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Imperial College
London Introduction

Aim of research project

Develop a meshless method for the simulation of shear plates using

Maximum Entropy meshless basis functions that is free of shear
locking

Figure: 6th free vibration mode of SSSS plate
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London Problem Domain

Why plate theories?

Reduce full 3D elasticity equations to 2D problem by making
appropriate geometrical, mechanical and kinematical assumptions
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London Weak Form

Definition (Reissner-Mindlin Problem)

Find the transverse deflection and rotations (z3,6) € V3 X R such
that:

v
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London Weak Form

Definition (Reissner-Mindlin Problem)

Find the transverse deflection and rotations (z3,6) € V3 X R such
that:
?3/ Le(0) : e(n) dQ + /\?/ (Vz3 —0) - (Vys — 1) dQ
Q Qo
(1a)
=/ psys d2 V(ys,m) € Vs X R
Qo
1
«0) = 5 (ve + (V@)T) (1b)
Lle] = D[(1 — v)e + vir(e)l] (1c)
E
D=0 el
Ek

v

J.S. Hale
Plates with MaxEnt Basis Functions




Imperial College
London Weak Form

Definition (Reissner-Mindlin Problem)

Find the transverse deflection and rotations (z3,6) € V3 X R such
that:
f3/ Le(0) : e(n) dQ + /\?/ (Vz3 —0) - (Vys —n) dQ
Q Qo
(1a)
=/ psys d2 V(ys,m) € Vs X R
Qo
1
«0) = 5 (ve + (V@)T) (1b)
Lle] = D[(1 — v)e + vtr(e)l] (1)
E
D= a0 (1d)
Ek

v
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London Locking

Kirchoff classical plate theory and Reissner-Mindlin plate theory
both model the same thing! So as t — 0 we would expect that the
Kirchoff constraint holds.
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Imperial College
London Locking

Kirchoff classical plate theory and Reissner-Mindlin plate theory
both model the same thing! So as t — 0 we would expect that the
Kirchoff constraint holds.

Definition (Kirchoff Constraint)

limVz3 —0 =0

t—0
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London A naive Finite Element approach

Figure: Use Linear Lagrangian Elements for V3h C V5 and Rsh C R

From Automated Scientific Computing. GNU Free Documentation License.
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Locking: Numerical Demonstration
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Figure: Locking in L? norm using Linear Lagrangian elements
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London Existing work

1. Increase polynomial order

Take MLS approximation:
_ T
up(x) = p'(x) - a(x)

Increase monomial order m of p”(x) until locking is alleviated.
Typically m > 3.
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1. Increase polynomial order
Take MLS approximation:

up(x) = p' (x) - a(x)

Increase monomial order m of p”(x) until locking is alleviated.
Typically m > 3.
» Advantages: Simple to implement, eliminates locking
acceptably well.
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1. Increase polynomial order
Take MLS approximation:

up(x) = p' (x) - a(x)

Increase monomial order m of p”(x) until locking is alleviated.
Typically m > 3.

» Advantages: Simple to implement, eliminates locking
acceptably well.

» Disadvantages: MLS has no Kronecker delta property. Very
large support sizes needed making high order basis expensive.
Never totally eliminates locking.
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2. Matching fields approach

Approximate rotations using derivatives of basis functions used to
approximate transverse displacements (Donning and Liu 1998).
Satisfies Kirchoff's constraint exactly.
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2. Matching fields approach

Approximate rotations using derivatives of basis functions used to
approximate transverse displacements (Donning and Liu 1998).
Satisfies Kirchoff's constraint exactly.

» Advantages: Simple to implement, does ‘work’
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2. Matching fields approach

Approximate rotations using derivatives of basis functions used to
approximate transverse displacements (Donning and Liu 1998).
Satisfies Kirchoff's constraint exactly.

