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Abstract This chapter introduces Systems Biology, its context, aims, concepts
and strategies, then describes approaches used in genomics, epigenomics, trans-
criptomics, proteomics, metabolomics and lipidomics, and how recent techno-
logical advances in these fields have moved the bottleneck from data production to
data analysis. Methods for clustering, feature selection, prediction analysis, text
mining and pathway analysis used to analyse and integrate the data produced are
then presented.
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Abbreviations

BASE BioArray Software Environment
BS BiSulphite
CATCH-IT Covalent Attachment of Tags to Capture Histones and Identify

Turnover
CFS Correlation-based Feature Selection
CHARM Comprehensive High-throughput Array for Relative Methylation
ChIA-PET Chromatin Interaction Analysis by Paired-End Tag
ChIP Chromatin ImmunoPrecipitation
CLIP Crosslinking immunoprecipitation
DHS DNAse I hypersensitivity
DNA DeoxyriboNucleic Acid
EFS Ensemble Feature Selection
ELISA Enzyme-Linked ImmunoSorbent Assays
ENCODE ENCyclopedia Of DNA Elements
ESI ElectroSpray Ionisation
EWAS Epigenome-Wide Association Studies
FAB Fast Atom Bombardment
FAIRE Formaldehyde-assisted isolation of regulatory elements
FDR False Discovery Rate
FT-ICR Fourier Transform Ion Cyclotron Resonance
FUGE Functional Genomics Experiment data model
GAGE Generally Applicable Gene-set Enrichment
GC Gas Chromatography
GEO Gene Expression Omnibus
GO Gene Ontology
GSEA Gene Set Enrichment Analysis
GWAS Genome-Wide Association Studies
HITS-CLIP HIgh-Throughput Sequencing of RNAs isolated by CrossLinking

ImmunoPrecipitation
HMM Hidden Markov Models
HPLC High Performance Liquid Chromatography
IMS Imaging Mass Spectrometry
IP ImmunoPrecipitation
iTRAQ Isobaric Tags for Relative and Absolute Quantitation
KEGG Kyoto Encyclopedia of Genes and Genomes
kNN k-Nearest Neighbor
LC Liquid Chromatography
MALDI Matrix Assisted Laser Desorption Ionisation
MBD Methyl-CpG Binding Domain
MCAM Multiple Clustering Analysis Methodology
MeDIP Methylated DNA Immunoprecipitation
MGDE Microarray Gene Expression Data
MIAME Minimum Information About a Microarray Experiment
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MIAPE Minimum Information About a Proteomics Experiment
MINSEQE Minimum INformation about a high-throughput SeQuencing

Experiment
MMASS Microarray-based Methylation Assessment of Single Samples
MN Microccocal Nuclease
MRM Multiple Reaction Monitoring
mRNA Messenger RiboNucleic Acid
MS Mass Spectrometry
NCBI National Center for Biotechnology Information
NER Named-Entity Recognition
NGS Next Generation Sequencing
NIH National Institutes of Health
NMR Nuclear Magnetic Resonance
PaGE Patterns from Gene Expression
PCR Polymerase Chain Reaction
PRIDE PRoteomics IDEntifications
PSM Peptide-Spectrum Match
QMS Quadrupole Mass Analyser
RNA RiboNucleic Acid
RRBS Reduced Representation Bisulphite Sequencing
RT-qPCR Reverse Transcription quantitative PCR
SAGE Serial Analysis of Gene Expression
SELDI Surface Enhanced Laser Desorption Ionization
SILAC Stable Isotope Labeling by Amino acids in Cell culture
SNP Single Nucleotide Polymorphism
SRM Selected Reaction Monitoring
SUMCOV SUM of COVariances
SVM Support Vector Machine
ToF Time-of-Flight
UCSC University of California, Santa Cruz
VOCs Volatile Organic Compounds

1.1 Background

1.1.1 Context

Life in a broad scientific context can be defined as the phenomenon that emerges
from particles of inorganic matter organised in molecules which interact with each
other within a cell [1]. This property is systemic because it only appears in the
system and not in its parts [2]. Living systems are complex, modular and hierar-
chical structures. Indeed, a multicellular organism consists of molecules, such as
deoxyribonucleic acid (DNA), ribonucleic acid (RNA), proteins, lipids and
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metabolites involved in chemical reactions and structures of cells. Cells are
organised in tissues forming organs with specific functions that are required for the
health of the organism. Systemic properties appear at each level, for example
homeostasis and response to stimuli in a single intracellular network, metabolism,
growth, adaptation, reproduction in a single cell.

Information that defines an organism and its ability to react to its environment is
encoded in its DNA and is expressed differentially in space and time throughout
life. Typical studies in biology have until recently used the reductionist approach
and addressed specific issues employing one or a few types of molecules at a small
scale, each shedding light on only a small fraction of vastly complex phenomena.
Some findings were remarkable, such as the discovery of the structure of DNA,
and later of the way genetic information stored in DNA is transcribed in messenger
RNA (mRNA) then translated in proteins, essential components of the cell
machinery and the engines of life. The accumulation of such knowledge on
molecules and mechanisms led to the ‘bottom-up’ approach to modeling biological
systems, using genes as core elements to simulate cells, organs and the whole
organism. This was complementary to the ‘top-down’ view of an organism as a
physiological system integrating information from its various constituents and
their interaction with the environment.

Major technological advances have in the last 15 years enabled biologists to
eventually gather information on a larger scale in various tissues, including samples
obtained with non-invasive methods, such as the collection of blood and urine. The
massive increase in throughput has had several consequences. First, biologists can
now study the vast majority of constituents, i.e. ‘ome’, of a given element, e.g. genes,
of a system be it an organism, organ or cell, e.g. all genes in its genome. Second, the
sheer size of data sets implies that their analysis relies increasingly on computational
tools and power available to analysts. Third, because characterisation of several
‘omes’, e.g. genome, transcriptome, proteome and metabolome, progresses rapidly
along with other disciplines such as imaging and in particular pharmaceutical
research with cheminformatics, compound libraries, high throughput screening,
safety and clinical data [3–5], one can now attempt to disentangle interactions
between the different elements of a biological system, or ‘interactome’, to under-
stand its behavior across several scales in a holistic manner, in health and disease.

1.1.2 Aims and Concepts

Systems Biology is the integrative study of complex systems in life with a holistic
approach now based on large-scale data sets analyzed iteratively with mathe-
matical models and simulation tools [6, 7]. Understanding each component of a
complex system in isolation is not sufficient to characterise the system. Indeed,
properties of the system are not only defined by the simple addition of elementary
functions but also emerge from the interactions between the elements [7–9]. These
emergent properties are studied by inferring networks of interactions between
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these constituents, e.g. genes, proteins and ligands, and by unraveling their reg-
ulatory mechanisms. Because of the very large number of elements in these net-
works, such an endeavor relies on concepts defined in the framework of the theory
of complex systems [10]. Systems Biology not only aims at understanding the
relationships between different levels of the expression of genetic information, via
data integration, but also at defining the system as a whole and producing a
convincing mathematical model of it, linking the highly complex interactions
between its components to its emergent properties [11–14]. In this context, disease
can be viewed as a shift of homeostasis from the normal range due to a large set of
perturbations in the network of interacting biomolecules in the whole organism.
Distinct perturbations may therefore result in a single disease phenotype, in
agreement with our understanding of complex diseases. Conversely, shifting the
system back to healthy homeostasis may be achieved in multiple ways and by
targeting several points in the network [15, 16].

