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General description of Nagin’s model

We have a collection of individual trajectories.

We try to divide the population into a number of homogenous
subpopulations and to estimate a mean trajectory for each subpopulation.

This is still an inter-individual model, but unlike other classical models
such as standard growth curve models, it allows the existence of
subpolulations with completely different behaviors.
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The Likelihood Function (1)

Consider a population of size N and a variable of interest Y .

Let Yi = yi1 , yi2 , ..., yiT be T measures of the variable, taken at times
t1, ...tT for subject number i .

P(Yi ) denotes the probability of Yi

count data ⇒ Poisson distribution

binary data ⇒ Binary logit distribution

censored data ⇒ Censored normal distribution

Aim of the analysis: Find r groups of trajectories of a given kind (for
instance polynomials of degree 4, P(t) = β0 + β1t + β2t

2 + β3t
3 + β4t

4.
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The Likelihood Function (2)

πj : probability of a given subject to belong to group number j

⇒ πj is the size of group j .

We try to estimate a set of parameters Ω =
{
βj0, β

j
1, β

j
2, β

j
3, β

j
4, πj

}
which

allow to maximize the probability of the measured data.

P j(Yi ) : probability of Yi if subject i belongs to group j

⇒ P(Yi ) =
r∑

j=1

πjP
j(Yi ). (1)

Finite mixture model
(
Daniel S. Nagin (Carnegie Mellon University)

)
finite : sums across a finite number of groups

mixture : population composed of a mixture of unobserved groups
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The Likelihood Function (3)

Hypothesis: In a given group, conditional independence is assumed for the
sequential realizations of the elements of Yi !!!

⇒ P j(Yi ) =
T∏
t=1

pj(yit ), (2)

where pj(yit ) denotes the probability of yit given membership in group j .

Likelihood of the estimator:

L =
N∏
i=1

P(Yi ) =
N∏
i=1

r∑
j=1

πj

T∏
t=1

pj(yit ). (3)
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The case of a normal distribution (1)

yit = βj0 + βj1Ageit + βj2Age
2
it + βj3Age

3
it + βj4Age

4
it + εit , (4)

where εit ∼ N (0, σ), σ being a constant standard deviation.

Notations :

βj tit = βj0 + βj1Ageit + βj2Age
2
it

+ βj3Age
3
it

+ βj4Age
4
it

.

φ: density of standard centered normal law.

Hence,

pj(yit ) =
1

σ
φ

(
yit − βj tit

σ
.

)
(5)
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The case of a normal distribution (2)

So we get

L =
1

σ

N∏
i=1

r∑
j=1

πj

T∏
t=1

φ

(
yit − βj tit

σ

)
. (6)

It is too complicated to get closed-forms equations

⇒ quasi-Newton procedure maximum research routine

Software:

SAS-based Proc Traj procedure
by Bobby L. Jones (Carnegie Mellon University).
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A computational trick

The estimations of πj must be in [0, 1].

It is difficult to force this constraint in model estimation.

Instead, we estimate the real parameters θj such that

πj =
eθj
r∑

j=1

eθj

, (7)

Finally,

L =
1

σ

N∏
i=1

r∑
j=1

eθj
r∑

j=1

eθj

T∏
t=1

φ

(
yit − βj tit

σ

)
. (8)
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Muthén’s model (1)

Muthén and Shedden (1999): Generalized growth curve model

Elegant and technically demanding extension of the uncensored normal
model.

Adds random effects to the parameters βj that define a group’s mean
trajectory.

Trajectories of individual group members can vary from the group
trajectory.

Software:

Mplus package by L.K. Muthén and B.O Muthén.
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Muthén’s model (2)

Advantage of GGCM

Fewer groups are required to specify a satisfactory model.

Disadvantages of GGCM

1 Difficult to extend to other types of data.

2 Group cross-over effects.

3 Can create the illusion of non-existing groups.
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Model Selection

Bayesian Information Criterion:

BIC = log(L)− 0, 5k log(N), (9)

where k denotes the number of parameters in the model.

Rule:

The bigger the BIC, the better the model!
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Posterior Group-Membership Probabilities

Posterior probability of individual i ’s membership in group j : P(j/Yi ).

Bayes’s theorem

⇒ P(j/Yi ) =
P(Yi/j)π̂j
r∑

j=1

P(Yi/j)π̂j

. (10)

Bigger groups have on average larger probability estimates.

