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Abstract. Extending bilinear elliptic curve pairings to multilinear maps is a long-standing open
problem. The first plausible construction of such multilinear maps has recently been described by Garg,
Gentry and Halevi, based on ideal lattices. In this paper we describe a different construction that
works over the integers instead of ideal lattices, similar to the DGHV fully homomorphic encryption
scheme. We also describe a different technique for proving the full randomization of encodings: instead
of Gaussian linear sums, we apply the classical leftover hash lemma over a quotient lattice. We show
that our construction is relatively practical: for reasonable security parameters a one-round 7-party
Diffie-Hellman key exchange requires less than 40 seconds per party. Moreover, in contrast with previous
work, multilinear analogues of useful, base group assumptions like DLIN appear to hold in our setting.

1 Introduction

Multilinear maps. Extending bilinear elliptic curve pairings to multilinear maps is a long-standing
open problem. In 2003 Boneh and Silverberg showed two interesting applications of multilinear
maps [BS03], namely multipartite Diffie-Hellman and very efficient broadcast encryption; however
they were pessimistic about the existence of such maps from the realm of algebraic geometry.

The first plausible construction of multilinear maps has recently been described by Garg, Gentry
and Halevi, based on ideal lattices [GGH13]. The main difference with bilinear pairings is that
the encoding a · g of an element a is randomized (with some noise) instead of deterministic; only
the computed multilinear map e(a1 · g, . . . , aκ · g) is a deterministic function of the ai’s only. The
construction has bounded degree with a maximum degree κ at most polynomial in the security
parameter. Indeed, the encoding noise grows linearly with the degree, and when the noise reaches a
certain threshold the encoding can become incorrect, as for ciphertexts in a somewhat homomorphic
encryption scheme. The security of the construction relies on new hardness assumptions which are
natural extensions of the Decisional Diffie-Hellman (DDH) assumption. To gain more confidence
in their scheme the authors provide an extensive cryptanalytic survey. The authors focus on one
application: the multipartite Diffie-Hellman key exchange.

The construction from [GGH13] works in the polynomial ring R = Z[X]/(Xn + 1), where n
is large enough to ensure security. One generates a secret short ring element g ∈ R, generating a
principal ideal I = 〈g〉 ⊂ R. One also generates an integer parameter q and another random secret
z ∈ R/qR. One encodes elements of the quotient ring R/I, namely elements of the form e+ I for
some e, as follows: a level-i encoding of the coset e + I is an element of the form uk = [c/zi]q,
where c ∈ e+ I is short. Such encodings can be both added and multiplied, as long as the norm
of the numerators remain shorter than q; in particular the product of κ encodings at level 1 gives
an encoding at level κ. For such level-κ encodings one can then define a zero-testing parameter
pzt = [hzκ/g]q, for some small h ∈ R. Then given a level-κ encoding u = [c/zκ] one can compute
[pzt · u]q = [hc/g]q. When c is an encoding of zero we have c/g ∈ R, which implies that hc/g is
small in R, and therefore [hc/g]q is small; this provides a way to test whether a level-κ encoding c is
an encoding of 0. For the same reason the high-order bits of [pzt ·u]q = [hc/g]q only depend on the
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coset e+ I and not on the particular c ∈ e+ I; this makes it possible to extract a representation of
cosets encoded at level κ, and eventually defines a degree-κ multilinear map for level-1 encodings.

Our contributions. Our main contribution is to describe a different construction that works over
the integers instead of ideal lattices, similar to the DGHV fully homomorphic encryption scheme
[DGHV10] and its batch variant [CCK+13]. Our construction offers the same flexibility as the
original from [GGH13]; in particular it can be modified to support the analogue of asymmetric
maps and composite-order maps. Moreover, it does not seem vulnerable to the “zeroizing” attack
that breaks base group hardness assumptions like the analogues of DLIN and subgroup membership
for the multilinear maps of [GGH13]. Since those assumptions are believed necessary to adapt
constructions of primitives like adaptively secure functional encryption and NIZK, our construction
seems even more promising for applications than [GGH13]. In Appendix C, we provide a comparison
with the original scheme, to better highlight the similarities.

As in [GGH13], the security of our construction relies on new assumptions; it cannot be derived
from “classical” assumptions such as the Approximate-GCD assumption used in [DGHV10]. We
describe various possible attacks against our scheme; this enables us to derive parameters for which
our scheme remains secure against these attacks.

Our new construction works as follows: one first generates n secret primes pi and publishes
x0 =

∏n
i=1 pi (where n is large enough to ensure correctness and security); one also generates n

small secret primes gi, and a random secret integer z modulo x0. A level-k encoding of a vector
m = (mi) ∈ Zn is then an integer c such that for all 1 6 i 6 n:

c ≡ ri · gi +mi

zk
(mod pi) (1)

for some small random integers ri; the integer c is therefore defined modulo x0 by CRT. It is clear
that such encodings can be both added and multiplied modulo x0, as long as the numerators remain
smaller than the pi’s. In particular the product of κ encodings cj at level 1 gives an encoding at level
κ where the corresponding vectors mj are multiplied componentwise. For such level-κ encodings
one defines a zero-testing parameter pzt with:

pzt =
n∑
i=1

hi ·
(
zκ · g−1i mod pi

)
·
∏
i′ 6=i

pi′ mod x0

for some small integers hi. Given a level-κ encoding c as in (1), one can compute ω = pzt · c mod x0,
which gives:

ω =
n∑
i=1

hi ·
(
ri +mi · (g−1i mod pi)

)
·
∏
i′ 6=i

pi′ mod x0 .

Then if mi = 0 for all i, since the ri’s and hi’s are small, we obtain that ω is small compared to
x0; this enables to test whether c is an encoding of 0 or not. Moreover for non-zero encodings the
leading bits of ω only depend on the mi’s and not on the noise ri; for level-κ encodings this enables
to extract a function of the mi’s only, which eventually defines as in [GGH13] a degree-κ multilinear
map.1

Our second contribution is to describe a different technique for proving the full randomization
of encodings. As in [GGH13] the randomization of encodings is obtained by adding a random
subset-sum of encodings of 0 from the public parameters. However as in [GGH13] the Leftover
Hash Lemma (LHL) cannot be directly applied since the encodings live in some infinite ring instead
of a finite group. The solution in [GGH13] consists in using linear sums with Gaussian coefficients;
it is shown in [AGHS12] that the resulting sum has a Gaussian distribution (over some lattice). As
noted by the authors, this can be seen as a “leftover hash lemma over lattices”. In this paper we

1 Technically for pzt we use a vector of integers instead of a single integer (see Sec. 3).
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describe a different technique that does not use Gaussian coefficients; instead it consists in working
modulo some lattice L ⊂ Zn and applying the leftover hash lemma over the quotient Zn/L, which is
still a finite group. Such technique was already used to prove the security of the batch variant of the
DGHV fully homomorphic encryption scheme [CCK+13,CLT13]. Here we provide a more formal
description: we clearly state our “LHL over lattices” so that it can later be applied as a black-box
(as the corresponding Theorem 3 in [AGHS12]). Our quotient lattice technique can independently
be applied to the original encoding scheme from [GGH13], while the Gaussian sum technique from
[AGHS12] is also applicable to ours.

Our third contribution is to describe the first implementation of multilinear maps. It appears
that the basic versions of both [GGH13] and our scheme are rather unpractical, because of the huge
public parameter size required to randomize the encodings. Therefore we use a simple optimization
that consists in storing only a small subset of the public elements and combining them pairwise to
generate the full public-key. Such optimization was originally described in [GH11] for reducing the
size of the encryption of the secret-key bits in the implementation of Gentry’s FHE scheme [Gen09].
It was also used in [CMNT11] to reduce the public-key size of the DGHV scheme; however, as
opposed to the latter work our randomization of encodings is heuristic only, whereas in [CMNT11]
the semantic security was still guaranteed. Thanks to this optimization our construction becomes
relatively practical: for reasonable security parameters a multipartite Diffie-Hellman computation
with 7 users requires less than 40 seconds, with a public parameter size of roughly 2.6 GBytes; a
proof-of-concept implementation is available at [Lep].

