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Abstract

Let us consider an abelian variety defined over Q` with good supersingular reduction. In this
paper we give explicit conditions that ensure that the action of the wild inertia group on the `-
torsion points of the variety is trivial. Furthermore we give a family of curves of genus 2 such
that their Jacobian surfaces have good supersingular reduction and satisfy these conditions. We
address this question by means of a detailed study of the formal group law attached to abelian
varieties.
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1 Introduction

Let ` be a prime number and A/Q` be an abelian variety with good supersingular reduction. In this
paper we study the action of the wild inertia group Iw ⊂ Gal(Q`/Q`) on the `-torsion points of A.
More precisely, we will address the problem of finding explicit conditions that ensure that the Galois
extension Q`(A[`])/Q` obtained by adjoining to the field of `-adic numbers the coordinates of the
`-torsion points of A is tamely ramified.

Let E/Q` be an elliptic curve. If it has good supersingular reduction, then the field extension
Q`(E[`])/Q` is tamely ramified (cf. [13], §1). The proof relies on a detailed study of the formal
group law attached to E. This formal group law has dimension 1 and height 2. The set of elements
of Q` with positive `-adic valuation can be endowed with a group structure by means of this formal
group law. Call V the F`-vector space of `-torsion points of this group (which is isomorphic to the
group of `-torsion points of E as Gal(Q`/Q`)-module). One essential ingredient in the proof is the
fact that the `-adic valuation of the points of V can be explicitly computed (see Proposition 9, §1.9
of [13]). This fact allows one to define an embedding of V into a certain 1-dimensional F`-vector
space (called Vα in [13]) where the wild inertia group acts trivially, and in turn this compels the wild
inertia group to act trivially upon V . When the dimension n of the formal group law is greater than 1
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the situation becomes more complicated. It is no longer possible to compute the `-adic valuation
of the n coordinates of the elements of V , which now denotes the group of `-torsion points of the
corresponding formal group. In this paper we give a condition, Hypothesis 3.2, under which we can
prove that the wild inertia group acts trivially on V . The key point is that this hypothesis allows us to
define several different maps of V into Vα.

In the rest of the paper we apply this result to the case of dimension 2, and produce non-trivial
examples of abelian surfaces defined over Q` such that the ramification of Q`(A[`])/Q` is tame. We
introduce the notion of symmetric 2-dimensional formal group law, and prove that such a formal group
law satisfies Hypothesis 3.2 under a certain condition. Furthermore, using this result we explicitly
construct, for each ` ≥ 5, genus 2 curves over Q` such that the formal group law attached to their
Jacobians satisfy Hypothesis 3.2 (cf. Theorem 5.9). Finally we formulate a condition that allows us
to deform the curves and enlarge the family of genus 2 curves such that the Galois extension defined
by the `-torsion points of their Jacobians is tamely ramified, which enables us to obtain Theorem 6.4.

Given a prime `, in [2] the authors construct certain semistable elliptic curves defined over Q with
good supersingular reduction at `. When ` ≥ 11, these curves provide tame Galois realizations of
the group GL2(F`). In this way, the authors give an affirmative answer to the tame inverse Galois
problem posed by B. Birch in [6], §2, for the family of linear groups GL2(F`). In [3], the results
in this paper are used to realize the groups in the family GSp4(F`) as the Galois group of a tamely
ramified extension for each prime ` ≥ 5.

2 Notation

We will denote by K a local field of characteristic zero and residual characteristic `, v the corres-
ponding discrete valuation, normalized so that v(K×) = Z, O the ring of integers of the valuation
and k the residue field. Further, we will assume that v(`) = 1 (that is to say, K will be an unramified
extension of Q`). We fix an algebraic closure K of K, and denote by v the extension of v to this
algebraic closure. Finally, k denotes the algebraic closure of k obtained through the reduction ofOK ,
the ring of integers of K with respect to v, modulo its maximal ideal. Later in the paper, we will take
K = Q`.

We will denote by I ⊂ Gal(K/K) the inertia group, and by Iw the wild inertia group.
To ease notation, we will denote the tuples of elements in boldface. For instance, we will write

X = (X1, . . . , Xn), Y = (Y1, . . . , Yn), Z = (Z1, . . . , Zn) to denote n-tuples of variables, and
x = (x1, . . . , xn), y = (y1, . . . , yn) will denote tuples of elements of K.

3 Inertia action and the formal group law

We start by recalling that an n-dimensional formal group law defined over O is an n-tuple of power
series

F := (F1(X,Y), . . . , Fn(X,Y)) ∈ O[[X1, . . . , Xn, Y1, . . . , Yn]!]×n
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satisfying:

• Fi(X,Y) ≡ Xi + Yi (mod terms of degree two), for all i = 1, . . . , n.

• Fi(F1(X,Y), . . . , Fn(X,Y),Z) = Fi(X, F1(Y,Z), . . . , Fn(Y,Z)) for all i = 1, . . . , n.

Besides, if Fi(X,Y) = Fi(Y,X) for all i = 1, . . . , n, then the formal group law is said to be
commutative.

To a formal group law one can attach a group. Let us denote by m the set of elements of K with
positive valuation, and denote by m×n the Cartesian product of m with itself n times. For this set one
can define an addition law ⊕F by

⊕F : m×n ×m×n → m×n,

(x,y) 7→ (F1(x,y), . . . , Fn(x,y))

(which is well defined since Fi(x,y) converges to an element of m, for all i = 1, . . . , n). The set
m×n, endowed with this sum, turns out to be a group, which will be denoted by F(m). Let us call V
the F`-vector space of `-torsion points of F(m).

In [13], §8, an auxiliary object is introduced.

Definition 3.1. Let α ∈ Q be a positive rational number. Consider the sets

mα = {x ∈ m : v(x) ≥ α} and m+
α = {x ∈ m : v(x) > α} .

We define Vα as the quotient group
Vα := mα/m

+
α .

Vα has a natural structure of k-vector space, and its dimension as such is 1. Moreover, the absolute
Galois group of K acts on Vα: for each σ ∈ Gal(K/K), and for each x + m+

α ∈ mα/m
+
α , we have

σ(x + m+
α ) := σ(x) + m+

α . In general, this action does not respect the k-vector space structure. But
if we take an element σ in the inertia group I , it induces a morphism of k-vector spaces on Vα, and in
turn this implies that the wild inertia group Iw acts trivially on Vα (cf. §1.8 in [13]). The main point
in the proof, in the case of a formal group law attached to an elliptic curve with good supersingular
reduction, that the wild inertia group acts trivially on V , is to define an embedding of V into Vα,
taking advantage of the fact that the valuation of the points of V is equal to α = 1/(`2 − 1).

But, in the case when n > 1, each point has n coordinates, and we have to admit the possibility
that the valuations of the coordinates of the `-torsion points of F(m) have different values. Our idea is
to formulate a weaker assumption about the valuations of the coordinates, but which is strong enough
to imply the desired result about the action of the wild inertia group Iw on F(m).

