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Abstract 

In this paper, the flutter behaviour of functionally graded 
material plates immersed in a supersonic flow is studied. An 
enriched 4-noded quadrilateral element based on field 
consistency approach is used for this study. The crack is 
modelled independent of the underlying mesh using 
partition of unity method (PUM), the extended finite 
element method (XFEM). The material properties are 
assumed to be graded only in the thickness direction and the 
effective material properties are estimated using the rule of 
mixtures. The plate kinematics is described based on the first 
order shear deformation theory (FSDT) and the shear 
correction factors are evaluated employing the energy 
equivalence principle. The influence of the crack length, the 
crack orientation, the flow angle and the gradient index on 
the aerodynamic pressure and the frequency are numerically 
studied. The results obtained here reveal that the critical 
frequency and pressure decrease with increase in crack the 
length and are minimum when the crack is aligned to the 
flow angle. 
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Introduction 

The emergence of functionally graded materials 
(FGMs) that combine the best properties of its 
constituent materials (for example, ceramics and 
metals) is considered to be an alternative to certain 
class of aerospace structures exposed to high 
temperature environment. FGMs are characterized 
with a smooth transition from one material to another, 
thus circumventing high inter-laminar shear stresses 
and delamination problem that persists in laminated 
composites. With the increased use of these materials, 
it necessitates to study the dynamic characteristics of 
the structures made up of FGMS. 

Background 

It can be seen from the literature that the introduction 
of FGMs has attracted researchers to investigate the 
structural behaviour of such structures. Analytical 
solutions are proposed based on the three-dimensional 
solutions and second-order shear deformation theory. 
Different plate theories, viz., FSDT, second and other 
higher order accurate theory have been used to 
describe the plate kinematics. The static and dynamic 
fracture mechanics study of FGMs have been studied 
in the literature. Dolbow and Gosz employed the 
XFEM to compute mixed mode stress intensity factors. 
However, such analysis of plates is scarce in the 
literature. Huang et al., have analysed the vibration of 
side-cracked FGM thick plate analytically by 
employing Ritz procedure, whereas, Natarajan et al., 
examined the FGM plate with through center crack 
using the XFEM. Chau-Dinh et al., and Rabczuk et al., 
employed phantom node methods and meshfree 
methods with external enrichment to study the 
response of shells with arbitrary cracks. 

Since FGMs are seen as potential candidates for 
aircraft structural applications, it is important to 
understand the dynamic characteristics of structures 
made up of such materials when exposed to air flow. 
Prakash and Ganapathi studied the linear flutter 
characteristics of FGM panels exposed to supersonic 
flow. Haddadpour et al., and Sohn and Kim  
investigated the nonlinear aspects of flutter 
characteristics using the finite element method. It can 
be seen from the available literature that the work on 
flutter characteristics of FGM plates with cracks, to the 
author’s knowledge is not available. Earlier studies on 
flutter characteristics of cracked isotropic and 
composite panels employed finite element procedure. 
Although these numerical studies give insight into the 
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understanding of flutter behaviour, the method 
requires the mesh to conform to the geometry. This 
inherently limits the analyses to fixed calculation 
parameters. 

Approach 

In this paper, we apply the XFEM to model the crack 
independent of the underlying mesh and then to study 
the flutter behaviour of FGM plates immersed in a 
supersonic flow based on the FSDT. Here, an enriched 
four noded Co shear flexible quadrilateral plate 
element based on the consistency approach is used to 
analyse the flutter behaviour. To the author’s 
knowledge the flutter characteristics of FGM plates 
with arbitrary cracks has not been studied earlier. The 
influence of the crack length, the crack orientation, the 
flow direction and the material property on the 
evaluation of critical speed and the type of fluttering 
instability is numerically studied. 

Outline 

The paper is organized as follows, the next section will 
give an introduction to FGM and a brief overview of 
Reissner-Mindlin plate theory. The spatial 
discretization and the basic idea of the XFEM are 
presented in Section 3. Section 4 presents results for 
the flutter analyses of cracked functionally graded 
material panels, followed by concluding remarks in 
the last section. 