2 Definition of Randomized Encodings and Multilinear Maps

In this section we recall the setting introduced in [GGH13] for the notion of randomized encodings
and multilinear maps, which they call graded encoding schemes. There are essentially two main
differences with classical bilinear pairings (and their generalization to cryptographic multilinear
maps as considered in [BS03]):

1. In bilinear pairings (and more generally cryptographic multilinear maps) we have a map
e : Gκ → GT that is linear with respect to all its κ inputs:

e(a1 · g, . . . , aκ · g) =

(
κ∏
i=1

ai

)
· e(g, . . . , g) . (2)

One can view a · g as an “encoding” of the integer a ∈ Zp over the group G of order p generated
by g. The main difference in our setting is that encodings are now randomized. This means that
an element a ∈ R (where R is a ring that plays the role of the exponent space Zp) has many
possible encodings; only the final multilinear map e(a1 · g, . . . , aκ · g) is a deterministic function
of the ai’s only, and not on the randomness used to encode ai into ai · g.

2. The second main difference is that to every encoding is now associated a level. At level 0 we have
the “plaintext” ring elements a ∈ R, at level 1 we have the encoding a · g, and by combining k
such encodings ai · g at level 1 one obtains a level-k encoding where the underlying elements ai
are homomorphically multiplied in R. The difference with “classical” cryptographic multilinear
maps is that we can now multiply any (bounded) subset of encodings, instead of strictly κ at
a time as with (2). For encodings at level κ we have a special zero-testing parameter pzt that
can extract a deterministic function of the underlying ring elements. This enables to define a
degree-κ multilinear map for encodings at level 1.

2.1 Graded Encoding System

We recall the formal definition of a κ-Graded Encoding System from [GGH13]. For simplicity we
only consider the symmetric case throughout the paper; we refer to [GGH13] for a more general
framework that can handle the asymmetric case.
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Definition 1 (κ-Graded Encoding System [GGH13]). A κ-Graded Encoding System for a

ring R is a system of sets S = {S(α)
v ∈ {0, 1}∗ : v ∈ N, α ∈ R}, with the following properties:

1. For every v ∈ N, the sets {S(α)
v : α ∈ R} are disjoint.

2. There are binary operations + and − (on {0, 1}∗) such that for every α1, α2 ∈ R, every v ∈ N,

and every u1 ∈ S(a1)
v and u2 ∈ S(a2)

v , it holds that u1 + u2 ∈ S(α1+α2)
v and u1 − u2 ∈ S(α1−α2)

v

where α1 + α2 and α1 − α2 are addition and subtraction in R.

3. There is an associative binary operation × (on {0, 1}∗) such that for every α1, α2 ∈ R, every v1,

v2 with 0 6 v1 + v2 6 κ, and every u1 ∈ S(α1)
v1 and u2 ∈ S(α2)

v2 , it holds that u1 × u2 ∈ S(α1·α2)
v1+v2

where α1 · α2 is multiplication in R.

2.2 Multilinear map Procedures

We also recall the definition of the procedures for manipulating encodings. As previously we consider
only the symmetric case; we refer to [GGH13] for the general case.

Instance Generation. The randomized InstGen(1λ, 1κ) takes as inputs the parameters λ and κ,
and outputs (params,pzt), where params is a description of a κ-Graded Encoding System as above,
and pzt is a zero-test parameter.

Ring Sampler. The randomized samp(params) outputs a “level-zero encoding” a ∈ S(α)
0 for a

nearly uniform element α ∈R R. Note that the encoding a does not need to be uniform in S
(α)
0 .

Encoding. The (possibly randomized) enc(params, a) takes as input a level-zero encoding a ∈ S(α)
0

for some α ∈ R, and outputs the level-one encoding u ∈ S(α)
1 for the same α.

Re-Randomization. The randomized reRand(params, i, u) re-randomizes encodings relative to the

same level i. Specifically, given an encoding u ∈ S(α)
v , it outputs another encoding u′ ∈ S(α)

v . Moreover

for any two u1, u2 ∈ S(α)
v , the output distributions of reRand(params, i, u1) and reRand(params, i, u2)

are nearly the same.

Addition and negation. Given params and two encodings relative to the same level, u1 ∈ S(α1)
i

and u2 ∈ S(α2)
i , we have add(params, u1, u2) ∈ S(α1+α2)

i and neg(params, u1) ∈ S(−α1)
i . Below we

write u1 + u2 and −u1 as a shorthand for applying these procedures.

Multiplication. For u1 ∈ S(α1)
i and u2 ∈ S(α2)

j , we have mul(params, u1, u2) = u1 × u2 ∈ S(α1·α2)
i+j .

Zero-test. The procedure isZero(params,pzt, u) outputs 1 if u ∈ S(0)
κ and 0 otherwise.

Extraction. The procedure extracts a random function of ring elements from their level-κ encoding.
Namely ext(params,pzt, u) outputs s ∈ {0, 1}λ, such that:

1. For any α ∈ R and u1, u2 ∈ S(α)
κ , ext(params,pzt, u1) = ext(params,pzt, u2).

2. The distribution {ext(params,pzt, u) : α ∈R R, u ∈ S(α)
κ } is nearly uniform over {0, 1}λ.

This concludes the definition of the procedures. In [GGH13] the authors consider a slightly
relaxed definition of isZero and ext, where isZero can still output 1 even for some non-zero encoding
u with negligible probability, and ext can extract different outputs when applied to encodings of
the same elements, also with negligible probability; see [GGH13] for the corresponding definitions.

2.3 Hardness Assumptions

Finally we recall the hardness assumptions for multilinear maps from [GGH13]; as previously we
consider only the symmetric case and refer to [GGH13] for the general case. In this symmetric case
given a set of κ+ 1 level-one encodings of random elements, it should be unfeasible to distinguish a
level-κ encoding of their product from random.
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Graded DDH (GDDH). Let GE be a graded encoding scheme consisting of all the routines
above. For an adversary A and parameters λ, κ we consider the following process:

1. (params,pzt)← InstGen(1λ, 1κ)
2. Choose aj ← samp(params) for all 1 6 j 6 κ+ 1
3. Set uj ← reRand(params, 1, enc(params, 1, aj)) for all 1 6 j 6 κ+ 1 // encodings at level 1
4. Choose b← samp(params) // encoding at level 0
5. Set ũ = aκ+1 ×

∏κ
i=1 ui // encoding of the right product at level κ

6. Set û = b×
∏κ
i=1 ui // encoding of a random product at level κ

The GDDH distinguisher is given as input the κ+1 level-one encodings uj and either ũ (encoding
the right product) or û (encoding a random product), and must decide which is the case. The
GDDH assumption states that the advantage of any efficient adversary is negligible in the security
parameter.

3 Our new Encoding Scheme

System parameters. The main parameters are the security parameter λ and the required
multilinearity level κ 6 poly(λ). Based on λ and κ, we choose the vector dimension n, the bit-size η
of the primes pi, the bit-size α of the primes gi, the maximum bit-size ρ of the randomness used
in encodings, and various other parameters that will be specified later; the constraints that these
parameters must satisfy are described in the next section. For integers z, p we denote the reduction
of z modulo p by (z mod p) or [z]p with −p/2 < [z]p 6 p/2.

In our scheme a level-k encoding of a vector m = (mi) ∈ Zn is an integer c such that for all
1 6 i 6 n:

c ≡ ri · gi +mi

zk
(mod pi) (3)

where the ri’s are ρ-bit random integers (specific to the encoding c), with the following secret
parameters: the pi’s are η-bit prime integers, the gi’s are α-bit primes, and the denominator z is a
random (invertible) integer modulo x0 =

∏n
i=1 pi. The integer c is therefore defined by CRT modulo

x0, where x0 is made public. Since the pi’s must remain secret, the user cannot encode the vectors
m ∈ Zn by CRT directly from (3); instead one includes in the public parameters a set of ` level-0
encodings x′j of random vectors aj ∈ Zn, and the user can generate a random level-0 encoding by
computing a random subset-sum of those x′j ’s.

Remark 1. From (3) each integer mi is actually defined modulo gi. Therefore our scheme encodes
vectors m from the ring R = Zg1 × · · · × Zgn .

Instance generation: (params,pzt)← InstGen(1λ, 1κ). We generate n secret random η-bit primes
pi and publish x0 =

∏n
i=1 pi. We generate a random invertible integer z modulo x0. We generate n

random α-bit prime integers gi and a secret matrix A = (aij) ∈ Zn×`, where each component aij is
randomly generated in [0, gi) ∩ Z. We generate an integer y, three sets of integers {xj}τj=1, {x′j}`j=1

and {Πj}nj=1, a zero-testing vector pzt, and a seed s for a strong randomness extractor, as described

later. We publish the parameters params =
(
n, η, α, ρ, β, τ, `, y, {xj}τj=1, {x′j}`j=1, {Πj}nj=1, s

)
and

pzt.