Hypothesis 3.2. There exists a positive α ∈ Q such that, for all non-zero (x1, . . . , xn) ∈ V , it holds
that

min
1≤i≤n

{v(xi)} = α.
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Under this hypothesis, we are able to prove the desired result:

Theorem 3.3. Let F be a formal group law such that the F`-vector space V of the `-torsion points of
F(m) satisfies Hypothesis 3.2. Then the wild inertia group Iw acts trivially on V .

Proof. Let P = (x1, . . . , xn) ∈ V . We are going to show that each σ ∈ Iw acts trivially on P , that
is, σ(P ) = P .

According to Hypothesis 3.2, we have that, for each non-zero point Q = (y1, . . . , yn) ∈ V ,

min
1≤i≤n

{v(yi)} = α.

Therefore, for each n-tuple (λ1, . . . , λn) ∈ Zn, we know that λ1y1 + · · ·+ λnyn belongs to mα. This
allows us to consider the following map:

ϕ(λ1,...,λn) : V → Vα = mα/m
+
α

(y1, . . . , yn) 7→ λ1y1 + · · ·+ λnyn + m+
α .

It is clear that ϕ(λ1,...,λn) is a group morphism, when we consider on V the sum given by the
formal group law, and on Vα the sum induced by that of K. As a matter of fact, it is a morphism
of F`-vector spaces (for the structure of F`-vector space is determined by the sum). Besides, it is
compatible with the Galois action.

Now let us take an element σ ∈ Iw. Then

ϕ(λ1,...,λn)(σ(P )) = σ
(
ϕ(λ1,...,λn)(P )

)
= ϕ(λ1,...,λn)(P ),

where the last equation holds because Iw acts trivially upon Vα. In other words, for each n-tuple
(λ1, . . . , λn) ∈ Zn, σ(P ) − P belongs to the kernel of ϕ(λ1,...,λn). But no point of V can belong to
all these kernels save the zero vector. This, again, is a consequence of Hypothesis 3.2. Any non-zero
point Q = (y1, . . . , yn) ∈ V satisfies that there exists j ∈ {1, . . . , n} such that v(yj) = α. If we take
λi = 0 for all i 6= j, λj = 1, then ϕ(λ1, . . . , λn)(Q) = yj + m+

α 6= 0 + m+
α .

To sum up, for each P ∈ V and each σ ∈ Iw, σ(P ) − P = (0, . . . , 0), and so σ acts trivially on
the point P .

4 Symmetric formal group laws of dim 2

Let F be a formal group law over Q` of dimension 2. Our aim is to analyze the valuation of the
`-torsion points of F(m), and try to obtain explicit conditions that ensure that Hypothesis 3.2 holds.
The property of being `-torsion provides us with two equations in two variables. Let us briefly recall
these equations. We begin by recalling the definition of homomorphism between formal group laws
of dimension n.
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Definition 4.1. Let F = (F1(X,Y), . . . , Fn(X,Y)) and G = (G1(X,Y), . . . , Gn(X,Y)) be two
formal group laws over O of dimension n. A homomorphism f is an n-tuple of formal power series
in O[[Z1, . . . , Zn]] without constant term, say f = (f1(Z), . . . , fn(Z)), such that

f (F1(X,Y), . . . , Fn(X,Y)) = (G1(f1(X), . . . , fn(X), f1(Y), . . . , fn(Y)) , . . . ,

Gn (f1(X), . . . , fn(X), f1(Y), . . . , fn(Y))) .

Example 4.2. For each m ∈ N, one can define the multiplication by m map in the following way:
[0](Z) = (0, 0, . . . , 0),

[1](Z) = Z,

[m+ 1](Z) = F ([1](Z), [m](Z)) for m ≥ 1.

It is easy to prove by induction that the shape of the n power series [m]i(Z) that constitute the
multiplication by m map is the following:

[m]i(Z) = m · Zi + (terms of degree ≥ 2) ,

for all i = 1, . . . , n.

When n = 2, the multiplication by ` map is defined by two equations in two variables, and this
complicates our attempt to compute the valuations of the two coordinates of the points of V . In
order to avoid this inconvenience, we are going to restrict our attention to a special kind of formal
group laws. Namely, we will consider formal group laws such that the two equations have a certain
relationship that allows us to reduce the problem to studying a single equation.

Definition 4.3. Let F = (F1(X1, X2, Y1, Y2), F2(X1, X2, Y1, Y2)) be a formal group law of dimen-
sion 2 over Q`. We will say that F is a symmetric formal group law if the following relationship
holds:

F2 (X2, X1, Y2, Y1) = F1 (X1, X2, Y1, Y2) .

Remark 4.4. A 2-dimensional formal group law F is symmetric if and only if the pair of formal
power series (e1(Z1, Z2), e2(Z1, Z2)) defined as e1(Z1, Z2) = Z2 and e2(Z1, Z2) = Z1 define a
morphism from F into itself. In particular, a symmetric formal group law has an involution.

The symmetry is reflected in the power series [`]1(Z1, Z2) and [`]2(Z1, Z2). By induction on m,
one can prove the following lemma.

Lemma 4.5. Let F(X,Y) be a symmetric formal group law of dimension 2. For all m ≥ 1, it holds
that

[m]2(Z2, Z1) = [m]1(Z1, Z2).

Next we will establish two technical lemmas which will be useful.
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Lemma 4.6. Let ` > 2 be a prime number, r ∈ N, and let f(Z1, Z2) ∈ Z`[[Z1, Z2]] be a formal power
series such that f(Z2, Z1) = −f(Z1, Z2) and which can be written as

f(Z1, Z2) = ` · (Z1 − Z2) + ` · (terms of total degree ≥ 2 and ≤ `r)

+ a · (Z`r1 − Z`
r

2 ) + (terms of total degree ≥ `r + 1),

where ` - a. Then if (x0, y0) ∈ m × m with x0 6= y0 satisfies f(x0, y0) = 0 and furthermore
v(x0), v(y0) ≥ v(x0 − y0), then the `-adic valuation v(x0 − y0) is 1/(r − 1).

Proof. Let us call β = v(x0 − y0). We will compute the valuations of the different terms that appear
in the equality f(x0, y0) = 0.

• v(` · (x0 − y0)) = 1 + β.

• Let us consider a term of total degree between 2 and `r, say ` · cxn0ym0 . Compute its valuation:
v(` · cxn0ym0 ) = 1 + v(c) + nv(x0) +mv(y0) ≥ 1 + (n+m)β > 1 + β, since n+m ≥ 2.