Systems Biology follows an integrative and iterative approach that relies on
experimental and mathematical methods (Fig. 1.1). First, existing data relating to
different hierarchical levels of the system are integrated into mathematical or
graphical models to generate hypotheses towards understanding mechanisms at
play and build predictions on the functions of that system. Some components of
the system are then perturbed experimentally, such as in in vitro or in vivo models
of a disease. The outcome is assessed in the context of the model and the initial
hypotheses are revised accordingly. These revised hypotheses finally inform new
perturbation experiments. The approach is repeated until the system’s behaviour is
faithfully simulated by the model [7]. Further complexity is added when one
considers the environmental factors of the model.
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Fig. 1.1 Modeling in Systems Biology. Modeling starts with the integration of different
experimental data into a single knowledge base to organize and store data. Mathematical
descriptions of the interaction between model elements allow (1) simulation of the emergent
behavior of the system, (2) comparison of this simulated behavior with experimental data, (3)
adjustment of the model and (4) design of further experiments. When the model fits experimental
data, studying the role of particular design features may help identify mechanisms at play and design
principles. The model may also be used in drug design, biotechnology or bioengineering for example
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1.1.3 Strategies

Three main strategies aim to build the link between the system’s components and
its emerging properties: ‘bottom-up’, ‘top-down’ and ‘middle-out’ (Fig. 1.2). The
main steps of the ‘bottom-up’ approach are to graphically or mathematically
model relationships between the components of the system, starting with those at
the lowest level of the multiscale structure, hence ‘bottom’, e.g. genes and pro-
teins, set model parameters using experimental values and verify the model by
comparing its systemic behavior with the behavior of a real system. The term
bottom-up also refers to the direction chosen: from known or assumed properties
of the components one deduces system functions [17]. This molecular biology
strategy has been successful in modeling biological systems with relatively low
number of components, e.g. a single intracellular network or a single prokaryotic
cell. It may however not be suited to reconstruction of the emergence of larger
systems, e.g. the whole body physiological behavior in Mammals. In contrast, the
‘top-down’ or physiology approach relies on the systemic behavior. It first
involves defining ways the complicated systemic function of interest varies with
conditions and/or time, and then inferring hypothetical structures responsible for
this function. The system behavior is perturbed and the effects studied at the level
of the system components, i.e. genome, transcriptome, proteome and metabolome.
This strategy is limited to an extent by the challenge of inferring DNA sequences

Fig. 1.2 Multiple scale strategies in Systems Biology. Starting at the molecular level,
interactions between DNA, epigenetic factors, RNA, proteins, lipids and metabolites define the
core biological processes required for higher order functions. These processes are defined by
molecular interaction networks, which communicate with each other within a given cell, between
cells in the same tissue or distinct tissues, or between organs of a complex organism
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from phenotypes. Also, models built with top-down approaches must be updated
with every new experiment using all existing experiments, making the analytical
and computational challenges increasingly difficult. In contrast, models built with
the bottom-up approach such as an in silico cell model comprise modules which
are updated independently of each other [18]. The ‘middle-out’ strategy intends to
overcome the intrinsic limitations of the above approaches, taking into account
that chains of causality can operate in biological systems in both directions,
starting at any levels of biological organization. The behavior of a single func-
tional system is thus modeled in terms of interactions between entities at a level
sufficiently well described by experimental data (‘middle’), typically of the lower
levels of organization but not necessarily down to molecules. The model is then
extended to higher and lower levels (‘out’) iteratively by combining ‘bottom-up’
and ‘top-down’ approaches. It was successfully implemented in the Physiome
project [19, 20].

Systems Biology will play a crucial role in the development of personalized
medicine as it will enable integration of different types of data to profile patients,
identify unbiased biomarkers and produce precise disease phenotypes. It will
hence help prevention, diagnosis and treatment, or Systems Medicine [21, 22].

1.2 Introduction to Functional Genomics, Proteomics,
Metabolomics and Bioinformatics

Genomics is the study of the sequence, structure and content of the genome, in
particular the genes and their number, structure, function and organisation along
the genome. Functional genomics is the study of the function of genes and the
regulation of their expression at the level of the cell, organ or organism, spatially
and at different time points and/or health status, by deciphering the dynamics of
gene transcription, translation and protein–protein interactions on a genome-wide
scale using high-throughput technologies. The main large-scale experimental tools
used to study epigenetics (epigenomics) and gene expression (transcriptomics)
have so far involved microarrays and more recently next-generation sequencing.
Mass spectrometry is widely used to study proteins (proteomics), metabolites
(metabolomics), and more recently volatile organic compounds (VOCs) in exhaled
breath condensate (breathomics). Technical advances also led to the development
of computational tools to handle and analyse their output.

1.2.1 Sequencing Technologies

Whole genome sequencing started with the sequencing of a bacteriophage in 1977
using the Sanger sequencing technique. The development and maturation of
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4-color automated Sanger sequencing produced the instruments that sequenced the
human genome (Smith et al. 1986). Several high-throughput sequencing tech-
niques, or Next Generation Sequencing (NGS), arose subsequently which were
each inferior to the more established automated Sanger technique, being slower
per run, less accurate, with shorter read length and more expensive, but far
superior by virtue of the vastly larger number of nucleotides read [23–25]. Now 3rd

generation sequencing strategies employ nanopores and single molecule reads, and
promise to increase the throughput and decrease the cost of sequencing strikingly.
Computational tools are being developed to process the very large amount of NGS
short, low quality reads and assemble them into a genome sequence [26]. Genome
sequences of over sixty pro- and eu-karyotes are annotated in online public gen-
ome browsers [27, 28]. Knowledge of whole genomes also enabled the large-scale
study of gene expression and the development of functional genomics. NGS can
indeed be used for DNA or RNA sequence analyses and has several advantages
over microarrays: it does not require array design, enables wider scale, whole-
genome studies, improved resolution, more flexibility, allele-specificity, lower cost
and amount of input material. NGS now also enables routine discovery of variants
in entire exomes and even large genomes [29, 30] as in Human with the 1000
Genomes Project [31], in cancer research [32, 33] and studies of allele specificity
in gene expression [34]. NGS also catalyzed the massive development of me-
tagenomics [35] and will thus help decipher host-gene-microbial interactions [36].
NGS is however not mature enough for routine use in clinical field [37]. The ever
increasing speed, quality and range of applications of sequencing methods have
created a huge flow of data and related challenging requirements not only for
computing power, memory and storage [38–40] but also data sharing [41]. Reads
mapped onto a reference genome can be displayed with other sources of annotation
such as NCBI [42] with Ensembl [28] and UCSC browsers [43].

