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Abstract

In this paper, the flutter behaviour of functionally graded
material plates immersed in a supersonic flow is studied. An
enriched 4-noded quadrilateral element based on field
consistency approach is used for this study. The crack is
modelled independent of the underlying mesh using
partition of unity method (PUM), the extended finite
element method (XFEM). The material properties are
assumed to be graded only in the thickness direction and the
effective material properties are estimated using the rule of
mixtures. The plate kinematics is described based on the first
order shear deformation theory (FSDT) and the shear
correction factors are evaluated employing the energy
equivalence principle. The influence of the crack length, the
crack orientation, the flow angle and the gradient index on
the aerodynamic pressure and the frequency are numerically
studied. The results obtained here reveal that the critical
frequency and pressure decrease with increase in crack the
length and are minimum when the crack is aligned to the
flow angle.
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Introduction

The emergence of functionally graded materials
(FGMs) that combine the best properties of its
constituent materials (for example, ceramics and
metals) is considered to be an alternative to certain
class of aerospace structures exposed to high
temperature environment. FGMs are characterized
with a smooth transition from one material to another,
thus circumventing high inter-laminar shear stresses
and delamination problem that persists in laminated
composites. With the increased use of these materials,
it necessitates to study the dynamic characteristics of
the structures made up of FGMS.

Background

It can be seen from the literature that the introduction
of FGMs has attracted researchers to investigate the
structural behaviour of such structures. Analytical
solutions are proposed based on the three-dimensional
solutions and second-order shear deformation theory.
Different plate theories, viz., FSDT, second and other
higher order accurate theory have been used to
describe the plate kinematics. The static and dynamic
fracture mechanics study of FGMs have been studied
in the literature. Dolbow and Gosz employed the
XFEM to compute mixed mode stress intensity factors.
However, such analysis of plates is scarce in the
literature. Huang et al., have analysed the vibration of
side-cracked FGM thick plate analytically by
employing Ritz procedure, whereas, Natarajan et al.,
examined the FGM plate with through center crack
using the XFEM. Chau-Dinh et al., and Rabczuk et al.,
employed phantom node methods and meshfree
methods with external enrichment to study the
response of shells with arbitrary cracks.

Since FGMs are seen as potential candidates for
aircraft structural applications, it is important to
understand the dynamic characteristics of structures
made up of such materials when exposed to air flow.
Prakash and Ganapathi studied the linear flutter
characteristics of FGM panels exposed to supersonic
flow. Haddadpour et al, and Sohn and Kim
investigated  the aspects of flutter
characteristics using the finite element method. It can

nonlinear

be seen from the available literature that the work on
flutter characteristics of FGM plates with cracks, to the
author’s knowledge is not available. Earlier studies on
flutter characteristics of cracked isotropic and
composite panels employed finite element procedure.
Although these numerical studies give insight into the

91



www.fae-journal.org

understanding of flutter behaviour, the method
requires the mesh to conform to the geometry. This
inherently limits the analyses to fixed calculation
parameters.

Approach

In this paper, we apply the XFEM to model the crack
independent of the underlying mesh and then to study
the flutter behaviour of FGM plates immersed in a
supersonic flow based on the FSDT. Here, an enriched
four noded Co shear flexible quadrilateral plate
element based on the consistency approach is used to
analyse the flutter behaviour. To the author’s
knowledge the flutter characteristics of FGM plates
with arbitrary cracks has not been studied earlier. The
influence of the crack length, the crack orientation, the
flow direction and the material property on the
evaluation of critical speed and the type of fluttering
instability is numerically studied.

Outline

The paper is organized as follows, the next section will
give an introduction to FGM and a brief overview of
Reissner-Mindlin ~ plate  theory. =~ The  spatial
discretization and the basic idea of the XFEM are
presented in Section 3. Section 4 presents results for
the flutter analyses of cracked functionally graded
material panels, followed by concluding remarks in
the last section.