• Let us consider the term a(x`
r

0 − y`
r

0 ). Let us split it into the sum of two terms, in the following
way:

a ·
(
x`

r

0 − y`
r

0

)
= a ·

(
(x0 − y0)`

r −B
)

= a · (x0 − y0)`
r − a ·B,

where B = (x0 − y0)`
r − (x`

r

0 − y`
r

0 ).

On the one hand, v
(
a · (x0 − y0)`

r)
= v(a) + `rβ = `rβ, since ` does not divide a.

On the other hand, note that

(x0−y0)`
r

= x`
r

0 −
(
`r

1

)
x`

r−1
0 y0 +

(
`r

2

)
x`

r−2
0 y2

0 + · · ·−
(
`r

2

)
x2

0y
`r−2
0 +

(
`r

1

)
x0y

`r−1
0 −y`r0 .

Therefore, each of the terms
(
`r

i

)
(−1)ix`

r−i
0 yi0 has a valuation strictly greater than 1 + β. (For

v(x`
r−i

0 yi0) ≥ β(`r − i+ i) = `rβ, and hence v(
(
`r

i

)
(−1)ix`

r−i
0 yi0) ≥ 1 + β`r > 1 + β.)

• Since v(x0), v(y0) ≥ β, it is clear that the valuation of the terms of degree greater than `r is
greater than `rβ.

But obviously there must be (at least) two terms with minimal valuation, since they must cancel
out. Therefore v(` · (x0−y0)) = v(a · (x0−y0)`

r
), that is to say, 1+β = `rβ, hence β = 1/(`r−1),

as was to be proven.

Lemma 4.7. Let ` > 2 be a prime number, r ∈ N, and let f(Z1, Z2) ∈ Z`[[Z1, Z2]] be a formal power
series such that f(Z2, Z1) = f(Z1, Z2) and which can be written as

f(Z1, Z2) = ` · (Z1 + Z2) + ` · (terms of total degree ≥ 2 and ≤ `r)

+ a ·
(
Z`

r

1 + Z`
r

2

)
+ (terms of total degree ≥ `r + 1) ,

where ` - a. Then if (x0, y0) ∈ m × m with x0 6= −y0 satisfies f(x0, y0) = 0 and furthermore
v(x0), v(y0) ≥ v(x0 + y0), then v(x0 + y0) is 1/(`r − 1).
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Proof. Analogous to that of Lemma 4.6

We want to apply the previous lemmas to the formal power series defined by [`]1(Z1, Z2) −
[`]2(Z1, Z2) and [`]1(Z1, Z2) + [`]2(Z1, Z2). In order to do this, we need to know the value of the
parameter r that appears in these formal power series. This parameter is related to the height of the
formal group law. Let us recall this notion (see [10], Chapter IV, (18.3.8)). Firstly, we need to define
this concept for formal group laws defined over k, and then we will transfer this definition to formal
group laws over O through the reduction map.

Definition 4.8. Let F be a formal group law of dimension n over k, and let

[`] = ([`]1(Z), . . . , [`]n(Z))

be the multiplication by `map. Then F is of finite height if the ring k[[Z1, . . . , Zn]] is finitely generated
as a module over the subring k[[[`]1(Z), . . . , [`]n(Z)]].

When F is of finite height, it holds that the ring k[[Z1, . . . , Zn]] is a free module over the subring
k[[[`]1(Z), . . . , [`]n(Z)]] of rank equal to a power of `, say `h. This h shall be called the height of F.

Definition 4.9. Let F be a formal group law of dimension n over O. We define the height of F as the
height of the reduction F of F modulo the maximal ideal of O.

The following lemma, which is valid for every field k, will be useful to compute the height of a
formal group law.

Lemma 4.10. Let f1, . . . , fn be formal power series in k[[Z1, . . . , Zn]] without constant term. Call
I = 〈f1, . . . , fn〉 the ideal of k[[Z1, . . . , Zn]] they generate. Then k[[Z1, . . . , Zn]] is finitely generated
as a module over k[[f1, . . . , fn]] if and only if k[[Z1, . . . , Zn]]/I is a finite dimensional k-vector space.
Moreover,

rank (k[[Z1, . . . , Zn]], k[[f1, . . . , fn]]) = dim (k[[Z1, . . . , Zn]]/I) .

Proof. Assume k[[Z1, . . . , Zn]] is generated by a1, . . . , ar as a module over k[[f1, . . . , fn]]. Take
any element of k[[Z1, ..., Zn]]/I , say a + I . We can express a = b1a1 + · · · + brar, for some
b1, . . . , br ∈ k[[f1, . . . , fn]]. That is to say, for each i = 1, . . . , r, there is a formal power series
gi(Z) ∈ k[[Z1, . . . , Zn]] such that bi = gi(f1, . . . , fn). So if λi is the constant term of gi, we may
write bi = λi + ci, where ci ∈ I . Therefore

a = b1a1 + · · ·+ brar = (λ1a1 + · · ·+ λrar) + (c1a1 + · · ·+ crar).

This shows that the k-vector space k[[Z1, ..., Zn]]/I is generated by the elements a1 + I, . . . , ar + I .
Therefore it has finite dimension and furthermore

rank (k[[Z1, ..., Zn]], k[[f1, . . . , fn]]) ≥ dim (k[[Z1, . . . , Zn]]/I) .

Assume now that k[[Z1, . . . , Zn]]/I is a finite dimensional k-vector space, and fix a basis a1 +

I, . . . , ar + I . We wish to see that a1, . . . , ar generate k[[Z1, . . . , Zn]] as a module over k[[f1, . . . , fn]].
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Take therefore some a ∈ k[[Z1, . . . , Zn]]. Our assumption assures us that there exist λ1, . . . , λr ∈ k
such that a− (λ1a1 + · · ·+ λrar) ∈ I . Therefore, there exist b1, . . . , bn ∈ k[[Z1, . . . , Zn]] such that
we can write

a =
r∑
j=1

λjaj +
n∑
i=1

bifi. (4.1)

Now we can apply the same procedure to each bi, and express it as bi =
∑r

j=1 λ
′
i,jaj +

∑n
s=1 b

′
i,sfs.

Replacing this expression in (4.1), we get

a =

r∑
j=1

(
λj +

n∑
i=1

λ′i,jfi

)
aj +

n∑
i=1

n∑
s=1

b′i,sfifs.

Iterating this procedure, we will express a as a sum

a =
r∑
j=1

gj(f1, . . . , fn)aj ,

for some g(Z) ∈ k[[Z1, . . . , Zn]], thus proving that k[[Z1, . . . , Zn]] is finitely generated as a module
over k[[f1, . . . , fn]], and moreover that

rank (k[[Z1, . . . , Zn]], k[[f1, . . . , fn]]) ≤ (dim k[[Z1, . . . , Zn]]/I) .

Therefore, to compute the height of F, one seeks the dimension of the k-vector space

k[[Z]]/〈[`]1(Z), . . . , [`]n(Z)〉.