1.2.2 Mass Spectrometry

Mass spectrometry (MS) relies on deflection of charged atoms by magnetic fields
in a vacuum to measure their mass/charge (m/z) ratio. A typical experiment fol-
lows five steps: (1) introduction of the sample, (2) ionisation of its particles, (3)
acceleration, (4) deflection proportional to the mass and charge of the ion, and (5)
detection, recorded as a spectrum showing peaks on a plot of relative quantity as a
function of the m/z ratio.

Several methods for introduction, ionisation and types of spectrometers enable
a wide range of analyses. Introduction methods are Gas chromatography (CG) for
thermally stable mixtures, liquid chromatography (LC) for thermally labile mix-
tures, and solid probes. Some compounds such as large proteins and polymers
must be ionized directly. Ionisation methods can be hard or soft. Hard ionisation
introduces high amount of energy in the molecules that results in fragmentation
and thus helps identify the compound but resulting spectra rarely contain the
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molecular ion. ElectroSpray Ionisation (ESI) uses high voltage to disperse and
ionise macromolecules through a spray nozzle. It is soft, limits fragmentation and
produces multiply charged ions, allowing detection of large compounds at lower
mass/charge value, and hence increases the analyser’s mass range. ESI is often
coupled with LC/MS. Mixtures containing non-volatile molecules can also be
analysed with Fast Atom Bombardment (FAB) and Matrix Assisted Laser
Desorption Ionisation (MALDI). MALDI is used to analyse extremely large
molecules, up to 200,000 Da, often coupled with time-of-flight (ToF) MS. Surface
Enhanced Laser Desorption Ionization Mass Spectrometry (SELDI-MS) separates
protein subsets fixed onto a surface according to specific biophysical properties,
e.g. hydrophobicity. Thus, analysis of proteins, peptides and nucleotides can be
performed with ESI, SELDI, MALDI, and FAB [44].

Several types of analysers exist. In a quadrupole mass analyser (QMS) ions are
deflected by oscillating positive and negative electric fields. A triple-QMS con-
tains three QMS one after the other where the first QMS enables the identification
of known compounds, the second its fragmentation, and the third the identification
of the fragments, thereby elucidating the compound structure. Other types of
analysers include ion trap, ToF, Orbitrap, and Fourier Transform Ion Cyclotron
Resonance (FT-ICR) with increasing mass resolution and accuracy. Orbitraps are
cheaper, more robust and have a higher-throughput than FT-ICRs. Tandem-MS
involves several steps of selection of compound using MS. MS methods mentioned
above vary in throughput, robustness, sensitivity, selectivity and ease of use [44].

1.2.3 Bioinformatics

Bioinformatics comprises mathematical approaches and algorithms applied to
biology and medicine using Information Technology tools, e.g. databases and
mining software [45, 46]. Analysis of omics data typically follows four steps: (1)
data processing and identification of molecules, (2) statistical data analysis, (3)
pathway and network analysis, and (4) system modelling. Examples include de
novo genome assembly, genome annotation, identification of co- or differentially
expressed genes at the level of transcripts or proteins and the inference of protein–
protein interaction networks. Bioinformatics also enables integration of hetero-
geneous high-throughput data sets produced by a given study and existing data sets
using knowledge management, annotation and text mining tools such as the two
structured vocabularies Gene Ontology (GO) for genes and associated biological
processes, cellular components and molecular functions [47, 48] and Microarray
Gene Expression Data (MGED) ontology [49], the PRoteomics IDEntifications
(PRIDE) database [50], Functional Genomics Experiment data model (FuGE) [51],
the Systems Biology Markup Language [52], the Systems Biology Graphical
Notation [53], BioMART [54, 55], tranSMART [56], bioXM [57], GARUDA [58],
Nexbio [59], and includes Systems Biology [23]. Identification of pathways, and
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network inference and analysis is covered in chapter ‘Network analysis for sys-
tems biology’.

These efforts collectively aim at unraveling the molecular pathways under-
pinning physiology and at identifying biomarkers to describe a system with a
combination of environmental, clinical, physiological measures to improve
detection and monitoring of a phenomenon, such as diseases in medical research to
facilitate diagnosis and therapy. Biomarker discovery relies on two types of
studies: unbiased, which only depend on the technique used, and targeted, which
focus on pre-defined biomarkers measured by specific methods. Experimental and
bioinformatics methods and tools mentioned in the following text are listed in
Tables 1.1 and 1.2.

1.3 Functional Genomics, Proteomics and Metabolomics

1.3.1 Epigenomics

Epigenomics is the genome-wide study of modifications of chromatin, i.e. DNA
and associated proteins, which play an important role in gene regulation, gene-

Table 1.1 Examples of methods and tools for functional genomics, proteomics and metabolo-
mics. This list is non exhaustive and only includes items mentioned in the text

Epigenomics
methods

DNA methylation [61]: Endonucleases (MMASS, CHARM, Methyl-seq),
bisulphite (BS) conversion (RRBS, MethylC-seq), and affinity (MeDIP-
chip, MeDIP-seq, MDB-seq). Methylation levels can then be measured
with microarrays and sequencing techniques;

Chromatin accessibility (DNAseI-seq, FAIRE–seq, Sono-seq, 3C, 4C, 5C,
ChIA-PET);

Nucleosome positioning (CATCH-IT, MNase-se, haploChIP)
Epigenomics tools Encyclopedia Of DNA elements (ENCODE) project [63], the NIH

Roadmap Epigenomics effort [64], the Human Epigenome Project [65]
and recently BLUEPRINT [67]

Transcriptomics
methods

DNA microarray, SAGE, RNA-seq, ChIP-seq, CLIP-seq [108, 113, 114,
117]

Transcriptomics
tools

ArrayExpress [104], GEO [106], MIAME [107], MINSEQE [119]. See [26,
120] for reviews on downstream analysis.

Proteomics
methods

ELISA, 2D gel electrophoresis, NMR, MS, iTRAQ, SILAC, SRM, SELDI-
ToF [126–131]

Proteomics tools MIAPE [134], TransProteomic pipeline, protein atlas, neXProt [139–141]
Metabolomics

methods
NMR [143], MS [44], IMS [144, 147]

Metabolomics tools MetabolomeExpress [150], metaP [151], KEGG [145], human metabolome
project [142]

Lipidomics
methods

MS [44, 161], orbitraps [160], IMS [144, 147]

Lipidomics tools LIPID MAPS [165], XCMS [162], MZmine2 [163]
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environment interactions, development and in diseases such as inflammation and
cancer [60, 61]. Such modifications involve the DNA itself but not its sequence,
i.e. a methylated cytosine (mC) adjacent to a guanine (CpG dinucleotides in
mammals), and of chromatin proteins, i.e. methylation, acetylation and phos-
phorylation of histones. Epigenomics also covers chromatin accessibility, nucle-
osome remodelling, long-range chromatin interactions and allele-specific
chromatin signatures. Technological advances are now enabling Epigenome-Wide
Association Studies or EWAS, akin to Genome-Wide Association Studies or
GWAS [62], and large scale studies in different cell types and tissues, as in the
human ENCyclopedia Of DNA Elements (ENCODE) project [63], the NIH
Roadmap Epigenomics effort [64], the Human Epigenome Project [65], [66] and
recently BLUEPRINT that aims to determine the epigenome of 100 different blood
cell types [67].

