

A Maximum-Entropy Meshfree Method for the Reissner-Mindlin Plate Problem based on a Stabilised Mixed Weak Form

J.S. Hale*, P.M. Baiz

27th March 2012

Aim of the research project

Develop a meshless method for the simulation of Reissner-Mindlin plates that is free of shear locking.

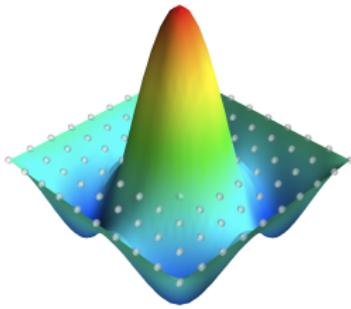


Figure: 6th free vibration mode of SSSS plate

- ▶ Reduced Integration (Many authors)

- ▶ Reduced Integration (Many authors)
- ▶ Assumed Natural Strains (ANS) (eg. MITC elements, Bathe)

- ▶ Reduced Integration (Many authors)
- ▶ Assumed Natural Strains (ANS) (eg. MITC elements, Bathe)
- ▶ Enhanced Assumed Strains (EAS) (Hughes, Simo etc.)

- ▶ Reduced Integration (Many authors)
- ▶ Assumed Natural Strains (ANS) (eg. MITC elements, Bathe)
- ▶ Enhanced Assumed Strains (EAS) (Hughes, Simo etc.)
- ▶ Discrete Shear Gap Method (DSG) (Bletzinger, Bischoff, Ramm)

- ▶ Reduced Integration (Many authors)
- ▶ Assumed Natural Strains (ANS) (eg. MITC elements, Bathe)
- ▶ Enhanced Assumed Strains (EAS) (Hughes, Simo etc.)
- ▶ Discrete Shear Gap Method (DSG) (Bletzinger, Bischoff, Ramm)
- ▶ Smoothed Conforming Nodal Integration (SCNI) (Wang and Chen)

- ▶ Reduced Integration (Many authors)
- ▶ Assumed Natural Strains (ANS) (eg. MITC elements, Bathe)
- ▶ Enhanced Assumed Strains (EAS) (Hughes, Simo etc.)
- ▶ Discrete Shear Gap Method (DSG) (Bletzinger, Bischoff, Ramm)
- ▶ Smoothed Conforming Nodal Integration (SCNI) (Wang and Chen)
- ▶ Matching Fields Method (Donning and Liu)

- ▶ Reduced Integration (Many authors)
- ▶ Assumed Natural Strains (ANS) (eg. MITC elements, Bathe)
- ▶ Enhanced Assumed Strains (EAS) (Hughes, Simo etc.)
- ▶ Discrete Shear Gap Method (DSG) (Bletzinger, Bischoff, Ramm)
- ▶ Smoothed Conforming Nodal Integration (SCNI) (Wang and Chen)
- ▶ Matching Fields Method (Donning and Liu)

Many of these methods have been designed using (or shown to be equivalent to) a mixed weak form.

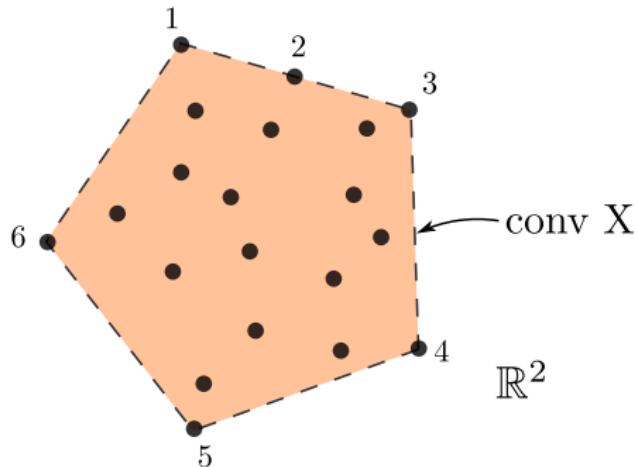
With respect to the more complex Naghdi shell problem, stabilised mixed weak forms have been shown to be particularly useful (Bathe, Arnold, Lovadina etc.).

Weak Form

Design is based upon on a *Stabilised Mixed Weak Form*, like many successful approaches in the Finite Element literature.