But this can be easily done by means of standard bases. For the definition and some properties of
standard bases in power series rings we refer the reader to [4], [5]. If I is an ideal of k[[Z]], then the
dimension of k[[Z]]/I as a k-vector space is determined in this way: Fix an admissible ordering, take
a standard basis S of I with respect to this ordering, and consider the set M of monomials t such that,
for all g ∈ S, LT(g) - t, where LT denotes the leading term with respect to the prefixed ordering.
Then the cardinality of M is the required dimension (of course, it need not be finite).

In the case when the formal group law is of dimension 1, another definition of height is used (see
for instance [10], (18.3.3)). Namely, if F (X,Y ) is a formal group law defined over k, the height
of F is defined as the largest r such that the multiplication by ` map, [`](Z), can be expressed as
[`](Z) = g(Z`

r
), for some formal power series g(Z) ∈ k[[Z]]. One can prove, following a simple

reasoning, that the first term of g with non-zero coefficient is precisely a constant times Z`
r
. Now

what happens if we try to imitate this reasoning in dimension n? As is stated in [10], (18.3.9), the
reasonings in (18.3.1) can be carried out in arbitrary dimension, yielding the following result:

Proposition 4.11. Let F, G be formal group laws over k of dimension n, and f : F→ G a non-zero
homomorphism. Let us write

f(Z) =
(
f1(Z), . . . , fn(Z)

)
.
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If u is the smallest exponent such that, in some f i(Z), for some j, Zuj occurs in a non-zero monomial,
then u = `r for some r ≥ 0. Furthermore, there exist g1(Z), . . . , gn(Z) ∈ k[[Z1, . . . , Zn]] such that

f i(Z) = gi

(
Z`

r
)
, for all i = 1, . . . , n,

where Z`
r

=
(
Z`

r

1 , . . . , Z
`r
n

)
.

Proof. Since f is a homomorphism of formal group laws, it holds that

f i
(
F 1(X,Y), . . . , Fn(X,Y)

)
= Gi

(
f1(X), . . . , fn(X), f1(Y), . . . , fn(Y)

)
, (4.2)

for each i = 1, . . . , n.
Let us differentiate (4.2) with respect to Yj . Applying the chain rule, we obtain

n∑
m=1

∂f i
∂Zm

(
F(X,Y

)
· ∂Fm
∂Yj

(X,Y)) =

n∑
m=1

∂Gi
∂Ym

(
f(X), f(Y)

)
· ∂fm
∂Zj

(Y),

for each i = 1, . . . , n, j = 1, . . . , n.
Substitute Y = (0, 0, . . . , 0). We obtain that

n∑
m=1

∂f i
∂Zm

(X) · ∂Fm
∂Yj

(X, 0, . . . , 0) =
n∑

m=1

∂Gi
∂Ym

(
f(X), 0, . . . , 0

)
· ∂fm
∂Zj

(0, . . . , 0), (4.3)

for each i = 1, . . . , n, j = 1, . . . , n.
Eq. (4.3), i = 1, . . . , n, j = 1, . . . , n, can be summarized in the following expression: if we

denote by

Aij =
∂f i
∂Zj

(X), Fij =
∂F i
∂Yj

(X, 0, . . . , 0),

aij =
∂f i
∂Zj

(0, . . . , 0), Gij =
∂Gi
∂Yj

(
f(X), 0, . . . , 0

)
and by MA, MF , MG and Ma the matrices with coefficients (Aij)i,j , (Fij)i,j , (Gij)i,j and (aij)i,j

respectively, then MA ·MF = MG ·Ma.
If there exist i, j ∈ {1, . . . , n} such that aij = 0, then the formal power series f i has a monomial

aZj , where a ∈ k×. Therefore r = 0 and obviously all the formal power series f1(Z), . . . , fn(Z) can
be expressed as formal power series in the variables Z1, . . . , Zn, so there would be nothing to prove.

Assume that, on the contrary, all aij = 0. Then MA ·MF = 0. But MF is invertible. (Write
MF = Id + B, where all entries of B are formal power series without constant term. Then the sum
1 − B + B2 − B3 + · · · defines a formal power series, which is the inverse of MF .) Therefore all
the Aij must vanish. But this means that, for all i = 1, . . . , n, the monomials of the power series
f i(Z), say Ze11 · Z

e2
2 · · · Zenn , with some exponent em not divisible by `, cannot occur with non-zero

coefficient. Thus there exist gi(Z), i = 1, . . . , n, such that

f i(Z) = gi(Z
`).
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We now wish to proceed by induction. To apply the same reasoning to the power series g(Z) =

(g1(Z), . . . , gn(Z)), we must view g as a homomorphism between formal group laws. Only the
formal group laws will not be F and G. Namely, if we consider the formal group law F

′
(X,Y),

obtained from F(X,Y) by raising all coefficients to the `-th power, then it is immediate to check that
(F i(X,Y))` = F

′
i(X,Y) for i = 1, 2, . . . , n. Therefore,

g
(
F
′
(
X`,Y`

))
= g

(
F (X,Y)`

)
= f(F(X,Y)) = G

(
f(X), f(Y)

)
= G

(
g(X`),g(Y`)

)
.

Thus we conclude that
g
(
F
′
(X,Y)

)
= G (g(X),g(Y)) ,

which shows that the induction step can be taken.
This proves that there exist g1(Z), . . . , gn(Z) ∈ k[[Z]] and a natural number r such that

f i(Z) = gi

(
Z`

r
)
,

for i = 1, . . . , n. Moreover, either g1(Z) or g2(Z) or . . . or gn(Z) have a term of degree 1 with
non-zero coefficient. That is to say, a monomial in some Z`

r

j does appear in at least one of the power
series f i(Z). And it is clear that it is the term of least degree of f i(Z).

Remark 4.12. We can apply this proposition to the homomorphism [`] of multiplication by ` in a
formal group law F, and conclude that there exists an r ≥ 0 (in fact r will be greater than or equal
to 1) such that the formal power series [`]i(Z), i = 1, . . . , n, can be expressed as formal power series
in the variables Z`

r

1 , . . . , Z
`r
n . But this r might not be determined by the height of F. For instance, it

might be the case that the height of F is infinite, while the exponent r is a finite number (in Chapter IV,
(18.3.9), p. 151 of [10], there is an example of such a formal group law). The following proposition
deals with this matter.

Proposition 4.13. Let F be an n-dimensional formal group law defined over F`, and assume that there
exist n power series in F`[[Z1, . . . , Zn]], say f1(Z), . . . , fn(Z), such that the formal power series that
give the multiplication by ` map [`] can be written as [`]1(Z1, . . . , Zn) = f1(Z`

r

1 , . . . , Z
`r
n ), . . . ,

[`]n(Z1, . . . , Zn) = fn(Z`
r

1 , . . . , Z
`r
n ). Then the height of F is greater than or equal to nr.