Formulation

Functionally Graded Material

A rectangular plate made up of a mixture of ceramic
and metal is considered with the coordinates x,y along
the in-plane directions and z along the thickness
direction (see Figure 1). The material on the top
surface (z = h/2) of the plate is ceramic and graded to
metal at the bottom surface (z=-h/2) by a power law
distribution. The effective Young’s modulus E and
Poisson’s ratio v of the FGM, evaluated using the rule
of mixtures as: E = EVAExVw and y= yVe + yuVm,
where Vi(i=c,m) is the volume fraction of the phase
material. The subscripts ¢ and m refere to ceramic and
metal phases respectively. The volume fraction of the
ceramic and metal phases are related by Vc + Vi =
and V. is expressed as, Vi(z) = [(2z+h)/2h]}, where k is
the volume fraction exponent (k > 0), also called the
gradient index.
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Reissner-Mindlin Plate Theory

Using Mindlin formulation, the displacements (u,v,w)
at a point (x,,z) in the plate from the medium surface
are expressed as functions of midplane displacements
(110,00,w0) and independent rotations Bx and fy of the
normal in xz and yz planes, respectively as:

u(z, Y, 2, ) = uo(2, 4, t) + 282 (2, y, 1)
U(Iu Y, z, t) = UO(Iﬂ Y, t) + zﬂ’y(ma Yy, t)
'H)(:L’, Y, =, t) = ’lUO(.’E, Y, t)
(1)

The midplane membrane strains &5, the bending
strains €» and the shear strain ¢s are written as

Ug,x 61—,1—
€p = Yoy €0 = By
Ugy T Vo,u ﬁ:u,y + 61;.;:;

_ ﬂ’r + Wo,z
&= { By twoy |-
(2)

where the subscript ‘comma’ represents the partial
derivative with respect to the spatial coordinate
succeeding it. The strain energy of the plate can be
expressed in terms of the field variables & =
(110,00,20, B+, By) and their derivatives as:

1
U(é) = 3 [ {sgAsp + s;Bsb + stB.-:]D + stDbsb + EI;FEE,‘:,} dQ
Ja

®)

where the matrices A,B,Dv and E are the extensional,
bending-extensional coupling, bending and transverse
shear stiffness coefficients. The kinetic energy of the
plate is given by:
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1 . -
T(d) = 5/“{Io(ﬂ§+1}§+w§)+fl(ﬂﬁ+9;)} ds

4)

where To = [120(2) dz Iu= [0, 2%0(2) d2 404 p(z) s
the mass density that varies through the thickness of
the plate. The work done by the applied non-
conservative load is:

W(5)=/pr dQ
Jo ©)

where AP is the aerodynamic pressure. The
aerodynamic pressure based on first order, high Mach
number approximation to linear potential flow is
given by:

Ap — ang

VM2 1

7 . 7 .
[w gz cos @ +wysind + xw

(6)
{1y ME-2

where ¥ (f_) ML poyUsy Mc and 0’ are the free
stream air density, velocity of the air, Mach number
and the flow
aerodynamic approximation for Mach numbers
between v2 and 2 is obtained by setting & = Ow/0t
zero in Equaiton (6). The governing equations
obtained using the minimization of total potential
energy are solved based on the finite element method.
The finite element equations thus derived are:

[(K+)\K)—w2M]5=0

angle, respectively. The static

@)

where K is the stiffness matrix, M is the consistent
— _palUl

mass matrix,” VMi-1" "'is the aerodynamic force
matrix and w is the natural frequency. When A =0, the
eigenvalue of w is real and positive, since the stiffness
matrix and the mass matrix are symmetric and
positive definite. However, the aerodynamic matrix A
is unsymmetric and hence complex eigenvalues w are
expected for A > 0. As A increases monotonically from
zero, two of these eigenvalues will approach each
other and become complex conjucates. In this study,
Aer is considered to be the value of A at which the first

coalescence occurs.

Spatial Discretization

The plate element employed here is a C° continuous
shear flexible field consistent element with 5 degrees
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of freedom (uo,v0,wo,Bxfy) at four nodes in a 4-noded
bilinear quadrilateral (QUAD-4) element. The shear
locking behaviour is suppressed by using the field
redistributed substitute shape functions to interpolate
the shear strains. The conventional polynomial
expansion of the displacement field fails to capture the
local behaviour of the problem. The basic idea in the
XFEM is to append the conventional expansion of the
displacement field with additional functions. The
additional functions, also called the ‘enrichment
functions’ carry additional information regarding the
local behaviour. In general, the field variables are
approximated by:

uh(x) = Z Ni(x)qr + enrichment functions
TeNfem

8)

where Ni(x) are the standard finite element shape
functions and g1 are the nodal variables associated
with node I. The following enriched approximation
proposed by Dolbow et al., for the plate displacements
are used:

(uh ? " ) 'wh) (X) =

> Ni(x)(uf,vf, wi)+

T Nfem
JeNs
4
> Ni(x) (Z(c}?z, e ) Galr e))
KeNt =1
©)
The section rotations are approximated by:
Br(x)= D Nu@)By, + Y Nu(x)H(x)b"
TENTem JeEN<
i 4
+ Z Nig(x) (Z cfﬁﬂ('{', 6}) ]
KeNT =1
Ah(x) = 3 Nof(x)85, + Y Nay(x)H(x)b"
TeNTem JENT
4
+ > Nag(x) (Z i Fy(r, 0)) .
KeNT =1
(10)

where N is a set of all nodes in the finite element
mesh, Nis a set of nodes that are enriched with the
Heaviside function, H (x)and NFare a set of nodes
that are enriched with near tip asymptotic fields,
Gi(r,0) and F1(r,0) m Equations (9) and (10),
(uf, i, wh 82, 95,) are the nodal unknown vectors
associated with the continuous part of the finite
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element solution, by is the nodal enriched degree of
freedom vector associated with the Heaviside
(discontinuous) function and cx is the nodal enriched
degree of freedom vector associated with the elastic
asymptotic near-tip functions.

A special care must be taken to numerically integrate
the stiffness matrix due to the addition of non-
polynomial functions. The standard Gauss quadrature
cannot be applied to elements enriched by
discontinuous terms, because Gauss quadrature
implicitly assumes a polynomial approximation. In the
present study, a triangular quadrature with sub-
division aligned to the discontinuity surface is
employed. For the elements that are not enriched, a
standard 2x2 Gaussian quadrature rule is used. The
other techniques that can be employed are Schwarz
Christoffel Mapping, Generalized quadrature and the

Smoothed eXtended FEM.

Results and Discussion

In this section, we present the critical aerodynamic
pressure and the critical frequency of a cracked simply
supported FGM panels using the extended Q4
formulation. The element has five nodal degrees of
freedom (uo,v0,w0,fx,fy). A full integration scheme is
applied to evaluate the various strain energy terms. A
simply supported boundary condition is assumed for
the current study given by: uo=wo=py=0o0nx=0, a; vo
=wo = Px=00ny=0,>b. In all cases, we present the non
dimensionalized critical aerodynamic pressure A and
critical frequency Wer as

! r:h Y
w(."f‘ = S-a(.!a’z %c’ )\C'!' - A|‘.,"J'

¢ 12(1-v2) is the bending
rigidity of the plate. The subscript ¢ refers to the

a."
‘De  unless specified
E_h®

otherwise, where

material property corresponding to the ceramic phase.
For this study, the plate thickness is assumed to be
a/h=100. The effect of material property, the crack
orientation 6, the crack length d/a and the flow angle
0" on the flutter behaviour are studied numerically.
Based on a progressive mesh refinement, a 34x34
structured quadrilateral mesh is found to be adequate
to model the full plate for the present analysis. The
FGM plate considered here consists of silicon nitride
(SisN4) and stainless steel (SUS304). The Young's
modulus and the mass density for SisNs are Ec = 348
GPa, p. = 2370 Kg/m? and for SUS304 are En = 201.04
GPa and pw = 8166 Kg/m3. Poisson’s ratio y is assumed
to be constant and taken as 0.3.
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TABLE 1 COMPARISON OF CRITICAL AERODYNAMIC PRESSURE
AND COALESCENCE FREQUENCY FOR AN ISOTROPIC PLATE
WITH VARIOUS BOUNDARY CONDITIONS (SSSS - ALL EDGES
SIMPLY SUPPORTED, CCCC - ALL EDGES CLAMPED) AND (A/B

=1, A/H=100, Y=0.3, @' =00°)

Flutter Boundary condition

Bounds $SSS ccce

Prakash and Acr 511.11 852.34
Ganapathi
(2006) wer 1840.29 4274.32
Aer 513.48 854.80
Present

Wer 1849.50 4297.00

Before proceeding with the detailed study, the
formulation developed herein is validated against
available results pertaining to the critical aerodynamic
pressure and the critical frequency for an isotropic
plate without a crack. The computed critical
aerodynamic pressure and the critical frequency for an
isotropic square plate with various boundary
conditions are given in Table 1. It can be seen that the
results from the present formulation are in good
agreement with those in the literature