Sampling level-zero encodings: c ← samp(params). We publish as part as our instance
generation a set of ` integers x′j , where each x′j encodes at level-0 the column vector aj ∈ Zn of the

secret matrix A = (aij) ∈ Zn×`. More precisely, using the CRT modulo x0 we generate integers x′j
such that:

1 6 j 6 `, x′j ≡ r′ij · gi + aij (mod pi) (4)

where the r′ij ’s are randomly generated in (−2ρ, 2ρ) ∩ Z.
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Our randomized sampling algorithm samp(params) works as follows: we generate a random
binary vector b = (bj) ∈ {0, 1}` and output the level-0 encoding

c =
∑̀
j=1

bj · x′j mod x0 .

From Equation (4), this gives c ≡
(∑`

j=1 r
′
ijbj
)
· gi +

∑`
j=1 aijbj (mod pi); as required the output

c is a level-0 encoding:

c ≡ ri · gi +mi (mod pi) (5)

of some vector m = A · b ∈ Zn which is a random subset-sum of the column vectors aj . We note
that for such level-0 encodings we get |ri · gi +mi| 6 ` · 2ρ+α for all i.

The following Lemma states that, as required, the distribution of m can be made statistically
close to uniform over R = Zg1 × · · · × Zgn ; the proof is based on applying the LHL over the set R
(see Appendix A).

Lemma 1. Let c← samp(params) and write c ≡ ri · gi +mi (mod pi). Assume ` > n ·α+ 2λ. The
distribution of (params,m) is statistically close to the distribution of (params,m′) where m′ ← R.

Encodings at higher levels: ck ← enc(params, k, c). To allow encoding at higher levels, we
publish as part of our instance-generation a level-one random encoding of 1, namely an integer y
such that:

y ≡ ri · gi + 1

z
(mod pi)

for random integers ri ∈ (−2ρ, 2ρ) ∩ Z; as previously the integer y is computed by CRT modulo x0.

Given a level-0 encoding c of m ∈ Zn as given by (5), we can then compute a level-1 encoding
of the same m by computing c1 = c · y mod x0. Namely we obtain as required:

c1 ≡
r
(1)
i · gi +mi

z
(mod pi) (6)

for some integers r
(1)
i , and we get |r(1)i · gi +mi| 6 ` · 22(ρ+α) for all i. More generally to generate a

level-k encoding we compute ck = c0 · yk mod x0.

In multipartite Diffie-Hellman key-exchange every user keeps a private level-0 encoding c and
publishes a level-1 encoding of the same underlying (unknown) m; however one cannot publish
c1 = c · y mod x0 directly since the private level-0 encoding c could be recovered immediately from
c = c1/y mod x0. Instead the level-1 encoding c1 must first be re-randomized into a new level-1
encoding c′1 whose distribution does not depend on the original c as long as it encodes the same m.

Re-randomization: c′ ← reRand(params, i, c). To allow re-randomization of encodings at level
one, we publish as part of our instance-generation a set of n integers Πj which are all level-1 random
encodings of zero:

1 6 j 6 n, Πj ≡
$ij · gi
z

(mod pi) .

The matrix Π = ($ij) ∈ Zn×n is a diagonally dominant matrix generated as follows: the non-
diagonal entries are randomly and independently generated in (−2ρ, 2ρ) ∩ Z, while the diagonal
entries are randomly generated in (n2ρ, n2ρ + 2ρ) ∩ Z.

We also publish as part of our instance-generation a set of τ integers xj , where each xj is a
level-1 random encoding of zero:

1 6 j 6 τ, xj ≡
rij · gi
z

(mod pi)

6



and where the column vectors of the matrix (rij) ∈ Zn×τ are randomly and independently generated
in the half-open parallelepiped spanned by the columns of the previous matrix Π ; see Appendix E
for a concrete algorithm.

Given as input a level-1 encoding c1 as given by (6), we randomize c1 with a random subset-sum
of the xj ’s and a linear combination of the Πj ’s:

c′1 = c1 +

τ∑
j=1

bj · xj +

n∑
j=1

b′j ·Πj mod x0 (7)

where bj ← {0, 1}, and b′j ← [0, 2µ)∩Z. The following Lemma shows that as required the distribution
of c′1 is nearly independent of the input (as long as it encodes the same m). This follows essentially
from our “leftover hash lemma over lattices”; see Section 4.

Lemma 2. Let c← samp(params), c1 ← enc(params, 1, c), and c′1 ← reRand(params, 1, c1). Write
c′1 ≡ (ri ·gi+mi)/z (mod pi) for all 1 6 i 6 n, and r = (r1, . . . , rn)T . Let τ > n ·(ρ+log2(2n))+2λ
and µ > ρ+α+λ. The distribution of (params, r) is statistically close to that of (params, r′), where
r′ ∈ Zn is randomly generated in the half-open parallelepiped spanned by the column vectors of
2µΠ.

Writing c′1 ≡ (r′i · gi + mi)/z (mod pi), and using |rij · gi| 6 2n2ρ+α for all i, j, we obtain
|r′i · gi +mi| 6 `22(ρ+α) + τ · 2n2ρ+α + n · 2n2µ+ρ+α. Using µ > ρ+ α+ λ this gives |r′i · gi +mi| 6
4n22µ+ρ+α.

Adding and Multiplying Encodings. It is clear that one can homomorphically add encodings.
Moreover the product of κ level-1 encodings ui can be interpreted as an encoding of the product.
Namely, given level-one encodings uj of vectors mj ∈ Zn for 1 6 j 6 κ, with uj ≡ (rij · gi +mij)/z
(mod pi), we simply let:

u =

κ∏
j=1

uj mod x0 .

This gives:

u ≡

κ∏
j=1

(rij · gi +mij)

zκ
≡
ri · gi +

( κ∏
j=1

mij

)
mod gi

zκ
(mod pi)

for some ri ∈ Z. This is a level-κ encoding of the vector m obtained by componentwise product of
the vectors mj , as long as

∏κ
j=1(rij · gi + mij) < pi for all i. When computing the product of κ

level-1 encodings from reRand and one level-0 encoding from samp (as in multipartite Diffie-Hellman
key exchange), we obtain from previous bounds |ri| 6 (4n22µ+ρ+α)κ · ` · 2ρ+1 for all i.

Zero Testing. isZero(params,pzt, uκ)
?
= 0/1. We can test equality between encodings by subtracting

them and testing for zero. To enable zero testing we randomly generate an integer matrix H =
(hij) ∈ Zn×n such that H is invertible in Z and both ‖HT ‖∞ 6 2β and ‖(H−1)T ‖∞ 6 2β , for some
parameter β specified later; here ‖ · ‖∞ is the operator norm on n× n matrices with respect to the
`∞ norm on Rn. A technique for generating such H is discussed in Appendix F. We then publish
as part of our instance generation the following zero-testing vector pzt ∈ Zn:

(pzt)j =

n∑
i=1

hij ·
(
zκ · g−1i mod pi

)
·
∏
i′ 6=i

pi′ mod x0 . (8)

To determine whether a level-κ encoding c is an encoding of zero or not, we compute the vector
ω = c · pzt mod x0 and test whether ‖ω‖∞ is small:

isZero(params,pzt, c) =

{
1 if ‖c · pzt mod x0‖∞ < x0 · 2−ν
0 otherwise

7



for some parameter ν specified later.

Namely for a level-κ ciphertext c we have c ≡ (ri · gi + mi)/z
κ (mod pi) for some ri ∈ Z;

therefore for all 1 6 i 6 n we can write:

c = qi · pi + (ri · gi +mi) ·
(
z−κ mod pi

)
(9)

for some qi ∈ Z. Therefore combining (8) and (9), we get:

(ω)j = (c · pzt mod x0)j =

n∑
i=1

hij ·
(
ri +mi · (g−1i mod pi)

)
·
∏
i′ 6=i

pi′ mod x0 . (10)

Therefore if mi = 0 for all 1 6 i 6 n, then ‖ω‖∞ = ‖c · pzt mod x0‖∞ is small compared to x0
when the ri’s are small enough, i.e. a limited number of additions/multiplications on encodings has
been performed. Conversely if mi 6= 0 for some i we show that ‖ω‖∞ must be large. More precisely
we prove the following lemma in Appendix B.

