

Algebraic coarse-graining methods in fracture mechanics: tackling local lack of correlation using domain decomposition

O. Goury¹, P. Kerfriden¹, T. Rabczuk², S. P. A. Bordas¹

¹*iMAM, Cardiff University*

²*Bauhaus-University Weimar*

Outline

1 Introduction

- Why model order reduction?
- A straigthforward solution?

2 Partitioned POD method

- Domain decomposition methods
- System approximation

3 Results & Conclusion

Outline

1 Introduction

- Why model order reduction?
- A straighforward solution?

2 Partitioned POD method

- Domain decomposition methods
- System approximation

3 Results & Conclusion

Outline

1 Introduction

- Why model order reduction?
- A straighforward solution?

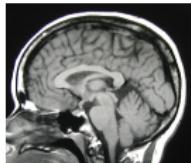
2 Partitioned POD method

- Domain decomposition methods
- System approximation

3 Results & Conclusion

Non-linear expensive simulations

- Problems depending on microscale phenomena \Rightarrow requires very fine mesh: expensive simulations
- **Surgical simulation:** real-time brain surgery simulation



- **Aeronautics:** advanced early-stage design

Projection-based model order reduction

We want to solve a parametrised mechanical problem:

$$\underbrace{\mathbf{F}_{\text{int}}(\mathbf{U}(\lambda), \lambda)}_{\text{Non-linear}} + \mathbf{F}_{\text{ext}}(\lambda) = \mathbf{0} \quad (1)$$

We are interested in the solution $\mathbf{U}(\lambda)$ for many different values of λ .

Projection-based model order reduction assumption:

Solutions $\mathbf{U}(\lambda)$ for different parameters λ are contained in a space of small dimension $\text{span}((\mathbf{C}_i)_{i \in \llbracket 1, n_c \rrbracket})$

Proper Orthogonal Decomposition (POD)

Look for $\underline{\mathbf{U}}$ as $\underline{\mathbf{U}} = \underline{\mathbf{C}}\underline{\boldsymbol{\alpha}}$. Where does the basis $\underline{\mathbf{C}}$ comes from?

Proper Orthogonal Decomposition (POD)

Look for $\underline{\mathbf{U}}$ as $\underline{\mathbf{U}} = \underline{\mathbf{C}}\underline{\boldsymbol{\alpha}}$. Where does the basis $\underline{\mathbf{C}}$ comes from?

- Solve the full problem a certain number of times varying the input parameter λ

Proper Orthogonal Decomposition (POD)

Look for $\underline{\mathbf{U}}$ as $\underline{\mathbf{U}} = \underline{\mathbf{C}} \underline{\boldsymbol{\alpha}}$. Where does the basis $\underline{\mathbf{C}}$ comes from?

- Solve the full problem a certain number of times varying the input parameter λ
- You obtain a base of solutions (the snapshot):
 $(\underline{\mathbf{U}}_1, \underline{\mathbf{U}}_2, \dots, \underline{\mathbf{U}}_{n_s}) = \underline{\mathbf{S}}$

Proper Orthogonal Decomposition (POD)

Look for $\underline{\mathbf{U}}$ as $\underline{\mathbf{U}} = \underline{\mathbf{C}} \underline{\boldsymbol{\alpha}}$. Where does the basis $\underline{\mathbf{C}}$ comes from?

- Solve the full problem a certain number of times varying the input parameter λ
- You obtain a base of solutions (the snapshot):
 $(\underline{\mathbf{U}}_1, \underline{\mathbf{U}}_2, \dots, \underline{\mathbf{U}}_{n_s}) = \underline{\mathbf{S}}$
- Extract the essence of this snapshot space using the singular value decomposition: gives the POD basis $\underline{\underline{\mathbf{C}}}$

Proper Orthogonal Decomposition (POD)

Look for $\underline{\mathbf{U}}$ as $\underline{\mathbf{U}} = \underline{\mathbf{C}} \underline{\boldsymbol{\alpha}}$. Where does the basis $\underline{\mathbf{C}}$ comes from?