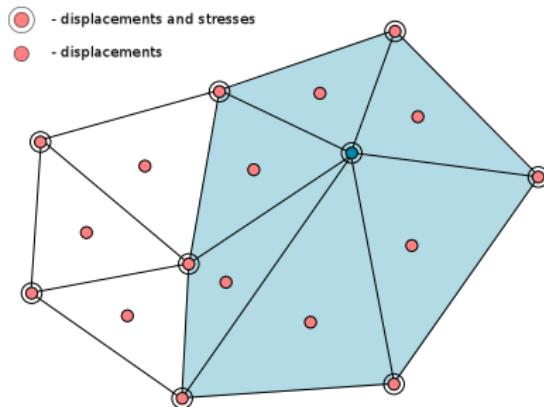
Basis Functions

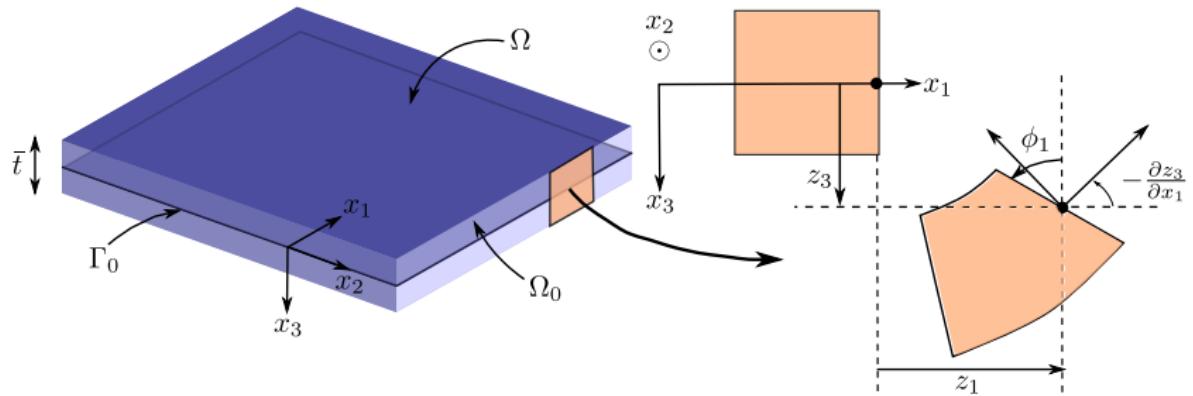
Uses (but is not limited to!) *Maximum-Entropy Basis Functions* which have a weak Kronecker-delta property. On convex node sets boundary conditions can be imposed *directly*.



Localised Projection Operator

Shear Stresses are *eliminated* on the 'patch' level using a localised projection operator which leaves a final system of equations in the *displacement unknowns only*.





Displacement Weak Form

Find $(z_3, \theta) \in (\mathcal{V}_3 \times \mathcal{R})$ such that for all $(y_3, \eta) \in (\mathcal{V}_3 \times \mathcal{R})$:

$$\begin{aligned} \int_{\Omega_0} L\epsilon(\theta) : \epsilon(\eta) \, d\Omega + \lambda \bar{t}^{-2} \int_{\Omega_0} (\nabla z_3 - \theta) \cdot (\nabla y_3 - \eta) \, d\Omega \\ = \int_{\Omega_0} g y_3 \, d\Omega \end{aligned} \tag{1}$$

or:

$$a_b(\theta; \eta) + \lambda \bar{t}^{-2} a_s(\theta, z_3; \eta, y_3) = f(y_3) \tag{2}$$

Displacement Weak Form

Find $(z_3, \theta) \in (\mathcal{V}_3 \times \mathcal{R})$ such that for all $(y_3, \eta) \in (\mathcal{V}_3 \times \mathcal{R})$:

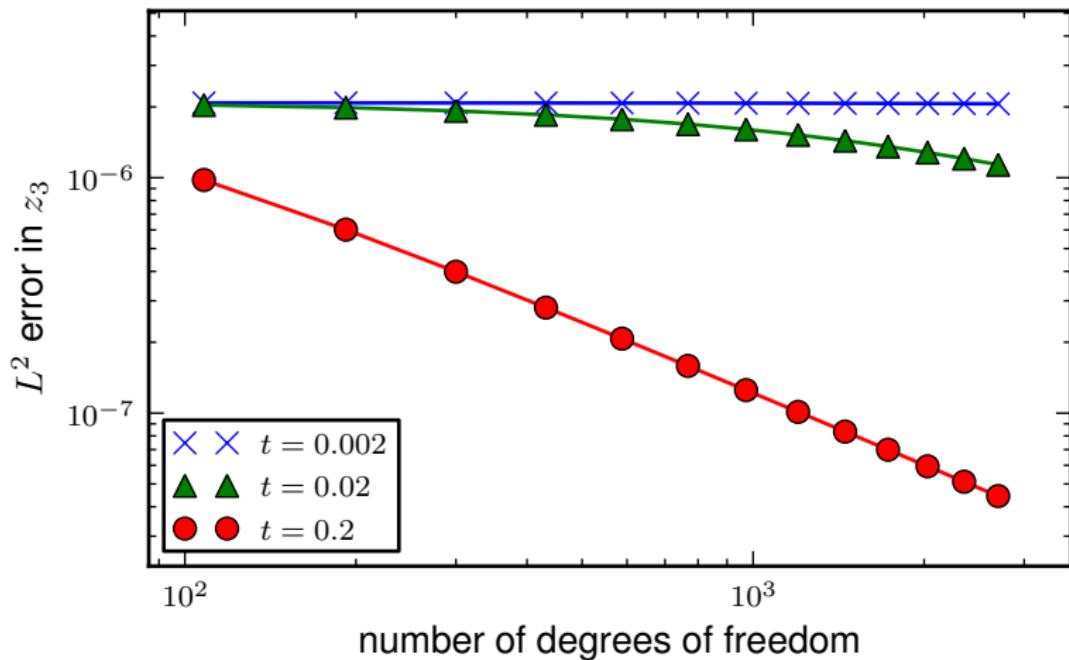
$$\int_{\Omega_0} L\epsilon(\theta) : \epsilon(\eta) \, d\Omega + \lambda \bar{t}^{-2} \int_{\Omega_0} (\nabla z_3 - \theta) \cdot (\nabla y_3 - \eta) \, d\Omega = \int_{\Omega_0} g y_3 \, d\Omega \quad (1)$$

