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General description of Nagin's model

We have a collection of individual trajectories.

We try to divide the population into a number of homogenous
subpopulations and to estimate a mean trajectory for each subpopulation.

This is still an inter-individual model, but unlike other classical models
such as standard growth curve models, it allows the existence of
subpolulations with completely different behaviors.
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The Likelihood Function (1)

Consider a population of size N and a variable of interest Y.
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The Likelihood Function (1)

Consider a population of size N and a variable of interest Y.

Let Y; = yi,, Yi, .-, Yiy be T measures of the variable, taken at times
t1,...tT for subject number i.

P(Y;) denotes the probability of Y;

@ count data = Poisson distribution
@ binary data = Binary logit distribution

@ censored data = Censored normal distribution

Aim of the analysis: Find r groups of trajectories of a given kind (for
instance polynomials of degree 4, P(t) = B + B1t + Bat? + Bat3 + Bat*.
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The Likelihood Function (2)

7; . probability of a given subject to belong to group number j
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We try to estimate a set of parameters Q2 = {5{;, {,ﬁfé,ﬁé, B{;,wj} which
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The Likelihood Function (2)
7; . probability of a given subject to belong to group number j

= m; is the size of group j.

We try to estimate a set of parameters Q2 = {ﬁé, {,ﬁé,ﬂé, 6£,Wj} which
allow to maximize the probability of the measured data.

PJi(Y;) : probability of Y; if subject i belongs to group j

= P(Y) =) mP/(Y3). (1)

Jj=1

Finite mixture model (Daniel S. Nagin (Carnegie Mellon University))
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The Likelihood Function (2)
7; . probability of a given subject to belong to group number j

= m; is the size of group j.

We try to estimate a set of parameters Q2 = {ﬁé, {,ﬁé,ﬁé, ﬂi,ﬂ'j} which
allow to maximize the probability of the measured data.

PJi(Y;) : probability of Y; if subject i belongs to group j

= P(Y) =) mP/(Y3). (1)

Jj=1

Finite mixture model (Daniel S. Nagin (Carnegie Mellon University))

@ finite : sums across a finite number of groups

. . . >
@ mixture : population composed of a mixture of unobserved groups gt
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The Likelihood Function (3)

Hypothesis: In a given group, conditional independence is assumed for the
sequential realizations of the elements of Y;!!!
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= PI(Y; H;f(y,f (2)

where p/(y;,) denotes the probability of y;, given membership in group j.
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The Likelihood Function (3)

Hypothesis: In a given group, conditional independence is assumed for the
sequential realizations of the elements of Y;!!!

= PJ H PJ(YI: (2)

where p/(y;,) denotes the probability of y;, given membership in group j.

Likelihood of the estimator:

RICERI|

r

-
Ty Hpj Yi)- (3)

i=1 i=1 j=1 t=1
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The case of a normal distribution (1)

Yio = By + B Age;, + BiAge? + BLAged + BiAget + <, (4)

where ¢;, ~ N(0,0), o being a constant standard deviation.

By

Jang SCHILTZ (University of Luxembourg) A generalised finite mixture model November 27, 2013 8/23



The case of a normal distribution (1)

Yio = By + B Age;, + BiAge? + BLAged + BiAget + <, (4)

where ¢;, ~ N(0,0), o being a constant standard deviation.

Notations :

By

Jang SCHILTZ (University of Luxembourg) A generalised finite mixture model November 27, 2013 8/23



The case of a normal distribution (1)

Vi = By + Bl Ages, + ByAge} + BiAge] + fiAgel +ei  (4)
where ¢;, ~ N(0,0), o being a constant standard deviation.

Notations :
o Ft, = B+ B Agei, + BhAge? + BLAge? + B4 Age!.
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The case of a normal distribution (1)

Yie = By + Bl Agei, + BhAge; + BiAges + BiAgel + <ii, (4)
where ¢;, ~ N(0,0), o being a constant standard deviation.
Notations :
o Bt = B + B Age;, + BbAge? + BiAge} + Bl Age?.