- Solve the full problem a certain number of times varying the input parameter λ
- You obtain a base of solutions (the snapshot):
 $(\underline{\mathbf{U}}_1, \underline{\mathbf{U}}_2, \dots, \underline{\mathbf{U}}_{n_s}) = \underline{\mathbf{S}}$
- Extract the essence of this snapshot space using the singular value decomposition: gives the POD basis $\underline{\mathbf{C}}$
- Reduced system: $\min_{\underline{\boldsymbol{\alpha}}} \|\underline{\mathbf{F}}_{\text{int}}(\underline{\mathbf{C}} \underline{\boldsymbol{\alpha}}) + \underline{\mathbf{F}}_{\text{ext}}\|$

Proper Orthogonal Decomposition (POD)

Look for $\underline{\mathbf{U}}$ as $\underline{\mathbf{U}} = \underline{\mathbf{C}} \underline{\boldsymbol{\alpha}}$. Where does the basis $\underline{\mathbf{C}}$ comes from?

- Solve the full problem a certain number of times varying the input parameter λ
- You obtain a base of solutions (the snapshot):
 $(\underline{\mathbf{U}}_1, \underline{\mathbf{U}}_2, \dots, \underline{\mathbf{U}}_{n_s}) = \underline{\mathbf{S}}$
- Extract the essence of this snapshot space using the singular value decomposition: gives the POD basis $\underline{\mathbf{C}}$
- Reduced system: $\min_{\underline{\boldsymbol{\alpha}}} \|\underline{\mathbf{F}}_{\text{int}}(\underline{\mathbf{C}} \underline{\boldsymbol{\alpha}}) + \underline{\mathbf{F}}_{\text{ext}}\|$
- In the Galerkin framework: $\underline{\mathbf{C}}^T \underline{\mathbf{F}}_{\text{int}}(\underline{\mathbf{C}} \underline{\boldsymbol{\alpha}}) + \underline{\mathbf{C}}^T \underline{\mathbf{F}}_{\text{ext}} = 0$

Outline

1 Introduction

- Why model order reduction?
- A straigthforward solution?

