identité (53) ainsi que d’autres équations comme

(∂T )2 2 t−1 0
1 1 1 t = 0

par exemple, ne permettant pas non plus de conclure, ce dernier cas exige une étude
plus approfondie.

6.2 Cas critique

Remarque 6.4 Déterminons les monômes contribuant au degré(
2 t− p p
1 p t− p + 1

)
(t ≥ 4, p ∈ IN∗, p ≤ t+1

2
(< t− 1)).

I : /

IIa :

(
2
1

)
` = 1
k = 2 ≤ b0

(
+1
0

) (
t− p + 1 p

p t− p + 1

) (
p + 1 t− p

t− p + 1 p

)

(
t− p

p

)
` ∈ {1, . . . , p}
k = t− p ≤ b0

(
t− p− `

p− `

) (
t− ` 2

t− ` + 1 1

)

IIb :

(
2
1

)
` = 1
k = 1 ≤ b0

(
+1
0

) (
t− p + 1 p

p t− p + 1

) (
p + 1 t− p

t− p + 1 p

)

` = 2
k = 0

(
0
−1

) (
t− p p
p− 1 t− p + 1

)(+) (
p t− p

t− p p

)

(
t− p

p

)
` ∈ {1, . . . , t− p}
k = t− p− ` ≤ b0

(
t− p− `

p− `

) (
t− ` 2

t− ` + 1 1

)

(+) : monôme à omettre, si p = 1.
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Soient t ≥ 4, p ∈ IN∗ ∩
[
1, t+1

2

[
et V t−p+1 p

p t−p+1 un monôme de cochâıne invariant à
coefficients constants. Vu ce qui précède,

[
∂(V t−p+1 p

p t−p+1 + V p t−p+1
t−p+1 p )

]2 t−p p

1 p t−p+1

= −1

2
X01 (0D1)

2V t−p+1 p
p t−p+1(1 2; Xp

1 X t−p+1
2 )

+X10 (0D1)(X0DX1)V
t−p+1 p
p t−p+1(1 2; Xp

1 X t−p+1
2 ). (66)

Donc, si
V t−p+1 p

p t−p+1(1 2; Xp
1 X t−p+1

2 ) = βt,pX
p
12X

t−p+1
21 (βt,p ∈ IR),

il vient
[
∂(V t−p+1 p

p t−p+1 + Vp t−p+1
t−p+1 p )

]2 t−p p

1 p t−p+1

= −1

2
βt,p(t− p + 1)(t− p)X01X

p
12X

2
20X

t−p−1
21 + βt,pp(t− p + 1)X02X10X

p−1
12 X20X

t−p
21

et si de plus, on évalue le monôme de bord sur des arguments indexés par 1, 2, 3 et on
choisit

βt,p =
(−1)p2

t(t− 1)
Ct,1,

alors
[
∂(V t−p+1 p

p t−p+1 + Vp t−p+1
t−p+1 p )

]2 t−p p

1 p t−p+1

=
(−1)p+1(t− p + 1)(t− p)

t(t− 1)
Ct,1X12X

p
23X

2
31X

t−p−1
32

+
(−1)p 2p(t− p + 1)

t(t− 1)
Ct,1X13X21X

p−1
23 X31X

t−p
32 . (67)

Lemme 6.5 Soit
T 2 t−1 1

1 1 t (t ∈ {5, 7, . . .})
le monôme de référence. La relation

(∂T )0 2 t−p p+1
2 1 p t−p = 0

(
p ∈

{
1, . . . ,

t− 1

2

})
,

s’écrit alors

X01 (X0DX1)T
1 t−p p+1
2 p t−p (1 2 3; X2

1 Xp
2 X t−p

3 )

+
2

p + 1
X02 (X0DX2)T

2 t−p−1 p+1
1 p+1 t−p (1 2 3; X1 Xp+1

2 X t−p
3 )

+
2

t− p + 1
X03 (X0DX3)T

2 t−p p
1 p t−p+1(1 2 3; X1 Xp

2 X t−p+1
3 ) = 0.
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En effet, les monômes contribuant à l’ordre considéré sont :

I : /

IIa :

(
0
2

)
` = 1
k = 0

( −1
+1

) (
1 t− p p + 1
2 p t− p

) (
t− p− 1 2 p + 1

p + 1 1 t− p

) (
p 2 t− p

t− p + 1 1 p

)

IIb : /

Preuve 6.6 (suite de 6.3) Rappelons qu’il s’agit d’établir que T 2 t−1 1
1 1 t (t ≥ 4) est

nul sous l’hypothèse de récurrence.

(2.2.2.3.1) r = 1, a = 2, s = 1, c = 1, t ∈ {4, 6, 8, . . .}

Remarquons que si

V t 1
1 t =

−2

t(t− 1)
Ct,1X12X

t
21,

où Ct,1 est le coefficient de X12X23X
2
31X

t−2
32 dans T 2 t−1 1

1 1 t (cf. (64)), on a en vertu de
(64), (65) et (67),

T 2 t−1 1
1 1 t = Ct,1X12X23X

2
31X

t−2
32 +

2

1− t
Ct,1X13X21X31X

t−1
32

=
[
∂(V t 1

1 t + V1 t
t 1 )

]2 t−1 1

1 1 t
.

Or, la soustraction de ce bord est (évidemment) impossible, son monôme minimum étant

de degré
(

0 t 2
2 1 t− 1

)
.