Lemma 3. Let n, η, α and β be as in our parameter setting. Let ρf be such that ρf +λ+α+ 2β 6
η − 8, and let ν = η − β − ρf − λ− 3 > α+ β + 5. Let c be such that c ≡ (ri · gi +mi)/z

κ (mod pi)
for all 1 6 i 6 n, where 0 6 mi < gi for all i. Let r = (ri)16i6n and assume that ‖r‖∞ < 2ρf . If
m = 0 then ‖ω‖∞ < x0 · 2−ν−λ−2. Conversely if m 6= 0 then ‖ω‖∞ > x0 · 2−ν+2.

Extraction. sk ← ext(params,pzt, uκ). This part is essentially the same as in [GGH13]. To extract
a random function of the vector m encoded in a level-κ encoding c, we multiply c by the zero-testing
parameter pzt modulo x0, collect the ν most significant bits of each of the n components of the
resulting vector, and apply a strong randomness extractor (using the seed s from params):

ext(params,pzt, c) = Extracts
(
msbsν(c · pzt mod x0)

)
where msbsν extracts the ν most significant bits of the result. Namely if two encodings c and c′

encode the same m ∈ Zn then from Lemma 3 we have ‖(c − c′) · pzt mod x0‖∞ < x0 · 2−ν−λ−2,
and therefore we expect that ω = c · pzt mod x0 and ω′ = c′ · pzt mod x0 agree on their ν most
significant bits, and therefore extract to the same value.2

Conversely if c and c′ encode different vectors then by Lemma 3 we must have ‖(c − c′) ·
pzt mod x0‖∞ > x0 · 2−ν+2, and therefore the ν most significant bits of the corresponding ω and
ω′ must be different. This implies that for random m ∈ R = Zg1 × · · · × Zgn the min-entropy of
msbsν(c · pzt mod x0) when c encodes m is at least log2 |R| > n(α − 1). Therefore we can use a
strong randomness extractor to extract a nearly uniform bit-string of length blog2 |R|c − λ.

This concludes the description of our multilinear encoding scheme. In Appendix C we provide a
comparison with the original scheme from [GGH13].

3.1 Setting the Parameters

The system parameters must satisfy the following constraints:

• The bit-size ρ of the randomness used for encodings must satisfy ρ = Ω(λ) to avoid brute force
attack on the noise, including the improved attack from [CN12] with complexity Õ(2ρ/2).

2 Two coefficients ω and ω′ from ω and ω′ could still be on the opposite sides of a boundary, with bω/2kc = v and
bω′/2kc = v + 1, so that ω and ω′ would extract to different MSBs v and v + 1. Heuristically this happens with
probability O(2−λ). The argument can be made rigorous by generating a public random integer W modulo x0 in
the parameters, and extracting the MSBs of ω +W mod x0 instead of ω mod x0 for all coefficients ω of the vector
ω.
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• The bit-size α of the primes gi must be large enough so that the order of the group R =
Zg1 × · · · × Zgn does not contain small prime factors; this is required to prove the security of
the multipartite Diffie-Hellman Key Exchange (see Appendix D). One can take α = λ.

• The parameter n must be large enough to thwart lattice-based attacks on the encodings, namely
n = ω(η log λ); see Section 5.1.

• The number ` of level-0 encodings x′j for samp must satisfy ` > n · α+ 2λ in order to apply the
leftover hash lemma; see Lemma 1.

• The number τ of level-1 encodings xj must satisfy τ > n · (ρ+ log2(2n)) + 2λ in order to apply
our “leftover hash lemma over lattices”. For the same reason the bit-size µ of the linear sum
coefficients must satisfy µ > α+ ρ+ λ; see Lemma 2.

• The bitsize β of the matrix H entries must satisfy β = Ω(λ) in order to avoid the GCD attack
from Section 5.2. One can take β = λ.

• The bit-size η of the primes pi must satisfy η > ρf + α+ 2β + λ+ 8, where ρf is the maximum
bit size of the randoms ri a level-κ encoding (see Lemma 3). When computing the product of κ
level-1 encodings and an additional level-0 encoding (as in a multipartite Diffie-Hellman key
exchange with N = κ+ 1 users), one obtains ρf = κ · (µ+ ρ+ α+ 2 log2 n+ 2) + ρ+ log2 `+ 1
(see previous Section).

• The number ν of most significant bits to extract can then be set to ν = η − β − ρf − λ− 3 (see
Lemma 3).

3.2 Security of our Construction

As in [GGH13] the security of our construction relies on new assumptions that do not seem to be
reducible to more classical assumptions. Namely, as in [GGH13] one can make the assumption that
solving the Graded DDH problem (GDDH) recalled in Section 2.3 is hard in our scheme. This enables
to prove the security of the one-round N -way Diffie-Hellman key exchange protocol [GGH13]. Ideally
one would like to reduce such assumption to a more classical assumption, such as the Approximate-
GCD assumption, but that does not seem feasible. Therefore to gain more confidence in our scheme
we describe various attacks in Section 5.

4 Another Leftover Hash Lemma over Lattices

As mentioned in the introduction, to prove the full randomization of encodings (Lemma 2) one
cannot apply the classical Leftover Hash Lemma (LHL) because the noise in the encodings live in
some infinite ring instead of a finite group. In [GGH13] the issue was solved by using linear sums
with Gaussian coefficients. Namely the analysis in [AGHS12] shows that the resulting sum has a
Gaussian distribution (over some lattice). As noted by the authors this technique can be seen as a
“leftover hash lemma over lattices”. Such a technique would be applicable to our scheme as well.

In this section we describe an alternative technique (without Gaussian coefficients) that can also
be seen as a “leftover hash lemma over lattices”. It consists in working modulo a lattice L ⊂ Zn
and applying the classical leftover hash lemma over the finite group Zn/L. This technique was
already used in [CCK+13,CLT13] to prove the security of a batch extension of the DGHV scheme.
In this paper we provide a more formal description; namely we clearly state our “LHL over lattices”
so that it can later be applied as a black-box (as the corresponding Theorem 3 in [AGHS12]).
Namely our quotient lattice technique can independently be applied to the original encoding scheme
from [GGH13].

4.1 Classical Leftover Hash Lemma

We first recall the classical Leftover Hash Lemma. We say that the distributions D1, D2 over a finite
domain X are ε-statistically close if the statistical distance ∆(D1, D2) = 1

2

∑
x∈X |D1(x)−D2(x)| is

9



smaller than ε. A distribution D is ε-uniform if its statistical distance from the uniform distribution
is at most ε. A family H of hash functions from X to Y , both finite sets, is said to be pairwise-
independent if for all distinct x, x′ ∈ X, Prh←H [h(x) = h(x′)] = 1/|Y |.

Lemma 4 (Leftover Hash Lemma [HILL99]). Let H be a family of pairwise hash functions
from X to Y . Suppose that h ← H and x ← X are chosen uniformly and independently. Then,
(h, h(x)) is 1

2

√
|Y |/|X|-uniform over H× Y .

One can then deduce the following Lemma for random subset sums over a finite abelian group.

Lemma 5. Let G be a finite abelian group. Set x1, . . . , xm ← G uniformly and independently, set
s1, . . . , sm ← {0, 1}, and set y =

∑m
i=1 sixi ∈ G. Then (x1, . . . , xm, y) is 1/2

√
|G|/2m-uniform over

Gm+1.

Proof. We consider the following hash function family H from {0, 1}m to G. Each member h ∈ H is
parameterized by the elements (x1, . . . , xm) ∈ Gm. Given s ∈ {0, 1}m, we define h(s) =

∑m
i=1 si ·xi ∈

G. The hash function family is clearly pairwise independent. Therefore by Lemma 4, (h, h(x)) is
1
2

√
|G|/2m-uniform over Gm+1. ut

4.2 Leftover Hash Lemma over Lattices

Let L ⊂ Zn be a lattice of rank n of basis B = (b1, . . . , bn). Then every x ⊂ Zn can be uniquely
written as:

x = ξ1b1 + . . .+ ξnbn

for some real numbers ξi. Moreover, for every vector x ∈ Zn there is a unique a ∈ L such that:

y = x− a = ξ′1b1 + . . .+ ξ′nbn

where 0 6 ξ′i < 1; we write y = x mod B. Therefore each vector of Zn/L has a unique representative
in the half-open parallelepiped defined by the previous equation.

