

Simulation of Shear Deformable Plates using
Meshless Maximum Entropy Basis Functions
XFEM 2011

J.S. Hale*, P.M. Baiz Villafranca

29th June 2011

Aim of research project

Develop a meshless method for the simulation of shear plates using Maximum Entropy meshless basis functions that is free of shear locking

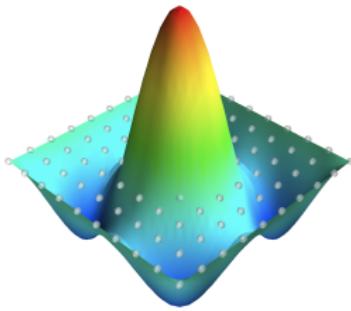


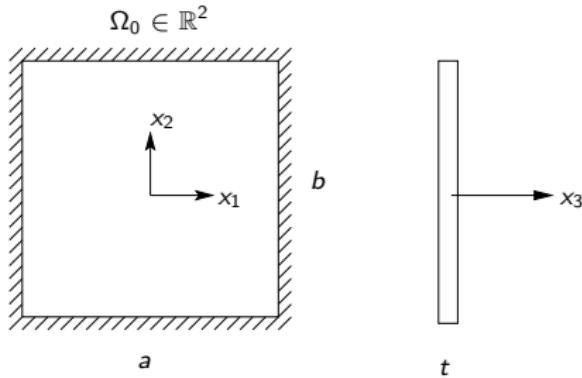
Figure: 6th free vibration mode of SSSS plate

Why plate theories?

Reduce full 3D elasticity equations to 2D problem by making appropriate geometrical, mechanical and kinematical assumptions

Why plate theories?

Reduce full 3D elasticity equations to 2D problem by making appropriate geometrical, mechanical and kinematical assumptions



Definition (Reissner-Mindlin Problem)

Find the transverse deflection and rotations $(z_3, \theta) \in \mathcal{V}_3 \times \mathcal{R}$ such that:

Definition (Reissner-Mindlin Problem)

Find the transverse deflection and rotations $(z_3, \theta) \in \mathcal{V}_3 \times \mathcal{R}$ such that:

$$\begin{aligned} \bar{t}^3 \int_{\Omega_0} L\epsilon(\theta) : \epsilon(\eta) \, d\Omega + \lambda \bar{t} \int_{\Omega_0} (\nabla z_3 - \theta) \cdot (\nabla y_3 - \eta) \, d\Omega \\ = \int_{\Omega_0} p_3 y_3 \, d\Omega \quad \forall (y_3, \eta) \in \mathcal{V}_3 \times \mathcal{R} \end{aligned} \quad (1a)$$

$$\epsilon(\theta) = \frac{1}{2} \left(\nabla \theta + (\nabla \theta)^T \right) \quad (1b)$$

$$L[\epsilon] \equiv D [(1 - \nu) \epsilon + \nu \text{tr}(\epsilon) I] \quad (1c)$$

$$D = \frac{E}{12(1 - \nu^2)} \quad (1d)$$

$$\lambda = \frac{Ek}{2(1 + \nu)} \quad (1e)$$

Definition (Reissner-Mindlin Problem)

Find the transverse deflection and rotations $(z_3, \theta) \in \mathcal{V}_3 \times \mathcal{R}$ such that:

$$\begin{aligned} \bar{t}^3 \int_{\Omega_0} L\epsilon(\theta) : \epsilon(\eta) \, d\Omega + \lambda \bar{t} \int_{\Omega_0} (\nabla z_3 - \theta) \cdot (\nabla y_3 - \eta) \, d\Omega \\ = \int_{\Omega_0} p_3 y_3 \, d\Omega \quad \forall (y_3, \eta) \in \mathcal{V}_3 \times \mathcal{R} \end{aligned} \quad (1a)$$

$$\epsilon(\theta) = \frac{1}{2} \left(\nabla \theta + (\nabla \theta)^T \right) \quad (1b)$$

$$L[\epsilon] \equiv D [(1 - \nu) \epsilon + \nu \text{tr}(\epsilon) I] \quad (1c)$$

$$D = \frac{E}{12(1 - \nu^2)} \quad (1d)$$

$$\lambda = \frac{Ek}{2(1 + \nu)} \quad (1e)$$

Kirchoff classical plate theory and Reissner-Mindlin plate theory both model the same thing! So as $\bar{t} \rightarrow 0$ we would expect that the Kirchoff constraint holds.