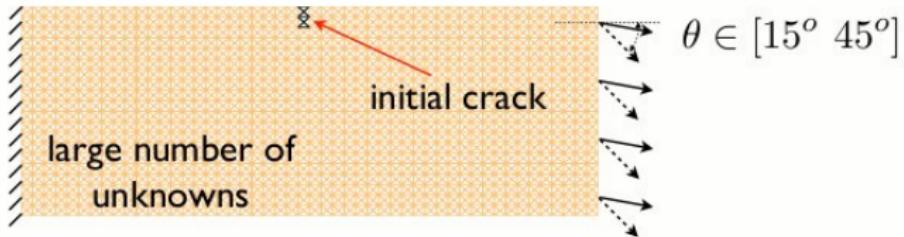
2 Partitioned POD method

- Domain decomposition methods
- System approximation

3 Results & Conclusion

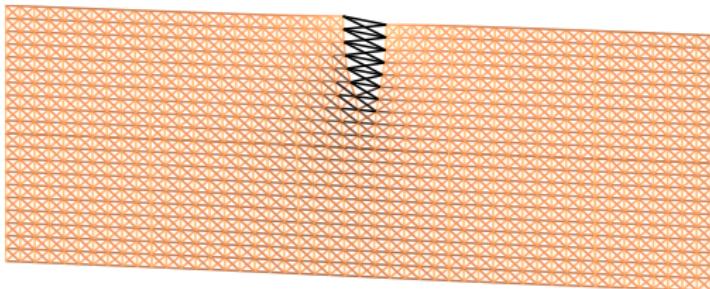
Example

Parametrised fracture model

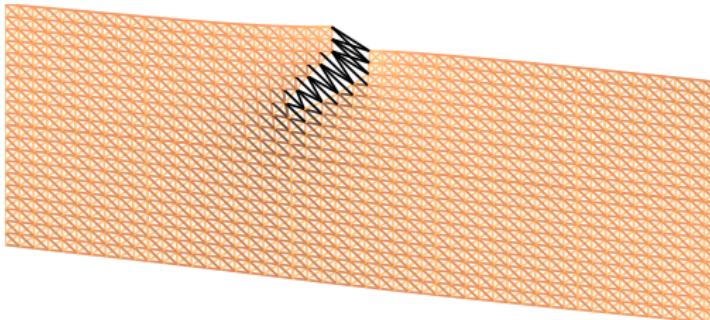


Snapshots

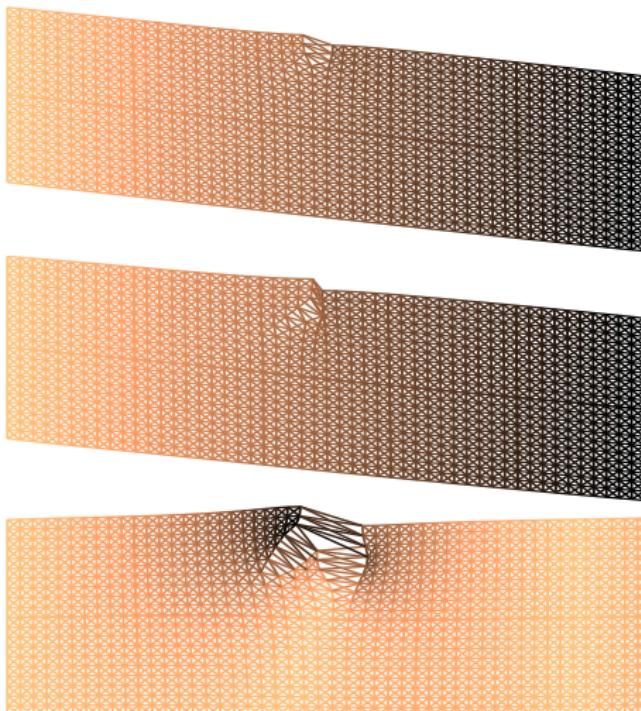
15 degrees:



45 degrees:



First 3 modes of the POD basis

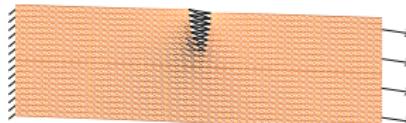


Fracture not well captured

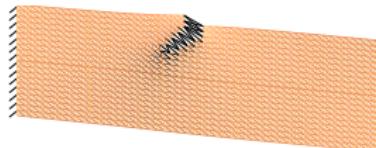
Construction of reduced order model

Compute particular realisations (snapshots)

$\theta = 15^\circ$, 10th (last) time step

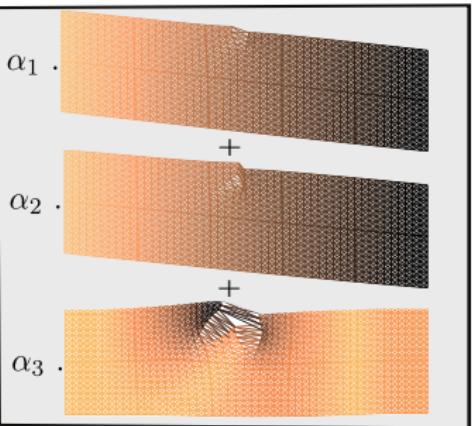


$\theta = 45^\circ$, 10th time step



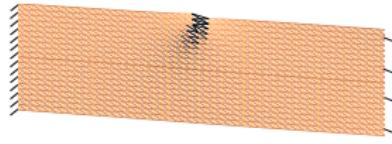
POD

Reduced basis

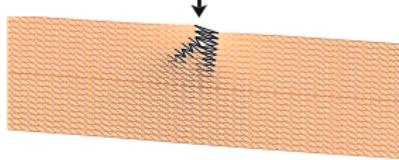


Solution at arbitrary angle using the reduced model

$\theta = 30^\circ$, 10th time step



approximated by



What can we do?

Idea: just divide up the domain and select regions that are “reducible”

Outline

1 Introduction

- Why model order reduction?
- A straigthforward solution?

2 Partitioned POD method

- Domain decomposition methods
- System approximation

3 Results & Conclusion

Outline

1 Introduction

- Why model order reduction?
- A straigthforward solution?