We denote by DB the distribution obtained by generating a random element in the quotient
Zn/L and taking its unique representative in the half-open parallelepiped generated by the basis B.
Given a basis B = (b1, . . . , bn) and µ ∈ Z∗ we denote by µB the basis (µb1, . . . , µbn). We are now
ready to state our “Leftover Hash Lemma over Lattices”.

Lemma 6. Let L ⊂ Zn be a lattice of rank n of basis B = (b1, . . . , bn). Let xi for 1 6 i 6 m be
generated independently according to the distribution DB. Set s1, . . . , sm ← {0, 1} and t1, . . . , tn ←
Z ∩ [0, 2µ). Let y =

∑m
i=1 sixi +

∑n
i=1 tibi and y′ ← D2µB. Then the distributions (x1, . . . ,xm,y)

and (x1, . . . ,xm,y
′) are ε-statistically close, with ε = mn · 2−µ + 1/2

√
|detL|/2m.

Proof. We consider the intermediate variable:

y′′ =

(
m∑
i=1

sixi mod B

)
+

n∑
i=1

tibi . (11)

Firstly by applying the leftover hash lemma over the finite abelian group G = Zn/L, we obtain
that the distributions (x1, . . . ,xm,

∑m
i=1 sixi mod B) and (x1, . . . ,xm,ψ) are ε1-statistically close,

where ψ ← DB and
ε1 = 1/2

√
|G|/2m = 1/2

√
|det(L)|/2m .

This implies that the distributions (x1, . . . ,xm,y
′′) and (x1, . . . ,xm,y

′) are also ε1-statistically
close.

Secondly we write:
m∑
i=1

sixi mod B =

m∑
i=1

sixi −
n∑
j=1

χjbj (12)
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where χj ∈ Z for all j. We also write xi =
∑

j ξijbj where by definition 0 6 ξij < 1 for all i, j. This
gives:

m∑
i=1

sixi mod B =
m∑
i=1

si

n∑
j=1

ξijbj −
n∑
j=1

χjbj =
n∑
j=1

(
m∑
i=1

siξij − χj

)
bj ,

which implies 0 6
∑m

i=1 siξij − χj < 1 for all j, and therefore 0 6 χj 6 m for all j. Combining
Equations (11) and (12) we have:

y′′ =
m∑
i=1

sixi +
n∑
i=1

(ti − χi)bi ,

where as shown above 0 6 χi 6 m for all i. This implies that the distributions (x1, . . . ,xm,y)
and (x1, . . . ,xm,y

′′) are ε2-statistically close, with ε2 = mn2−µ. Therefore the distributions
(x1, . . . ,xm,y) and (x1, . . . ,xm,y

′) are (ε1 + ε2)-statistically close, which proves the Lemma. ut

We also show that the previous distribution D2µB is not significantly modified when a small
vector z ∈ Zn is added and the operator norm of the corresponding matrix B−1 is upper-bounded.

Lemma 7. Let L ⊂ Zn be a full-rank lattice of basis B = (b1, . . . , bn), and let B ∈ Zn×n be
the matrix whose column vectors are the bi’s. For any z ∈ Zn, the distribution of z + D2µB is
ε-statistically close to that of D2µB, where ε = 2−µ · (‖z‖∞ · ‖B−1‖∞ + 1).

Proof. Let u← D2µB and u′′ ← z +D2µB. We can write:

u = v +
n∑
i=1

sibi

u′′ = z + v +
n∑
i=1

sibi

where v ← DB and si ← [0, 2µ) ∩ Z. We consider the intermediate variable:

u′ = ((z + v) mod B) +

n∑
i=1

sibi .

The distribution of u and u′ are clearly the same. Let ψ = z + v. We have:

ψ mod B = ψ −B · bB−1 ·ψc = ψ −
n∑
i=1

tibi

where t = bB−1 ·ψc. This gives:

u′ = z + v +
n∑
i=1

(si − ti)bi .

We have t = bB−1 · z +B−1 · vc. Since v is in the half-open parallelepiped spanned by B we have
that the components of B−1 · v are in [0, 1), which gives:

‖t‖∞ 6 ‖B−1 · z‖∞ + 1 6 ‖B−1‖∞ · ‖z‖∞ + 1 .

Therefore the variables u′ and u′′ are ε-statistically close, with ε = 2−µ
(
‖B−1‖∞ · ‖z‖∞ + 1

)
. This

proves the Lemma. ut
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4.3 Re-Randomization of Encodings: Proof of Lemma 2

We are now ready to apply our “LHL over lattices” to prove the full randomization of encodings as
stated in Lemma 2. Namely the re-randomization equation (7) can be rewritten in vector form as:

r′ = r +X · b+Π · b′

where b← {0, 1}τ and b′ ← ([0, 2µ) ∩ Z)n, and the columns of the matrix X ∈ Zn×τ are uniformly
and independently generated in the parallelepiped spanned by the columns of the matrix Π ∈ Zn×n.
To conclude, it therefore suffices to apply Lemma 6 and Lemma 7, using additionally an upper
bound on ‖Π−1‖∞. For this we use the fact that Π has been generated as a diagonally dominant
matrix.

Given a matrix B = (bij) ∈ Rn×n, we let Λi(B) =
∑

k 6=i |bik|. A matrix B = (bij) ∈ Rn×n is
said to be diagonally dominant if |bii| > Λi(B) for all i. We recall the following fact for diagonally
dominant matrices [Var75,Pri51].

Fact 1 Let B = (bij) ∈ Rn×n be a diagonally dominant matrix. Then the matrix B is invertible
and ‖B−1‖∞ 6 maxi=1,...,n (|bii| − Λi(B))−1 where ‖ · ‖∞ is the operator norm on n× n matrices
with respect to the `∞ norm on Rn.

Fact 2 Let B = (bij) ∈ Rn×n be a diagonally dominant matrix. Then

n∏
i=1

(|bii| − Λi(B)) 6 |detB| 6
n∏
i=1

(|bii|+ Λi(B))

Proof (of Lemma 2). We write c1 ≡
(
r
(1)
i · gi + mi

)
/z mod pi for all 1 6 i 6 n and define

r(1) = (r
(1)
i ) ∈ Zn. We also write xj ≡ rij · gi/z (mod pi) and Πj ≡ $ij · gi/z (mod pi) and define

the matrix X = (rij) ∈ Zn×τ and Π = ($ij) ∈ Zn×n. From the re-randomization equation (7), we
can write:

r = r(1) +X · b+Π · b′ ,

where b← {0, 1}τ , and b′ ← ([0, 2µ) ∩ Z)n.
Since at instance generation the columns of X are generated uniformly and independently

in the parallelepiped spanned by the columns of Π, applying our “leftover hash lemma over
lattices” (Lemma 6) we obtain that the distribution of (params, r) is ε1-close to the distribution of
(params, r(1) +D2µΠ), with

ε1 = τn2−µ +
1

2

√
|detΠ|/2τ .

Since Π is a diagonally dominant matrix, we obtain from Fact 2

|detΠ| 6
n∏
i=1

(|$i,i|+ Λi(Π)) 6 (2n2ρ)n 6 2n(ρ+log2(2n)) .

which gives ε1 6 nτ2−µ+2(n(ρ+log2(2n))−τ)/2. Therefore given the constraints τ > n·(ρ+log2(2n))+2λ
and µ > ρ+ α+ λ we have that ε1 = negl(λ).

Now, using Lemma 7 we obtain that the distribution of (params, r) if (ε1 + ε2)-close to that of
(params,D2µΠ) for

ε2 = 2−µ
(
‖r(1)‖∞ · ‖Π−1‖∞ + 1

)
.

We consider the initial level-0 encoding c and write c ≡ r(c)j · gj +mj mod pj and y ≡ r(y)j · gj +
1 mod pj , and define

r(c) =
(
r
(c)
1 , . . . , r(c)n

)T
and r(y) =

(
r
(y)
1 , . . . , r(y)n

)T
.
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Since c1 = c · y mod x0, we have

‖r(1)‖∞ =
∥∥(r(c)j + r

(c)
j r

(y)
j gj +mjr

(y)
j

)
j=1,...,n

∥∥
∞ 6 ‖r(c)‖∞ · ‖r(y)‖∞ · 2α+2 .

Therefore ‖r(1)‖∞ 6 22ρ+log2(`)+α+2. Now, by Fact 1, we have

‖Π−1‖∞ 6
1

mini=1,...,n(|$i,i| − Λi(Π))
6

1

n2ρ − (n− 1)2ρ
6 2−ρ .