Formulation 

Functionally Graded Material 

A rectangular plate made up of a mixture of ceramic 
and metal is considered with the coordinates x,y along 
the in-plane directions and z along the thickness 
direction (see Figure 1). The material on the top 
surface (z = h/2) of the plate is ceramic and graded to 
metal at the bottom surface (z=-h/2) by a power law 
distribution. The effective Young’s modulus E and 
Poisson’s ratio γ of the FGM, evaluated using the rule 
of mixtures as: E = EcVc+EmVm and γ= γcVc + γmVm, 
where Vi(i=c,m) is the volume fraction of the phase 
material. The subscripts c and m refere to ceramic and 
metal phases respectively. The volume fraction of the 
ceramic and metal phases are related by Vc + Vm = 1 
and Vc is expressed as, Vc(z) = [(2z+h)/2h]k, where k is 
the volume fraction exponent (k > 0), also called the 
gradient index. 

 

Reissner-Mindlin Plate Theory 

Using Mindlin formulation, the displacements (u,v,w) 
at a point (x,y,z) in the plate from the medium surface 
are expressed as functions of midplane displacements 
(uo,vo,wo) and independent rotations βx and βy of the 
normal in xz and yz planes, respectively as: 

 

             (1) 

The midplane membrane strains εp, the bending 
strains εb and the shear strain εs are written as 

 

 

            (2) 

where the subscript `comma’ represents the partial 
derivative with respect to the spatial coordinate 
succeeding it. The strain energy of the plate can be 
expressed in terms of the field variables δ = 
(uo,vo,wo,βx,βy) and their derivatives as: 

 

 

             (3) 

where the matrices A,B,Db and E are the extensional, 
bending-extensional coupling, bending and transverse 
shear stiffness coefficients. The kinetic energy of the 
plate is given by: 
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             (4) 

where  and ρ(z) is 
the mass density that varies through the thickness of 
the plate. The work done by the applied non-
conservative load is: 

           (5) 

where  is the aerodynamic pressure. The 
aerodynamic pressure based on first order, high Mach 
number approximation to linear potential flow is 
given by: 

 
             (6) 

where ,  and θ’ are the free 
stream air density, velocity of the air, Mach number 
and the flow angle, respectively. The static 
aerodynamic approximation for Mach numbers 
between  and 2 is obtained by setting  to 
zero in Equaiton (6). The governing equations 
obtained using the minimization of total potential 
energy are solved based on the finite element method. 
The finite element equations thus derived are: 

 
             (7) 

where K is the stiffness matrix, M is the consistent 

mass matrix, is the aerodynamic force 
matrix and ω is the natural frequency. When λ = 0, the 
eigenvalue of ω is real and positive, since the stiffness 
matrix and the mass matrix are symmetric and 
positive definite. However, the aerodynamic matrix  
is unsymmetric and hence complex eigenvalues ω are 
expected for λ > 0. As λ increases monotonically from 
zero, two of these eigenvalues will approach each 
other and become complex conjucates. In this study, 
λcr is considered to be the value of λ at which the first 
coalescence occurs. 

Spatial Discretization 
The plate element employed here is a Co continuous 
shear flexible field consistent element with 5 degrees 

of freedom (uo,vo,wo,βx,βy) at four nodes in a 4-noded 
bilinear quadrilateral (QUAD-4) element. The shear 
locking behaviour is suppressed by using the field 
redistributed substitute shape functions to interpolate 
the shear strains. The conventional polynomial 
expansion of the displacement field fails to capture the 
local behaviour of the problem. The basic idea in the 
XFEM is to append the conventional expansion of the 
displacement field with additional functions. The 
additional functions, also called the `enrichment 
functions’ carry additional information regarding the 
local behaviour. In general, the field variables are 
approximated by: 

 
            (8) 

where NI(x) are the standard finite element shape 
functions and qI are the nodal variables associated 
with node I. The following enriched approximation 
proposed by Dolbow et al., for the plate displacements 
are used: 

 
           (9) 

The section rotations are approximated by: 

 
           (10) 

where  is a set of all nodes in the finite element 
mesh,  is a set of nodes that are enriched with the 
Heaviside function, and  are a set of nodes 
that are enriched with near tip asymptotic fields, 

 and . In Equations (9) and (10), 
 are the nodal unknown vectors 

associated with the continuous part of the finite 
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element solution, bJ is the nodal enriched degree of 
freedom vector associated with the Heaviside 
(discontinuous) function and cKl is the nodal enriched 
degree of freedom vector associated with the elastic 
asymptotic near-tip functions.   