or:

$$a_b(\theta; \eta) + \lambda \bar{t}^{-2} a_s(\theta, z_3; \eta, y_3) = f(y_3) \quad (2)$$

Locking Problem

Whilst this problem is always stable, it is poorly behaved in the thin-plate limit $\bar{t} \rightarrow 0$



Treat the shear stresses as an *independent* variational quantity:

$$\gamma = \lambda \bar{t}^{-2} (\nabla z_3 - \theta) \in \mathcal{S} \quad (3)$$

Mixed Weak Form

Find $(z_3, \theta, \gamma) \in (\mathcal{V}_3 \times \mathcal{R} \times \mathcal{S})$ such that for all $(y_3, \eta, \psi) \in (\mathcal{V}_3 \times \mathcal{R} \times \mathcal{S})$:

$$a_b(\theta; \eta) + (\gamma; \nabla y_3 - \eta)_{L^2} = f(y_3) \quad (4a)$$

$$(\nabla z_3 - \theta; \psi)_{L^2} - \frac{\bar{t}^2}{\lambda} (\gamma; \psi)_{L^2} = 0 \quad (4b)$$

Treat the shear stresses as an *independent* variational quantity:

$$\gamma = \lambda \bar{t}^{-2} (\nabla z_3 - \theta) \in \mathcal{S} \quad (3)$$

Mixed Weak Form

Find $(z_3, \theta, \gamma) \in (\mathcal{V}_3 \times \mathcal{R} \times \mathcal{S})$ such that for all $(y_3, \eta, \psi) \in (\mathcal{V}_3 \times \mathcal{R} \times \mathcal{S})$:

$$a_b(\theta; \eta) + (\gamma; \nabla y_3 - \eta)_{L^2} = f(y_3) \quad (4a)$$

$$(\nabla z_3 - \theta; \psi)_{L^2} - \frac{\bar{t}^2}{\lambda} (\gamma; \psi)_{L^2} = 0 \quad (4b)$$

Stability Problem

Whilst this problem is well-posed in the thin-plate limit, ensuring stability is no longer straightforward

Displacement Formulation

Locking as $\bar{t} \rightarrow 0$

Mixed Formulation

Not necessarily stable

Displacement Formulation

Locking as $\bar{t} \rightarrow 0$

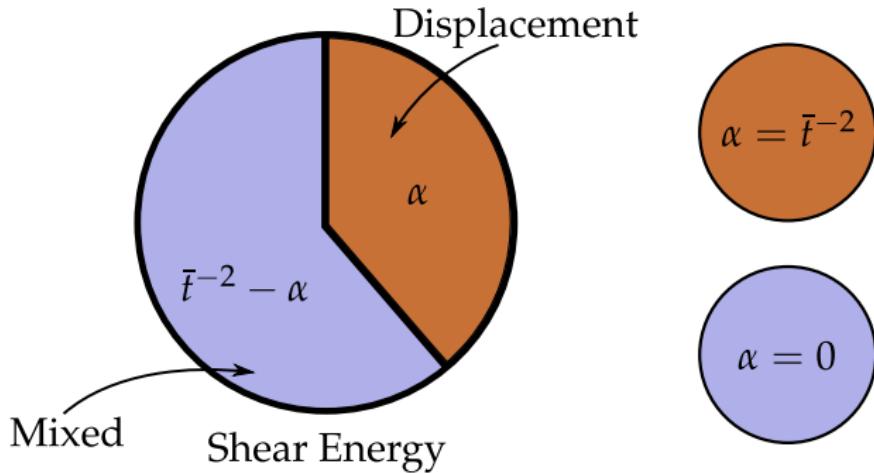
Mixed Formulation

Not necessarily stable

Solution

Combine the displacement and mixed formulation to retain the advantageous properties of both