FIG. 2 SIMPLY SUPPORTED PLATE WITH A CENTER CRACK

Next, the flutter characteristics of square simply
supported cracked FGM plates is investigated.
Consider a plate of uniform thickness, & and with
length and width as a4 and b, respectively. Figure 2
shows a plate with all edges simply supported with a
center crack of length d and a distance of cy from the x-
axis. In this example, the influence of the crack length
d/a, the crack orientation 0, the flow angle " and the
gradient index k on the critical aerodynamic pressure
and the critical frequency is studied. Figure 3 shows
the variation of the critical aerodynamic pressure Acr
and the critical frequency we with gradient index for a
center horizontal crack of length d/a = 0.5 in a normal
flow 0" = (°. It can be seen that with increasing
gradient index, both the critical aerodynamic pressure
and the critical frequency decreases. This is because of
the stiffness degradation due to increase in the
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metallic volume fraction. Figure 4 shows the influence
of the crack length d/a on the critical aerodynamic
pressure and the critical frequency. It is observed that
as the crack length increases, the critical aerodynamic
pressure and the critical frequency decreases. This is
due to the fact that increasing the crack length
increases the local flexibility and thus decreases the
frequency. It can be seen that the combined effect of
increasing the crack length and the gradient index is to
lower the critical frequency and the critical pressure. It
can also be observed from Figure 3 that the critical
pressure and the frequency drop sharply for slight
increase in the metallic volume fraction, but with
further increase in the metallic volume fraction, the
drop in the pressure and the frequency is marginal. In
both cases, the decrease in the critical aerodynamic
pressure and the critical frequency is due to the
stiffness degradation.

600 T T T T 2000

cr

41000

Critical frequency, w__

Critical aerodynamic pressure, A

200 L " L L i}
0

Gradient index, k

FIG. 3 VARIATION OF CRITICAL AERODYNAMIC PRESSURE Acr
AND THE CRITICAL FREQUENCY we WITH GRADIENT INDEX
IN A NORMAL FLOW 6'=0° FOR A SIMPLY SUPPORTED
SQUARE FGM PLATE WITH A CENTER HORIZONTAL CRACK
WITH d/a=0.5.

Figure 5 shows the influence of the crack angle 6 on
the critical pressure and the frequency for a simply
supported square FGM plate with gradient index k=0,
immersed in a normal flow 6’= (°. From Figure 5, it
can be seen that with increase in the crack orientation,
the critical pressure increases gradually until the crack
is oriented at right angles to the flow angle and with
further increase in the crack orientation, the critical
pressure and the frequency decreases. Further, it is
observed that the critical pressure is the lowest for a
crack orientation 0=0° and 180°. At these crack
orientations, the crack is aligned to the flow direction.
The critical frequency and the pressure values tend to
be symmetric with respect to a crack orientation 0 =
90e.
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FIG. 4 THE CRITICAL AERODYNAMIC PRESSURE A« AND THE
CRITICAL FREQUENCY we AS A FUNCTION OF CRACK
LENGTH d/a FOR A SIMPLY SUPPORTED SQUARE FGM PLATE
WITH A CENTER HORIZONTAL CRACK IN A NORMAL FLOW
6’ =0° WITH GRADIENT INDEX k=5.
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FIG. 5 CRITICAL AERODYNAMIC PRESSURE A« AS A
FUNCTION OF CRACK ORIENTATION FOR A SIMPLY
SUPPORTED SQUARE FGM PLATE WITH A CENTER CRACK d/a
=0.5IN A NORMAL FLOW 6= 00 AND GRADIENT INDEX k=0.
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FIG. 6 EFFECT OF FLOW ANGLE 6" ON THE CRITICAL
AERODYNAMIC PRESSURE FOR A SIMPLY SUPPORTED
SQUARE FGM PLATE WITH A CENTER HORIZONTAL CRACK
WITH d/a = 0.5 AND GRADIENT INDEX k = 5.
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The influence of the flow angle on the critical pressure
for a simply supported square FGM plate with
gradient index k = 5 is shown in Figure 6 for different
crack orientations, ie, 6 = -45°0°0 and +45°. It is
observed that the critical pressure is minimum when
the crack is aligned to the flow angle. The critical
frequency increases for other flow angles irrespective
of the orientation of the crack.

Conclusions

The flutter characeristics of cracked FGM panels
immersed in a supersonic flow has been analysed
based on the first order shear deformation theory
within the framework of the extended finite element
approach. The aerodynamic force is accounted for
assuming the first-order Mach number approximation
potential flow theory and the homogenized material
properties are estimated by rule of mixtures.
Numerical experiments have been conducted to bring
out the effect of the gradient index, the crack length,
the crack orientation and the flow angle on the flutter
characteristics of the FGM panel. From the detailed
numerical study, it can be concluded that with
increasing gradient index and the crack length, the
critical pressure and the critical frequency decreases.
In both cases, the decrease is due to the stiffness
degradation. It is also observed that the critical
frequency and the pressure are minimum when the
crack is aligned to the flow.
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