Proof. Let us fix an admissible ordering and compute a standard basis S of the ideal

I = 〈f1(Z), . . . , fn(Z)〉 ⊂ F`[[Z]]

with respect to this ordering. LetM be the set of monomials t such that, for all g ∈ S, LT(g) - t. Then
dim(F`[[Z]]/I) = |M |. Now consider the set S′ = {g(Z`

r

1 , . . . , Z
`r
n ) : g ∈ S}. This is a standard

basis of the ideal they generate (since the s-series of the pairs of elements of S′ can be obtained from
the s-series of the pairs of elements of S by replacing (Z1, . . . , Zn) by (Z`

r

1 , . . . , Z
`r
n )).

Call M ′ the set of monomials t′ such that, for all g′ ∈ S′, LT(g′) - t′. Then |M ′| = `nr|M |, and
therefore dim(F`[[Z]]/〈[`]1(Z), . . . , [`]n(Z)〉) = `nr|M |. But we know that this dimension must be a
power of ` (see Definition 4.8), say `nr`s. Hence the height of F is nr + s, which is greater than or
equal to nr.
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Remark 4.14. We are interested in the case when the dimension of the formal group law is 2 and the
height is 4. In this case, only two possibilities might occur:

• The exponent r in Proposition 4.13 is 2. Hence s = 0.

• The exponent r in Proposition 4.13 is 1. Hence s = 2.

Assume s = 0. Then we can write the multiplication by ` map as[`]1(Z1, Z2) = aZ`
2

1 + bZ`
2

2 +
(
terms of degree ≥ `2

)
,

[`]2(Z1, Z2) = cZ`
2

1 + dZ`
2

2 +
(
terms of degree ≥ `2

)
.

Note that the determinant of the matrix

(
a b

c d

)
is non-zero. This can be seen from the proof of

Proposition 4.13. Indeed, let f1(Z) and f2(Z) be such that [`]i(Z1, Z2) = f i(Z
`r
1 , Z

`r
2 ), i = 1, 2.

If the vectors (a, b) and (c, d) are linearly dependent, then there would exist a linear combination of
f1(Z) and f2(Z), say g(Z), such that all terms would be of degree strictly greater than 1. Assume, to
fix ideas, that the coefficient of f2 in this combination is non-zero. Then if S is the reduced standard
basis of 〈f1(Z), g(Z)〉 = 〈f1(Z), f2(Z)〉 with respect to the graduated lexicographical ordering, then
the set M of monomials t such that, for all f ∈ S, LT(f) - t has cardinality greater than 1, which
contradicts that s = 0.

We will finally state and prove the main theorem of this section:

Theorem 4.15. Let ` > 2 be a prime number and let F = (F1, F2) be a 2-dimensional symmetric
formal group law over Z`. Assume it has height 4 and the exponent in Proposition 4.13 is r = 2. Let
us denote by V the F`-vector space of `-torsion points of F(m), α = 1/(`2 − 1).

Then for all non-zero (x0, y0) ∈ V ,

min{v(x0), v(y0)} = α.

Proof. First of all, let us recall that, since the formal group law F has height 4 and r = 2, it follows
from Remark 4.14 that the coefficients of all the monomials in [`]1(Z1, Z2) and [`]2(Z1, Z2) of degree
smaller than `2 are divisible by `. Moreover, the monomials of degree `2 which are not pure in Z1

or Z2 also have coefficient divisible by `. Furthermore, by Example 4.2, the only term of degree 1 of
[`]1(Z1, Z2) is `Z1, and the only term of degree 1 of [`]2(Z1, Z2) is `Z2. Taking also into account that
F is symmetric, we can write the two formal power series that comprise the multiplication by ` map
in the following way:

[`]1(Z1, Z2) =`Z1 + ` ·
(
terms of total degree ≥ 2 and ≤ `2

)
+ a · Z`21 + b · Z`22 +

(
terms of degree ≥ `2 + 1

)
,

[`]2(Z1, Z2) =`Z2 + ` ·
(
terms of total degree ≥ 2 and ≤ `2

)
+ b · Z`21 + a · Z`22 +

(
terms of degree ≥ `2 + 1

)
,
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with ` - (a2 − b2).
Take a non-zero point P = (x0, y0) ∈ V . We split the proof in two cases.

• Case 1. v(x0) 6= v(y0). Assume that v(x0) < v(y0) (otherwise we proceed analogously). Then
v(x0 − y0) = v(x0). We will apply Lemma 4.6 with r = 2. The point (x0, y0) satisfies both
equations [`]1(x0, y0) = 0 and [`]2(x0, y0) = 0. Therefore it also satisfies that f(x0, y0) =

[`]1(x0, y0) − [`]2(x0, y0) = 0. Furthermore, taking into account the previous considerations,
we can write

f(Z1, Z2) = `(Z1−Z2) + ` ·
(
terms of total degree ≥ 2 and ≤ `2

)
+ (a− b) ·

(
Z`

2

1 − Z`
2

2

)
+
(
terms of degree greater than or equal to `2 + 1

)
,

and ` - (a − b). Nothing prevents us now from applying Lemma 4.6 and concluding that
v(x0 − y0) = α. But then α = v(x0) < v(y0), hence min{v(x0), v(y0)} = α.

• Case 2. v(x0) = v(y0). Then either v(x0 − y0) = v(x0) or v(x0 + y0) = v(x0). (For
both must be greater than or equal to v(x0). And taking into account that ` 6= 2, we obtain
v(x0) = v(2x0) = v((x0 + y0) + (x0 − y0)), so both v(x0 + y0) and v(x0 − y0) cannot be
greater than v(x0).) If v(x0 − y0) = v(x0), we can apply Lemma 4.6 as in the previous case
and conclude that v(x0) = v(y0) = α. If v(x0 + y0) = v(x0), we make use of Lemma 4.7 with
f = [`]1 + [`]2 and r = 2, thus concluding that v(x0) = v(y0) = α. This completes the proof.

Combining this theorem with Theorem 3.3, we obtain the following result:

Theorem 4.16. Let ` > 2 be a prime number, and let F = (F1, F2) be a 2-dimensional symmetric
formal group law over Z`. Assume it has height 4 and the exponent in Proposition 4.13 is r = 2. Then
the wild inertia group Iw acts trivially on the F`-vector space of `-torsion points of F(m).

5 Symmetric genus 2 curves

In this section we are going to present a certain kind of genus 2 curves such that their Jacobians are
abelian surfaces with good supersingular reduction, and moreover the corresponding formal group
law satisfies the hypotheses of Theorem 4.16. Let us fix an odd prime number `.