Split the discrete shear term with a parameter $0 < \alpha < \bar{t}^{-2}$ that is *independent of the plate thickness*:



$$a_s = \alpha a^{\text{displacement}} + (\bar{t}^{-2} - \alpha) a^{\text{mixed}} \quad (5)$$

Mixed Weak Form

Find $(z_3, \theta, \gamma) \in (\mathcal{V}_3 \times \mathcal{R} \times \mathcal{S})$ such that for all $(y_3, \eta, \psi) \in (\mathcal{V}_3 \times \mathcal{R} \times \mathcal{S})$:

$$a_b(\theta; \eta) + (\gamma; \nabla y_3 - \eta)_{L^2} = f(y_3) \quad (6a)$$

$$(\nabla z_3 - \theta; \psi)_{L^2} - \frac{\bar{t}^2}{\lambda} (\gamma; \psi)_{L^2} = 0 \quad (6b)$$

Stabilised Mixed Weak Form (Brezzi and Arnold 1993, Boffi and Lovadina 1997)

$$a_b(\theta; \eta) + \lambda \alpha a_s(\theta, z_3; \eta, y_3) + (\gamma, \nabla y_3 - \eta)_{L^2} = f(y_3) \quad (7a)$$

$$(\nabla z_3 - \theta, \psi)_{L^2} - \frac{\bar{t}^2}{\lambda(1 - \alpha \bar{t}^2)} (\gamma; \psi)_{L^2} = 0 \quad (7b)$$

Mixed Weak Form

Find $(z_3, \theta, \gamma) \in (\mathcal{V}_3 \times \mathcal{R} \times \mathcal{S})$ such that for all $(y_3, \eta, \psi) \in (\mathcal{V}_3 \times \mathcal{R} \times \mathcal{S})$:

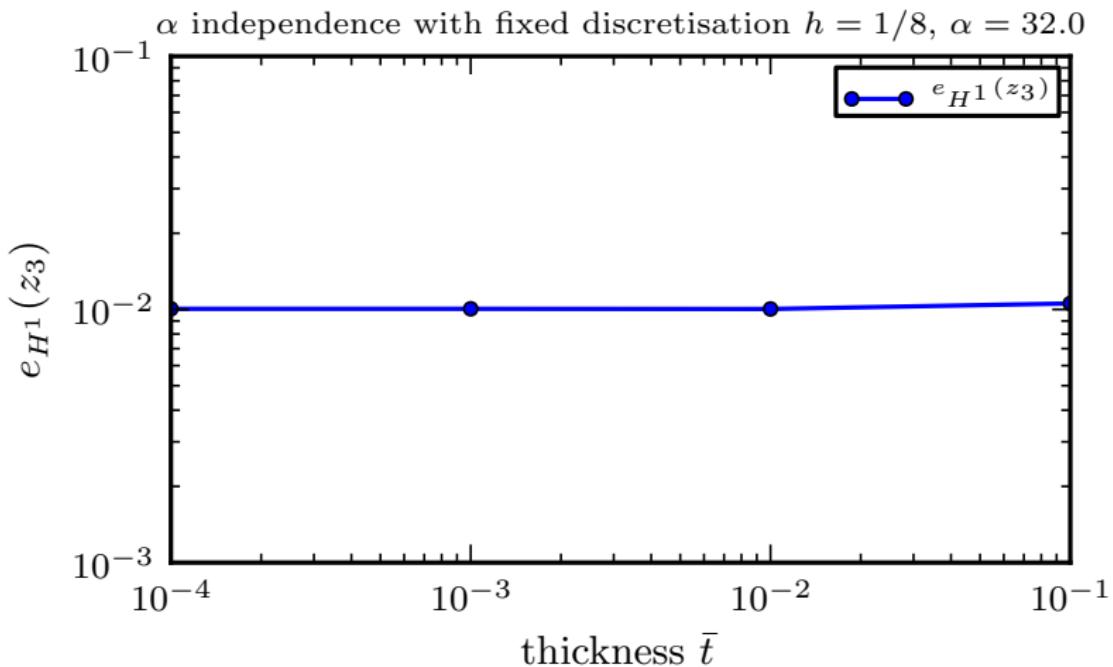
$$a_b(\theta; \eta) + (\gamma; \nabla y_3 - \eta)_{L^2} = f(y_3) \quad (6a)$$

$$(\nabla z_3 - \theta; \psi)_{L^2} - \frac{\bar{t}^2}{\lambda} (\gamma; \psi)_{L^2} = 0 \quad (6b)$$

Stabilised Mixed Weak Form (Brezzi and Arnold 1993, Boffi and Lovadina 1997)

$$a_b(\theta; \eta) + \lambda \alpha a_s(\theta, z_3; \eta, y_3) + (\gamma, \nabla y_3 - \eta)_{L^2} = f(y_3) \quad (7a)$$