DNA methylation at CpG is widely studied as it mediates gene repression in a
cell-specific manner by preventing the transcriptional machinery from accessing
DNA. Methylated DNA can be detected with three types of DNA treatments, i.e.
endonucleases, bisulphite (BS) conversion, and affinity. Methylation levels can
then be measured with microarrays and sequencing techniques.

Endonucleases cleave DNA at specific sites, are sensitive to methylation and
enable several DNA analyses techniques. Recent methods enable analysis of a
single sample, e.g. microarray-based methylation assessment of single samples
(MMASS), better statistical analyses and methods for array design, e.g. compre-
hensive high-throughput array for relative methylation (CHARM) [68] and the

Table 1.2 Examples of methods and tools for bioinformatics. This list is non exhaustive and
only includes items mentioned in the text

Bioinformatics Microarray gene expression data (MGED) ontology [49], the proteomics
identifications (PRIDE) database [50], functional genomics experiment
data model (FuGE) [51], the systems biology markup language [52], the
systems biology graphical notation [53], BioMART [54, 55],
tranSMART [56], bioXM [57], GARUDA [58], nexbio [59]

Clustering Babelomics [176], BASE [177], MCAM [178]
Feature selection Unsupervised [187], supervised [186]; filters (student’s t test, Wilcoxon

rank sum test, CFS, EFS, Markov blanket filtering) [188], wrappers
(kNN [203], Naive Bayes [204], sequential forward search [205]),
hybrid methods [202], mathematical programming [209], signal
processing approaches [210]

Prediction analysis Unsupervised (clustering, feature selection, dimension reduction, density
estimation, and model structure learning, nonlinear dimension reduction
methods) [211–213]; supervised (SVM [215], random forest [216]);
semi-supervised [217]; time series (HMM [218])

Networks from
literature

NER [225], iHOP [232], FActa ? [221], AliBaba [233], IntAct [234],
CoPub [235]

Pathway analysis Differential expression filtering, overrepresentation statistics [236], GSEA
[240], PAGE [241], GAGE [242], ontologizer [243], GeneCodis [244],
elementary flux analysis [245], extreme pathways [246]
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widely used NGS sequencing of DNA enriched for CpG containing regions
(Methyl-seq) [61].

BS conversion modifies unmethylated cytosine in CpGs into a uracil and thus
transforms an epigenetic difference into a genetic one detectable by methylation
specific DNA microarrays with single-nucleotide resolution [69, 70]. Except for
mC, BS treated DNA comprises only three base types and hence has reduced
sequence complexity and hybridization specificity. This is overcome by enriching
for CpG-containing segments as in Reduced Representation Bisulphite Sequencing
(RRBS) with BS treatment and NGS. Alternatives include whole-genome BS
sequencing, although that is expensive, and the widely used MethylC-seq, i.e. NGS
of BS treated DNA. Throughput and coverage may increase with nanopore
sequencing which can sequence mC directly, without BS treatment [71].

Genome-wide identification of DNA binding-sites and corresponding binding
proteins is mainly achieved with the affinity-based approach chromatin immuno-
precipitation (ChIP) whereby DNA-binding proteins, e.g. histones and transcription
factors, are cross-linked in vivo in cells that are then lysed. DNA is fragmented by
sonification, recovered by heating DNA–protein complexes and detected with
microarray (ChIP-chip) or NGS (ChIP-seq) [72, 73]. Methylated DNA Immuno-
precipitation (MeDIP-chip and MeDIP-seq) uses monoclonal antibody against
methylated cytosine to enrich single-strand methylated DNA. Some alternatives
rely instead on high affinity binding of a Methyl-CpG Binding Domain (MBD)
protein complex for double-strand methylated DNA (e.g. MDB-seq) [60, 74].
Transcription factor binding sites are then predicted in the sequences identified
[75]. ChIP is also widely used to study patterns of histone modifications and
chromatin modifiers [63, 76]. It can be integrated to other data sets, as with Segway
[77], helping development of chromatin model [78]. ChIP coupled with quantitative
real-time PCR allows the study of the dynamics of DNA and proteins interactions in
living cells for up to several minutes, and has now been adapted to microfluidics
technology reducing the number of cells and time required [79].

Across the three types of treatment, at least 13 array- and 10 seq-based ana-
lytical methods exist, the choice of which depends on their features, the required
coverage and resolution, types of bias, accuracy and reproducibility, and also on
the number of samples, available DNA quality (high for affinity techniques) and
quantity (high for nuclease techniques), and in particular for array-based methods:
the organism. The most widely used NGS-based methods rely on BS (RRBS and
MethylC-seq) or affinity (MeDIP-seq and MBD-seq) approaches [61, 80, 81].

Microarray data processing addresses imaging and scanning artefacts, back-
ground correction, batch and array normalization, and correction for GC content
and CpG density. The ratio of methylated to unmethylated molecules for a given
locus is a widely used metric. It is analysed with tools developed for gene
expression data, potentially wrongly since they rely on assumptions violated by
DNA-methylation data, e.g. independence of the number of methylated and un-
methylated sites, and similarity of signal strength across samples [61, 82–84].
Processing sequencing reads involves mapping of reads to the reference genome,
counting and/or analysis of bisulphite data [85, 86].
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Genomic regions of chromatin accessibility, i.e. low nucleosomal content and
open chromatin structure, potentially harbour regulatory sequences and can be
identified with high-throughput DNAse I hypersensitivity assay (DNAseI-seq aka
DHS-seq) [87], formaldehyde-assisted isolation of regulatory elements followed
by sequencing (FAIRE–seq) [88] and Sono-seq [89]. And long range chromosomal
interaction are identified with chromosomal conformation capture (3C) [90, 91],
3C on chip (4C) [92], 3C carbon copy (5C) [93] and coupled with NGS as in using
Hi-C [94] and ChIA-PET [95]. Nucleosome positioning and remodelling is studied
with CATCH-IT [96] and MNase-seq [97] while haploChIP identifies allele-spe-
cific chromatin profiles [98, 99], including SNPS that affect gene expression [100].

Methods to integrate epigenomics data are recent and currently being devel-
oped. Examples include integration with gene expression data, using an empirical
Bayes model [101] and clustering of DNA methylation data followed with non-
linear regression analyses [102]. Visualisation tools can display raw data genome-
wide as with Circos [103] or analysis output in a similar manner to that used for
GWAS, using log10 p-value, but on two axes: test of difference in methylation
status and test of difference in gene expression [83].