2 Partitioned POD method

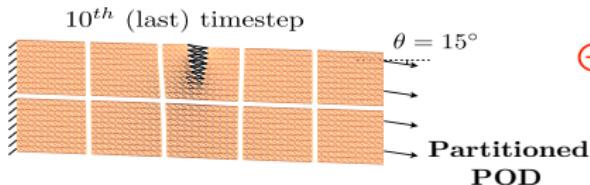
- Domain decomposition methods
- System approximation

3 Results & Conclusion

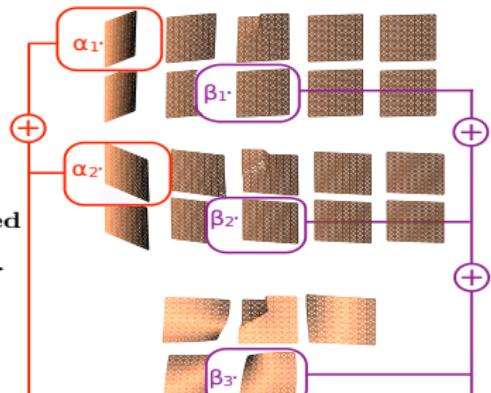
Construction of partitioned reduced order model

Compute particular realisations

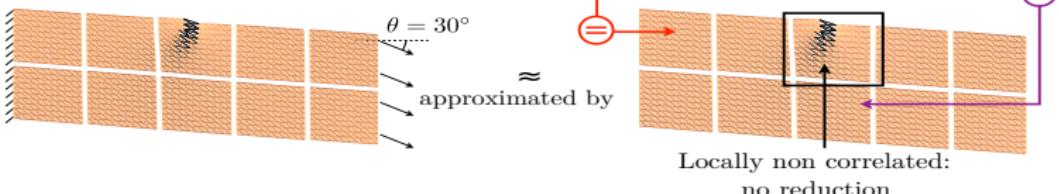
(cost intensive) using domain
decomposition (snapshots)



Partitioned reduced basis



Solution for arbitrary parameter using reduced model



Is that good enough?

- Speed-up actually poor
- Equation “ $\underline{\underline{\mathbf{C}}}^T \underline{\mathbf{F}}_{\text{int}} (\underline{\mathbf{C}} \underline{\boldsymbol{\alpha}}) + \underline{\underline{\mathbf{C}}}^T \underline{\mathbf{F}}_{\text{ext}} = 0$ “ quicker to solve but $\underline{\underline{\mathbf{C}}}^T \underline{\mathbf{F}}_{\text{int}} (\underline{\mathbf{C}} \underline{\boldsymbol{\alpha}})$ still expensive to evaluate
- Need to do something more \Rightarrow system approximation

Outline

1 Introduction

- Why model order reduction?
- A straigthforward solution?

2 Partitioned POD method

- Domain decomposition methods
- System approximation

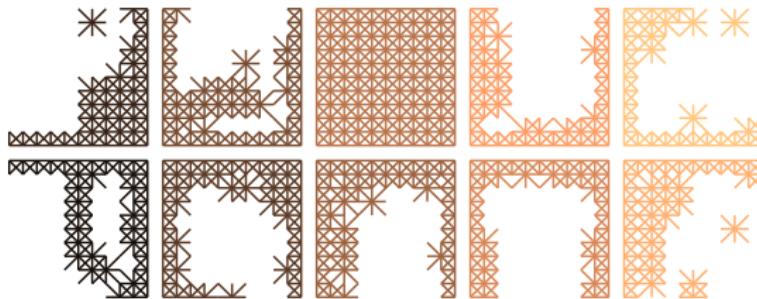
3 Results & Conclusion

Idea

- Integrate only over some nodes of the domain
- Reconstruct the operators using a second POD basis

“Gappy“ technique

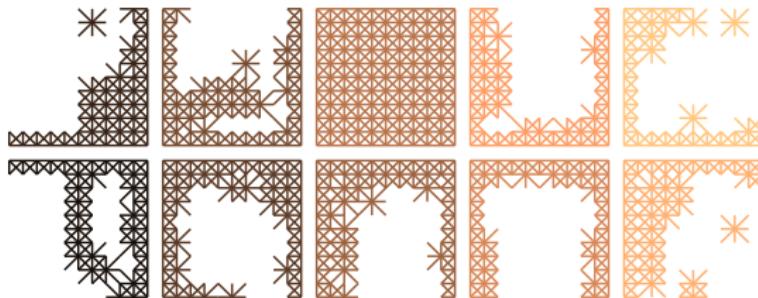
Originally used to reconstruct images



- $\underline{\mathbf{F}}_{\text{int}}(\underline{\mathbf{C}}\underline{\boldsymbol{\alpha}})$ approximated by $\widetilde{\underline{\mathbf{F}}_{\text{int}}(\underline{\mathbf{C}}\underline{\boldsymbol{\alpha}})} = \underline{\mathbf{D}}\underline{\boldsymbol{\beta}}$