This gives ε2 6 2−µ + 2ρ+log2(`)+α+2−µ. With the constraint µ > ρ+ α+ λ, Lemma 2 is proved. ut

5 Attacks against our Multilinear Scheme

5.1 Lattice Attack on the Encodings

We first describe a lattice attack against level-0 encodings. We consider an element x0 =
∏n
i=1 pi

and a set of τ integers xj ∈ Zx0 such that:

xj mod pi = rij

where rij ∈ (−2ρ, 2ρ) ∩ Z. We want to estimate the complexity of the classical orthogonal lattice
attack for recovering (some of) the noise values rij .

This attack works by considering the integer vector formed by a subset of the xj ’s, say x =
(xj)16j6t for some n < t 6 τ , and relating the lattice of vectors orthogonal to x mod x0 to the
lattice of vectors orthogonal to each of the corresponding noise value vectors ri = (rij)16j6t.

More precisely, let L ⊂ Zt the lattice of vectors u such that:

u · x ≡ 0 (mod x0).

Clearly, L contains x0Zt so it is of full rank t. Moreover, we have

vol(L) = [Zt : L] = x0/ gcd(x0, x1, . . . , xt) = x0 .

As a result, we heuristically expect the successive minima of L to be around vol(L)1/t ≈ 2n·η/t, and
hence applying lattice reduction should yield a reduced basis (u1, . . . ,ut) with vectors of length
‖uk‖ ≈ 2n·η/t+αt for some constant α > 0 depending on the lattice reduction algorithm (2αt is the
Hermite factor).

Now, a vector u ∈ L satisfies u · x ≡ 0 (mod x0), so for each i ∈ {1, . . . , n}, reducing modulo
pi gives:

u · ri ≡ 0 (mod pi).

In particular, if u is short enough to satisfy ‖u‖ · ‖ri‖ < pi, this implies u · ri = 0 in Z. As a result,
if we have:

2n·η/t+αt · 2ρ < 2η, (13)

we expect the vectors (u1, . . . ,ut−n) from the previous lattice reduction step to be orthogonal to
the ri’s, and hence computing the rank n orthogonal lattice to the lattice spanned by those vectors
should reveal the ri’s.

Since t must be greater than n for the attack to apply, condition (13) implies in particular that:

α <
η − ρ
n

.

Since a Hermite factor of 2αt is achieved in time 2Ω(1/α) (usually by carrying out BKZ reduction
with block size β = ω(1/α), in which each block is BKZ-reduced in time exponential in β, see
e.g. [HPS11]), we obtain that this orthogonal lattice attack has a complexity exponential in n.
In fact, with γ = η · n, we get a time complexity of 2Ω(γ/η2), similar to [DGHV10, §5.2] (see
also [CH12]).
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5.2 GCD Attack on the Zero-testing Parameter

We consider the ratio modulo x0 of two coefficients from the zero-testing vector pzt, namely
u := (pzt)1/(pzt)2 mod x0. From (8) we obtain for all 1 6 i 6 `:

u ≡ hi1/hi2 (mod pi)

We can therefore recover pi by computing gcd(hi2 · u− hi1, x0) for all possible hi1, hi2. Since the
hij ’s are upper bounded by 2β in absolute value, the attack has complexity O(22β). By using a
technique similar to [CN12], the attack complexity can be reduced to Õ(2β).

5.3 Hidden Subset Sum Attack on Zero Testing

One can consider an attack similar to Section 5.1 on the zero-testing parameters. The zero-testing
vector ω = c · pzt mod x0 corresponding to an encoding c of zero can be written as:

ω =
n∑
i=1

(
ri ·
∏
i′ 6=i

pi′
)
hi =

n∑
i=1

Rihi,

where the hi’s are the lines of the zero-testing matrix H. This gives an expression of ω as a linear
combination of the unknown vectors hi, so we can think of an approach similar to the hidden subset
sum attack of Nguyen and Stern [NS99] to recover the unknown hi’s or the Ri’s.

Such an approach, like the one from the previous section, would first involve computing the
lattice L ⊂ Zn of vectors u orthogonal to ω modulo x0, and hoping that the vectors in a reduced
basis of L are short enough that they must necessarily be orthogonal to each of the hi’s in Zn.

However, L is a lattice of rank n and volume x0 ≈ 2n·η, so we expect its shortest vectors to be of
length roughly 2η. The attack can then only work if such a short vector u is necessarily orthogonal
to each of the hi’s in Zn. Equivalently, this will happen if the vector v = (u · h1, . . . ,u · hn) ∈ Zn,
which we know is orthogonal to (R1, . . . , Rn) modulo x0, is significantly shorter than the shortest
vector in the lattice L′ of vectors orthogonal to (R1, . . . , Rn) modulo x0. But again L′ is of rank
n and volume x0, so its shortest vectors is of length about 2η, and hence v will typically not be
shorter.

Therefore, the Nguyen–Stern hidden subset sum attack does not apply to our setting.

5.4 Attacks on the Inverse Zero Testing Matrix

A related observation is that if ω = c·pzt mod x0 denotes again the zero-testing vector corresponding
to an encoding c of zero, and T = (H−1)T is the inverse zero-testing matrix, then, by Equation (10):

Tω = (R1, . . . , Rn) ∈ Zn,

where, as above, Ri = ri · (x0/pi). In particular, if the lines of T are written as ti, we get that for
each i ∈ {1, . . . , n}:

piti · ω ≡ 0 (mod x0).

Thus, since piti is relatively small, we might hope to recover it as a short vector in the lattice of
vectors orthogonal to ω modulo x0. However, as we have seen previously, we expect a reduced basis
of that lattice to have vectors of length roughly 2η, whereas piti is of length about 2η+β . Therefore,
provided that, say, β is super-logarithmic, there are exponentially many linear combinations of the
reduced basis vectors under the target length, and hence we cannot hope to recover piti in that
fashion.
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A more sophisticated attack based on the same observation uses the result of Hermann and
May [HM08] on solving linear equations modulo an unknown factor of a public modulus. In our
case, the components tij of ti form a small solution (smaller than 2β) of the linear equation:

n∑
j=1

ωj · tij ≡ 0 (mod x0/pi)

modulo the unknown factor x0/pi of x0. The technique of Hermann–May can thus recover ti and
factor x0 provided that β is small enough relative to x0. For sufficiently large n, by [HM08, Theorem
4], this should be possible as long as β/η < 1. However, as noted by the authors, the complexity of
the attack is exponential in n (it involves reducing a lattice of dimension Ω(expn)), and there does
not seem to be a way to approximate the solution in polynomial time, so the attack does not apply
to our setting even though we do choose β < η.

5.5 A Note on GGH’s Zeroizing Attack

In [GGH13] the authors describe a “zeroizing” attack against their scheme that consists in multi-
plying a given level-i encoding c by a level-(κ− i) encoding of 0 to get a level-κ encoding of 0, and
then multiplying by the zero-testing parameter pzt; one obtains an encoding of the same coset as c
but in the plaintext space. This attack does not enable to solve the GDDH problem because one
does not get a small representative of that coset, but it enables to solve some decisional problems
involving low-level (below κ) encodings, such as the decisional subgroup membership problem using
composite-order maps, and the decisional linear problem.

Surprisingly this attack does not seem to apply against our scheme; namely we do not get a
similar encoding in the plaintext space from the zero-testing parameter. Therefore the subgroup
membership assumption and the decision linear assumption could still hold in our scheme.

6 Optimizations and Implementation

In this section we describe an implementation of our scheme in the one-round N -way Diffie-Hellman
key exchange protocol; we recall the protocol in Appendix D, as described in [BS03,GGH13].

We note that without optimizations the size of the public parameters makes our scheme
completely unpractical; this is also the case in [GGH13]. Namely, for sampling we need to store
at least n · α encodings (resp. n · ρ encodings for re-randomization), each of size n · η bits; the
public-key size is then at least n2 · η · α bits. With n ' 104, η ' 103 and α ' 80, the public-key
size would be at least 1 TB.3 Therefore we use three heuristic optimizations to reduce the memory
requirement.

1. Non-uniform sampling: for the sampling algorithm we use a small number of encodings ` only;
this implies that the sampling cannot be proved uniform anymore.

2. Quadratic re-randomization: we only store a small subset of encodings which are later combined
pairwise to generate the full set of encodings. This implies that the randomization of encodings
becomes heuristic only.

