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Introduction

Aim of research project

Develop a meshless method for the simulation of shear plates using
Maximum Entropy meshless basis functions that is free of shear
locking

Figure: 6th free vibration mode of SSSS plate
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Problem Domain

Why plate theories?

Reduce full 3D elasticity equations to 2D problem by making
appropriate geometrical, mechanical and kinematical assumptions
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Weak Form

Definition (Reissner-Mindlin Problem)

Find the transverse deflection and rotations (z3, θ) ∈ V3 ×R such
that:

t̄3

∫
Ω0

Lε(θ) : ε(η) dΩ + λt̄

∫
Ω0

(∇z3 − θ) · (∇y3 − η) dΩ

=

∫
Ω0

p3y3 dΩ ∀(y3, η) ∈ V3 ×R
(1a)

ε(θ) =
1

2

(
∇θ + (∇θ)T

)
(1b)

L[ε] ≡ D [(1− ν)ε+ νtr(ε)I ] (1c)

D =
E

12(1− ν2)
(1d)

λ =
Ek

2(1 + ν)
(1e)
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Locking

Kirchoff classical plate theory and Reissner-Mindlin plate theory
both model the same thing! So as t̄ → 0 we would expect that the
Kirchoff constraint holds.

Definition (Kirchoff Constraint)

lim
t̄→0
∇z3 − θ = 0
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A näıve Finite Element approach

Figure: Use Linear Lagrangian Elements for V3h ⊂ V3 and R3h ⊂ R

From Automated Scientific Computing. GNU Free Documentation License.
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Locking: Numerical Demonstration
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Figure: Locking in L2 norm using Linear Lagrangian elements
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Existing work

1. Increase polynomial order

Take MLS approximation:

uh(x) = pT (x) · a(x)

Increase monomial order m of pT (x) until locking is alleviated.
Typically m > 3.

I Advantages: Simple to implement, eliminates locking
acceptably well.

I Disadvantages: MLS has no Kronecker delta property. Very
large support sizes needed making high order basis expensive.
Never totally eliminates locking.
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Existing work

2. Matching fields approach

Approximate rotations using derivatives of basis functions used to
approximate transverse displacements (Donning and Liu 1998).
Satisfies Kirchoff’s constraint exactly.

I Advantages: Simple to implement, does ‘work’

I Disadvantages: Very ill-conditioned stiffness matrix,
approximation is rank-deficient, rotations no longer
approximated with PU (Tiago and Leitao 2005)
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Existing work

3. Reduced integration

Stabilised Conforming Nodal Integration method (Wang and Chen
2004). Uses stabilisation with cell smoothing technique to
construct locking free formulation.

I Advantages: Eliminates locking. Solid theoretical approach.

I Disadvantages: Must use stabilisation method to ensure
convergence. Second order consistency required. Some cell
structure (Voronoi/Delaunay) still required. Comparatively
complicated.
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This work

Description

A combined Meshless-FE approach using Meshless Maximum
Entropy approximants and Nédélec’s/Rotated Raviart-Thomas
Finite Elements to eliminate shear locking.

Features
I Easy imposition of Dirichlet boundary conditions

I Elimination of shear locking in the thin plate limit

I Only first-order consistency required

I Potential for straightforward blending with FE
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Mixed Weak Form

Treat the shear stress γ as an independent variable:

γ = λt̄(∇z3 − θ) ∈ S

Definition (Mixed Reissner Mindlin Problem)

Find the transverse deflection, rotations and transverse shear
stresses (z3, θ, γ) ∈ (V3,R,S) such that:

t̄3

∫
Ω0

Lε(θ) : ε(η) dΩ +

∫
Ω0

γ · (∇y3 − η) dΩ

=

∫
Ω0

p3y3 dΩ

(2a)

λt̄

∫
Ω0

(∇z3 − θ) · ψ dΩ−
∫

Ω0

γ · ψ dΩ = 0

∀(y3, η, ψ) ∈ (V3,R,S)

(2b)
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The space S

On first inspection we see that the weak form contains no
derivatives of γ or ψ. We therefore might assume that
S = [L2(Ω0)]2.

