Substrate dependence of the Raman 2D line of graphene

Alejandro Molina-Sánchez and Ludger Wirtz

UNIVERSITY OF LUXEMBOURG

Physics and Material Sciences Research Unit

Motivation

Raman measurements: Florian Forster, Christoph BN-samples: K. Watanabe and T. Taniguchi

Hexagonal boron nitride is a promising substrate of graphene due to the latticematch, the low surface roughness or the low density of charge traps.

Raman spectroscopy is a powerful tool to explore the interaction of graphene with the substrate.

The G-line frequency (left) of graphene on hexagonal boron nitride is smaller than that of graphene on SiO₂. Effect of charging through impurities.

The 2D-line of graphene@h-BN is at higher energy than graphene@SiO, and suspended graphene [1].

Theoretical study of the electronic structure at the GW approx. level and calculation of the electron-phonon coupling.

Band structure of graphene@BN

LDA band structure of suspended graphene and graphene@hBN.

The linear crossing of the bands at the Dirac point is reproduced in both cases.

Both bands match almost perfectly around the **K** point.

The 2D-line is dispersive, comes from a two-phonon process and is sensitive to changes in:

- Slope of the bands around **K**.
- Slope of the phonon branch around **K**.
- Excitation energy.

Electron-phonon coupling

The presence of the dielectric substrate reduces the electron-phonon coupling by 3.5% (LDA), 8% (GW).

- A reduction of the slope of the Kohn-Anomaly by the dielectric substrate. - Increase of the 2D-line phonon Frequency (around 5-7 cm⁻¹).

Theory. GW calculation of the TO mode at K

Calculations are done in suspended graphene and graphene symmetrically sandwiched between hexagonal boron nitride layers, using ab initio methods [2].

1.) DFT: underestimation of the band-gap

2.) GW-approximation (including electron-electron interaction): "opening" of the band gap

Self energy: $\Sigma = i GW)$ — screened Coulomb potential **Evaluation of the influence of the dielectric**

The electron-phonon coupling is proportional to: - the slope of the TO phonon branch close to K - the softening of the TO mode at **K**.

screening on the bandgap opening

The e-p coupling can be calculated with the expression [3]:

Band-gap calculated within the GW approx.

Displacement according to the phonon eigenvector (TO mode at **K**)

Estimation of the phonon dispersion with hybrid B3LYP functional

$$Exc = (1-a)(E_{LDA,x} + bE_{BECKE,x}) + aE_{HF,x} + (1-c)E_{VWN,c} + cE_{LYP,c}$$

A changes of parameters a and c is equivalent to a change in the dielectric Screening.

We can fit the paramterers a (admixture of HF exchange) and c (compesate the changes in the bond-strength) with the information given by the GW calculations of the electron-phonon coupling.

Once the exchange-correlation energy is found, the phonon dispersion is calculated around the K-point.

Isolated graphene: a = 0.157; c = 0.1graphene@BN; a = 0.139; c = 0.81

Conclusions

We find a significant substrate dependence of the 2D-line frequency of the graphene Raman spectrum.

The effect of the dielectric screening can be evaluated by calculating the Self-energy and the quasi-particle eigenvalues in the GW approximation.

From the calculation of the electron-phonon coupling for suspended graphene and graphene@h-bn, one can predict a larger softening of the TO mode for suspended graphene.

The slope of the TO phonon branch at **K** will be also larger in the case of suspended graphene and consequently the 2D-line frequency will be higher in the case of graphene@h-bn.

References

Calculations done with ABINIT http://www.abinit.org and YAMBO http://yambo-code.org

[1] S. Berciaud, S. Ryu, L. E. Brus, and T. F. Heinz, Nanolett. 9, 346 (2009).

[2] A. Molina-Sánchez, L. Wirtz, et. al., in preparation.

[3] M. Lazzeri, C. Attaccalite, L. Wirtz, and F. Mauri. Phys. Rev. B 78, 081406R (2008).