Given a hyperelliptic equation of a genus 2 curve C, say

y2 = f6x
6 + f5x

5 + f4x
4 + f3x

3 + f2x
2 + f1x+ f0, (5.4)

with non-zero discriminant, one can define an embedding of the Jacobian surface attached to C into a
projective space of dimension 15. This construction is carried out in Chapter 2 of [9]. The first step
is to identify the Jacobian of C with Pic2(C), and then the embedding is defined as a map from the
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symmetric product of C with itself into P15, z = (z0, z1, . . . , z15) : C(2) → P15 (the expressions of
the zi, 0 ≤ i ≤ 15, are given in the first section of Chapter 2 of [9]). The projective locus of the
image of z, which shall be written as J(C), is the Jacobian of C. J(C) can be expressed by means of
equations as a variety of P15. Furthermore, it is proven in Chapter 7 of [9] that the pair s = (s1, s2),
where s1 = z1/z0 and s2 = z2/z0, is a local parameter for J(C), and the first terms of the expression
of the formal group law with respect to this local parameter are computed.

Now consider the hyperelliptic equation

y2 = f0x
6 + f1x

5 + f2x
4 + f3x

3 + f4x
2 + f5x+ f6. (5.5)

Note that the transformation (x, y) 7→ (1/x, y/x3) brings Eq. (5.4) into Eq. (5.5), and so this is
just another equation that represents the curve C. In any case, we can consider the formal group law
F̃ computed from Eq. (5.5), which shall be denoted by F̃ = (F̃1, F̃2), and the algebraic variety of P15,
J̃(C), attached to C via Eq. (5.5).

In my PhD thesis [1] the following result is proven, by making use of an explicit isomorphism
between J(C) and J̃(C) as varieties inside P15.

Theorem 5.1. With the notations introduced in this section, the following relations holdF̃2(s2, s1, t2, t1) = F1(s1, s2, t1, t2),

F̃1(s2, s1, t2, t1) = F2(s1, s2, t1, t2).

This result motivates the following definition.

Definition 5.2. We shall call a genus 2 curve symmetric if it can be expressed through an equation
y2 = f(x), where f(x) = f0x

6 + f1x
5 + f2x

4 + f3x
3 + f2x

2 + f1x+ f0 is a polynomial of degree
6 and non-zero discriminant.

As a corollary of Theorem 5.1, we obtain the following result.

Theorem 5.3. Let f(x) = f0x
6 + f1x

5 + f2x
4 + f3x

3 + f2x
2 + f1x+ f0 be a polynomial of degree

6 and non-zero discriminant, and let F = (F1, F2) be the formal group law attached to the Jacobian
variety of the curve defined by y2 = f(x). Then

F2(s2, s1, t2, t1) = F1(s1, s2, t1, t2).

In this way we can control the symmetry of the formal group law. With respect to the height,
it is well known that the formal group law attached to an abelian surface with good supersingular
reduction has height 4 (cf. [15]). We will say that a genus 2 curve defined over F` is supersingular if
its Jacobian is a supersingular abelian surface.

Our aim is to construct, for a given prime number ` > 3, a symmetric genus 2 curve over Q` with
supersingular reduction. In fact, what we shall construct is a supersingular genus 2 curve, defined over
F` by an equation y2 = f(x), where f(x) = f0x

6 +f1x
5 +f2x

4 +f3x
3 +f2x

2 +f1x+f0 ∈ F`[x]
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is a polynomial of degree 6 with non-zero discriminant. Lifting this equation to Q` in a suitable way
we will obtain the curve we were seeking.

Fix ` > 3, and assume we have a supersingular elliptic curveE defined by y2 = x3 +bx2 +bx+1

for a certain b ∈ F`. Then the bielliptic curve C defined by the equation y2 = x6 + bx4 + bx2 + 1

is a supersingular genus 2 curve. For the discriminant ∆f of f(x) = x6 + bx4 + bx2 + 1 and the
discriminant ∆g of g(x) = x3 + bx2 + bx + 1 are related by the equation ∆f = −64∆g and the
characteristic of our base field is different from 2. On the other hand, J(C) is isogenous to E × E
(cf. [9], Chapter 14), hence the supersingularity of C. Therefore, our problem boils down to finding a
supersingular elliptic curve defined by an equation of the form y2 = x3 + bx2 + bx+ 1.

Recall that an elliptic curve in Legendre form y2 = x(x − 1)(x − λ) defined over a finite field

of characteristic ` is supersingular if and only if H`(λ) = 0, where H`(x) =
∑ `−1

2
k=0

( `−1
2
k

)
xk is

the Deuring polynomial (see Theorem 4.1-(b) in Chapter IV of [14]). Moreover, there is always a
quadratic factor of H`(x) of the form x2 − x+ a for a certain a ∈ F×` , provided ` > 3 (see Theorem
1-(b) of [8], cf. Corollary 3.6 of [2]). We exploit this fact in the following proposition.

Proposition 5.4. Let a ∈ F` be such that x2 − x+ a divides H`(x). Then the equation

y2 = x3 +
1− a
a

x2 +
1− a
a

x+ 1

defines a supersingular elliptic curve over F`.

Proof. The discriminant of g(x) = x3 + 1−a
a x2 + 1−a

a x + 1 is ∆g = − (−1+4a)3

a4
, which does not

vanish (if ∆g = 0, then a = 1/4, and the polynomial x2 − x + a would have a double root; but
the Deuring polynomial H`(x) does not have double roots). Moreover, one can easily transform this
equation into Legendre form with λ = 1

2 +
√

1−4a
1 .

Remark 5.5. Assume ` = 3. The only supersingular elliptic curve over F3 is given by the equation
y2 = x(x − 1)(x + 1). We can study all the changes of variables which turn this equation into
a symmetric one, but we only obtain the curve given by y2 = x3 + 1, which is a singular curve.
Therefore, there is no symmetric polynomial f(x) ∈ F3[x] such that the curve defined by y2 = f(x) is
a supersingular elliptic curve. This is the reason why we exclude the prime ` = 3 from our reasonings.

In order to apply Theorem 4.16 to the curves provided by Proposition 5.4, we need to check that
the exponent in Proposition 4.13 is r = 2. Let us work with the reductions of the Jacobians. First of
all, note that this property is preserved by isogenies of degree prime to the characteristic `.

Lemma 5.6. Let A and B be abelian varieties defined over k, and Φ : B → A an isogeny of degree
prime to `. Assume moreover that the formal group law attached to B has r = 2. Then the formal
group law attached to A has r = 2 too.

