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ABSTRACT 

Meshless methods, such as the Element Free Galerkin (EFG) method [1], hold various advantages over 
mesh-based techniques such as robustness in large-deformation problems and high continuity. The 
Reissner-Mindlin plate model is a particularly popular choice for simulating both thin and moderately 
thick structures. 

It is well known in the Finite Element and Meshless literature that the simplest numerical treatments of 
the Reissner-Mindlin model lead to shear-locking which in turn produces erroneous results. This is due to 
the inability of the approximation functions to satisfy the Kirchhoff constraint in the thin-plate limit [2]. 

A recent advance in the area of meshless approximation schemes are Maximum-Entropy (MaxEnt) 
approximants [3]. MaxEnt schemes provide a weak Kronecker-delta property on convex node sets which 
allows the direct imposition of Dirichlet (essential) boundary conditions. 

In this work, we derive a shear-locking free meshless method using MaxEnt approximants by considering 
a mixed weak form. We use a combination of MaxEnt approximants for the displacement variables and 
rotated Raviart-Thomas-Nedelec elements for the shear strain variables. This results in a saddle-point 
system which enforces the Kirchhoff constraint in the thin-plate limit. We show the performance of the 
method for a variety of test problems.  

1   REISSNER-MINDLIN PROBLEM 
We begin by recalling the Reissner-Mindlin plate problem (Fig 1.) in a normalised weak form: Find the 
transverse displacements and rotations of the fibres normal to the midplane  (z3,θ )∈V3 ×R such that for 
all test functions  (y3,θ )∈V3 ×R  : 

 
 

L
Ω0
∫ (θ ) :(η) dΩ+ λ t −2 (∇z3 −θ )Ω0

∫ ⋅(∇y3 −η) dΩ = g
Ω0
∫ y3 dΩ  (1) 

where the operators L  and    are defined as: 

 
 
(v) = 1

2
(∇v)+ (∇v)T( ) L[]≡ D (1−ν ) +ν tr()I[ ]  (2) 

ν  is Poisson’s ratio, t is the plate thickness normalised with respect to in-plane dimension L , g  is a 

loading constant, I  is the identity tensor, tr is the trace operator, D = E /12(1−ν 2 )  is the bending 
modulus, λ = Eκ / 2(1+ν ) is the shear modulus and κ = 5 / 6 is a shear correction factor. We can write 
the above formulation as a combination of bilinear and linear forms as [2]: 

 a(z3,θ;y3,η) = ab (θ;η)+ t
−2as (z3,θ;y3,η) = (g, y3)  (3) 



 

The above variational formulation can be discretised using any appropriate PUM in the standard manner 
by constructing finite dimensional subspaces  V3h ⊂ V3  and Rh ⊂ R .  
It is well known that naive discretisations of the displacement formulation will result in shear locking. 
This locking phenomenon can be viewed as the inability of the numerical spaces to reproduce the 
Kirchhoff, or thin-plate limit as the thickness t → 0  [2]. 
A remedy for this problem is to reformulate the original displacement problem in a mixed form where the 
transverse shear strain is treated as an independent unknown in the variational problem. The mixed 
formulation is derived by introducing the scaled shear stress [2]: 

  γ = λ t −2 (∇z3 −θ )∈S  (4) 

into (1) and forming the weak form of equation (4) using test functions  ψ ∈S  results in the following 
mixed variational problem: Find the transverse deflection, rotations and transverse shear stresses 

   (z3,θ ,γ )∈(V3,R,S)  such that for all    ( y3,η,ψ )∈(V3,R,S) [2]: 

 

 

L
Ω0
∫ (θ ) :(η) dΩ+ γ

Ω0
∫ ⋅(∇y3 −η) dΩ = g

Ω0
∫ y3 dΩ

(∇z3 −θ )Ω0
∫ ⋅ψ dΩ− t

2

λ
γ

Ω0
∫ ⋅ψ dΩ = 0

 (5) 

 

3   MAXIMUM ENTROPY BASIS FUNCTIONS 

In this work we use Maximum Entropy basis functions to discretise the generalised displacement fields θ  
and   z3 . Maximum Entropy (MaxEnt) basis functions are one of the most recent developments in the 
construction of meshless approximation schemes [3]. A brief overview of their mathematical formulation 
and properties is given here. 

 
Fig. 2: Node set  and its convex hull . Nodes  on extreme vertices 

have the Kronecker delta property and node  has a ‘weak’ Kronecker delta property. 