A special care must be taken to numerically integrate 
the stiffness matrix due to the addition of non-
polynomial functions. The standard Gauss quadrature 
cannot be applied to elements enriched by 
discontinuous terms, because Gauss quadrature 
implicitly assumes a polynomial approximation. In the 
present study, a triangular quadrature with sub-
division aligned to the discontinuity surface is 
employed. For the elements that are not enriched, a 
standard 2x2 Gaussian quadrature rule is used. The 
other techniques that can be employed are Schwarz 
Christoffel Mapping, Generalized quadrature and the 
Smoothed eXtended FEM. 

Results and Discussion 
In this section, we present the critical aerodynamic 
pressure and the critical frequency of a cracked simply 
supported FGM panels using the extended Q4 
formulation. The element has five nodal degrees of 
freedom (uo,vo,wo,βx,βy). A full integration scheme is 
applied to evaluate the various strain energy terms. A 
simply supported boundary condition is assumed for 
the current study given by: uo = wo = βy = 0 on x = 0, a; vo 
= wo = βx = 0 on y = 0,b. In all cases, we present the non 
dimensionalized critical aerodynamic pressure λcr and 
critical frequency ωcr as 

, unless specified 

otherwise, where  is the bending 
rigidity of the plate. The subscript c refers to the 
material property corresponding to the ceramic phase. 
For this study, the plate thickness is assumed to be 
a/h=100. The effect of material property, the crack 
orientation θ, the crack length d/a and the flow angle 
θ’ on the flutter behaviour are studied numerically. 
Based on a progressive mesh refinement, a 34x34 
structured quadrilateral mesh is found to be adequate 
to model the full plate for the present analysis. The 
FGM plate considered here consists of silicon nitride 
(Si3N4) and stainless steel (SUS304). The Young’s 
modulus and the mass density for Si3N4 are Ec = 348 
GPa, ρc = 2370 Kg/m3 and for SUS304 are Em = 201.04 
GPa and ρm = 8166 Kg/m3. Poisson’s ratio γ is assumed 
to be constant and taken as 0.3. 

TABLE 1 COMPARISON OF CRITICAL AERODYNAMIC PRESSURE 
AND COALESCENCE FREQUENCY FOR AN ISOTROPIC PLATE 
WITH VARIOUS BOUNDARY CONDITIONS (SSSS – ALL EDGES 
SIMPLY SUPPORTED, CCCC – ALL EDGES CLAMPED) AND (A/B 

= 1, A/H = 100, ϒ  = 0.3, Θ’ = 0O) 

 
Flutter 
Bounds 

Boundary condition 

SSSS CCCC 

Prakash and 
Ganapathi 

(2006) 

λcr 511.11 852.34 

ωcr 1840.29 4274.32 

Present 
λcr 513.48 854.80 

ωcr 1849.50 4297.00 

Before proceeding with the detailed study, the 
formulation developed herein is validated against 
available results pertaining to the critical aerodynamic 
pressure and the critical frequency for an isotropic 
plate without a crack. The computed critical 
aerodynamic pressure and the critical frequency for an 
isotropic square plate with various boundary 
conditions are given in Table 1. It can be seen that the 
results from the present formulation are in good 
agreement with those in the literature 

 
FIG. 2 SIMPLY SUPPORTED PLATE WITH A CENTER CRACK 

Next, the flutter characteristics of square simply 
supported cracked FGM plates is investigated. 
Consider a plate of uniform thickness, h and with 
length and width as a and b, respectively. Figure 2 
shows a plate with all edges simply supported with a 
center crack of length d and a distance of cy from the x-
axis. In this example, the influence of the crack length 
d/a, the crack orientation θ, the flow angle θ’ and the 
gradient index k on the critical aerodynamic pressure 
and the critical frequency is studied. Figure 3 shows 
the variation of the critical aerodynamic pressure λcr 
and the critical frequency ωcr with gradient index for a 
center horizontal crack of length d/a = 0.5 in a normal 
flow θ’ = 0o. It can be seen that with increasing 
gradient index, both the critical aerodynamic pressure 
and the critical frequency decreases. This is because of 
the stiffness degradation due to increase in the 
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metallic volume fraction. Figure 4 shows the influence 
of the crack length d/a on the critical aerodynamic 
pressure and the critical frequency. It is observed that 
as the crack length increases, the critical aerodynamic 
pressure and the critical frequency decreases. This is 
due to the fact that increasing the crack length 
increases the local flexibility and thus decreases the 
frequency. It can be seen that the combined effect of 
increasing the crack length and the gradient index is to 
lower the critical frequency and the critical pressure. It 
can also be observed from Figure 3 that the critical 
pressure and the frequency drop sharply for slight 
increase in the metallic volume fraction, but with 
further increase in the metallic volume fraction, the 
drop in the pressure and the frequency is marginal. In 
both cases, the decrease in the critical aerodynamic 
pressure and the critical frequency is due to the 
stiffness degradation. 