“Gappy” technique

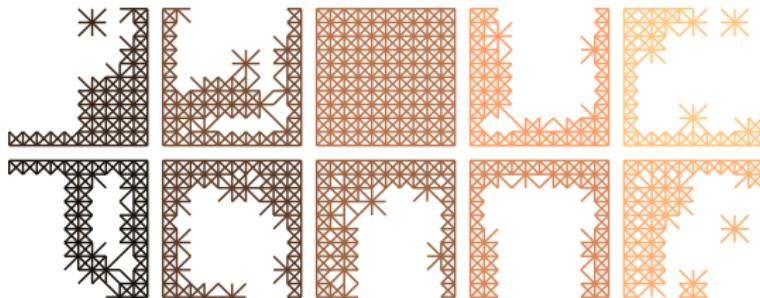
Originally used to reconstruct images



- $\underline{\mathbf{F}}_{\text{int}}(\underline{\mathbf{C}}\underline{\boldsymbol{\alpha}})$ approximated by $\widetilde{\underline{\mathbf{F}}_{\text{int}}}(\widetilde{\underline{\mathbf{C}}\underline{\boldsymbol{\alpha}}}) = \underline{\mathbf{D}}\underline{\boldsymbol{\beta}}$
- $\underline{\mathbf{F}}_{\text{int}}(\underline{\mathbf{C}}\underline{\boldsymbol{\alpha}})$ is evaluated exactly only on a few selected nodes: $\widetilde{\underline{\mathbf{F}}_{\text{int}}}(\widetilde{\underline{\mathbf{C}}\underline{\boldsymbol{\alpha}}})$

“Gappy” technique

Originally used to reconstruct images



- $\underline{\mathbf{F}}_{\text{int}}(\underline{\mathbf{C}}\underline{\boldsymbol{\alpha}})$ approximated by $\widehat{\underline{\mathbf{F}}_{\text{int}}(\underline{\mathbf{C}}\underline{\boldsymbol{\alpha}})} = \underline{\mathbf{D}}\underline{\boldsymbol{\beta}}$
- $\underline{\mathbf{F}}_{\text{int}}(\underline{\mathbf{C}}\underline{\boldsymbol{\alpha}})$ is evaluated exactly only on a few selected nodes: $\widehat{\underline{\mathbf{F}}_{\text{int}}(\underline{\mathbf{C}}\underline{\boldsymbol{\alpha}})}$
- $\underline{\boldsymbol{\beta}}$ found through: $\min_{\underline{\boldsymbol{\beta}}} \left\| \widehat{\underline{\mathbf{D}}}\underline{\boldsymbol{\beta}} - \widehat{\underline{\mathbf{F}}_{\text{int}}(\underline{\mathbf{C}}\underline{\boldsymbol{\alpha}})} \right\|_2$