1.3.2 Transcriptomics

Transcriptomics is the genome-wide identification and quantification of RNA
species such as mRNAs, non-coding RNAs and small RNAs, in health and disease,
and in response to external stimuli. With DNA microarrays, gene expression levels
are measured as the amount of RNA in the sample that matches the set of probes
fixed on the array; RNA molecules are fluorescently labelled and hybridised onto
the array where the intensity of the signal measured for a given probe is assumed
to be proportional to the quantity of RNA bound to it. Changes in expression levels
between experimental conditions or samples with or without disease on one hand
and similarity of expression pattern with a gene with known function on the other
hand indicate the most likely functions of the genes. Two main public repositories
for gene expression data sets exist: ArrayExpress [104, 105] and Gene Expression
Omnibus (GEO) [106], both compliant with the ‘Minimum information about a
microarray experiment’ (MIAME) guidelines [107]. Although microarrays are an
established and very widely used technology [108], data processing and analysis
methods are still being developed. For example, recent studies claim that models
for background noise based on Gaussian distribution for computational efficiency
may not be appropriate and non-parametric methods may harbour a lower false
positive rate [109], while weighted average difference seems to be the best method
to identify differentially expressed genes [110]. Two main sequencing-based
alternatives exist which, unlike microarrays, do not rely on a set of pre-defined
probes and are therefore considered unbiased: Serial Analysis of Gene Expression
(SAGE) and genome-wide transcriptome NGS (RNA-seq).
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SAGE entails sequencing tags that are unique to each gene and not defined a
priori. SAGE was for example used to build expression profiles of long non-
coding RNAs for 26 normal tissues and 19 cancers in human [111], shedding light
on their poorly understood function [112]. The more recent RNA-seq provides
whole transcript sequences, has very low background noise, offers a very large
dynamic range, is highly accurate and reproducible, enables the discovery of novel
exons, isoforms and transcripts. RNA-seq has already proved very promising but is
not as mature as microarrays yet [113–115]. Rare and transient transcripts so far
undetected by current methods were recently identified with targeted transcripto-
mics by capture on tiling array followed by NGS [116]. Currently, some experi-
mental protocols may introduce bias due to amplification, fragmentation and
ligation processes [117, 118]. Development of robust quality control standards and
guidelines for microarrays occurred over a decade but should be faster for RNA-
seq. Methods are being developed to describe experiments using MIAME-like
‘Minimum Information about a high-throughput SeQuencing Experiment’
(MINSEQE) guidelines [119], map the vast amount of short read sequences [26],
assess expression levels and detect differentially expressed transcripts [120].

Estimates of expression levels of transcripts of interest must be validated by
RT-qPCR and emerging techniques such as direct visualization and counting of
RNA molecules [121]. These must however be standardised and applied across
platforms [21]. Microarrays are still relatively cheaper than RNA-seq, their biases
are known and analysis workflows are mature. They are therefore still preferred in
drug discovery, though RNA-seq methods will probably replace them over the
next years. Because gene expression profiles obtained with both methods correlate
well, the vast amount of data acquired with microarrays is complementary to new
data produced by RNA-seq [108].

Other techniques such as ChIP are also used to identify proteins binding DNA
(ChIP-seq) [73] and RNA (CLIP-seq aka HITS-CLIP) [122]. These fast evolving
high throughput methods are greatly improving our understanding of gene
expression regulation [123, 124], at the transcriptional and post-transcriptional
levels [125].

1.3.3 Proteomics

Correlation between levels of transcripts and proteins is incomplete due to vari-
ation in speed and efficiency of translation and of mRNA degradation. Many
proteins undergo posttranslational modifications, e.g. phosphorylation and ubiq-
uitination, which modulate their activity and mediate signal transduction. Proteins
also play their role as part of complexes with other proteins or nucleic acids. A
recent study of a human cell line identified over 10,000 proteins, with concen-
trations ranging over seven orders of magnitude. The human proteome has been
estimated to comprise several millions distinct species which cannot currently be
amplified and reflect concentrations with a very wide dynamic range [126].
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Proteins can be identified using low-throughput antibody methods, Enzyme-
Linked ImmunoSorbent Assays (ELISAs) and 2D gel electrophoresis. Proteomics
aims at defining all of the proteins present in a cell, a tissue, or an organism (or any
other biological compartment) and employs large-scale, high-throughput studies of
protein content, modifications, function, structure, localisation, and interactions
using high-throughput techniques. Protein microarrays capture proteins using
agents fixed on their surface, which can be antibodies but also peptides, receptors,
antigens, nucleic acids. Detection and quantification are often fluorescence-based
and identify interactions between proteins, kinase substrates, activators of tran-
scription factors [127]. Nanoproteomics has the potential to provide fast, high-
throughput and sensitive methods using only minute amount of samples [128].
However, MS is currently the main technique for large-scale whole-proteome
study with precise measurements [129, 130].

Shotgun proteomics, i.e. shotgun LC coupled with tandem MS (LC–MS/MS) is
the most widely used approach. The sample of peptides resulting from the trypsin
(or other enzyme) digestion of proteins is separated by High Performance Liquid
Chromatography (HPLC) and peptides are identified using tandem MS: peptides
are ionised and separated, producing mass spectra with peaks corresponding to
peptides (first MS), which are then identified using further fragmentation and
separation of resulting peptide fragments (second MS). Inclusion of labelled
synthetic peptides as spike-in or labelling samples chemically (iTRAQ) or meta-
bolically (SILAC) improves quantification [131]. Mixture complexity is addressed
by fractioning the mixture. Targeted proteomics allows one to identify 100-200
proteins in a complex mixture by previously identifying the ‘‘transition peptide
fragments’’ through the use of a triple quadrupole mass spectrometer which sep-
arates the trypsin peptide fragments, then fragments these further into ‘‘transi-
tions’’ that can be quantified in the third quadrupole. One attempts to choose
transitions that are unique to individual proteins and spiking in isotopically
labelled transition peptides greatly improves quantification. Targeted mass spec-
trometry is termed Selected Reaction Monitoring (SRM) or Multiple Reaction
Monitoring (MRM). SRM assays for the entire human proteome (more than 20,000
proteins) have recently been developed (R. Mortiz, personal communication).

HPLC–MS is highly sensitive, specific and fast, and thus used for bioanalysis,
in particular pharmacokinetics to measure speed of drug clearance by the body,
and in urine sample analysis. Drawbacks however include a bias towards identi-
fication of most abundant peptides. SELDI-ToF is more accurate than shotgun
approach and is thus better suited to biomarker quantification, but may not be
accurate enough for clinical diagnostics [132].