Il résulte de 4.5 (ii), qu’on annule le monôme T 0 t 2
2 1 t−1 en corrigeant le cocycle par ∂V1

et ∂V2, avec

V1 = V t 1
1 t + V 1 t

t 1 , V t 1
1 t = αX11X

t−1
21 X22 + βX12X

t
21

V2 = V t−1 2
2 t−1 + V 2 t−1

t−1 2 , V t−1 2
2 t−1 = · · · ,

le réel β étant quelconque. On voit facilement qu’un choix convenable de β permet de
donner au coefficient de X12X23X

2
31X

t−2
32 dans T 2 t−1 1

1 1 t , une valeur arbitraire B. Pour
cela, il suffit de prendre

β =
2(A−B)

t(t− 1)
,

où A désigne la valeur du coefficient en question, avant l’addition des bords ∂V1 et ∂V2.
En effet, d’un côté, (66) montre que

(∂V1)
2 t−1 1
1 1 t (1 2 3; X1 X2 X t

3) = (B − A)X12X23X
2
31X

t−2
32 + · · · ,

les termes représentés par · · · étant non semblables au premier; de l’autre, il découle de
6.4 que

(∂V2)
2 t−1 1
1 1 t (1 2 3; X1 X2 X t

3) = 0.
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Ainsi, si l’on note T ′ le cocycle corrigé, on a

T ′2 t−1 1
1 1 t = T 2 t−1 1

1 1 t + (∂V1)
2 t−1 1
1 1 t + (∂V2)

2 t−1 1
1 1 t

= AX12X23X
2
31X

t−2
32 + · · ·+ (B − A)X12X23X

2
31X

t−2
32 + · · ·+ 0.

Ceci étant, nous choisissons évidemment β de manière que le coefficient de X12X23X
2
31

X t−2
32 dans T 2 t−1 1

1 1 t soit nul après l’étude de T 0 t 2
2 1 t−1. Cependant, lors de l’examen des T 0 µ ν

2 ρ σ((
0
2

)
<

(
µ
ρ

)
≤

(
ν
σ

)
,

∑
s =

∑
i

)
supérieurs à T 0 t 2

2 1 t−1, on retranche/ajoute encore des

bords, ce qui pourrait réintroduire un terme en X12X23X
2
31X

t−2
32 . Vérifions que tel n’est

pas le cas.

Soit donc T 0 µ ν
2 ρ σ

((
0
2

)
<

(
µ
ρ

)
≤

(
ν
σ

)
,

∑
s =

∑
i

)
un monôme supérieur à T 0 t 2

2 1 t−1.

Remarquons d’abord que T 0 µ ν
2 ρ σ diffère de T 0 2 2

2 1 1 et de T 0 3 2
2 1 2 et que les degrés des

2-monômes contribuant à l’ordre
(

2 t− 1 1
1 1 t

)
sont (cf. 6.4) :

(
t 1
1 t

) (
2 t− 1
t 1

) (
1 t− 1

t− 1 1

) (
t− ` 2

t− ` + 1 1

)
(` ∈ {1, . . . , t− 1}).

Trois situations peuvent se présenter (cf. 4.5 (ii)) :

(i) T 0 µ ν
2 ρ σ = T 0 µ ν

2 1 σ (µ, ν, σ ≥ 2)

Alors [
∂(V µ ν−1

1 σ+1 + V ν−1 µ
σ+1 1 )

]2 t−1 1

1 1 t
=

[
∂(V µ−1 ν

2 σ + V ν µ−1
σ 2 )

]2 t−1 1

1 1 t
= 0.

De fait, (
µ ν − 1
1 σ + 1

) [(
ν − 1 µ
σ + 1 1

)]

- diffère de
(

t 1
1 t

)
, sinon T 0 µ ν

2 ρ σ = T 0 t 2
2 1 t−1 [t = 1],

- diffère de
(

2 t− 1
t 1

)
, sinon t = 1

[
T 0 µ ν

2 ρ σ = T 0 t−1 3
2 1 t−1

]
,

- diffère de
(

1 t− 1
t− 1 1

)
, sinon t = 2

[
T 0 µ ν

2 ρ σ = T 0 t−1 2
2 1 t−2

]
,

- diffère de
(

t− ` 2
t− ` + 1 1

)
(` ∈ {1, . . . , t− 1}), sinon t = `

[
T 0 µ ν

2 ρ σ = T 0 2 t−`+1
2 1 t−`

]

et les ordres (
µ− 1 ν

2 σ

)
et

(
ν µ− 1
σ 2

)

diffèrent eux aussi (visiblement) des degrés précédents.

(ii) T 0 µ ν
2 ρ σ est tel que µ ≥ 1 et ρ ≥ 2, l’écart entre

(
µ
ρ

)
et

(
ν
σ

)
valant au moins 2.
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Notons que les hypothèses sur
(

0 µ ν
2 ρ σ

)
impliquent ν ≥ 3 et prouvons que

[
∂(V µ−1 ν

ρ+1 σ + V ν µ−1
σ ρ+1 )

]2 t−1 1

1 1 t
= 0.

Il suffit de nouveau d’observer que
(

µ− 1 ν
ρ + 1 σ

) [(
ν µ− 1
σ ρ + 1

)]

- diffère de
(

t 1
1 t

)
, sinon ρ = 0

[
T 0 µ ν

2ρ σ = T 0 2 t
2 t−1 1, qui n’est pas bo

]
,

- diffère de
(

2 t− 1
t 1

)
, sinon T 0 µ ν

2 ρ σ = T 0 3 t−1
2 t−1 1 [ρ = 0],

- diffère de
(

1 t− 1
t− 1 1

)
, sinon T 0 µ ν

2 ρ σ = T 0 2 t−1
2 t−2 1 [ρ = 0],

- diffère de
(

t− ` 2
t− ` + 1 1

)
(` ∈ {1, . . . , t− 1}), sinon ν = 2 [ρ = 0].

(iii) T 0 µ ν
2 ρ σ est de la forme T 0 σ+1 σ

2 σ−1 σ (σ ≥ 3)

On a encore [
∂

σ−1∑

i=1

(V2σ−i i
i 2σ−i + V i 2σ−i

2σ−i i )

]2 t−1 1

1 1 t

= 0.