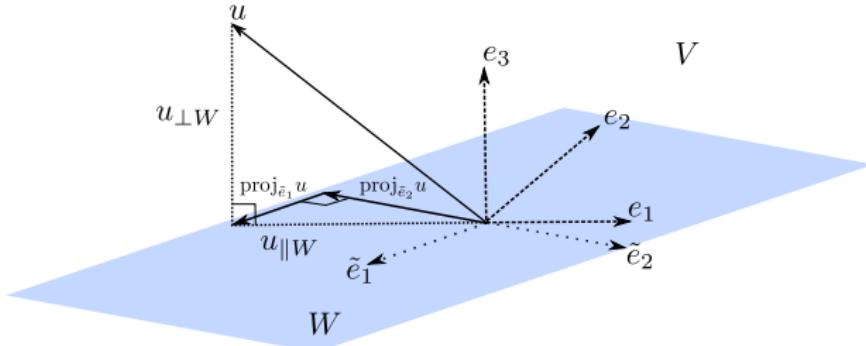
$$(\nabla z_3 - \theta, \psi)_{L^2} - \frac{\bar{t}^2}{\lambda(1 - \alpha \bar{t}^2)} (\gamma; \psi)_{L^2} = 0 \quad (7b)$$



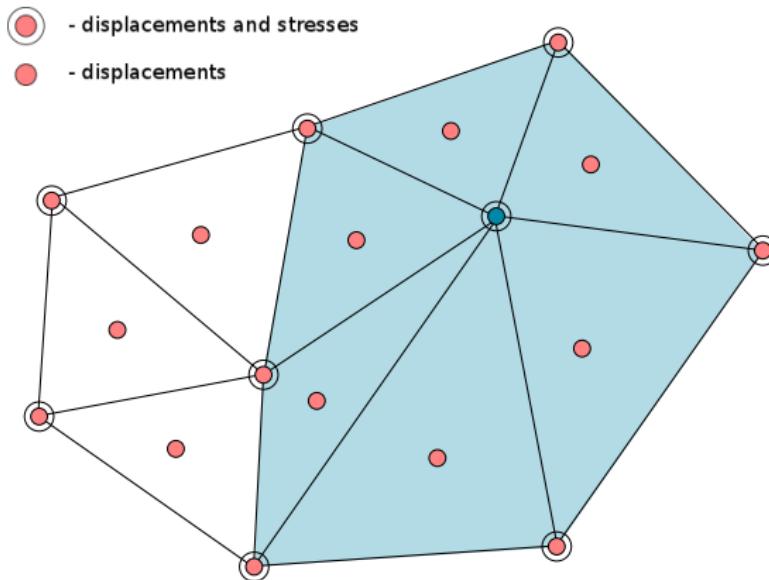
- ▶ Find a (cheap) way of eliminating the extra unknowns associated with the shear-stress variables

$$\gamma_h = \frac{\lambda(1 - \alpha \bar{t}^2)}{\bar{t}^2} \Pi_h(\nabla z_{3h} - \theta_h, \psi_h) \quad (8)$$

Figure: The Projection Π_h represents a softening of the energy associated with the shear term



- ▶ We use a version of a technique proposed by Ortiz, Puso and Sukumar for the Incompressible-Elasticity/Stokes' flow problem which they call the “Volume-Averaged Nodal Pressure” technique.
- ▶ A more general name might be the “Local Patch Projection” technique.