Recent techniques produce data sets of approximately one million spectra, up to
100 Gb in size, where up to 8,000 proteins can be identified [133]. Pre-processing
of raw spectra entails noise filtering, baseline subtraction, peak detection, and
calibration and alignment of LC/MS maps. Analysis follows four steps: (1)
identification of amino-acid sequences, peptides and proteins in Peptide-Spectrum
Match (PSM), and detection, quantification, annotation and alignment of features,
(2) peptide and protein significance analysis, (3) class discovery and prediction,
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and (4) data integration and pathway analysis. Identification of amino-acid
sequences mainly involves searching databases of spectra obtained experimentally
or of spectra predicted from genomic sequences using in silico digestion, and
reporting PSMs with the best scores. Statistical strength of predictions is indicated
using the False Discovery Rate (FDR) computed using decoy databases, or models
including the proportions of true and false identifications. Because many spectra
map to many peptides and many peptides map to many proteins, identification of
peptides and proteins is cumbersome and not completely solved. The issue is
further complicated by post translational modifications and single amino-acid
polymorphisms. Current methods identify approximately two thirds of tandem MS
spectra. Proteins are reported on the basis of single-peptide match, or more
stringently of match to protease specific peptides [133, 134]. Experiments are
described using MIAME-like Minimum Information About a Proteomics Experi-
ment (MIAPE) guidelines [135].

Difference in protein abundance is assessed with protein quantification (con-
centration estimate) and class comparison (change in abundance between condi-
tions). The principle is to summarise all quantitative data relating to the protein by
(1) spectral counting, where the number of spectra is assumed to reflect abundance
with LC MS–MS, and is limited to large change for abundant proteins in low-
complexity mixtures, or (2) probabilistic models incorporating all features of a
protein and their variation. These models aim to address important issues, such as
representation of the experimental design, treatment of missing data and control of
FDR [134, 136]. Recent studies have shown convincing examples of quantitative
proteomics efforts ran across different laboratories and using several experimental
platforms. Currently, about two-third of human proteins predicted to exist have
been detected with MS, hence the need to improve sensitivity, reproducibility of
identification, and sensitivity and accuracy of quantification [133, 134, 136].
Protein–protein interactions and cell signalling cascades are mainly studied with
the following approaches: yeast two-hybrid complementation, protein microarray,
immunoaffinity chromatography and MS [137], and with a lower throughput by
immunoprecipitation and mass spectrometry in Mammals [138, 139]. Attempts to
integrate proteomics with other omics data are hindered by current drawbacks of
proteomics analysis: proteome not completely sampled, uncertain identification of
protein, difficulties in mapping identifiers across the different omics sources, hence
the need for protein-centric knowledge bases such as TransProteomic Pipeline
[140], Protein Atlas [141] and neXProt [142].

1.3.4 Metabolomics and Lipidomics

1.3.4.1 Metabolomics

Metabolomics is the high-throughput characterisation of the mixture of all
metabolites in a biological system, i.e. endogenous and exogenous small
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molecules [143]. Metabolites are lipids, peptides, and amino, nucleic and organic
acids. Metabolomics is now widely used in microbiology, nutrition, agriculture
and environmental sciences, and clinical and pharmaceutical fields. Metabolites
are the product of enzymatic reactions mediating complex biological processes and
may therefore help understand phenotypes. They can be analysed using NMR
spectroscopy although it lacks sensitivity [144] and MS (GC and LC) is usually
preferred and used in targeted and untargeted approaches. Targeted strategies are
specific and sensitive, allow absolute quantification and thus widely used in
clinical diagnostics and drug development. Targeted approaches based on stable
isotopes and models of metabolic networks allow estimation of the flux through
biochemical pathways [145]. In contrast, untargeted approaches harbour a high
coverage, though any metabolite identification is less specific and sensitive, and
requires more intensive computational analysis. Features to use for identification
are detected using univariate and multivariate analyses and then used to search
databases such as Kyoto Encyclopedia of Genes and Genomes (KEGG) [146, 147].
Further experiments to distinguish isomers and characterise unidentified metabo-
lites using tandem MS or NMR are often required. Metabolomics also include
identification of substrate in in vitro assays of three types: (1) the protein is fixed
onto a surface and ligands screened, (2) the metabolite is fixed and serve as bait for
interacting proteins, or (3) activity-based protein profiling using chemical probes
and beads. Last but not least, location of metabolites within cells, tissues or bodies
can be studied by coupling MALDI or matrix-free MS and imaging techniques
(imaging mass spectrometry, IMS) to obtain spectra by scanning the biological
sample with the laser and then compiling a map of metabolite content across that
sample [145, 148].

Standards for experiment description and tools for processing and analysis of
metabolomics data are actively being developed [149, 150]. For example, Me-
tabolomeExpress [151] and metaP [152] both combine tools from raw data pro-
cessing, i.e. MS peak detection, to multivariate analysis.

Development of biomarkers with metabolomics and comparison between data
sets depend on: (1) the characterisation of technical MS artefacts and differences in
compounds discriminating samples between analysers and (2) sample type and
biological variability [153]. The Human Metabolome Project quantified over 4,000
metabolites in up to 70 samples [143] out of 6,826 identified by Wishart and
colleagues [154]. Another recent large-scale targeted metabolomics study quan-
tified 122 metabolites in 377 individuals, including type 2 diabetes patients and
controls, and identified 25 metabolites in plasma and 15 more in serum with
different concentrations in the two groups [155].

1.3.4.2 Lipidomics

Lipids play important roles in the signalling involved in metabolism, energy
storage, and cell proliferation, migration and apoptosis [156]. They are also the
main components of cellular membranes, together with membrane proteins.
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They thereby maintain cellular architecture and mediate membrane trafficking by
enabling protein machinery assembly, as for example in dynamic clusters gath-
ering specific proteins in lipids rafts [157]. Lipids are very diverse in their
structure, physical properties and quantity. For example, signalling and structural
lipids are respectively found in low and high abundance. Lipidomes, the lipids
present in biological structures, are currently poorly understood [158]. The Human
lipidome may contain thousands of species [159] while only 20 % of all lipids may
have been detectable with existing technologies, as in 2009 [154]. Lipidomics
studies aim to characterise lipids content, localisation and activity in cells and
tissues [160]. The vast majority of lipids are extracted from lysed cells and tissues,
and analysed with MS either directly in the shotgun method, i.e. ‘top-down’ lip-
idomics with high resolution analysers such as Orbitraps, or with LC–MS/MS
‘bottom-up’ lipidomics to distinguish lipids with identical charge to mass ratio
[161]. Lipids have also been analysed with MALDI IMS [162]. Lipidomics MS
raw data can be analysed with tools used for metabolomics, such as XCMS [163]
and MZmine 2 [164].

Lipids are identified and quantified using raw data processing and statistical
analysis, followed by pathway analysis and modelling [165]. Major lipidomics
intiatives include the ‘Lipid Metabolites And Pathways Strategy’ (LIPID MAPS)
which has established standards and enabled absolute rather than relative quanti-
fication [166], and the Mouse Macrophage Lipidome [167]. Absolute quantities for
proteomics and lipidomics will help characterise complexes comprising both
proteins and lipids [145].

Future technical advances should aim for higher accuracy better consistency,
and harmonisation of protocols. Analytical developments should include: (1)
automated data processing and lipid identification and mining, (2) statistical data
analysis to address high-dimensionality and platform-independent computation of
lipid identification false discovery rate, (3) pathway analysis to identify bio-
chemical, signalling and regulatory processes that involve the lipids of interest
characterised in a sample set, and (4) modelling in time and space within the
context of physiology and systems [168].