Proof. Let m be the degree of Φ. We know that there exists an isogeny Ψ : A → B such that
Ψ ◦ Φ = [m]B .
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Consider the following commutative diagram:

B
[`]B //

Φ
��

B

Φ
��

A
[`]A // A

Since Φ ◦ [`]B = [`]A ◦ Φ, Φ ◦ [`]B ◦Ψ = [`]A ◦ Φ ◦Ψ; and thus Φ ◦ [`]B ◦Ψ = [`]A ◦ [m]A.
Consider now the homomorphisms these arrows induce on the formal group laws on A and B

(we will not change their names). Since [`]B modulo ` can be expressed by means of formal power
series in Z`

2

1 , Z`
2

2 , the same is true of the composition Φ ◦ [`]B ◦ Ψ = [`]A ◦ [m]A. But since the
multiplication by m map in the formal group law of A is defined by[m]1(Z1, Z2) = mZ1 + · · ·,

[m]2(Z1, Z2) = mZ2 + · · ·

neither of the formal power series that define [`]A can possess a term of degree smaller than 2 (for m
is invertible in F`). Taking into account Proposition 4.11, we conclude that the multiplication by `
map in A must also be expressible as a formal power series in Z`

2

1 , Z`
2

2 .

We will also need of the following result (cf. Proposition 3 of [11]).

Proposition 5.7. Let E and F be two elliptic curves over F`, let A be the polarized abelian surface
E×F , and letG ⊂ A[2](F`) be the graph of a group isomorphism ψ : E[2](F`)→ F [2](F`). ThenG
is a maximal isotropic subgroup of A[2](F`), and furthermore the quotient polarized abelian variety
A/G is isomorphic to the Jacobian of a curve C over F`, unless ψ is the restriction to E[2](F`) of an
isomorphism E → F over F`. Moreover, the curve C and the isomorphisms are defined over F` if ψ
is an isomorphism of Gal(F`/F`)-modules.

Let us consider the elliptic curve E defined by the Weierstrass equation y2 = x3 + bx2 + bx+ 1.
The 2-torsion points of E are the following:

O,

P1 := (−1, 0),

P2 :=

(
1

2

(
1− b+

√
−3− 2b+ b2

)
, 0

)
,

P3 :=

(
1

2

(
1− b−

√
−3− 2b+ b2

)
, 0

)
.

Let us consider the group morphism ψ : E[2](F`)→ E[2](F`) defined as

O 7→ O, P1 7→ P1, P2 7→ P3, P3 7→ P2.

Note that it is compatible with the action of Gal(F`/F`). In order to apply Proposition 5.7, we need
to check that ψ is not induced from an automorphism of E. But the group of automorphisms of E is
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well known (cf. [14], Chapter III, §10). Namely, if E is an elliptic curve with j-invariant different
from 0 or 1728 (that is to say, with b different from 0 or−3/2), then the group of automorphisms of E
has order 2, and the non-trivial automorphism corresponds to (x, y) 7→ (x,−y). Therefore, it cannot
restrict to the morphism ψ. In the other cases, the order of Aut(E) is 4 or 6: it is easy to compute
these automorphisms explicitly and check that they cannot restrict to ψ.

Therefore, for each b ∈ F` such that the equation y2 = x3 + bx2 + bx+ 1 defines an elliptic curve
E (i.e., b 6= 3,−1), Proposition 5.7 tells us that there exists a genus 2 curve C and an isogeny

Φ : E × E → J(C)

which is separable (because of the definition of the quotient of abelian varieties, cf. §7, Chapter 2,
Theorem on p. 66 of [12]) of degree 4. Moreover, the isogeny can be defined over F`. Therefore,
if E is a supersingular elliptic curve we can apply Lemma 5.6 and conclude that the Jacobian of C
satisfies that the exponent in Proposition 4.11 is 2. But can C be explicitly determined? Fortunately,
Proposition 4 of [11] gives a very explicit recipe for computing C. As a conclusion, we can state the
following result.

Proposition 5.8. Let b ∈ F` be such that the Weierstrass equation y2 = x3 + bx2 + bx+ 1 defines a
supersingular elliptic curve over F`. Then the formal group law attached to the Jacobian of the genus
2 curve C defined by a lifting of the hyperelliptic equation

y2 = x6 + bx4 + bx2 + 1

has exponent r = 2.

This provides us with all the ingredients to give a family of genus 2 curves such that the action of
the wild inertia group on the `-torsion points of their Jacobians is trivial.

Theorem 5.9. Let ` > 3 be a prime number. Let a ∈ F` be such that x2 − x+ a divides the Deuring
polynomial H`(x), and lift it to a ∈ Z`. Let f0, f1, f2, f3 ∈ Z` such that f0 − 1, f1, f2 − (1− a)/a,
f3 ∈ (`). Then the equation y2 = f0x

6 + f1x
5 + f2x

4 + f3x
3 + f2x

2 + f1x+ f0 ∈ Z`[x] defines a
genus 2 curve C such that the Galois extension Q`(J(C))/Q` is tamely ramified.

6 Approximation to symmetry

The results in the previous section provide, for each ` > 3, a symmetric genus 2 curve with good
supersingular reduction such that its formal group law satisfies the hypotheses of Theorem 4.16, and
in consequence also the hypotheses of Theorem 3.3. But one might argue that these curves are not
a good example to illustrate Theorem 3.3, in the sense that they are actually isogenous over Q` to a
product of elliptic curves with good supersingular reduction, and surely one can prove in a more direct
fashion that the wild inertia group at ` acts trivially. Our aim now is to enlarge this class of curves,
and provide other more complicated examples in which Theorem 3.3 applies. The key idea is that
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we are going to take curves which are “approximately symmetric”, that is to say, symmetric up to a
certain order with respect to the `-adic valuation. More specifically, we wish to determine how close
the coefficients of a hyperelliptic equation of C must be to those of a hyperelliptic symmetric equation
for the condition in Hypothesis 3.2 to be preserved. The main result of this section is the following.

Theorem 6.1. Let C be a genus 2 curve given by a hyperelliptic equation

y2 = f6x
6 + f5x

5 + f4x
4 + f3x

3 + f2x
2 + f1x+ f0,

where f0, . . . , f6 ∈ Z`, whose discriminant is not divisible by `, and consider the genus 2 curveC ′/Q`

given by the equation

y2 = f ′6x
6 + f ′5x

5 + f ′4x
4 + f ′3x

3 + f ′2x
2 + f ′1x+ f ′0

with f ′0, . . . , f
′
6 ∈ Z` and satisfying fi − f ′i ∈ (`4). Then if the formal group law attached to the

Jacobian of C satisfies Hypothesis 3.2 with α = 1
`2−1

, so does the formal group law attached to the
Jacobian of C ′.

The rest of the section is devoted to proving this result. Fix a genus 2 curve C/Q`, given by a
hyperelliptic equation

y2 = f6x
6 + f5x

5 + f4x
4 + f3x

3 + f2x
2 + f1x+ f0,

where f0, . . . , f6 ∈ Z`, and consider the genus 2 curve C ′/Q` given by the equation

y2 = f ′6x
6 + f ′5x

5 + f ′4x
4 + f ′3x

3 + f ′2x
2 + f ′1x+ f ′0

with f ′0, . . . , f
′
6 ∈ Z`.