En effet,
(

2σ − i i
i 2σ − i

) [(
i 2σ − i

2σ − i i

)]
(i ∈ {1, . . . , σ − 1})

- diffère de
(

t 1
1 t

)
, sinon t = 2σ − 1 [car 2σ − i ≥ 4] (c’est ici que joue l’hypothèse

t ∈ {4, 6, 8, . . .}; si t ∈ {5, 7, 9, . . .}, on trouve
(

2σ − 1 1
1 2σ − 1

)
=

(
t 1
1 t

)
⇔ T 0 µ ν

2 ρ σ = T
0 t+1

2
+1 t+1

2

2 t+1
2
−1 t+1

2

,

ce qui n’est nullement contradictoire),

- diffère évidemment de
(

2 t− 1
t 1

)
[idem],

- diffère de
(

1 t− 1
t− 1 1

)
, car 2σ − i ≥ 4

[
sinon T 0 µ ν

2 ρ σ = T
0 t

2
+1 t

2

2 t
2
−1 t

2

, qui est inférieur à

T 0 t 2
2 1 t−1

]
,

- diffère de
(

t− ` 2
t− ` + 1 1

)
(` ∈ {1, . . . , t− 1}), car 2σ − i ≥ 4 [idem].

Finalement, les corrections par des bords effectuées pour annuler les T 0 µ ν
2 ρ σ((

0
2

)
<

(
µ
ρ

)
≤

(
ν
σ

)
,

∑
s =

∑
i

)
supérieurs à T 0 t 2

2 1 t−1, ne modifient pas T 2 t−1 1
1 1 t . Plus
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aucun bord n’étant retranché après l’étude de ces monômes à une colonne
(

0
2

)
(voir

également la suite), le coefficient Ct,1 de X12X23X
2
31X

t−2
32 dans T 2 t−1 1

1 1 t est nul et (64) et
(65) permettent de conclure.

(2.2.2.3.2) r = 1, a = 2, s = 1, c = 1, t ∈ {5, 7, 9, . . .}

Rappelons que (52)
(∂T )0 2 t−1 2

2 1 1 t−1 = 0

(monôme de référence : T 2 t−1 1
1 1 t ) a fourni les résultats

T 2 t−1 1
1 1 t = Ct,1X12X23X

2
31X

t−2
32 +

2

1− t
Ct,1X13X21X31X

t−1
32

( =
[
∂(V t 1

1 t + V1 t
t 1 )

]2 t−1 1

1 1 t
, V t 1

1 t =
−2

t(t− 1)
Ct,1X12X

t
21 (cf. (67)))

et

T 2 t−2 2
1 2 t−1

= v1
2X12X

2
21X

t−3
32 X2

33 −
t− 2

t
Ct,1 X12X

2
23X

2
31X

t−3
32 +

4

t
Ct,1X13X21X23X31X

t−2
32

( = v1
2X12X

2
21X

t−3
32 X2

33 +
[
∂(V t−1 2

2 t−1 + V2 t−1
t−1 2 )

]2 t−2 2

1 2 t−1
,

V t−1 2
2 t−1 =

2

t(t− 1)
Ct,1X

2
12X

t−1
21 (cf. (67))).

Il est clair que la méthode de (2.2.2.3.1) n’est pas valable ici, le terme en X12X23X
2
31X

t−2
32

dans T 2 t−1 1
1 1 t se réintroduisant (t impair !) lors de l’étude de

T
0 t+1

2
+1 t+1

2

2 t+1
2
−1 t+1

2

.

Cependant, le lemme 6.5 permet de constater que le coefficient de X2
03X12X

2
21X

t−3
32 X33

dans
(∂T )0 2 t−2 3

2 1 2 t−2 = 0

(monôme de référence : T 2 t−1 1
1 1 t ) vaut 4

t−1
v1

2, de sorte que v1
2 = 0.

Considérons l’énoncé E(p)
(
p ∈

{
1, . . . , t+1

2

}
(t impair !)

)
suivant (valable pour p =

1 et p = 2) :

T 2 t−p p
1 p t−p+1 =

(−1)p+1(t− p + 1)(t− p)

t(t− 1)
Ct,1X12X

p
23X

2
31X

t−p−1
32

+
(−1)p 2p(t− p + 1)

t(t− 1)
Ct,1X13X21X

p−1
23 X31X

t−p
32

( =
[
∂(V t−p+1 p

p t−p+1 + Vp t−p+1
t−p+1 p )

]2 t−p p

1 p t−p+1
,

V t−p+1 p
p t−p+1 =

(−1)p 2

t(t− 1)
Ct,1X

p
12X

t−p+1
21 , si p ∈

{
1, . . . ,

t− 1

2

}
).
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Nous établissons à présent l’implication

E(p) ⇒ E(p + 1), ∀p ∈
{
2, . . . ,

t− 1

2

}
.

Utilisons l’équation de 6.5 et posons

T 2 t−p−1 p+1
1 p+1 t−p = X2

21

p−1∑

i=0

X i
22X

p−i−1
23 V 1

i + X21

p∑

j=0

Xj
22X

p−j
23 V 2

j +
p+1∑

k=0

Xk
22X

p−k+1
23 V 3

k ,

où le terme k = p + 1 est à négliger, si p = t−1
2

et où les V r
s sont indépendants de X2.

Le terme t2 de l’équation considérée s’écrit alors

2

p + 1
X02

(
2X01X21

∑

i

X i
22X

p−i−1
23 V 1

i + X02X
2
21

∑

i

iX i−1
22 Xp−i−1

23 V 1
i

+ X03X
2
21

∑

i

(p− i− 1)X i
22X

p−i−2
23 V 1

i

+ X01

∑

j

Xj
22X

p−j
23 V 2

j + X02X21

∑

j

jXj−1
22 Xp−j

23 V 2
j

+ X03X21

∑

j

(p− j)Xj
22X

p−j−1
03 V 2

j

+ X02

∑

k

kXk−1
22 Xp−k+1

23 V 3
k + X03

∑

k

(p− k + 1)Xk
22X

p−k
23 V 3

k

)
.

Comme les termes en X2
02 ne sont pas compensables, on a

V 1
i = V 2

j = V 3
k = 0, ∀i, j, k 6= 0.