» Advantages: Simple to implement, does ‘work’

» Disadvantages: Very ill-conditioned stiffness matrix,
approximation is rank-deficient, rotations no longer
approximated with PU (Tiago and Leitao 2005)
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3. Reduced integration

Stabilised Conforming Nodal Integration method (Wang and Chen
2004). Uses stabilisation with cell smoothing technique to
construct locking free formulation.
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3. Reduced integration

Stabilised Conforming Nodal Integration method (Wang and Chen
2004). Uses stabilisation with cell smoothing technique to
construct locking free formulation.

» Advantages: Eliminates locking. Solid theoretical approach.
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3. Reduced integration

Stabilised Conforming Nodal Integration method (Wang and Chen
2004). Uses stabilisation with cell smoothing technique to
construct locking free formulation.

» Advantages: Eliminates locking. Solid theoretical approach.

» Disadvantages: Must use stabilisation method to ensure
convergence. Second order consistency required. Some cell
structure (Voronoi/Delaunay) still required. Comparatively
complicated.
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Description

A combined Meshless-FE approach using Meshless Maximum
Entropy approximants and Nédélec's/Rotated Raviart-Thomas
Finite Elements to eliminate shear locking.
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Description

A combined Meshless-FE approach using Meshless Maximum
Entropy approximants and Nédélec's/Rotated Raviart-Thomas
Finite Elements to eliminate shear locking.

Features

”
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Description

A combined Meshless-FE approach using Meshless Maximum
Entropy approximants and Nédélec's/Rotated Raviart-Thomas
Finite Elements to eliminate shear locking.

v
Features

» Easy imposition of Dirichlet boundary conditions

A\
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Features

| A\

» Easy imposition of Dirichlet boundary conditions

» Elimination of shear locking in the thin plate limit
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A combined Meshless-FE approach using Meshless Maximum
Entropy approximants and Nédélec's/Rotated Raviart-Thomas
Finite Elements to eliminate shear locking.

v
Features

» Easy imposition of Dirichlet boundary conditions

» Elimination of shear locking in the thin plate limit

» Only first-order consistency required
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Imperial College
London This work

Description

A combined Meshless-FE approach using Meshless Maximum
Entropy approximants and Nédélec's/Rotated Raviart-Thomas
Finite Elements to eliminate shear locking.

v
Features

» Easy imposition of Dirichlet boundary conditions

» Elimination of shear locking in the thin plate limit

» Only first-order consistency required

» Potential for straightforward blending with FE

A\
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Imperial College
London Mixed Weak Form

Treat the shear stress v as an independent variable:

vy=At(Vzz—0) e S

Definition (Mixed Reissner Mindlin Problem)

Find the transverse deflection, rotations and transverse shear
stresses (z3,0,7) € (V3,R,S) such that:

4
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Imperial College
London Mixed Weak Form

Treat the shear stress v as an independent variable:

vy=At(Vzz—0) e S

Definition (Mixed Reissner Mindlin Problem)

Find the transverse deflection, rotations and transverse shear
stresses (z3,0,7) € (V3,R,S) such that:

P/%Le(e):e(m dQ+/Qov-(Vy3—77) 40

:/ p3y3 d2
Qo
/\E/ (v23—9)-¢d9—/ N d =0
Qo Q0
Y(y3,m,9) € (V3, R, S)
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London Mixed Weak Form

Treat the shear stress v as an independent variable:

vy=At(Vzz—0) e S

Definition (Mixed Reissner Mindlin Problem)

Find the transverse deflection, rotations and transverse shear
stresses (z3,0,7) € (V3,R,S) such that:

f3/QOLe<e):e<n> dQ+/Qov-(Vy3—77) 40

:/ p3y3 d2
Qo
/\E/ (v23—9)-¢d9—/ 1 dQ =0
Qo Q0
Y(y3,m,9) € (V3, R, S)
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London The space S

On first inspection we see that the weak form contains no
derivatives of v or 1. We therefore might assume that
S = [L%(Q0)]%.
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On first inspection we see that the weak form contains no
derivatives of v or 1. We therefore might assume that
S = [L%(Q0)]%.

For fixed t:

S = H(curl, Qo)
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On first inspection we see that the weak form contains no
derivatives of v or 1. We therefore might assume that
S = [L%(Q0)]%.