Lemma

For fixed t̄:
S = H(curl,Ω0)

Definition

H(curl,Ω0) :=
{
γ ∈ [L2(Ω0)]2 | curl γ ∈ L2(Ω0)

}
curl(γ) =

∂γ2

∂x1
− ∂γ1

∂x2
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The space Sh

(a) Element for γxz (b) Element for γyz

We cannot use continuous C 0 Lagrangian elements (or indeed
standard meshless basis functions) to approximate each component
ie. γh ∈ [H1

h(Ω0)]2. This approximation would be too continuous.
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The space Sh

(c) Element for γxz (d) Element for γyz

We cannot use discontinuous C−1 Lagrangian elements to
approximate each component ie. γh ∈ [L2

h(Ω0)]2. This
approximation would be too discontinuous
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Nédélec’s Element of First Kind

We need continuity for γ only in the tangential directions τ̂i to the
edges êi . This element is a vector-valued element with three vector
valued shape functions.

Figure: Nedelec Element of First Kind on reference element K̂ . Also
known as Rotated Raviart-Thomas Element.

From Automated Scientific Computing. GNU Free Documentation License.
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Nédélec’s Element of First Kind

Construction

I Set of polynomials:

〈[
1
0

]
,

[
0
1

]
,

[
x̂2

−x̂1

]〉
I Degrees of freedom:

∫
êi

(γ̂ · t̂) dŝ

Performing all the calculations gives the shape functions on a
reference element K̂ .

Nédélec’s Element of First Kind on K̂

γ =

[(
−x̂2

x̂1

)(
−x̂2

x̂1 − 1

)(
1− x̂2

x̂1

)]
a1

a2

a3


γ = Nγa
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Constructing Rh and V3h with MaxEnt

To construct approximations for θ and z3 we use Maximum
Entropy (MaxEnt) meshless basis functions (Arroyo, Ortiz 2006)
(Sukumar, Wright 2007)

Advantages

I ‘Weak’ Kronecker Delta property on convex node sets

I Seamless and straightforward blending with Finite Elements

Disadvantages

I Trickier implementation

I Non-trivial (although possible) to extend to second-order or
higher intrinsic consistency

J.S. Hale
Plates with MaxEnt Basis Functions



Constructing Rh and V3h with MaxEnt

0 1 2 3 4 5
x

0.0

0.2

0.4

0.6

0.8

1.0
φ
i

Figure: MaxEnt basis functions for 6 evenly distributed nodes
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Discrete Formulation


Kb 0
0 0

C

CT −V



θ

z3

γ

 =


0

fz3

0

 (3a)

Kb = t̄3

∫
Ω0

BT
b DbBb dΩ (3b)

C =

∫
Ω0

NT
γ DsBs dΩ (3c)

V =
1

t̄

∫
Ω0

NT
γ Nγ dΩ (3d)

fz3 = p3

∫
Ω0

φT dΩ (3e)
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Results - Bending
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Results - No locking
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Results - Convergence
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Thanks for listening. Questions?
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Extra Slides
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Mechanical Assumptions

Plane Stress
σ33 = 0
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Kinematical Assumptions

Figure: TODO: Graphic showing displacement of Mindlin plate

We can write the displacement vector u : Ω→ R3 in the form:

u(x1, x2, x3) =


z1(x1, x2)− θ1(x1, x2)x3

z2(x1, x2)− θ2(x1, x2)x3

z3(x1, x2)


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Locking

Substitute in our Galerkin subspaces V3h ⊂ H1
0 (Ω) and

R3h ⊂ H1
0 (Ω) built using our linear polynomial Lagrangian

elements:
n∑

i=1

∇Ni z3i −
n∑

i=1

Ni θi = 0

Problem!
∇Ni = const. ∀x

but we have specified clamped boundary conditions R3h ⊂ H1
0 (Ω).

The only way the above can be satisfied is if:

z3i = θi = 0 ∀x ∈ Ω
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What is curl?