Outline

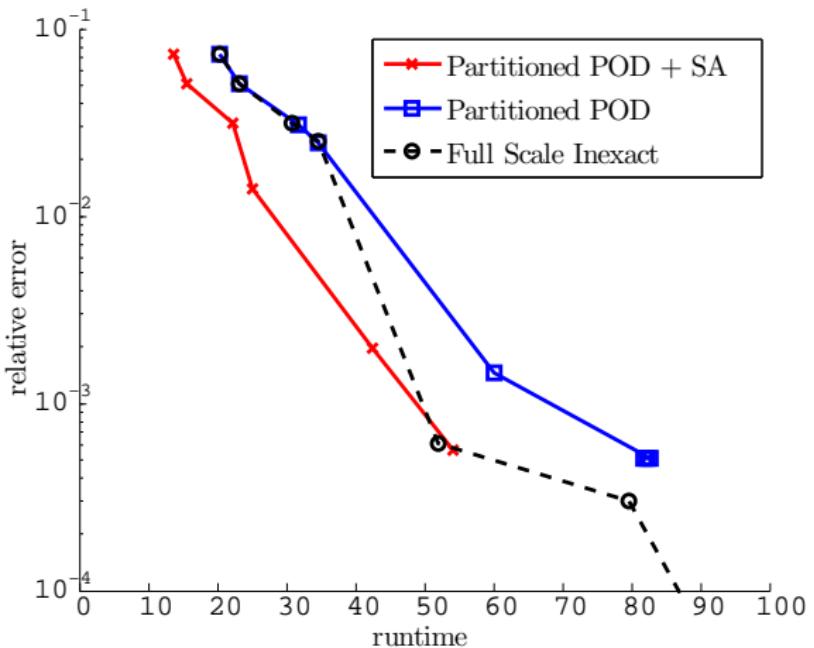
1 Introduction

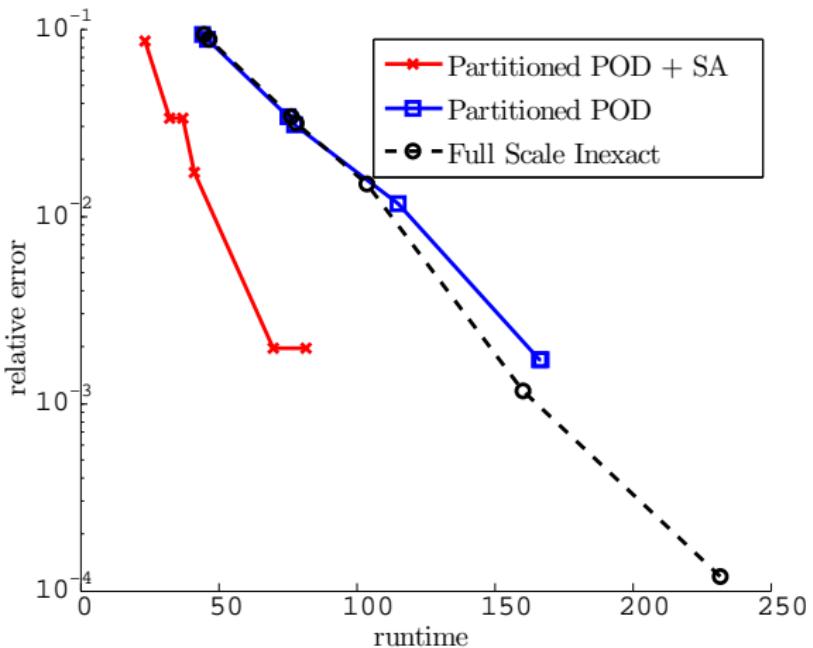
- Why model order reduction?
- A straigthforward solution?