3. Integer pzt: we use a single integer pzt instead of a vector pzt with n components. An encoding
c of zero still gives a small integer ω = pzt · c mod x0, but the converse does not necessarily hold
anymore.

3 In [GGH13] the following approximate setting is suggested: n = Õ(κλ2), q = 2n/λ and m = O(n2). The public-key
size contains at least m encodings of size n log2 q bits each. Taking exactly n = κλ2 and m = n2, the public-key
size is then m · n · (n/λ) = n4/λ = κ4λ7. With κ = 6 and λ = 80, we get a public-key size of 3400 TB.
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6.1 Non-uniform Sampling

For sampling level-zero encodings we use a smaller value for `, the number of encodings xj in the
public parameters. There is a simple meet-in-the-middle attack with complexity O(2`/2); therefore
we take ` = 2λ. In this case the sampling cannot be proved uniform in R = Zg1 × · · ·×Zgn anymore.
However this does not seem to make the GDDH problem easier.

Note also that for such small ` given a level-0 encoding c, one can efficiently recover the coefficients
of the subset sum with LLL, since this is a subset-sum problem with density `/(η · n)� 1; however
this does not give an attack, as in GDDH such level-0 encoding c is not available.4

6.2 Quadratic Re-randomization

To reduce the parameters size we use a simple optimization that consists in storing only a small subset
of the public elements and combining them pairwise to generate the full public-key. Such optimization
was originally described in [GH11] for reducing the size of the encryption of the secret-key bits
in the implementation of Gentry’s FHE scheme [Gen09]. It was also used in [CMNT11] to reduce
the public-key size of the DGHV scheme; however, as opposed to [CMNT11] our randomization of
encodings becomes heuristic only, whereas in [CMNT11] the semantic security was still guaranteed.

For re-randomization we only store ∆ = b
√
nc encoding x

(0)
j at level 0 and also ∆ encodings x

(1)
j

at level 1. The x
(0)
j encode random mj ∈ R, while the x

(1)
j are encodings of 0. Then by pairwise

multiplication we can generate ∆2 ' n randomization elements at level 1, which are all encodings
of 0. More precisely, we have for b = 0, 1 and 1 6 j 6 ∆:

x
(b)
j ≡

r
(b)
ij · gi + (1− b) · fij

zb
(mod pi) ,

where r
(b)
ij are random ρ-bit integers, and fij are random integers modulo gi.

Given a level-1 encoding c1, we randomize it using a random subset-sum of pairwise products of
the previous encodings:

c′1 = c1 +

∆∑
i,j=1

αij · x(0)i · x
(1)
j mod x0 ,

where the αij ’s are random bits; note that we don’t use the encodings Πj anymore. As a further
optimization, we can use as in [CMNT11] a sparse vector αij , with small Hamming weight θ. There
is a meet-in-the-middle attack of complexity O(nθ/2). In our implementation we take θ = 16; the
reRand operation then becomes very efficient.

Writing as previously c′1 ≡ (r′i · gi +mi)/z (mod pi), we obtain under this optimization:

|r′i · gi +mi| 6 (`+ θ) · 22(ρ+α) .

When computing the product of κ such level-1 encodings and one level-0 encoding as in multipartite
Diffie-Hellman key exchange, we obtain the following updated bound for the log2 infinite norm of
the vector r from Lemma 3:

ρf 6 κ · (2ρ+ 2α+ log2(`+ θ)) + ρ+ log2 `+ 1 .

4 Alternatively one could use the same quadratic technique as in [CMNT11]; in that case the sampling could still be
proved uniform in R.
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6.3 Zero-Testing Element

Instead of generating a zero-testing vector pzt with n components, we publish a zero-testing element
pzt which is a single integer:

pzt =
n∑
i=1

hi · (zκ · g−1i mod pi) ·
∏
i′ 6=i

pi′ mod x0

where the hi’s are random β-bit integers. Therefore, we obtain a single integer ω = pzt · c mod x0,
with

ω =
n∑
i=1

hi ·
(
ri +mi · (g−1i mod pi)

)
·
∏
i′ 6=i

pi′ mod x0.

As before, if ‖r‖∞ < 2ρf we still have |ω| < x0 · 2−ν−λ−2. However the converse is no longer true:
we can have |ω| < x0 · 2−ν for an encoding of a non-zero vector m. This implies that two encodings
of different vectors can now extract to the same value. While it is actually easy to generate such
collisions using LLL, this does not seem to give an attack against the GDDH problem.

6.4 Parameters and Timings

We have implemented a one-round N -way Diffie-Hellman key exchange protocol with N = 7 users,
in C++ using the Gnu MP library [Gt13] to perform operations on large integers. We refer to
Appendix D for a description of the protocol. We provide our concrete parameters and the resulting
timings in Table 1, for security parameters ranging from 52 to 80 bits.5

Instantiation λ n η ∆ ρ pk size

Small 52 540 1838 23 41 24 MB

Medium 62 2085 2043 45 56 129 MB

Large 72 8250 2261 90 72 709 MB

Extra 80 26115 2438 161 85 2.6 GB

Setup (once) Publish (per party) KeyGen (per party)

6 s 0.23 s 0.20 s

38 s 1.0 s 1.2 s

1700 s 5.1 s 5.9 s

29000 s 18 s 20 s

Table 1. Parameters and timings to instantiate a one-round 7-way Diffie-Hellman key exchange protocol with
` = 160, β = 80, α = 80, N = 7 (i.e. κ = 6) and ν = 160 on a 16-core computer (Intel(R) Xeon(R) CPU E7-8837 at
2.67GHz) using GMP 5.1.1. Note that the Setup was parallelized on the 16 cores to speed-up the process while the
other steps ran on a single core. We only derived a common ν-bit session key without using a randomness extractor.

The timings above show that our scheme is relatively practical, as the KeyGen phase of the
multipartite Diffie-Hellman protocol requires only a few seconds per user; however the parameter
size is still very large even with our optimizations.
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A Proof of Lemma 1

Write x′j ≡ r′ij · gi + aij (mod pi) for 1 6 j 6 ` and 1 6 i 6 n. Each component aij is randomly
generated in [0, gi) ∩ Z; therefore the column vectors aj of the matrix (aij) are randomly and
independently generated in R. By the leftover hash lemma over finite groups (Lemma 5), we have
that (a1, . . . ,a`,m) with m = A · b is ε-uniform over R`+1, where

ε =
1

2

√
|R|
2`

6 2(α·n−`)/2 .

Therefore by taking ` > n · α+ 2λ we obtain that the distribution of (params,m) is statistically
close to the distribution of (params,m′) for m′ ← R. ut
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B Proof of Lemma 3

We have assumed
ρf + λ+ α+ 2β 6 η − 8 ,

which gives:
ν = η − β − ρf − λ− 3 > α+ β + 5 . (14)

We consider the vector R = (Ri)16i6n where:

Ri = ((ri +mi · g−1i ) mod pi) · (x0/pi) . (15)

Equation (10) can then be written:

ω = HT ·R mod x0 . (16)

If m = 0 then we have Ri = ri · x0/pi for all i, which gives using pi > 2η−1 for all i:

‖R‖∞ 6 ‖r‖∞ · max
16i6n

(x0/pi) 6 ‖r‖∞ · x0 · 2−η+1 .

Since by definition −p/2 < (z mod p) 6 p/2, we have |z mod p| 6 |z| for any z, p; therefore we
obtain from (16) using ‖r‖∞ < 2ρf

‖ω‖∞ = ‖HT ·R mod x0‖∞ 6 ‖HT ·R‖∞ 6 ‖HT ‖∞ · ‖R‖∞ < x0 · 2β+ρf−η+1 = x0 · 2−ν−λ−2 .

Conversely assume that ‖ω‖∞ < x0 · 2−ν+2. From (16) we have:

R ≡ (H−1)T · ω (mod x0) . (17)

From (15) we have ‖R‖∞ < x0/2. Moreover from (14) we have ν − β > α+ 5, which gives

‖(H−1)T · ω‖∞ 6 ‖(H−1)T ‖∞ · ‖ω‖∞ 6 x0 · 2β−ν+2 6 x0 · 2−α−3 < x0/2 . (18)

This shows that Equation (17) holds in Z and not only modulo x0; therefore we must have

‖R‖∞ 6 x0 · 2β−ν+2 .