Ainsi,
T 2 t−p−1 p+1

1 p+1 t−p = X2
21X

p−1
23 V 1

0 + X21X
p
23V

2
0 + Xp+1

23 V 3
0 ,

avec

V 1
0 = v1

0,1X12X
t−p−2
32 X2

33 + v1
0,2X13X

t−p−1
32 X33,

V 2
0 = v2

0,1X11X
t−p−1
32 X33 + v2

0,2X12X31X
t−p−2
32 X33 + v2

0,3X13X31X
t−p−1
32 et

V 3
0 = v3

0,1X11X31X
t−p−1
32 + v3

0,2X12X
2
31X

t−p−2
32 . (68)

Cela étant, t2 devient

2

p + 1
X02

(
2X01X21X

p−1
23 V 1

0 + (p− 1)X03X
2
21X

p−2
23 V 1

0

+X01X
p
23V

2
0 + pX03X21X

p−1
23 V 2

0 + (p + 1)X03X
p
23V

3
0

)

et, vu que E(p) est supposé exact, t3 s’écrit

2

t− p + 1
X03

[
C− (1)

t,p X12X
p
23(2X01X31X

t−p−1
32 + (t− p− 1)X02X

2
31X

t−p−2
32 )

+ C− (2)
t,p X13X21X

p−1
23 (X01X

t−p
32 + (t− p)X02X31X

t−p−1
32 )

]
,
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où l’on a posé

C− (1)
t,p =

(−1)p+1(t− p + 1)(t− p)

t(t− 1)
Ct,1 et C− (2)

t,p =
(−1)p 2p(t− p + 1)

t(t− 1)
Ct,1. (69)

Coefficient de X02X03X12X
2
21X

p−2
23 X t−p−2

32 X2
33 :

2

p + 1
(p− 1)v1

0,1 = 0 : v1
0,1 = 0. (70)

Coefficient de X02X03X13X
2
21X

p−2
23 X t−p−1

32 X33 :

2

p + 1
(p− 1)v1

0,2 = 0 : v1
0,2 = 0. (71)

Coefficient de X02X03X11X21X
p−1
23 X t−p−1

32 X33 :

2

p + 1
p v2

0,1 = 0 : v2
0,1 = 0. (72)

Coefficient de X02X03X12X21X
p−1
23 X31X

t−p−2
32 X33 :

2

p + 1
p v2

0,2 = 0 : v2
0,2 = 0. (73)

Coefficient de X02X03X13X21X
p−1
23 X31X

t−p−1
32 :

2

p + 1
p v2

0,3 +
2

t− p + 1
(t− p) C− (2)

t,p = 0. (74)

Coefficient de X02X03X11X
p
23X31X

t−p−1
32 :

2 v3
0,1 = 0 : v3

0,1 = 0. (75)

Coefficient de X02X03X12X
p
23X

2
31X

t−p−2
32 :

2 v3
0,2 +

2

t− p + 1
(t− p− 1) C− (1)

t,p = 0. (76)

Notons que (69), (74) et (76) permettent d’écrire

v2
0,3 =

(−1)p+1 2(p + 1)(t− p)

t(t− 1)
Ct,1 et v3

0,2 =
(−1)p+2(t− p)(t− p− 1)

t(t− 1)
Ct,1. (77)

Il résulte alors de (68), (70), (71), (72), (73), (75) et (77) qu’on a bien E(p+1) (l’équation
de 6.5 ne renferme pas d’autre information intéressante).

L’énoncé E
(

t+1
2

)
étant ainsi valable,

T
2 t−1

2
t+1
2

1 t+1
2

t+1
2

= Ct,1X12X
t+1
2

23 X2
31X

t−3
2

32 + Ct,2X13X21X
t−1
2

23 X31X
t−1
2

32 , (78)
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avec

Ct,1 =
(−1)

t+3
2 (t + 1)

4t
Ct,1 et Ct,2 =

(−1)
t+1
2 (t + 1)2

2t(t− 1)
Ct,1. (79)

Examinons enfin l’identité

(∂T )
2 2 t−1

2
t−1
2

1 1 t+1
2

t+1
2

= 0. (80)

Monômes contribuant (monôme de référence : T 2 t−1 1
1 1 t ) :

I : /

IIa :

(
2
1

)
` = 1
k = 2 ≤ b0

(
+1
0

) (
3 t−1

2
t−1
2

1 t+1
2

t+1
2

) (
t+1
2

2 t−1
2

t+1
2

1 t+1
2

) (
t+1
2

2 t−1
2

t+1
2

1 t+1
2

)

(
2
1

)
` = 1
k = 2 ≤ b0

(
+1
0

) (
t+1
2

2 t−1
2

t+1
2

1 t+1
2

) (
t+1
2

2 t−1
2

t+1
2

1 t+1
2

)

(
t−1
2

t+1
2

) (
. 2 2
. 1 1

)
= 0

IIb :

(
2
1

)
` = 1
k = 1 ≤ b0

(
+1
0

) (
3 t−1

2
t−1
2

1 t+1
2

t+1
2

) (
t+1
2

2 t−1
2

t+1
2

1 t+1
2

) (
t+1
2

2 t−1
2

t+1
2

1 t+1
2

)

` = 2
k = 0

(
0
−1

)
/ 0 0

(
2
1

)
` = 1
k = 1 ≤ b0

(
+1
0

) (
t+1
2

2 t−1
2

t+1
2

1 t+1
2

) (
t+1
2

2 t−1
2

t+1
2

1 t+1
2

)

` = 2
k = 0

(
0
−1

)
0 0

(
t−1
2

t+1
2

) (
. 2 2
. 1 1

)
= 0

Si l’on pose T 1 = T
3 t−1

2
t−1
2

1 t+1
2

t+1
2

et T 2 = T
2 t−1

2
t+1
2

1 t+1
2

t+1
2

, (80) s’écrit :

−1
2

X01 (0D1)
2 T 1

(
1 2 3; X1 X

t+1
2

2 X
t+1
2

3

)
(`1)

+1
2

X02 (0D2)
2 T 2

(
1 3 2; X1 X

t+1
2

3 X
t+1
2

2

)
(`2)