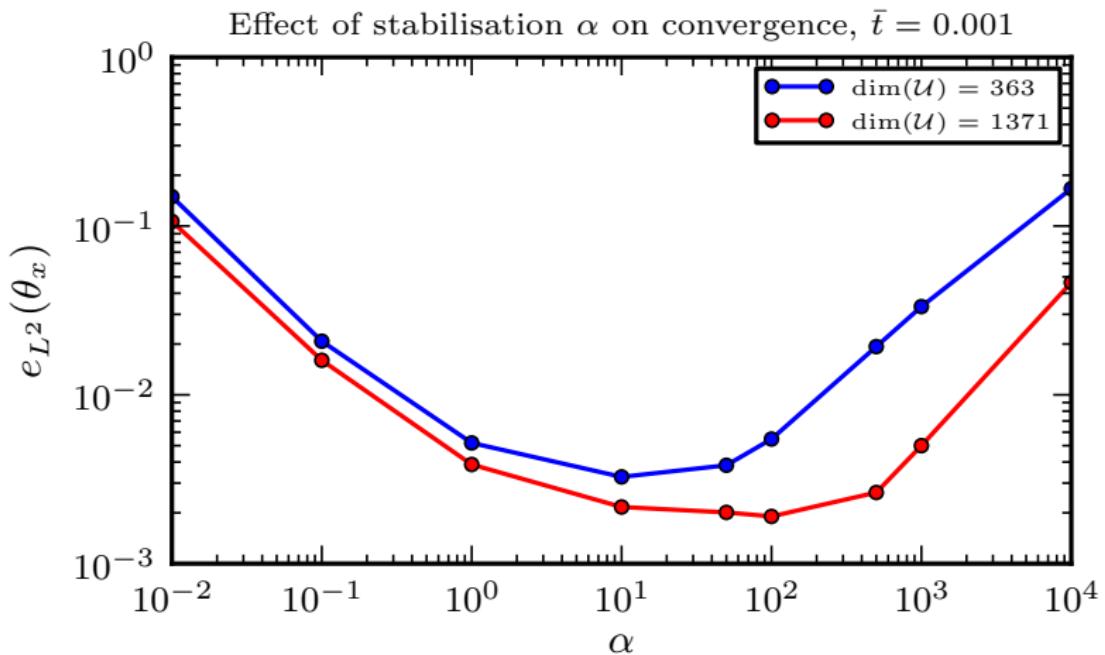


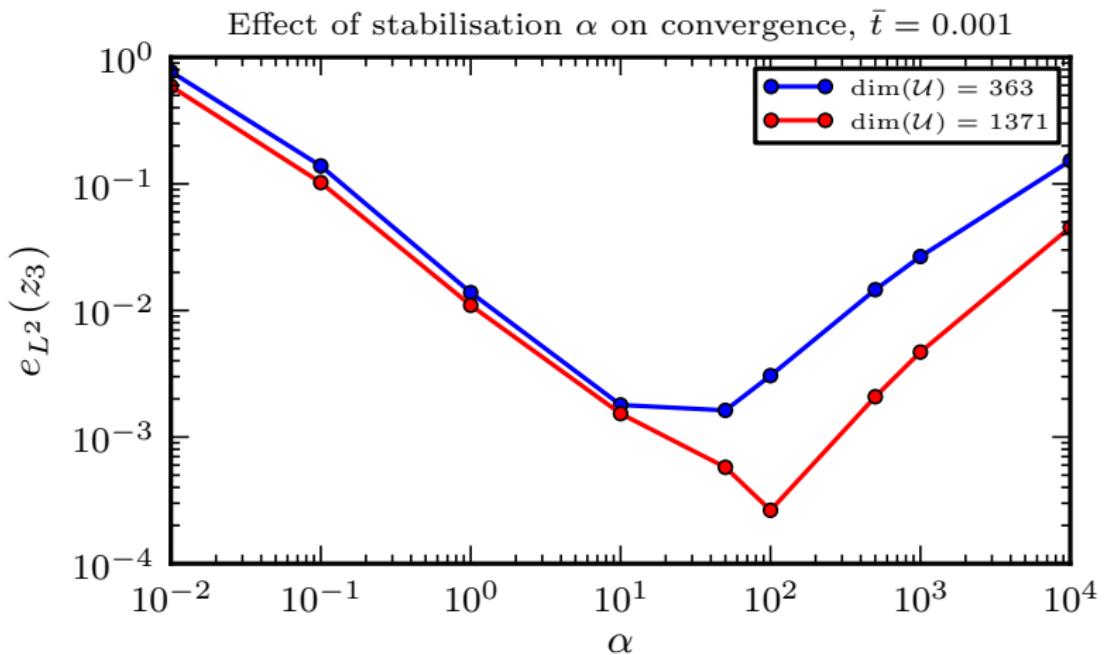
For one component of shear (for simplicity):

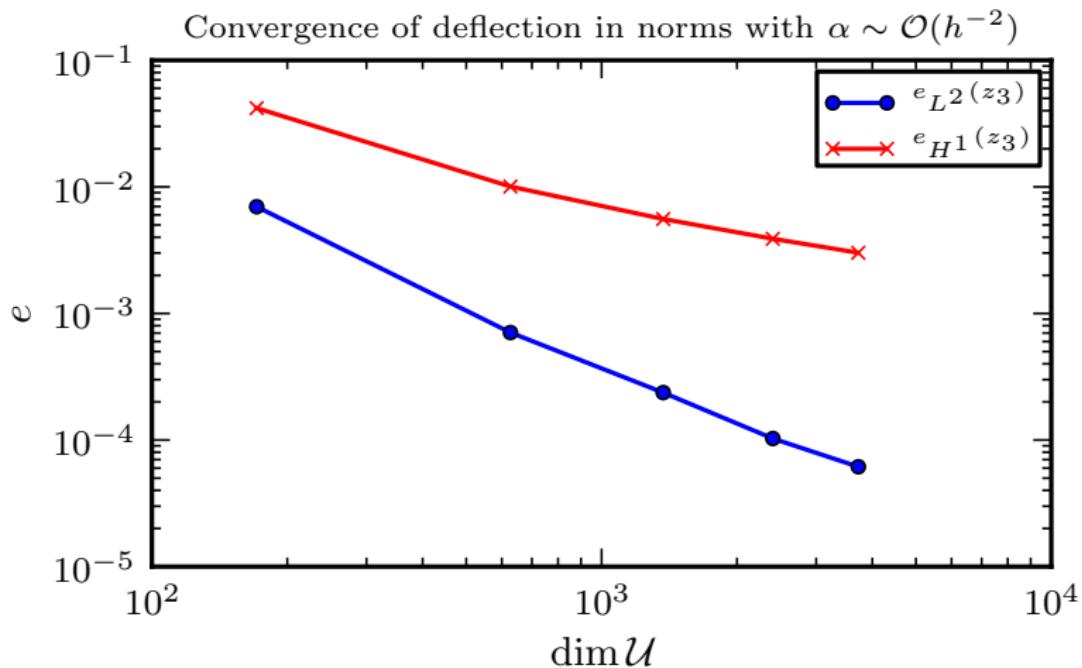
$$(z_{3,x} - \theta_1, \psi_{13})_{L^2} - \frac{\bar{t}^2}{\lambda(1 - \alpha\bar{t}^2)} (\gamma_{13}; \psi_{13})_{L^2} = 0 \quad (9)$$