 
FIG. 3 VARIATION OF CRITICAL AERODYNAMIC PRESSURE λcr 
AND THE CRITICAL FREQUENCY ωcr WITH GRADIENT INDEX 

IN A NORMAL FLOW θ’=0o FOR A SIMPLY SUPPORTED 
SQUARE FGM PLATE WITH A CENTER HORIZONTAL CRACK 

WITH d/a = 0.5. 

Figure 5 shows the influence of the crack angle θ on 
the critical pressure and the frequency for a simply 
supported square FGM plate with gradient index k = 0, 
immersed in a normal flow θ’= 0o. From Figure 5, it 
can be seen that with increase in the crack orientation, 
the critical pressure increases gradually until the crack 
is oriented at right angles to the flow angle and with 
further increase in the crack orientation, the critical 
pressure and the frequency decreases. Further, it is 
observed that the critical pressure is the lowest for a 
crack orientation θ=0o and 180o. At these crack 
orientations, the crack is aligned to the flow direction. 
The critical frequency and the pressure values tend to 
be symmetric with respect to a crack orientation θ = 
90o. 

 
FIG. 4 THE CRITICAL AERODYNAMIC PRESSURE λcr AND THE 

CRITICAL FREQUENCY ωcr AS A FUNCTION OF CRACK 
LENGTH d/a FOR A SIMPLY SUPPORTED SQUARE FGM PLATE 
WITH A CENTER HORIZONTAL CRACK IN A NORMAL FLOW 

θ’ = 0o WITH GRADIENT INDEX k=5. 

 
FIG. 5 CRITICAL AERODYNAMIC PRESSURE λcr AS A 

FUNCTION OF CRACK ORIENTATION FOR A SIMPLY 
SUPPORTED SQUARE FGM PLATE WITH A CENTER CRACK d/a 

= 0.5 IN A NORMAL FLOW θ’= 0o AND GRADIENT INDEX k=0. 

 
FIG. 6 EFFECT OF FLOW ANGLE θ’ ON THE CRITICAL 

AERODYNAMIC PRESSURE FOR A SIMPLY SUPPORTED 
SQUARE FGM PLATE WITH A CENTER HORIZONTAL CRACK 

WITH d/a = 0.5 AND GRADIENT INDEX k = 5. 
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The influence of the flow angle on the critical pressure 
for a simply supported square FGM plate with 
gradient index k = 5 is shown in Figure 6 for different 
crack orientations, i.e, θ = -45o,0o and +45o. It is 
observed that the critical pressure is minimum when 
the crack is aligned to the flow angle. The critical 
frequency increases for other flow angles irrespective 
of the orientation of the crack. 

Conclusions 

The flutter characeristics of cracked FGM panels 
immersed in a supersonic flow has been analysed 
based on the first order shear deformation theory 
within the framework of the extended finite element 
approach. The aerodynamic force is accounted for 
assuming the first-order Mach number approximation 
potential flow theory and the homogenized material 
properties are estimated by rule of mixtures. 
Numerical experiments have been conducted to bring 
out the effect of the gradient index, the crack length, 
the crack orientation and the flow angle on the flutter 
characteristics of the FGM panel. From the detailed 
numerical study, it can be concluded that with 
increasing gradient index and the crack length, the 
critical pressure and the critical frequency decreases. 
In both cases, the decrease is due to the stiffness 
degradation. It is also observed that the critical 
frequency and the pressure are minimum when the 
crack is aligned to the flow. 
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