Kirchoff classical plate theory and Reissner-Mindlin plate theory both model the same thing! So as $\bar{t} \rightarrow 0$ we would expect that the Kirchoff constraint holds.

Definition (Kirchoff Constraint)

$$\lim_{\bar{t} \rightarrow 0} \nabla z_3 - \theta = 0$$

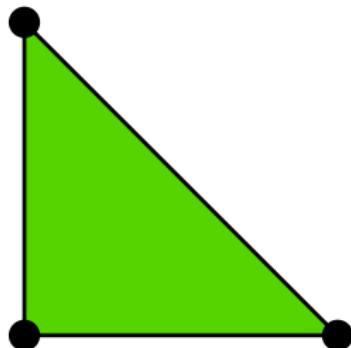


Figure: Use Linear Lagrangian Elements for $V_3h \subset V_3$ and $R_3h \subset R$

From Automated Scientific Computing. GNU Free Documentation License.

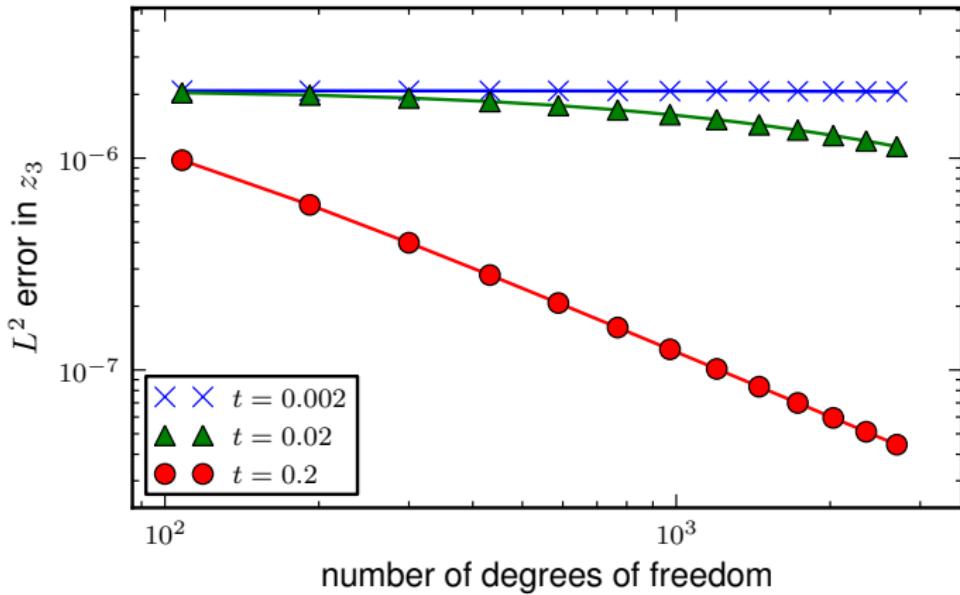


Figure: Locking in L^2 norm using Linear Lagrangian elements

1. Increase polynomial order

Take MLS approximation:

$$u_h(x) = p^T(x) \cdot a(x)$$

Increase monomial order m of $p^T(x)$ until locking is alleviated.
Typically $m > 3$.

1. Increase polynomial order

Take MLS approximation:

$$u_h(x) = p^T(x) \cdot a(x)$$

Increase monomial order m of $p^T(x)$ until locking is alleviated.

Typically $m > 3$.

- ▶ Advantages: Simple to implement, eliminates locking acceptably well.

1. Increase polynomial order

Take MLS approximation:

$$u_h(x) = p^T(x) \cdot a(x)$$

Increase monomial order m of $p^T(x)$ until locking is alleviated.