1.4 Methods and Tools

Current high-throughput technologies produce very large data sets and have
shifted the bottleneck from data production to data analysis. Knowledge man-
agement tools are thus very valuable to organise, store and analyse data either
directly with embedded software or indirectly by exporting the data in the required
format. Recent data sets also harbour very high dimensionality. Data integration
aims at combining such high-dimensionality, large data sets differing in the type of
data collected. Unsupervised integration aims to reduce the dimensionality of large
data sets, without introducing a bias inherent to prior knowledge and hypotheses. It
helps detect patterns within and amongst data sets and complements standard
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observations in building hypotheses. These are then tested analytically with
supervised methods, usually only using a fraction of the available dimensions, and
experimentally [58, 169, 170]. Despite its power and promises data integration is
only a means to an end, not an automatic engine to generate valuable findings.
Indeed, answers to the questions asked in a scientific study directly depend on the
experimental design, e.g. the types of data, controls, processing and analyses, and
the size of samples, within financial and time constraints. The following section
describes methods for clustering, feature selection, prediction analysis, text mining
and pathway analysis (Fig. 1.3).

1.4.1 Clustering

Motivation: Clustering is a data-exploration technique for multivariate analysis
which divides data based on intrinsic groups without predefined labels. Clustering
methods have been applied to various aspects of biomedical research, e.g. gene
expression in cancer, to distinguish patients or genes subgroups based on expression
levels of a set of differentially expressed genes. Clustered genes may have
similar functions, be involved in the same cellular process or in similar pathways.

Fig. 1.3 Overview of machine learning methods. Supervised and unsupervised methods range
from lower level dimensionality reduction approaches to higher-level analytical techniques and
their extensions for integrative data analysis [171]
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Such knowledge would improve our understanding of gene function and biological
processes. Clustering methods can be used for visualization, hypothesis generation
and selection of genes for further analysis.

Pre-processing: Clustering requires standard normalization methods for omics
data [172–174]. Clustering specifically requires a prior dimensionality reduction
and data standardization, e.g. filtering out genes or proteins with low variance
across the samples, methods based on the maximization of a function of covari-
ances as in the ‘sum of covariances’ (SUMCOV) method [175], and standardi-
zation of the data, e.g. mean absolute deviation standardization.

State-of-the-art: Numerous clustering tools have been developed. Several
well-known clustering algorithms are: hierarchical clustering, partition and den-
sity-based clustering and fuzzy clustering. More recently developed clustering
algorithms include: subspace or bi-clustering methods that cluster both genes and
samples [176]. Automatic acquisition, pre-processing and clustering analysis via
web-based tools is possible for several high-throughput technologies, e.g. Babel-
omics [177], BioArray Software Environment (BASE) [178] and Multiple Clus-
tering Analysis Methodology (MCAM) [179]. Efficient cluster validation
procedures are crucial for decision making with large number of genes in the
absence of large amount of samples and will therefore be extremely useful to
understand genetic interactions and design drug targets.

Use cases: Clustering is widely used in microarray data analysis and a wide
choice of tools exists. Clustering of genes may identify a group of genes with
similar functions while clustering of samples can suggest patient subgroups for
stratification, response to treatments and disease subtypes or grade, e.g. childhood
leukemia [180], breast cancer [181] and asthma [182, 183]. Clusters can also be
integrated with pathway analysis [184].

1.4.2 Feature Selection

Motivation: Feature or attribute selection methods have a wide range of appli-
cations in Systems Biology. They enable an experimenter to identify which genes
or proteins are significantly differentially expressed across different biological
conditions in a cell type of interest, and which subsets of genes or proteins provide
the most promising combined set of biomarkers for discriminating between these
conditions (see also the section on prediction analysis). Moreover, feature selec-
tion approaches are often used to reduce the dimension of the input data before
applying other higher-level statistical analysis methods. This alleviates a variety of
statistical problems referred to as the curse of dimensionality in the literature
[185]. However, in contrast to feature transformation based dimension reduction
methods [186], the original features of the data are preserved, which facilitates
data interpretation in subsequent analyses.

Feature selection algorithms can be grouped into supervised [187] and unsu-
pervised approaches [188], depending on whether they incorporate information
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from class labels for the biological conditions. Moreover, feature selection algo-
rithms employing prediction methods to score the informativeness of a feature
subset are known as wrappers, whereas other univariate and combinatorial
approaches to filter attributes are called filters [189].

Pre-processing: For most experimental platforms used in Systems Biology,
several low-level pre-processing steps are required before applying feature
selection methods. These include image processing [190, 191], normalisation
[192] and summarisation approaches [193, 194], for microarray gene expression
data [195], and raw data filtering [196], peak detection [197], peak alignment [198]
and retention time normalisation methods for proteomics and metabolomics mass
spectrometry data [199]. Moreover, some feature selection methods require a prior
discretization of the data, e.g. if special association measures are used, such as
mutual information [200].

State-of-the-art: The choice of the feature selection method depends both on
the analysis goal (e.g. identifying individual biomarkers, or building a combina-
torial predictive model for sample classification) and on the desired trade-off
between efficiency (the run-time complexity of the algorithm) and accuracy (the
predictive power of the selected features).

Among the filter approaches, simple univariate statistics like the parametric
Student’s t test and the non-parametric Wilcoxon rank sum test are still widely
used, due to their advantages in terms of speed and the difficulty of estimating
feature dependencies from noisy, high-dimensional data. More complex combi-
natorial methods such as CFS [201], EFS [202] and Markov blanket filtering [203]
have recently gained influence.

Wrapper methods are becoming increasingly popular. They score feature sub-
sets using prediction methods in combination with a search space exploration
approach and their selections reach state-of-the art predictive performance in
biological classification problems. Examples include combinations of fast and
simple prediction methods, e.g. kNN [204] and Naïve Bayes [205], and search
space exploration methods, e.g. sequential forward search [206]. These approaches
are gradually being replaced by more complex algorithm combinations, including
evolutionary algorithms [207] and kernel-based machine learning methods [208].

Finally, several recent techniques have improved the trade-off between speed
and accuracy: (1) combination of filters [209], (2) combination of filters and
wrappers into hybrid methods [203], (3) mathematical programming [210] and (4)
signal processing approaches [211].

Use cases: Identification and prioritisation of gene, protein or metabolite bio-
markers via feature selection techniques have three main aims: (1) distinguish
biological conditions, e.g. presence of cancer, of viral infection, or tumor grades,
(2) mediate early diagnostic, patient-tailored therapy, disease progression moni-
toring, and (3) help study treatment in a cell culture or animal model. However,
feature selection methods are also used to filter datasets prior to the application of
other higher-level data analysis methods, e.g. other machine learning methods,
pathway overrepresentation analysis and network analysis. Finally, feature
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selection is often integrated with classification and regression techniques to
decrease the complexity of machine learning models and maximize their predic-
tive accuracy.