−1
2

X03 (0D3)
2 T 2

(
1 2 3; X1 X

t+1
2

2 X
t+1
2

3

)
(`3)

−1
2

X12 (1D2)
2 T 2

(
0 3 2; X0 X

t+1
2

3 X
t+1
2

2

)
(`4)

+1
2

X13 (1D3)
2 T 2

(
0 2 3; X0 X

t+1
2

2 X
t+1
2

3

)
(`5)
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+X10 (0D1)(X0DX1) T 1

(
1 2 3; X1 X

t+1
2

2 X
t+1
2

3

)
(`6)

−X20 (0D2)(X0DX2) T 2

(
1 3 2; X1 X

t+1
2

3 X
t+1
2

2

)
(`7)

+X30 (0D3)(X0DX3) T 2

(
1 2 3; X1 X

t+1
2

2 X
t+1
2

3

)
(`8)

+X21 (1D2)(X1DX2) T 2

(
0 3 2; X0 X

t+1
2

3 X
t+1
2

2

)
(`9)

−X31 (1D3)(X1DX3) T 2

(
0 2 3; X0 X

t+1
2

2 X
t+1
2

3

)
= 0. (`10)

(81)

Donnons la forme explicite de `3 et `8. Vu (78), il vient

−1

2
X03

(
Ct,1

t + 1

2

t− 1

2
X12X

2
20X

t−3
2

23 X2
31X

t−3
2

32

+ Ct,2X21X31X
t−1
2

32

[
(t− 1)X10X20X

t−3
2

23 +
t− 1

2

t− 3

2
X13X

2
20X

t−5
2

23

])
(82)

resp.

X30

(
Ct,1

t + 1

2
X12X20X

t−1
2

23

[
2X01X31X

t−3
2

32 +
t− 3

2
X02X

2
31X

t−5
2

32

]

+ Ct,2X21

[
X10X

t−1
2

23

[
X01X

t−1
2

32 +
t− 1

2
X02X31X

t−3
2

32

]

+
t− 1

2
X13X20X

t−3
2

23

[
X01X

t−1
2

32 +
t− 1

2
X02X31X

t−3
2

32

]])
. (83)

Coefficient de X03X13X
2
20X21X

t−5
2

23 X31X
t−1
2

32 :

(∗) − 1

2
Ct,2

t− 1

2

t− 3

2
+ Ct,1

t + 1

2

t− 3

2
= 0 (84)

(`5 (`10) : coefficient de −X03X13X20X
2
21X

t−5
2

23 X30X
t−1
2

32 dans `3 (`8); `7 : coefficient de

−X02X12X21X
t−1
2

23 X2
30X31X

t−5
2

32 dans `8; `9 : coefficient de X02X12X20X
t−1
2

23 X30X
2
31X

t−5
2

32

dans `8).

Comme (79) donne

Ct,1 =
1− t

2(1 + t)
Ct,2,

l’égalité (84) devient
Ct,2 = 0,

de sorte que (79) fournit finalement

Ct,1 = 0.
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Commentaire 6.7 L’apparition des termes en k et en k′ (cf. 2.1), la nécessité
de soustraire le bord de la châıne Vt (cf. 4.2), lors de l’étude de T 0 t+1 t

2 t−1 t (t ≥ 3) et
l’annulation du monôme critique T 2 t−1 1

1 1 t (t ≥ 4) méritent quelques remarques.

(i) On vérifie que les termes en k i.e. les termes de la cochâıne B (cf. preuve de 2.1)

- qui est cocycle aux ordres
(

1 a b c
1 r s t

)
- font partie des termes du bord formel de

la “cochâıne symétrique” V1 1
1 1 = kX12X21. Ce fait suggère évidemment l’existence d’un

cocycle, mais on peut montrer que ∂ [A(∂V1 1
1 1 )] (oùA est l’opérateur d’antisymétrisation)

n’est pas nul.

De manière analogue, les termes en k′ sont les monômes de degré
(

1 t 1
1 1 t

)
(t ∈

{2, 3, 4, . . .}) du bord de la “cochâıne” V ′1 1
1 1 = k′X11X22.

(ii) L’application de la méthode générale, utilisée ci-dessus pour étudier un 3-cocycle
arbitraire, au cocycle

T = ∂Wt,1, où Wt,1 = AW2t−1 1
1 2t−1 = A(c X12 X2t−1

21 ) (t ≥ 3, c ∈ IR),

rend plus claire l’intervention de Vt. Dans la suite, nous nous servirons des résultats de
la preuve de 4.2, sans nous y référer explicitement. Le monôme minimum de T étant

T 0 2t−1 2
2 1 2t−2 = −2cX01X02X12X

2t−2
21 ,

il est du type (2.2) (cf. preuve de 4.4) et on a (avec les notations de cette démonstration)
γ = δ = α = 0 et β + ε = −c. Ici, il s’impose évidemment de choisir β = −c et ε = 0 i.e.
de poser T ′ = T + ∂A(−c X12 X2t−1

21 ) = ∂Wt,1 − ∂Wt,1 = 0. Cependant, si l’on prend
β 6= −c et ε = −c− β 6= 0, on obtient (après correction) le cocycle

T = ∂
2∑

i=1

Vt,i, avec Vt,i = A((−1)i+1(c + β)X i
12X

2t−i
21 ).

Un cocycle T vérifiant l’énoncé E(k) (k ∈ {2, . . . , t− 2}),

T = ∂
k∑

i=1

Vt,i, où Vt,i = A((−1)i+1(c + β) X i
12 X2t−i

21 ),

admettant

T 0 2t−k k+1
2 k 2t−k−1 = (−1)k+2 2(c + β)X01X02X

k
12X

2t−k−1
21

= X01 (X0DX1)

[
(−1)k+2 2(c + β)

k + 1
Xk+1

12 X2t−k−1
21

]

comme plus petit monôme, il découle de (22) que sa correction conduit à un cocycle
vérifiant E(k+1). Finalement, on trouve donc un T satisfaisant à E(t−1). Son monôme
minimum étant donné par

T 0 t+1 t
2 t−1 t = (−1)t+1 2(c + β)X01X02X

t−1
12 X t

21,
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il est du genre (3.3) (cf. preuve de 4.4) et on pose T ′ = T − ∂Vt, avec βt = c + β, de
sorte que

T ′ = ∂
t−1∑

i=1

A((−1)i+1(c + β)X i
12X

2t−i
21 )− ∂

t−1∑

i=1

A((−1)i+1(c + β)X i
12X

2t−i
21 ) = 0.