For fixed t:
S = H(curl, Qo)
Definition
H(curl, Qo) := {7 € [L2(Q0)]? | curly € L2(Qo)}
_ 0y O
curl(v) = B B
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On first inspection we see that the weak form contains no
derivatives of v or 1. We therefore might assume that
S = [L%(Q0)]%.

For fixed t:
S = H(curl, Qo)
Definition
H(curl, Qo) := {7 € [L2(Q0)]? | curly € L2(Qo)}
_9r _on
curl(v) = B B
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Imperial College
London The space Sy,

(a) Element for ~,, (b) Element for 7,

We cannot use continuous C° Lagrangian elements (or indeed
standard meshless basis functions) to approximate each component
ie. vh € [H(Q0)]?. This approximation would be too continuous.
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London The space Sy,

(c) Element for 7y, (d) Element for v,

We cannot use discontinuous C~! Lagrangian elements to
approximate each component ie. v, € [L3(€0)]?. This
approximation would be too discontinuous
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London Nédélec's Element of First Kind

We need continuity for v only in the tangential directions 7; to the
edges &;. This element is a vector-valued element with three vector
valued shape functions.
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Imperial College
London Nédélec's Element of First Kind

We need continuity for v only in the tangential directions 7; to the
edges &;. This element is a vector-valued element with three vector
valued shape functions.

Figure: Nedelec Element of First Kind on reference element K. Also
known as Rotated Raviart-Thomas Element.

From Automated Scientific Computing. GNU Free Documentation License.
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Imperial College
London Nédélec's Element of First Kind

» Set of polynomials: <{

> Degrees of freedom: [, (9 1)

Performing all the calculations gives the shape functions on a
reference element K.

Nédélec’s Element of First Kind on K

& & s al
—Xo —Xo 1—X
= 2 N & ap
X1 X1 — 1 X1

as

v=N,a
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London Constructing Ry and V3, with MaxEnt

To construct approximations for 6 and z3 we use Maximum
Entropy (MaxEnt) meshless basis functions (Arroyo, Ortiz 2006)
(Sukumar, Wright 2007)

» ‘Weak' Kronecker Delta property on convex node sets

» Seamless and straightforward blending with Finite Elements

Disadvantages

> Trickier implementation

» Non-trivial (although possible) to extend to second-order or
higher intrinsic consistency
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London Constructing Ry and V3, with MaxEnt
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Fiiure: MaxEnt basis functions for 6 evenli distributed nodes
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London Results - Bending

0.00427
0.00366
0.00305
0.00244
0.00183
0.00122

0.000610

4.36e-08

J.S. Hale ) _
Plates with MaxEnt Basis Functions



Imperial College

London Results - No locking
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London Results - Convergence
L? convergence w for a simply-supported thick plate
‘ e e MaxEnt
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Thanks for listening. Questions?

Hal
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Extra Slides
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London Mechanical Assumptions

Plane Stress
033 =0
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London Kinematical Assumptions

Figure: TODO: Graphic showing displacement of Mindlin plate

We can write the displacement vector u : Q — R3 in the form:
z1(x1, x2) — 01(x1, x2)x3

u(x1, x2,x3) = § zo(x1, x2) — O2(x1, X2)X3
z3(x1, x2)
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London Locking

Substitute in our Galerkin subspaces V3, C H3(2) and
R3n C HE(Q) built using our linear polynomial Lagrangian

elements: . .
ZVN,’ Z3,'—ZN,' 9,’ =0
i=1 i=1

Problem!
VN; = const. Vx

but we have specified clamped boundary conditions R3x C H}(R).
The only way the above can be satisfied is if:

z3i=0;, =0 VxeQ
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Imperial College
London What is curl?

Take a two component vector field v = (y1,72). The curl operator

can be defined as:

0 0
curl(v) = 8—1? - 87’)2

In R? curl is directly related to the familiar div operator. Setting:

0 1
=15
curly = divRy

The curl operator crops up frequently in electromagnetic problems.
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Imperial College
London What is H(curl,g)?