@ ¢: density of standard centered normal law.
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The case of a normal distribution (1)

Vi = By + Bl Ages, + ByAge} + BiAge] + fiAgel +ei  (4)
where ¢;, ~ N(0,0), o being a constant standard deviation.
Notations :
o Bt = B + B Age;, + BbAge? + BiAge} + Bl Age?.

@ ¢: density of standard centered normal law.

Hence,

) = 2o (e “f) (5)

g
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The case of a normal distribution (2)

So we get
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The case of a normal distribution (2)

So we get

L%ﬁimfw(—” ‘f‘*’t). (©)

i=1j=1 t=1
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The case of a normal distribution (2)

So we get

Lz%ﬁZﬂjﬁqb(%) (6)

i=1j=1 t=1

It is too complicated to get closed-forms equations
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The case of a normal distribution (2)
So we get
N r T

L= IS o (). ©)

ag
i=1j=1 t=1

It is too complicated to get closed-forms equations

= quasi-Newton procedure maximum research routine
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The case of a normal distribution (2)
So we get

L%ﬁimﬁas(—y’f ‘ft’f). (©)

i=1j=1 t=1

It is too complicated to get closed-forms equations

= quasi-Newton procedure maximum research routine

Software:

SAS-based Proc Traj procedure
by Bobby L. Jones (Carnegie Mellon University).
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A computational trick

The estimations of 7; must be in [0, 1].
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A computational trick

The estimations of 7; must be in [0, 1].
It is difficult to force this constraint in model estimation.
Instead, we estimate the real parameters 6; such that

e¥i

7j

= 3 s
> e
j=1
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A computational trick

The estimations of 7; must be in [0, 1].
It is difficult to force this constraint in model estimation.

Instead, we estimate the real parameters 6; such that

0.
el
T =, (7)
> e
j=1
Finally,
N r T P
1 e’ Vi, — P i,
=TI S T (). (®)
i=1 j=1 0; t=1

=1 INE
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Muthén’s model (1)

Muthén and Shedden (1999): Generalized growth curve model
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Muthén’s model (1)

Muthén and Shedden (1999): Generalized growth curve model

Elegant and technically demanding extension of the uncensored normal
model.
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Muthén’s model (1)

Muthén and Shedden (1999): Generalized growth curve model

Elegant and technically demanding extension of the uncensored normal
model.

Adds random effects to the parameters 3/ that define a group’s mean
trajectory.
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Muthén’s model (1)

Muthén and Shedden (1999): Generalized growth curve model

Elegant and technically demanding extension of the uncensored normal
model.

Adds random effects to the parameters 3/ that define a group’s mean
trajectory.

Trajectories of individual group members can vary from the group
trajectory.
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Muthén’s model (1)

Muthén and Shedden (1999): Generalized growth curve model

Elegant and technically demanding extension of the uncensored normal
model.

Adds random effects to the parameters 3/ that define a group’s mean
trajectory.

Trajectories of individual group members can vary from the group
trajectory.

Software:
Mplus package by L.K. Muthén and B.O Muthén. J

ISE
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Muthén’s model (2)

Fewer groups are required to specify a satisfactory model.

Advantage of GGCM J
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Muthén’s model (2)

Advantage of GGCM

Fewer groups are required to specify a satisfactory model.

Disadvantages of GGCM
O Difficult to extend to other types of data.
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Muthén’s model (2)

Advantage of GGCM

Fewer groups are required to specify a satisfactory model.

Disadvantages of GGCM

O Difficult to extend to other types of data.
@ Group cross-over effects.

© Can create the illusion of non-existing groups.
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Model Selection

Bayesian Information Criterion:
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Model Selection

Bayesian Information Criterion:

BIC = log(L) — 0, 5k log(N), (9)

where k denotes the number of parameters in the model.
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Model Selection

Bayesian Information Criterion:
BIC = log(L) — 0,5k log(N),
where k denotes the number of parameters in the model.

Rule:
The bigger the BIC, the better the model!
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Posterior Group-Membership Probabilities

Posterior probability of individual i's membership in group j : P(j/Y;).
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Posterior Group-Membership Probabilities

Posterior probability of individual i's membership in group j : P(j/Y;).