Fig 1. The Reissner-Mindlin Plate problem 



 

 

Consider a set of  n  nodes  X . Each node  i  has a position   xi ∈
d  associated with it. The convex hull of 

the set of nodes  X  is denoted   D ≡ conv( X ) , see Fig 2. For a function    u(x) : D →  , the numerical 

approximation   u
h(x)  can be written in terms of a set of shape functions    φi : D →   and values  ui  at the 

nodes  X  [3]: 

 uh (x) = φi
i=1

n

∑ (x)ui  (6) 

Typically we wish the shape functions to satisfy the well known partition of unity condition as well as 
first order consistency: 

 ∀x ∈D, φi
i=1

N

∑ (x) = 1 φi
i=1

N

∑ (x)xi = xi  (7) 

These two conditions alone are not enough to specify a unique approximation scheme. To this end, 
Shannon's concept of informational entropy is introduced. The Shannon entropy   S( p)  of a discrete 

probability distribution with  n  events  xi  with probabilities  pi  is [3]: 

 S(p) = − pi
i=1

n

∑ ln pi  (8) 

The principle of maximum entropy was proposed by Jaynes. It states that given a set of testable 
information about a probability distribution, the least statistically biased distribution is the one that 
maximises Shannon's measure of informational entropy whilst still satisfying the constraints imposed by 
the testable information. The maximum entropy principle can be directly applied to the problem of 
producing a unique approximation scheme by viewing the shape functions φ  as being directly analogous 

to a discrete probability distribution. In the words of Sukumar [4], ``the basis function value   φi(x)  is 

viewed as being the probability of influence of a node  Xi  at a point  x '': 

 p→φ  (9) 

This analogy between shape functions and probabilities naturally implies that the shape functions are 
always positive: 

 φi (x) ≥ 0 ∀x ∈D,i = 1,…,n  (10) 

Therefore we can find a unique set of shape functions by maximising the entropy   S(φ)  subject to the 
constraints outlined above [3]: 

 
 
max

φ∈+
d S(φ) = − φi

i=1

n

∑ lnφi
⎛
⎝⎜

⎞
⎠⎟

φi
i=1

n

∑ = 1 ∀ x ∈D φi
i=1

n

∑ xi = x ∀ x ∈D  (11) 

The objective function   −S(φ)  is strictly convex on    +
N  and the two constraints are affine, so the above 

problem can be solved using standard duality methods from the field of convex optimisation. 

The primary advantage of the MaxEnt scheme over the widely used MLS scheme is that it produces shape 
functions with a weak Kronecker-delta property [3]. This makes the imposition of Dirichlet boundary 
conditions trivial as in the Finite Element method without resorting to modified variational forms [3]. 



 

4   ROTATED RAVIART-THOMAS-NEDELEC ELEMENTS 

To discretise the shear strain field γ we use rotated Raviart-Thomas-Nedelec elements (sometimes 
referred to as edge elements). We make this choice as the shear strain field lies in the Sobelov space 

  H (rot,Ω)  which is the space of functions with square integrable  rot  [2]. We discretise the shear strains 

on a reference triangular element   K̂ as:  

 γ h ( x̂1, x̂2 ) = N i
i=1
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= Nγ γ ∀( x̂1, x̂2 ) ∈ K̂   (12) 

4   RESULTS 

 
Fig 3: Left: Normalised deflection of center point of SSSS plate for various methods. Right: Normalised deflection 

of center point of CCCC plate for various methods. 

In Fig. 3 we show some results for square geometry plates with uniform loading under simply supported 
and fully clamped boundary conditions using a variety of analytical and numerical solution techniques. 
We show the analytical Reissner Mindlin and Kirchhoff solutions for both problems. The correct 
behaviour of any numerical method based upon the Reissner assumptions should be to track the Reissner 
analytical solution before converging to the Kirchhoff solution in the thin plate limit. Typically 
displacement based numerical methods converge to zero in any displacement based formulation (ie. FE 2 
Displacement). We can clearly see that the proposed MaxEnt Mixed method correctly converges to the 
Kirchhoff solution in the thin plate limit for both sets of boundary conditions. 
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ẑ 3
(0

.5
,0

.5
)

MaxEnt Mixed

Reference Reissner-Mindlin

Analytical Kircho↵

FE 2 Mixed N = 10

FE 2 Mixed N = 15