Take a two component vector field γ = (γ1, γ2). The curl operator
can be defined as:

curl(γ) =
∂γ2

∂x1
− ∂γ1

∂x2

In R2 curl is directly related to the familiar div operator. Setting:

R =

[
0 1
−1 0

]
curl γ ≡ divRγ

The curl operator crops up frequently in electromagnetic problems.
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What is H(curl,Ω0)?

It is the Sobelov space of functions with square integrable curl:

H(curl,Ω0) :=
{
γ ∈ [L2(Ω0)]2 | curl γ ∈ L2(Ω0)

}
(4)

So as in all conforming Galerkin methods we must construct a
conforming subspace:

Sh ⊂ S (5)

This requires continuity in the tangential component of γ across
the element edges. Problem: Standard Lagrangian elements are
too continuous.
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Maximum Entropy

A quick reminder from elementary statistics: A discrete probability
distribution associates N outcomes X = {X1,X2,X3, . . . ,XN}T
with N probabilities p = {p1, p2, p3, . . . , pN}T .

Definition

The least statistically biased discrete probability distribution is
the one that maximises Shannon’s informational entropy (1948)
H(p):

H(p) = 〈− ln p〉 = −
n∑

i=1

pi ln pi (6)

and satisfies all prior known information about the probability
distribution.

J.S. Hale
Plates with MaxEnt Basis Functions



Maximum Entropy

A quick reminder from elementary statistics: A discrete probability
distribution associates N outcomes X = {X1,X2,X3, . . . ,XN}T
with N probabilities p = {p1, p2, p3, . . . , pN}T .

Definition

The least statistically biased discrete probability distribution is
the one that maximises Shannon’s informational entropy (1948)
H(p):

H(p) = 〈− ln p〉 = −
n∑

i=1

pi ln pi (6)

and satisfies all prior known information about the probability
distribution.

J.S. Hale
Plates with MaxEnt Basis Functions



Coin Example 1

I have a coin with two outcomes X = {X1,X2}T associated with
two probabilities p = {p1, p2}T . I have no other testable
information.

What are the least biased probabilities p∗ according to Shannon’s
measure of informational entropy? I know that:

p1 + p2 = 1 (7a)

p1 ≥ 0, p2 ≥ 0 (7b)

and that:

p∗ = arg max
p1,p2

−
n∑

i=1

pi ln pi (7c)
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p∗ = arg max
p1,p2

−
n∑

i=1

pi ln pi (7c)
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Coin Example 2
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Figure: Maximum p∗ = {0.5, 0.5}
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The Connection

Probability and Basis Functions

Arroyo and Ortiza as well as Sukumar and Wrightb had the idea to
view the basis functions φi as a discrete probability distribution
pi :

φi ⇐⇒ pi (8)

a
Local maximum-entropy approximation schemes: a seamless bridge between finite elements and meshfree

methods, M. Arroyo M. Ortiz 2006 DOI: 10.1002/nme.1534
b

Overview and construction of meshfree basis functions: From moving least squares to maximum entropy
approximants N. Sukumar, R. W. Wright 2007 DOI: 10.1002/nme.1885

So in other words, the shape function φi (x) is the probability that
the approximate solution uh(x) takes the value of the ith solution
node.
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Constraints

Probabilities can only be positive thus we have:

φi ≥ 0 ∀i (9)

We want to construct a partition of unity:∑
i∈S

φi (x) = 1 (10)

We also want to be able to interpolate linear functions exactly:∑
i∈S

φi (x)xi = x (11)
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Weighting functions

Finally, we want the nodes nearest to the point x to have a greater
influence over the approximation than those further away.

We introduce a weighting function wi for each node i .

1.0 0.5 0.0 0.5 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

w
i(
r)

Figure: Quartic Spline Weight Function w(r) = 1− 6r 2 + 8r 3 − 3r 4
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Convex Optimisation Problem

We can show that the above is a constrained convex optimisation
problem, and thus there is a unique minimum φ∗:

φ∗ = arg min
φ∈Rn

+

∑
i∈S

φi ln

(
φi
wi

)
(12a)

subject to the constraints: ∑
i∈S

φi (x) = 1 (12b)∑
i∈S

φi (x)xi = x (12c)
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