Substitute in meshfree and FE basis, perform row-sum (mass-lumping) and rearrange to give nodal shear unknown for a node a . Integration is performed over local domain Ω_a :

$$\gamma_{13a} = \sum_{i=1}^N \frac{\int_{\Omega_a} N_a \{-\phi_i \quad \phi_{i,x}\} \ d\Omega}{\int_{\Omega_a} N_a \ d\Omega} \begin{Bmatrix} \phi_i \\ z_{3i} \end{Bmatrix} \quad (10)$$







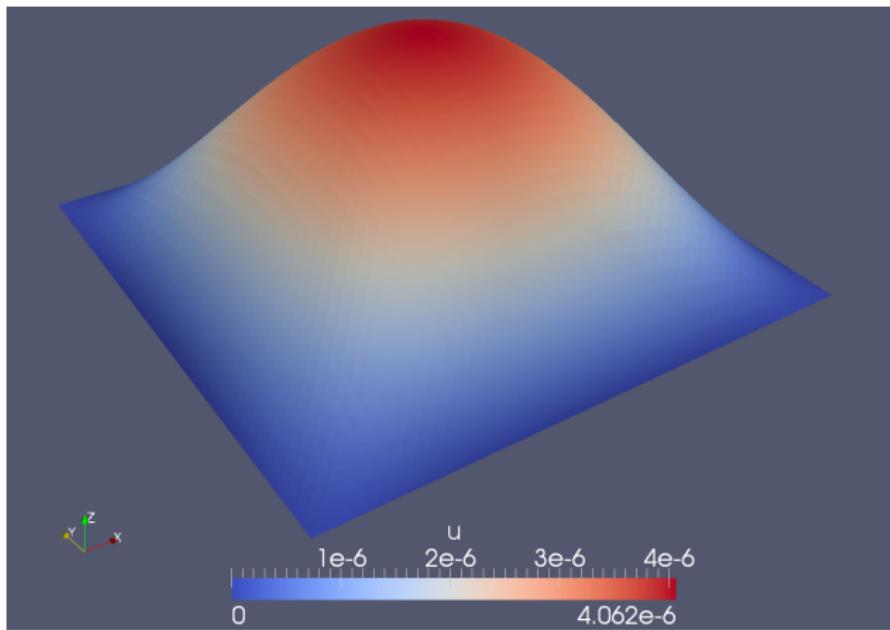


Figure: Displacement z_{3h} of SSSS plate on 12×12 node field + 'bubbles', $t = 10^{-4}$, $\alpha = 120$