Bayes's theorem

= P(j/Y;) = M (10)

> P(Yi/i)R
j=1
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Posterior Group-Membership Probabilities

Posterior probability of individual i's membership in group j : P(j/Y;).
Bayes's theorem
. P(Yi/i)#j
= PG/ = (10)
> P(Yi/i)#;
j=1

Bigger groups have on average larger probability estimates.
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Posterior Group-Membership Probabilities

Posterior probability of individual i's membership in group j : P(j/Y;).
Bayes's theorem

= P/ = R (10)

> P(Yi/i)R
j=1

Bigger groups have on average larger probability estimates.

To be classified into a small group, an individual really needs to be
strongly consistent with it.
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Predictors of trajectory group membership
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Predictors of trajectory group membership

x; : vector of variables potentially associated with group membership
(measured before t7).
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Predictors of trajectory group membership

x; : vector of variables potentially associated with group membership
(measured before t7).

Multinomial logit model:

ex,-Gj

mi(xi) = (11)

e
Y e
k=1

where 6; denotes the effect of x; on the probability of group membership.
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Predictors of trajectory group membership

x; : vector of variables potentially associated with group membership
(measured before t7).

Multinomial logit model:

ex,-Gj

mi(xi) = ———, (11)

Y e
k=1

where 6; denotes the effect of x; on the probability of group membership

S > e () e
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Group membership probabilities
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Group membership probabilities

The Wald test which indicates whether any number of ocefficients is
significally different, allows the statistical testing of the predictors.
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Group membership probabilities

The Wald test which indicates whether any number of ocefficients is
significally different, allows the statistical testing of the predictors.

Confidence intervals for the probabilities of group membership can be
computed by a parametric bootstrap technique.
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Adding covariates to the trajectories
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Adding covariates to the trajectories

Vi =B+ Bt + B2 + B+ Bitt + bz + o+ Az + e, (13)

where ¢;, ~ N(0,0), o being a constant standard deviation and z; are
covariates that may depend or not upon time t.
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Adding covariates to the trajectories

Vi =B+ Bt + B2 + B+ Bitt + bz + o+ Az + e, (13)

where ¢;, ~ N(0,0), o being a constant standard deviation and z; are
covariates that may depend or not upon time t.

Unfortunately the estimation of parameters a/, is not implemented in proc
traj procedure; it is just possible to plot the impact of the covariates.
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© The Luxemburgish salary trajectories
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The data : first dataset

Salaries of workers in the private sector in Luxembourg from 1940 to 2006.
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The data : first dataset

Salaries of workers in the private sector in Luxembourg from 1940 to 2006.

About 7 million salary lines corresponding to 718.054 workers.
Some sociological variables:
e gender (male, female)

@ nationality and residentship (luxemburgish residents, foreign residents,
foreign non residents)

@ working status (white collar worker, blue collar worker)
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The data : first dataset

Salaries of workers in the private sector in Luxembourg from 1940 to 2006.
About 7 million salary lines corresponding to 718.054 workers.

Some sociological variables:
@ gender (male, female)

@ nationality and residentship (luxemburgish residents, foreign residents,
foreign non residents)

@ working status (white collar worker, blue collar worker)
@ year of birth
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The data : second dataset

Salaries of all workers in Luxembourg which began to work in Luxembourg
between 1980 and 1990 at an age less than 30 years.
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Salaries of all workers in Luxembourg which began to work in Luxembourg
between 1980 and 1990 at an age less than 30 years.

1.303.010 salary lines corresponding to 85.049 workers.

Some sociological variables:
e gender (male, female)
@ nationality and residentship
@ sector of activity
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between 1980 and 1990 at an age less than 30 years.

1.303.010 salary lines corresponding to 85.049 workers.

Some sociological variables:
o gender (male, female)
@ nationality and residentship
@ sector of activity
year of birth
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@ age in the first year of professional activity
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Result for 9 groups (dataset 1)
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Result for 9 groups (dataset 1)
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Adding covariates to the trajectories (dataset 2)
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Adding covariates to the trajectories (dataset 2)
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