Denote by F = (F1, F2) (resp. F′ = (F ′1, F
′
2)) the formal group law attached to C (resp. C ′). It

can be proven that the coefficients of Fi (resp. F ′i ) lie in Z`[f0, . . . , f6] (resp. Z`[f ′0, . . . , f
′
6]), i = 1, 2.

Therefore, if we assume that, for all i = 0, . . . , 6, fi − f ′i ∈ (`s), then the difference

Fi(s1, s2, t1, t2)− F ′i (s1, s2, t1, t2)

has coefficients in (`s). Hence we may drop the curves and work in the formal group setting, since all
we have to determine is the exponent s which preserves Hypothesis 3.2.

Denote by Q` an algebraic closure of Q`, and m ⊂ Q` the set of elements with positive valuation.
If the coefficients of the power series [`]1(Z1, Z2), [`]2(Z1, Z2) are close (with respect to the `-adic
valuation) to the coefficients of the series [`]′1(Z1, Z2), [`]′2(Z1, Z2), does this imply that the solutions
of the system of equations [`]1(Z1, Z2) = [`]2(Z1, Z2) = 0 are close to the solutions of the system of
equations [`]′1(Z1, Z2) = [`]′2(Z1, Z2) = 0?

A precise answer to this question can be found in [7], Chapter III, §4, n◦ 5. The reasoning is
carried out in the context of restricted formal power series, but it can be adapted to this setting.
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Namely, let A be a commutative ring, and fix an ideal m of A. Assume that A is separated and
complete with respect to the m-adic topology. As usual, we will denote the tuples of elements in
boldface.

Consider a system of n power series in n variables,

f = (f1, . . . , fn), fi ∈ A[[X1, . . . , Xn]].

We will denote by Jf the determinant of the Jacobian matrix, that is to say,

Jf = det


∂f1
∂X1

· · · ∂f1
∂Xn

· · · · · · · · ·
∂fn
∂X1

· · · ∂fn
∂Xn


By m×n we shall mean the Cartesian product of m with itself n times. We will say that two

n-tuples a and b are congruent modulo an ideal I of A if they are so coordinatewise, that is to say,
ai − bi ∈ I for i = 1, . . . , n. We will apply the following result (cf. Corollary 1 in [7], Chapter III,
§4, n◦ 5).

Corollary 6.2. Let f = (f1, . . . , fn) be a tuple of elements in A[[X1, . . . , Xn]], and let a ∈ m×n.
Call e = Jf (a). If f(a) ≡ 0 (mod e2m), then there exists b ∈ m×n such that f(b) = 0 and b ≡ a

(mod em). Furthermore, assume that there exists another tuple b′ ∈ m×n such that f(b′) = 0 and
b′ ≡ a (mod em). Then, if A has no zero divisors, b = b′.

Let us go back now to our approximation problem. We have two formal group laws F,F′, defined
over Z`. We consider the two systems of equations[`]1(Z1, Z2) = 0,

[`]2(Z1, Z2) = 0
and

[`]′1(Z1, Z2) = 0,

[`]′2(Z1, Z2) = 0
(6.6)

where we know that for i = 1, 2, it holds that

[`]i(Z1, Z2)− [`]′i(Z1, Z2) ∈ `s · Z`[[Z1, Z2]].

Furthermore, since the systems of Eqs. (6.6) describe the `-torsion points of the Jacobians of
curves of genus 2, the set of solutions in m×2 is finite. We may thus consider a finite extension
K ⊃ Q` that contains all the coordinates of all the solutions of the systems in (6.6). Let us denote by
OK the ring of integers ofK and by m its maximal ideal. It is clear thatOK is separated and complete
with respect to the m-adic topology.

Let us call V ′ the set of pairs (x′, y′) ∈ m × m such that [`]′1(x′, y′) = [`]′2(x′, y′) = 0. Our first
claim is the following:

Lemma 6.3. For all (x′, y′) ∈ V ′, [`]1(x′, y′), [`]2(x′, y′) ∈ `sm.
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Proof. Since [`]′1(x′, y′) = 0, we can write

[`]1
(
x′, y′

)
= [`]1

(
x′, y′

)
− [`]′1

(
x′, y′

)
.

Furthermore, let us express

[`]1(x, y) =
∑
ij

aijx
iyj and [`]′1(x, y) =

∑
ij

a′ijx
iyj .

Hence [`]1(x′, y′) =
∑

ij(aij − a′ij)x′
iy′j . We know that aij − a′ij ∈ (`s), and x′, y′ ∈ m, and also

that [`]1(x, y) is a power series without constant term; thus it follows that [`]1(x′, y′) ∈ `sm. A similar
reasoning shows that [`]2(x′, y′) ∈ `sm.

In order to apply Corollary 6.2 to the system of equations [`]1(Z1, Z2) = [`]2(Z1, Z2) = 0, we

need to compute the determinant of the Jacobian matrix e = det

(
` 0

0 `

)
= `2. This suggests that

we should choose s = 4.

Proof of Theorem 6.1. Take (x′, y′) ∈ m×2 satisfying the equations

[`]′1
(
x′, y′

)
= [`]′2

(
x′, y′

)
= 0.

We know that [`]1(x′, y′), [`]2(x′, y′) ∈ `4 · m. Hence there exists a unique (x, y) ∈ m×2 such that
[`]1(x, y) = [`]2(x, y) = 0 and furthermorex′ ≡ x (mod `2m),

y′ ≡ y (mod `2m).

In particular, the two conditions v(x′ − x) ≥ 2, v(y′ − y) ≥ 2 are satisfied.
But (x, y) is a point of `-torsion of the Jacobian of C, and therefore we know that

min{v(x), v(y)} = α =
1

`2 − 1
.

But if v(x) = α and v(x′ − x) ≥ 2 > α, then it follows that v(x′) = α. And similarly, if
v(y) = α, then v(y′) = α. Also if v(x) > α, it cannot happen that v(x′) < α (and the same applies
to y, y′). We may conclude that min{v(x′), v(y′)} = α.

Gathering together Theorems 5.9 and 6.1 we obtain, for each prime ` > 3, a large family of
abelian surfaces such that the action of the wild inertia group upon their `-torsion points is trivial.

Theorem 6.4. Let ` > 3 be a prime number. Let a ∈ F` be such that x2 − x + a divides the
Deuring polynomial H`(x), and lift it to a ∈ Z`. Let f0, f1, . . . , f6 ∈ Z` satisfy that f6 − f0,
f5 − f1, f4 − f2 ∈ (`4) and furthermore f6 − 1, f5, f4 − (1 − a)/a, f3 ∈ (`). Then the equation
y2 = f6x

6 + f5x
5 + f4x

4 + f3x
3 + f2x

2 + f1x+ f0 ∈ Z`[x] defines a genus 2 curve C such that the
Galois extension Q`(J(C))/Q` is tamely ramified.
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