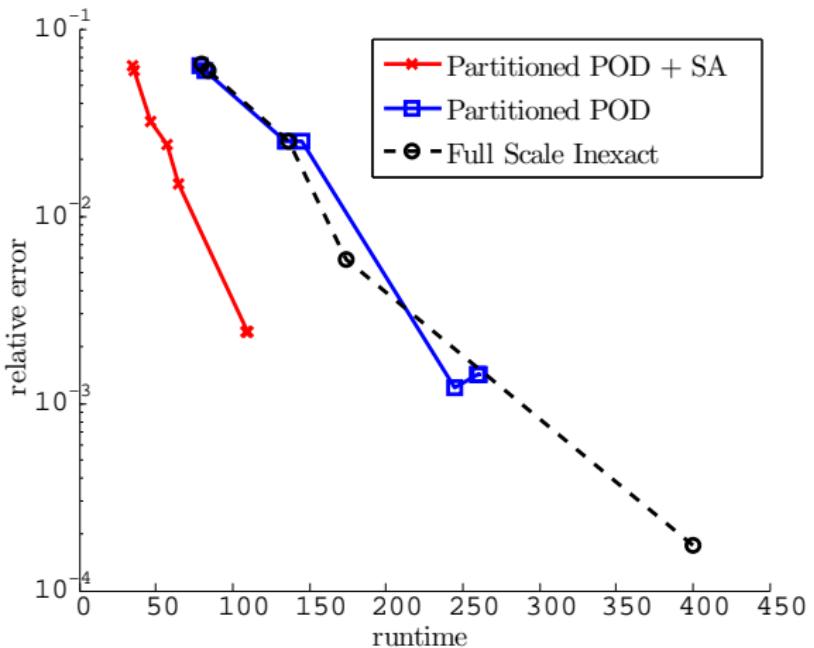
2 Partitioned POD method

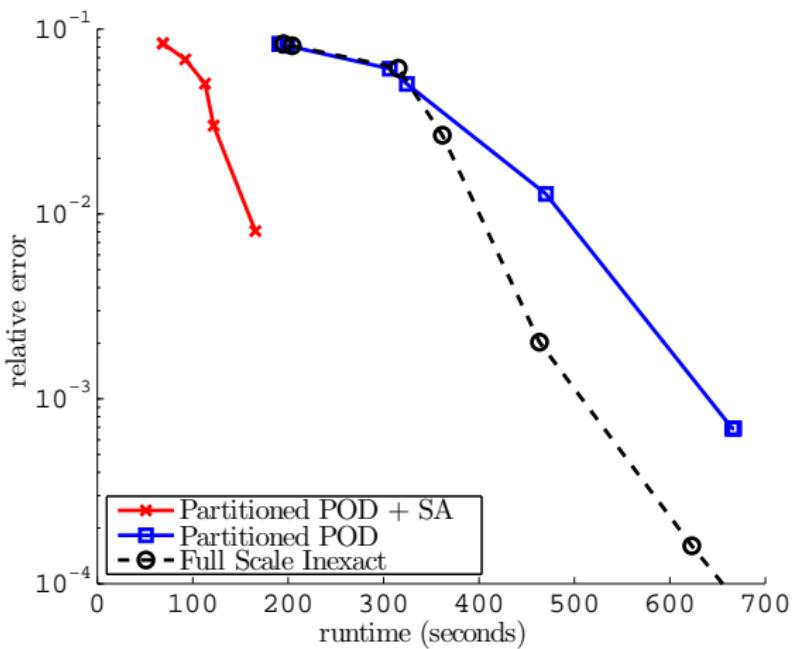
- Domain decomposition methods
- System approximation

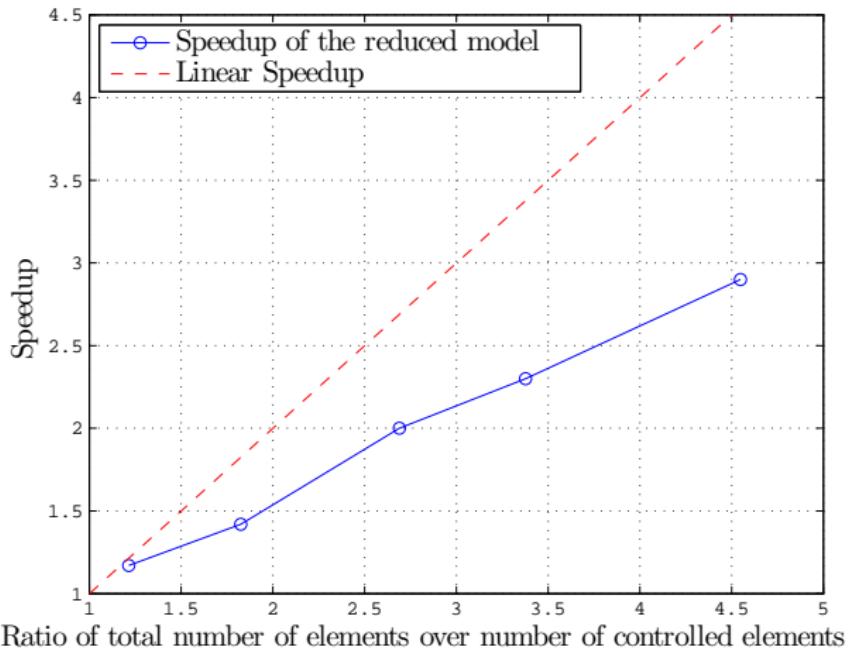
3 Results & Conclusion











Thank you for your attention!