C’est donc la correction “erronée” du cocycle lors de l’étude de T 0 2t−1 2
2 1 2t−1, qui est à

l’origine de l’apparition de la châıne Vt et la soustraction de ∂Vt n’est rien d’autre que
la correction des “erreurs de correction” successives.

(iii) Le dernier monôme critique T 2 t−1 1
1 1 t (t ≥ 4) disparâıt différemment, selon que t

est pair ou impair.
Pour t ∈ {5, 7, 9, . . .}, on obtient une “châıne de survivants”

T 2 t−p p
1 p t−p+1

(
p ∈

{
1, . . . ,

t + 1

2

})

et l’annulation de son dernier maillon entrâıne la nullité de la châıne entière : le “système
d’équations” n’est donc pas exactement triangulaire.

Si t ∈ {4, 6, 8, . . .}, on annule T 2 t−1 1
1 1 t grâce à un choix convenable du coefficient β

dans V t 1
1 t = βX12X

t
21, lors de l’étude de T 0 t 2

2 1 t−1.
Revenons à présent à l’“anomalie” révélée en 4.5. Vu ce qui précède, on corrige donc

le cocycle par
∂AV t 1

1 t = ∂A(βX12X
t
21) (t ∈ {4, 6, 8, . . .}),

avec un coefficient β bien déterminé. De plus, en retranchant ∂Vt (t ≥ 3), on corrige en
particulier par

∂AV2t−1 1
1 2t−1 = ∂A(βX12X

2t−1
21 ) (2t− 1 ∈ {5, 7, 9, . . .}),

où β est encore bien déterminé. Quant à

∂AV3 1
1 3 = ∂A(βX12X

3
21),

il est soustrait au cours de l’étude de T 0 3 2
2 1 2 (cas limite “t = 2”, où les monômes T 0 2t−1 2

2 1 2t−2

(correction par ∂A(αX11X
2t−2
21 X22)) et T 0 t+1 t

2 t−1 t (correction par ∂A(βX12X
2t−1
21 )) cöınci-

dent). Le bord
∂AV2 1

1 2 = ∂A(βX12X
2
21)

enfin, n’a pas été retranché (avec un coefficient bien déterminé, cf. preuve de 3.2) et
l’inventaire des bords enlevés montre qu’il en est de même uniquement des bords

∂AV 0 t+2
2 t = ∂A(γX2

12X
t
22) (t ≥ 1).

Ce fait n’a cependant rien d’étonnant, V2 1
1 2 et les V 0 t+2

2 t (t ≥ 1) étant les “têtes” des

bords ∂W 1
1 = ∂(βX11) resp. ∂W t+1

t+1 = ∂
(
−γ

2
X t+1

11

)
[5, Lemme V.2.1].
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7 Affinage de la preuve en dimension m = 3

Si m = 3, cinq parties de notre démonstration exigent un raffinement : cf. (31), (37),
(46), (53) et (80).

Toutes ces équations étant du type P = (∂T )2 α β γ
1 ρ σ τ = 0, les hypothèses de [5, IV.4.2

(ii)] sont satisfaites par exemple avec Xji = X00. Ainsi,

νA =

(
A′ A.0

A0. A00

)
=




A11 A12 A13 A10

A21 A22 A23 A20

A31 A32 A33 A30

A01 A02 A03 A00


 ∈ IR4

4

et on a l’identité polynomiale

Q = (det A′)P0 − (det νA− A00 det A′)P̂1 ≡ 0,

où P0 (P̂1) est la somme des termes de P qui sont de degré 0 (1) en A00 (dans laquelle
on a substitué 1 à A00) et où det νA− A00 det A′ est le déterminant de νA privé de ses
termes en A00. Nous nous référerons aux termes de Q obtenus à partir de P0 (P̂1), en
utilisant l’appellation “termes de type 1 (2)”.

7.1 Equation (31)

Les lignes `3 et `9 de cette équation P = (∂T )2 2 1 1
1 1 2 2 = 0 s’écrivent

−X03(v
1
1X12X

2
21X

2
30 + v3

3X10X20X21X31X32 + v5
1X11X

2
20X31X32 + v5

2X12X
2
20X

2
31) (85)

resp.

+X30(2v1
1X00X12X

2
21X33 + 2v1

1X03X12X
2
21X30

+v3
3X01X10X21X23X32 + v3

3X01X13X20X21X32 + v3
3X02X10X21X23X31

+v3
3X01X10X21X23X32 + 2v5

1X01X11X20X23X32 + 2v5
1X02X11X20X23X31

+4v5
2X01X12X20X23X31). (86)

Le terme −2v1
1A00A13A20A22A

2
31 (cf. (33)) fait partie de la somme P1 et ainsi

−2v1
1A03A11A13A20A

2
22A30A

2
31 (87)

est un terme de Q. Montrons que ce terme n’est pas compensé.

Compensations de type 1

Soit un terme t′′ de P . S’il engendre une compensation de type 1, il existe un terme t′ de
det A′, tel que t′t′′ soit semblable à (87). Etant donné que t′ est du genre sign(ν)A1ν1A2ν2

A3ν3 , où ν est une permutation de 1, 2, 3, on a nécessairement

t′ = −A13A22A31 et t′′ = −CA03A11A20A22A30A31.
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Il s’ensuit que les seules lignes de (32) susceptibles de produire une compensation de
type 1, sont `3, `8, `9 et `13. Vu (85) et (86), `3 et `9 ne fournissent pas de terme de
type 1, semblable à (87). Comme `8 = −(`9)(0 1 3 2) et `13 = −(`9)(1 0 2 3) et comme
`9 ne contient pas de terme, ni en A02A11A20A21A30A33, ni en A00A13A21A22A30A31, `8
et `13 n’engendrent pas non plus de compensation de type 1.