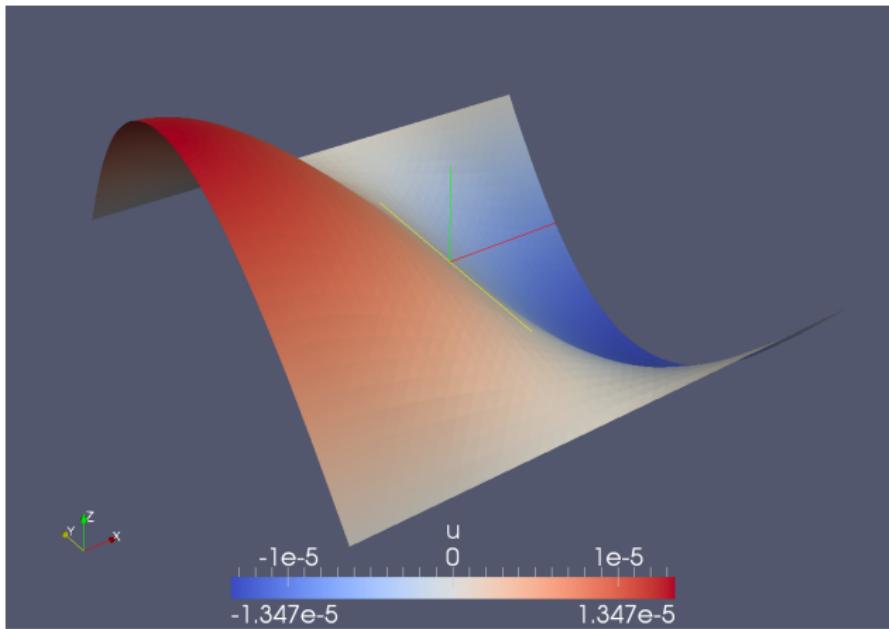


Figure: Rotation component θ_1 of SSSS plate on 12×12 node field + 'bubbles', $t = 10^{-4}$, $\alpha = 120$

A method:

- ▶ using (but not limited to) Maximum-Entropy basis functions for the Reissner-Mindlin plate problem that is *free of shear-locking*

A method:

- ▶ using (but not limited to) Maximum-Entropy basis functions for the Reissner-Mindlin plate problem that is *free of shear-locking*
- ▶ based on a stabilised mixed weak form

A method:

- ▶ using (but not limited to) Maximum-Entropy basis functions for the Reissner-Mindlin plate problem that is *free of shear-locking*
- ▶ based on a stabilised mixed weak form
- ▶ where secondary stress are eliminated from the system of equations *a priori* using “Local Patch Projection” technique

A method:

- ▶ using (but not limited to) Maximum-Entropy basis functions for the Reissner-Mindlin plate problem that is *free of shear-locking*
- ▶ based on a stabilised mixed weak form
- ▶ where secondary stress are eliminated from the system of equations *a priori* using “Local Patch Projection” technique

Possible future work:

- ▶ Investigate the choice of the parameter α . Robust choices exist in the FE literature.

A method:

- ▶ using (but not limited to) Maximum-Entropy basis functions for the Reissner-Mindlin plate problem that is *free of shear-locking*
- ▶ based on a stabilised mixed weak form
- ▶ where secondary stress are eliminated from the system of equations *a priori* using “Local Patch Projection” technique

Possible future work:

- ▶ Investigate the choice of the parameter α . Robust choices exist in the FE literature.
- ▶ Examine results using other meshless basis functions (MLS, RPIM)

A method:

- ▶ using (but not limited to) Maximum-Entropy basis functions for the Reissner-Mindlin plate problem that is *free of shear-locking*
- ▶ based on a stabilised mixed weak form
- ▶ where secondary stress are eliminated from the system of equations *a priori* using “Local Patch Projection” technique

Possible future work:

- ▶ Investigate the choice of the parameter α . Robust choices exist in the FE literature.
- ▶ Examine results using other meshless basis functions (MLS, RPIM)
- ▶ Extension to Naghdi Shell model

A method:

- ▶ using (but not limited to) Maximum-Entropy basis functions for the Reissner-Mindlin plate problem that is *free of shear-locking*
- ▶ based on a stabilised mixed weak form
- ▶ where secondary stress are eliminated from the system of equations *a priori* using “Local Patch Projection” technique

Possible future work:

- ▶ Investigate the choice of the parameter α . Robust choices exist in the FE literature.
- ▶ Examine results using other meshless basis functions (MLS, RPIM)
- ▶ Extension to Naghdi Shell model
- ▶ Investigate locking-free PUM enriched methods

Thanks for listening.

Theorem (LBB Stability)

The discretised mixed problem is uniquely solvable if there exists two positive constants α_h and β_h such that:

$$a_b(\eta_h; \eta_h) \geq \alpha_h \|\eta_h\|_{\mathcal{R}_h}^2 \quad \forall \eta_h \in \mathcal{K}_h \quad (11a)$$

$$\inf_{\psi_h \in \mathcal{S}_h} \sup_{(\eta_h, y_{3h}) \in (\mathcal{R}_h \times \mathcal{V}_{3h})} \frac{((\nabla y_{3h} - \eta_h), \psi_h)_{L^2}}{(\|\eta_h\|_{\mathcal{R}_h} + \|y_{3h}\|_{\mathcal{V}_{3h}}) \|\psi_h\|_{\mathcal{S}'_h}} \geq \beta_h \quad (11b)$$

The Problem

- ▶ To satisfy the second condition 11b make displacement spaces $\mathcal{R}_h \times \mathcal{V}_{3h}$ 'rich' with respect to the shear space \mathcal{S}_h
- ▶ If $\mathcal{R}_h \times \mathcal{V}_{3h}$ is too 'rich' then the first condition 11a may fail as \mathcal{K}_h grows.
- ▶ *Balancing these two competing requirements makes the design of a stable formulation difficult.*