Letting vi = (ri +mi · g−1i ) mod pi for 1 6 i 6 n, this gives |vi| · (x0/pi) 6 x0 · 2β−ν+2, and therefore
|vi| 6 pi · 2β−ν+2 for all i. We have gi · (vi − ri) ≡ mi (mod pi); we show that the equality actually
holds over Z. Namely for all i we have |mi| < gi < pi/2 and:

|gi · (vi − ri)| 6 |gi| · (|vi|+ |ri|) 6 pi · 2α+β−ν+2 + 2α+ρf 6 pi/8 + pi/8 < pi/2

which implies that the equality holds over Z. Therefore mi ≡ 0 (mod gi) for all i, which implies
m = 0. This proves Lemma 3. ut

C Comparison with GGH Multilinear Maps

In this section we rewrite our scheme using exactly the same notations as in [GGH13] whenever
possible, to better highlight the similarities.

The construction in [GGH13] works in the polynomial ring R = Z[X]/(Xn + 1), where n is large
enough to ensure security. One generates a secret short ring element g ∈ R, generating a principal
ideal I = 〈g〉 ⊂ R. One also generates an integer parameter q and another random secret z ∈ R/qR.
One encodes elements of the quotient ring R/I, namely elements of the form e+ I for some e, as
follows: a level-i encoding of the coset e+ I is an element of the form uk = [c/zi]q, where c ∈ e+ I
is short. Such encodings can be both added and multiplied, as long as the norm of the numerators
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remain shorter than q; in particular the product of κ encodings at level 1 gives an encoding at level
κ. For such level-κ encodings one can then define a zero-testing parameter pzt = [hzκ/g]q, for some
small h ∈ R. Then given a level-κ encoding u = [c/zκ] one can compute [pzt · u]q = [hc/g]q; when
c is an encoding of zero we have c/g ∈ R, which implies that hc/g is small in R, and therefore
[hc/g]q is small; this provides a way to test whether a level-κ encoding c is an encoding of 0.

In our construction one could write R = Zn, and define a secret short ring element g ∈ R,
generating a principal ideal I = 〈g〉 ⊂ R, which gives I = (giZ)16i6n. We also generate a ring
element p ∈ R and let the principal ideal J = 〈p〉 ⊂ R, which gives J = (piZ)16i6n. We let
q := x0 =

∏n
i=1 pi and for convenience we denote by [u]q the CRT isomorphism from R/J to Zq.

As in [GGH13], in our scheme a level-i encoding of the coset eI = e+ I is an element of the form
u = [c/zi]q where c ∈ eI is short. Such encodings can be both added and multiplied, by working
over the integers via the CRT isomorphism [·]q.

However, we cannot apply the zero-testing procedure from [GGH13] in a straightforward way.
Namely one could define the zero-testing parameter pzt = [hzκ/g]q as in [GGH13] where h ∈ Zn
is a relatively small ring element. As in [GGH13] given a level-κ encoding u = [c/zκ]q one would
compute the element:

ω = pzt · u =

[
hzκ

g
· c
zκ

]
q

=

[
hc

g

]
q

. (19)

As in [GGH13] if u is an encoding of 0 then c is a multiple of g over Zn hence c/g ∈ Zn is short
and therefore the vector hc/g ∈ Zn is short. However this does not imply that the corresponding
integer ω obtained by CRT in (19) is small, and we do not have a simple way of identifying integers
whose reductions modulo the unknown pi’s are small.

Instead, we can define a slightly different notation: we consider the following additive homomor-
phism R/J −→ Zq

u→ {u}q =

n∑
i=1

ui ·
∏
i′ 6=i

pi′ mod q

where as before q = x0 =
∏n
i=1 pi and we define the zero-testing parameter:

pzt := {hzκ/g}q

As in [GGH13] given a level-κ encoding u = [c/zκ]q one can compute the element:

ω = pzt · u mod q =

{
hzκ

g

}
q

·
[ c
zκ

]
q

=

{
hzκ

g
· c
zκ

}
q

=

{
hc

g

}
q

As in [GGH13] if u is an encoding of 0 then c is a multiple of g over Zn hence c/g ∈ Zn is short and
therefore the vector hc/g ∈ Zn is short; this time, this implies that ω = {hc/g}q is a short integer.

D One-Round N -Way Diffie-Hellman Key Exchange Protocol

In 2003, Boneh and Silverberg showed how to perform a multipartite Diffie-Hellman key exchange
using multilinear maps [BS03]. As in [GGH13], our scheme can be used to instantiate a one-round
N -party Diffie-Hellman key exchange protocol in the common reference string model, under the
GDDH assumption with N = κ+ 1 users.

Consider N parties wishing to set up a shared secret key s using a one-round protocol (i.e. each
party broadcasts one value to all other parties). We recall the construction from [GGH13]:

Setup(1λ, 1N ). Output (params,pzt)← InstGen(1λ, 1κ) as the public parameter, with κ = N − 1.

Publish(params, i). Each party i samples a random ci ← samp(params) as a secret key, and publishes
as the public key the corresponding level-1 encoding c′i ← reRand(params, 1, enc(params, 1, ci)).
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KeyGen
(
params,pzt, i, ci, {c′j}j 6=i

)
. Each party i computes c̃i = ci ·

∏
j 6=i c

′
j , and uses the extraction

routine to compute the key s← ext(params,pzt, c̃i).

Theorem 3 ([GGH13]). The protocol described above is a one-round N -way Diffie-Hellman key
exchange protocol if the GDDH assumption holds for the underlying encoding scheme.

E Uniform Sampling of a Parallelepiped

In order to sample a uniformly random element in the half-open parallelepiped defined by the
column vectors $j of matrix Π ∈ Zn×n, one can proceed as follows.

First, compute the Smith Normal Form for Π . This is easily done in polynomial time, and can
be done with near optimal complexity using Storjohann’s algorithm [Sto96]. This yields a basis
(b1, . . . , bn) of Zn and positive integers d1, . . . , dn such that (d1b1, . . . , dnbn) is a basis of the lattice
L generated by the columns of Π.

Then, if we pick integers x1, . . . , xn at random such that xi is uniformly distributed in {0, . . . , di−
1}, then clearly, the vector x = x1b1 + · · ·+ xnbn is uniformly distributed modulo L.

To get a uniformly distributed vector in the half-open parallelepiped defined by the $j ’s, it then
suffices to apply Babai’s round-off algorithm [Bab86], i.e. write x as a rational linear combination
ξ1$1 + · · ·+ ξn$n of the $j ’s and return the vector y given by:

y =

n∑
j=1

(
ξj − bξjc

)
$j .

That vector is congruent to x modulo L, so it is also in Zn and uniformly distributed modulo L,
and it belongs to the parallelepiped by construction, so it is indeed a uniformly distributed element
of the parallelepiped.

F Generation of the Matrix H

For the construction of zero-testing parameters, we need to pick, with sufficient entropy, an invertible
matrix H ∈ Zn×n in such a way that both its operator norm and the norm of its inverse are not
too large, namely ‖H‖∞ 6 2β and ‖H−1‖∞ 6 2β . In Section 3 the bounds must actually hold for
HT , so we take the transpose of the resulting matrix.

For that purpose, we propose the following approach. For any matrix A of size bn/2c × dn/2e
with coefficients in {−1, 0, 1}, define HA ∈ Zn×n as:

HA =

(
Ibn/2c A

0 Idn/2e

)
.

Each line of HA has at most 1 + dn/2e non zero coefficients, each in {−1, 0, 1}, so we clearly have
‖HA‖∞ 6 1 + dn/2e. Moreover, HA is invertible with H−1A = H(−A), so that the operator norm
of its inverse admits a similar bound.

Similarly, the transpose H ′A of HA also satisfies ‖H ′A‖∞ 6 1 + dn/2e (in fact, the slightly
better bound by 1 + bn/2c also holds) and so does its inverse.

Now let:

β′ =

⌊
β

dlog2(1 + dn/2e)e

⌋
,

and generate β′ uniformly random matrices Ai of size bn/2c × dn/2e with coefficients in {−1, 0, 1};
then pick H i randomly as either HAi or its transpose for each i ∈ {1, . . . , β′}, and finally compute
H as the product of the H i’s. Then, since operator norms are sub-multiplicative, we have:

‖H‖∞ 6
β′∏
i=1

‖H i‖∞ 6 (1 + dn/2e)β′ 6 2β,
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and H−1 satisfies the same bound. The set of matrices H obtained in this manner is not very
simple to describe but it is exponentially large.
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