1.4.3 Prediction Analysis

Motivation: Prediction analysis refers to a family of methods that attempt to
capture statistical dependencies and extract patterns from a set of measured data, to
make predictions about future data. Such methods hold great promise in functional
genomics, proteomics, metabolomics and bioinformatics, where the recent tech-
nologies provide a wealth of data such as gene and protein expression measure-
ments, DNA and RNA sequence reads. The rate at which such data are produced
makes automatic prediction analysis an indispensable tool for the biologist.
Methods for prediction analysis can be unsupervised, semi-supervised, or
supervised.

State-of-the-art: Unsupervised methods find regularities and hidden structure
in the data. Typical approaches include clustering, feature selection, dimension
reduction, density estimation, and model structure learning [212]. Classical linear
dimension reduction methods are principal component analysis and independent
component analysis, but recently some very powerful nonlinear dimension
reduction methods have appeared [213, 214].

Supervised methods use data in the form of pairs (x, y) and estimate a function
that predicts the value of y from a given input x. When y is a discrete quantity (for
example a label of a number of distinct biological conditions) the method is called
classification and when y is continuous the method is called regression. The key
challenge is to ensure that the estimated function can generalize well to unseen
situations [215]. Two methods are popular: (1) support vector machine (SVM) that
estimates a discriminative function by maximizing class separation margin [216]
and (2) random forest, based on tree ensembles and voting [217].

Semi-supervised methods combine ideas from supervised and unsupervised
methods, to capture unsupervised structure in the data in order to boost classifi-
cation performance [218].

Time series methods use data measured at different times to model and predict
future values of the data, by capturing its structure and regularities and accounting
for stochastic effects, e.g. with hidden Markov models (HMM) [219].

Use cases: A typical example is the classification of biological data such as
gene expression data into different biological classes, e.g. disease and healthy,
mostly using SVM and random forests. Prediction methods are also applied to
pathway analysis, network decomposition and sequence annotation. They are often
combined with a feature selection to extract the most relevant dimensions in the
input data space [220].
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1.4.4 Building Networks and Pathways from Literature

Motivation: Text mining joints efforts with the experimental sciences to help
multifaceted disease-related research. Networks and connectivity maps are derived
from text in an attempt to find connections and causal relations between compo-
nents of complex biomedical systems, in order to elucidate disease mechanisms
and detect co-morbidities [221, 222].

Pre-processing: Preparation of textual data consists of tokenization, removal of
punctuation marks, part-of-speech tagging and sometimes syntactic parsing. Next,
names of proteins, genes, chemicals, phenotypes and diseases are identified in the
text. Management of biomedical terminology addresses several issues, such as
appearance of new terms [221], heavy use of acronyms, abbreviations and general-
purpose words that designate genes [223]. Synonymy and homonymy impose
special challenges on the recognition process and complicate linking of a gene
name to its unique identifier in the database [224, 225]. State-of-the-art named-
entity recognition (NER) systems achieve F-measure of about 86 % [226] on
biomedical corpus as opposed to 93 % on general purpose English texts [227].

State-of-the-art: Reconstruction of biological pathways from literature has
evolved from undirected pairwise protein–protein co-occurrences [228] to com-
plex biomedical events of typed and therefore directed interactions spanning
multiple proteins [229–232]. The latter rely to a large extent on the richly anno-
tated corpora, deep syntactic parsing and supervised machine learning techniques.
Due to complexity of the natural language, accurate extraction of biomedical
events remains a challenge. F-measure achieved by state-of-the-art systems varies
from roughly 70–48 % depending largely on the event type being recognized.

Use cases: Many biomedical text-mining tools assist users at different stages of
text processing, in particular for networks and pathways construction. Co-occur-
rence model has been successfully implemented in iHop, a hyperlinked network of
genes and proteins mentioned in PubMed abstracts [233]. Facta ? extends the
pairwise co-occurrence model with event extraction and discovery of indirect
associations between the biomedical concepts [222]. Based on PubMed abstracts,
AliBaba builds networks of interacting proteins, genes—disease associations and
subcellular location of proteins [234]. Networks extracted from text can be com-
plemented with experimental data using IntAct [235] and CoPub [236].

1.4.5 Pathway Analysis

Motivation: Pathway analysis aims at identifying pathway deregulations to
improve the understanding of complex phenotypes by leveraging information on
known biomolecular interactions in pathways to guide the search through the space
of possible functional associations. A wide range of methods exists, including
enrichment analysis statistics, pathway-based disease gene prioritization methods,
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convex metabolic pathway analysis and in silico pathway prediction/reconstruc-
tion methods [237].

Pre-processing: Because experimental measurement platforms and pathway
databases tend to use different identifier formats, pathway analysis usually starts
with the conversion of gene/protein names into a standard format [238–240],
followed by normalisation and pre-processing of the experimental data.

State-of-the-art: Several novel approaches have recently been developed to
infer changes in pathway activity from high-throughput data more accurately than
by the classical combination of differential expression filtering with overrepre-
sentation statistics like the Fisher exact test (for unordered datasets) or the Kol-
mogorov–Smirnov test (for ranked datasets). These include parametric and non-
parametric approaches that take into account unfiltered gene expression level
measurements, e.g. GSEA [241], PaGE [242], GAGE [243] or exploit information
from ontology graphs, e.g. Ontologizer [244] and GeneCodis [245]. For the study
of metabolic pathways, two related approaches using convex analysis have become
increasingly important: Elementary flux modes [246] and extreme pathways [247].
Finally, as opposed to the classical human expert-based definition of pathways,
various methods for pathway prediction/reconstruction using experimental data
have been proposed recently [248, 249].

Use cases: Genome-wide pathway analyses have provided new insights on the
aetiology of complex diseases that cannot be obtained from classical single-locus
analyses [250]. Such analyses have indeed shown that different disruptions in a
pathway can cause the same disease, as in colorectal cancer [251]. Metabolic
pathway analysis is used in biomedical and biotechnological applications, e.g. to
increase the production yield of microorganisms by metabolic engineering, i.e. the
modification of selected pathways via recombinant DNA technologies [252].
Pathway analysis can also be integrated with network analysis to identify dereg-
ulated network modules in complex diseases [253].

1.5 Conclusions

Study of individual genes and their products in model systems has shifted to high-
throughput studies in laboratories and often generated by large consortia. Each
type of omic data is proving very valuable and their integration promises even
greater rewards. Current techniques are very diverse and can analyse complex
biological samples. They harbour high sensitivity and specificity, albeit not always
sufficient, as in proteomics. Ongoing developments will increase accuracy,
robustness, and flexibility while reducing cost. Current technical innovations
continue shifting the bottleneck from data production to data analysis. Our
understanding of biology will indeed increasingly rely on data and knowledge
management, and informatics infrastructure to complement advances in mathe-
matical and computational modelling for temporal and spatial analytical tech-
niques, which are crucial to Systems Biology.
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