Compensations de type 2

Si un terme t′′ de P donne une compensation de type 2, il existe un terme t′ de − det νA,
indépendant de A00, tel que t′t̂′′ (t̂′′ désigne le terme t′′ dans lequel on a supprimé A00)

soit semblable à (87). Le degré de t̂′′ étant
(

1 2 1 1
0 1 2 2

)
, on a

t′ = A03A11A22A30 et t̂′′ = CA13A20A22A
2
31,

de sorte que
t′′ = CA00A13A20A22A

2
31.

Or, le terme de P en A00A13A20A22A
2
31 a le coefficient −2v1

1 (cf. (33)) : il engendre (87)
et 17 autres termes, non semblables.

Finalement, (87) n’est pas compensable et

v1
1 = 0. (88)

L’expression −2k′A02A13A
2
20A

2
31 étant un terme de P0,

−2k′A02A11A13A
2
20A22A

2
31A33 (89)

est un terme de type 1 de Q.

Compensations de type 1

Un terme du premier type, semblable à (89) est un produit t’t”, avec

t′ = A11A22A33 et t′′ = CA02A13A
2
20A

2
31

ou
t′ = −A13A22A31 et t′′ = −CA02A11A

2
20A31A33.

Or, le terme de P en A02A13A
2
20A

2
31 est de coefficient −2k′ (cf. (34)) et engendre

(89) et 5 termes non semblables. Quant aux termes de P en A02A11A
2
20A31A33, re-

marquons que les lignes `2, `8 et `13 de (32) sont les seules à examiner. Vu que
`2 = −(`3)(0 1 3 2) (`8 = −(`9)(0 1 3 2), `13 = −(`9)(1 0 2 3)) et que `3 (`9, `9)
ne contient pas de terme en A03A11A21A22A

2
30 (A03A11A21A22A

2
30, A00A12A

2
21A30A33)

(cf. (85), (86) et (88)), P ne renferme pas de terme en A02A11A
2
20A31A33.
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Compensations de type 2

Le degré de P̂1 étant
(

1 2 1 1
0 1 2 2

)
, on trouve ici

t′ = A02A11A20A33 et t̂′′ = CA13A20A22A
2
31

ou
t′ = −A02A13A20A31 et t̂′′ = −CA11A20A22A31A33.

Ainsi, les termes de P qui ne sont ni en A00A13A20A22A
2
31, ni en A00A11A20A22A31A33,

ne produisent pas de compensation du deuxième type. Il découle de (33) et (88) que
le terme de P en A00A13A20A22A

2
31 est nul. En ce qui concerne les termes de P en

A00A11A20A22A31A33, on observe que seulement les lignes `8 et `13 de (32) contiennent
éventuellement de tels termes. En réalité, il n’en est rien, car `9 ne renferme pas de
terme en A00.

Par conséquent,
k′ = 0

et, vu (25) et (28), on a également

F = v5
1 = 0.

Soient enfin le terme −2v5
2A03A12A

2
20A

2
31 de P0 et le terme

−2v5
2A03A11A12A

2
20A

2
31A33 (90)

de Q. De nouveau, il n’existe pas de terme semblable. En effet :

Compensations de type 1

On a, avec les notations habituelles,

t′ = A11A22A33 et t′′ = CA03A12A
2
20A

2
31.

Cependant, le terme de P en A03A12A
2
20A

2
31 a le coefficient −2v5

2 (cf. (35)) et engendre
(90) et 5 autres termes, non semblables.

Compensations de type 2

On obtient
t′ = A03A12A20A31 et t̂′′ = CA11A20A22A31A33,

de sorte que les termes de P en A00A11A20A22A31A33 sont les seuls qui peuvent fournir
une compensation de la seconde espèce. Or, on sait (voir plus haut) que le polynôme P
ne possède pas de tel terme.

Ainsi,
v5

2 = 0

et les équations (26) et (27) donnent alors

G = v3
3 = 0.
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7.2 Equation (37)

Posons
T 3 b c

1 s t = X11T 1 + X12T 2 + X13T 3,

où les termes en X12 et X13 sont à omettre, si b = 0 resp. c = 0. Le 1er terme de
P = (∂T )2 2 b c

1 1 s t fait partie de P0 (cf. (38)) et le 2ème s’écrit

X10(X00T 1 + X01 (0D1)T 1 + X02 (0D1)T 2 + X03 (0D1)T 3).

Ceci étant, l’identité Q ≡ 0 devient

(det A′)
(
−1

2
A01 (0D1)

2T 3 b c
1 s t + A01A10 (0D1)T 1 + A02A10 (0D1)T 2

+A03A10 (0D1)T 3
)
− (det νA− A00 det A′)A10T 1 ≡ 0,

les dérivées directionnelles et T 1 étant évalués sur les variables indépendantes Aji. Il
découle alors du lemme de divisibilité [5, IV.4.4] que

(0D1)
2T 3 b c

1 s t ≡ A10.R,

où R désigne un polynôme en les A`k (k ∈ {0, 1, 2, 3}, ` ∈ {2, 3}). Finalement, on a
donc

T 3 b c
1 s t = X11.R = X11(X

2
21T

1 + X21X31T
2 + X2

31T
3),

les termes en X2
21 et X2

31 étant à supprimer, si s = 1 resp. t = 1. Le 1er membre de (39)
ne dépendant pas de toutes les évaluations, on termine comme au cas m ≥ 4.

7.3 Equation (46)

Considérons le terme 1
2
A(b − 1)(b − 2)A02A12A

2
21A

2
30A

b−3
32 Ac

33 (b ≥ 3) de P =

(∂T )2 2 b−1 c
1 1 2 t et le terme

1

2
A(b− 1)(b− 2)A02A11A12A

2
21A22A

2
30A

b−3
32 Ac+1

33 (91)

de Q.