To be classified into a small group, an individual really needs to be
strongly consistent with it.

Jang SCHILTZ (University of Luxembourg) () A generalised finite mixture model November 27, 2013 14 / 23



Posterior Group-Membership Probabilities

Posterior probability of individual i ’s membership in group j : P(j/Yi ).

Bayes’s theorem

⇒ P(j/Yi ) =
P(Yi/j)π̂j
r∑

j=1

P(Yi/j)π̂j

. (10)

Bigger groups have on average larger probability estimates.

To be classified into a small group, an individual really needs to be
strongly consistent with it.

Jang SCHILTZ (University of Luxembourg) () A generalised finite mixture model November 27, 2013 14 / 23



Posterior Group-Membership Probabilities

Posterior probability of individual i ’s membership in group j : P(j/Yi ).

Bayes’s theorem

⇒ P(j/Yi ) =
P(Yi/j)π̂j
r∑

j=1

P(Yi/j)π̂j

. (10)

Bigger groups have on average larger probability estimates.

To be classified into a small group, an individual really needs to be
strongly consistent with it.

Jang SCHILTZ (University of Luxembourg) () A generalised finite mixture model November 27, 2013 14 / 23



Posterior Group-Membership Probabilities

Posterior probability of individual i ’s membership in group j : P(j/Yi ).

Bayes’s theorem

⇒ P(j/Yi ) =
P(Yi/j)π̂j
r∑

j=1

P(Yi/j)π̂j

. (10)

Bigger groups have on average larger probability estimates.

To be classified into a small group, an individual really needs to be
strongly consistent with it.

Jang SCHILTZ (University of Luxembourg) () A generalised finite mixture model November 27, 2013 14 / 23



Posterior Group-Membership Probabilities

Posterior probability of individual i ’s membership in group j : P(j/Yi ).

Bayes’s theorem

⇒ P(j/Yi ) =
P(Yi/j)π̂j
r∑

j=1

P(Yi/j)π̂j

. (10)

Bigger groups have on average larger probability estimates.

To be classified into a small group, an individual really needs to be
strongly consistent with it.

Jang SCHILTZ (University of Luxembourg) () A generalised finite mixture model November 27, 2013 14 / 23



Outline

1 Nagin’s Finite Mixture Model

2 Generalization of the basic model

3 The Luxemburgish salary trajectories
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Predictors of trajectory group membership

xi : vector of variables potentially associated with group membership
(measured before t1).

Multinomial logit model:

πj(xi ) =
exiθj
r∑

k=1

exiθk

, (11)

where θj denotes the effect of xi on the probability of group membership.

L =
1

σ

N∏
i=1

r∑
j=1

exiθj
r∑

k=1

exiθk

T∏
t=1

φ

(
yit − βj tit

σ

)
. (12)
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Group membership probabilities

The Wald test which indicates whether any number of ocefficients is
significally different, allows the statistical testing of the predictors.

Confidence intervals for the probabilities of group membership can be
computed by a parametric bootstrap technique.
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Adding covariates to the trajectories

yit = βj0 + βj1t + βj2t
2 + βj3t

3 + βj4t
4 + αj

1z1t + ...+ αj
LzLt + εit , (13)

where εit ∼ N (0, σ), σ being a constant standard deviation and zlt are
covariates that may depend or not upon time t.

Unfortunately the estimation of parameters αj
l is not implemented in proc

traj procedure; it is just possible to plot the impact of the covariates.
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The data : first dataset

Salaries of workers in the private sector in Luxembourg from 1940 to 2006.

About 7 million salary lines corresponding to 718.054 workers.

Some sociological variables:

gender (male, female)

nationality and residentship (luxemburgish residents, foreign residents,
foreign non residents)

working status (white collar worker, blue collar worker)

year of birth

age in the first year of professional activity
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The data : second dataset

Salaries of all workers in Luxembourg which began to work in Luxembourg
between 1980 and 1990 at an age less than 30 years.

1.303.010 salary lines corresponding to 85.049 workers.

Some sociological variables:

gender (male, female)

nationality and residentship

sector of activity

year of birth

age in the first year of professional activity

marital status

year of birth of children
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Result for 9 groups (dataset 1)
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Adding covariates to the trajectories (dataset 2)
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