It is the Sobelov space of functions with square integrable curl:
H(curl, Qo) := {7 € [L2(Q0)]? | curly € LZ(QO)} (4)

So as in all conforming Galerkin methods we must construct a

conforming subspace:
SpCS (5)

This requires continuity in the tangential component of + across
the element edges. Problem: Standard Lagrangian elements are
too continuous.
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London Maximum Entropy

A quick reminder from elementary statistics: A discrete probability
distribution associates N outcomes X = { X1, X2, X3, ... ,XN}T
with N probabilities p = {p1, p2, p3, ..., PN} .
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Imperial College
London Maximum Entropy

A quick reminder from elementary statistics: A discrete probability
distribution associates N outcomes X = { X1, X2, X3, ... ,XN}T

with N probabilities p = {p1, p2, p3, ..., Pn} "

Definition

The least statistically biased discrete probability distribution is
the one that maximises Shannon'’s informational entropy (1948)

H(p):
H(p) = (=Inp) = Zplln pi (6)

and satisfies all prior known information about the probability
distribution.
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London Coin Example 1

| have a coin with two outcomes X = {Xl,Xg}T associated with
two probabilities p = {p1, pz}T. | have no other testable
information.
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| have a coin with two outcomes X = {Xl,Xg}T associated with
two probabilities p = {p1, pz}T. | have no other testable

information.
What are the least biased probabilities p* according to Shannon's

measure of informational entropy? | know that:
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Imperial College
London Coin Example 1

| have a coin with two outcomes X = {Xl,Xg}T associated with
two probabilities p = {p1, pz}T. | have no other testable
information.

What are the least biased probabilities p* according to Shannon's
measure of informational entropy? | know that:

p1+p2=1 (7a)

and that: .
p* = argmax — Z pi In p; (7¢)

P1,P2 i=1
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0'%.0 0.2 0.4 0.6 0.8 1.0
Py =1-p,

Figure: Maximum p* = {0.5,0.5}
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London The Connection

Probability and Basis Functions

Arroyo and Ortiz? as well as Sukumar and Wright? had the idea to
view the basis functions ¢; as a discrete probability distribution
pi:

¢i = pi (8)

Local maximum-entropy approximation schemes: a seamless bridge between finite elements and meshfree
methods, M. Arroyo M. Ortiz 2006 DOI: 10.1002/nme.1534

b . . . . . .
Overview and construction of meshfree basis functions: From moving least squares to maximum entropy
approximants N. Sukumar, R. W. Wright 2007 DOI: 10.1002/nme.1885

So in other words, the shape function ¢;(x) is the probability that
the approximate solution up(x) takes the value of the ith solution
node.
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London Constraints

Probabilities can only be positive thus we have:

¢ >0 Vi (9)
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London Constraints

Probabilities can only be positive thus we have:
¢ >0 Vi (9)

We want to construct a partition of unity:

> ¢i(x) =1 (10)

ies
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Imperial College
London Constraints
Probabilities can only be positive thus we have:
¢ >0 Vi (9)

We want to construct a partition of unity:

> ¢i(x) =1 (10)

ies

We also want to be able to interpolate linear functions exactly:

D i(x)xi = x (11)

ieS
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Finally, we want the nodes nearest to the point x to have a greater
influence over the approximation than those further away.
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Finally, we want the nodes nearest to the point x to have a greater
influence over the approximation than those further away.
We introduce a weighting function w; for each node i.
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Finally, we want the nodes nearest to the point x to have a greater
influence over the approximation than those further away.
We introduce a weighting function w; for each node i.

1.0

0.2

n V3 n
0£1.0 -0.5 0.0 0.5 1.0

z

Figure: Quartic Spline Weight Function w(r) =1 —6r% +8r3 — 3r*
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London Convex Optimisation Problem

We can show that the above is a constrained convex optimisation
problem, and thus there is a unique minimum ¢*:

" = arg ¢n€11|Rr}i ; oiln (f/’) (12a)

1

subject to the constraints:

> ¢ilx) =1 (12b)
ieS
Z di(x)x; = x (12¢)
ieS
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