Compensations de type 1

Il suffit évidemment d’examiner les termes de P qui sont en A02A
2
30. Les termes t1, t4

et t5 de (46) (cf. 6.2) ne contiennent pas de tels termes. Il en est de même de t3 =
−(t2)(1 0 2 3) et de t6 = −(t5)(1 0 2 3), car il résulte de (47) et (48) que les termes de
t3 et t6 sont en A2

20 resp. en A10A20. Quant à t2, son second terme engendre (91) et 5
autres termes, non semblables.

Compensations de type 2

Si P1 6= 0, ses termes proviennent de t4 : ils sont donc en A10 et ne fournissent pas de
compensation.

D’où
A = 0.
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7.4 Equation (53)

Ici, P = (∂T )2 2 b−1 2
1 1 1 t et les termes à considérer dans P et Q sont respectivement

−1
2

Ct(t− 2)(t− 3)A02A13A23A
2
30A

2
31A

t−4
32 et

−1

2
Ct(t− 2)(t− 3)A02A11A13A22A23A

2
30A

2
31A

t−4
32 A33. (92)

Compensations de type 1

Cherchons les termes de P en A02A
2
30. De nouveau, les termes t1, t4 et t5 de (53) (cf.

6.2) ne conviennent pas. Comme T 2 b 2
1 1 t = CtX13X23X

2
31X

t−2
32 (cf. (62)), les termes t2 et

t5 sont en A13 et ainsi, t3 et t6 renferment A03. Enfin, il découle de (63) que t2 donne
(92) et des termes non semblables.

Compensations de type 2

Même argument qu’en VII.3.

D’où
Ct = 0.

7.5 Equation (80)

Soient le polynôme P = (∂T )
2 2 t−1

2
t−1
2

1 1 t+1
2

t+1
2

(t ∈ {5, 7, 9, . . .}) et le terme

(
−1

2
Ct,2

t− 1

2

t− 3

2
+ Ct,1

t + 1

2

t− 3

2

)
A03A11A13A

2
20A21A22A

t−5
2

23 A31A
t−1
2

32 A33 (93)

de Q.

Compensations de type 1

Les lignes `1, `2, `6 et `8 de (81) ne contiennent pas de terme en A03A
2
20. Vu (82) et

(83), `5 = −(`3)(1 0 2 3), `7 = −(`8)(0 1 3 2) et `10 = −(`8)(1 0 2 3) sont à leur
tour sans tels termes. Les termes en A03A

2
20 contenus dans `3, `4 = (`3)(1 0 3 2) et

`9 = (`8)(1 0 3 2) étant

−Ct,1
t + 1

2

t− 1

2
A03A12A

2
20A

t−3
2

23 A2
31A

t−3
2

32

+
(
−1

2
Ct,2

t− 1

2

t− 3

2
+ Ct,1

t + 1

2

t− 3

2

)
A03A13A

2
20A21A

t−5
2

23 A31A
t−1
2

32 ,

ils ne produisent pas de compensation.

Compensations de type 2

Si P1 6= 0, ses termes proviennent de `6, renferment A10 et ne fournissent pas de com-
pensation.
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Finalement, on a donc bien

−1

2
Ct,2

t− 1

2

t− 3

2
+ Ct,1

t + 1

2

t− 3

2
= 0. (94)

7.6 Méthode alternative

Voici un deuxième procédé permettant d’établir (notamment) (94).

Si P = (∂T )
2 2 t−1

2
t−1
2

1 1 t+1
2

t+1
2

(t ∈ {5, 7, 9, . . .}), il découle de [5, IV.4.3 (i)] qu’en dimension

m = 3, il existe un entier positif, non nul ρ et un polynôme Q tels que

P ρ(tA) = det A.Q(tA), ∀A ∈ IR4
4 (95)

(avec la convention habituelle). Notons que P (tA) contient le terme

t1 =
(
−1

2
Ct,2

t− 1

2

t− 3

2
+ Ct,1

t + 1

2

t− 3

2

)
A03A13A

2
20A21A

t−5
2

23 A31A
t−1
2

32

et posons

P (tA) =
p∑

k=1

tk,

les tk étant non semblables. L’identité (95) s’écrit alors

∑

ρ1+···+ρp=ρ

Cρ1,...,ρp
ρ

p∏

k=1

tρk
k − det A.Q(tA) ≡ 0. (96)

Nous allons montrer que le terme

tρ1 = (. . .)ρAρ
03A

ρ
13A

2ρ
20A

ρ
21A

t−5
2

ρ
23 Aρ

31A
t−1
2

ρ
32

de (96) n’est pas compensé (ce qui implique évidemment (94)). Il ne l’est pas par
un terme de det A.Q(tA), ces derniers contenant un facteur du type A0ν0A1ν1A2ν2A3ν3

(ν : permutation de 0, 1, 2, 3). Il ne l’est pas non plus par un terme de P ρ(tA). De
fait, sinon il existe un produit

∏p
k=1 tρk

k (avec ρ1 + · · · + ρp = ρ et (ρ1, ρ2, . . . , ρp) 6=
(ρ, 0, . . . , 0)) semblable à tρ1. Soit alors k 6= 1, tel que ρk 6= 0. Le terme tk étant de degré(

2 2 t−1
2

t−1
2

1 1 t+1
2

t+1
2

)
, il est en A03A13 et indépendant de A22, A30 et A33. Il s’ensuit qu’on

a nécessairement

tk = CA03A13A
a
20A

b
21A

c
23A

d
31A

e
32 (C ∈ IR, a, b, c, d, e ∈ IN)

= CA03A13A
2
20A

b
21A

t−5
2

23 Ad
31A

t−1
2

32

= CA03A13A
2
20A21A

t−5
2

23 A31A
t−1
2

32 ,

ce qui est absurde, t1 et tk n’étant pas semblables.
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