Typically $m > 3$.

- ▶ Advantages: Simple to implement, eliminates locking acceptably well.
- ▶ Disadvantages: MLS has no Kronecker delta property. Very large support sizes needed making high order basis expensive. Never totally eliminates locking.

2. Matching fields approach

Approximate rotations using derivatives of basis functions used to approximate transverse displacements (Donning and Liu 1998).

Satisfies Kirchoff's constraint exactly.

2. Matching fields approach

Approximate rotations using derivatives of basis functions used to approximate transverse displacements (Donning and Liu 1998).

Satisfies Kirchoff's constraint exactly.

- ▶ Advantages: Simple to implement, does 'work'

2. Matching fields approach

Approximate rotations using derivatives of basis functions used to approximate transverse displacements (Donning and Liu 1998).

Satisfies Kirchoff's constraint exactly.

- ▶ Advantages: Simple to implement, does 'work'
- ▶ Disadvantages: Very ill-conditioned stiffness matrix, approximation is rank-deficient, rotations no longer approximated with PU (Tiago and Leitao 2005)

3. Reduced integration

Stabilised Conforming Nodal Integration method (Wang and Chen 2004). Uses stabilisation with cell smoothing technique to construct locking free formulation.

3. Reduced integration

Stabilised Conforming Nodal Integration method (Wang and Chen 2004). Uses stabilisation with cell smoothing technique to construct locking free formulation.

- ▶ Advantages: Eliminates locking. Solid theoretical approach.

3. Reduced integration

Stabilised Conforming Nodal Integration method (Wang and Chen 2004). Uses stabilisation with cell smoothing technique to construct locking free formulation.

- ▶ Advantages: Eliminates locking. Solid theoretical approach.
- ▶ Disadvantages: Must use stabilisation method to ensure convergence. Second order consistency required. Some cell structure (Voronoi/Delaunay) still required. Comparatively complicated.

Description

A combined Meshless-FE approach using Meshless Maximum Entropy approximants and Nédélec's/Rotated Raviart-Thomas Finite Elements to eliminate shear locking.

Description

A combined Meshless-FE approach using Meshless Maximum Entropy approximants and Nédélec's/Rotated Raviart-Thomas Finite Elements to eliminate shear locking.

Features

Description

A combined Meshless-FE approach using Meshless Maximum Entropy approximants and Nédélec's/Rotated Raviart-Thomas Finite Elements to eliminate shear locking.

Features

- ▶ Easy imposition of Dirichlet boundary conditions

Description

A combined Meshless-FE approach using Meshless Maximum Entropy approximants and Nédélec's/Rotated Raviart-Thomas Finite Elements to eliminate shear locking.

Features

- ▶ Easy imposition of Dirichlet boundary conditions
- ▶ Elimination of shear locking in the thin plate limit

Description

A combined Meshless-FE approach using Meshless Maximum Entropy approximants and Nédélec's/Rotated Raviart-Thomas Finite Elements to eliminate shear locking.

Features

- ▶ Easy imposition of Dirichlet boundary conditions
- ▶ Elimination of shear locking in the thin plate limit
- ▶ Only first-order consistency required

Description

A combined Meshless-FE approach using Meshless Maximum Entropy approximants and Nédélec's/Rotated Raviart-Thomas Finite Elements to eliminate shear locking.

Features

- ▶ Easy imposition of Dirichlet boundary conditions
- ▶ Elimination of shear locking in the thin plate limit
- ▶ Only first-order consistency required
- ▶ Potential for straightforward blending with FE

Treat the shear stress γ as an independent variable:

$$\gamma = \lambda \bar{t}(\nabla z_3 - \theta) \in \mathcal{S}$$

Definition (Mixed Reissner Mindlin Problem)

Find the transverse deflection, rotations and transverse shear stresses $(z_3, \theta, \gamma) \in (\mathcal{V}_3, \mathcal{R}, \mathcal{S})$ such that:

Treat the shear stress γ as an independent variable:

$$\gamma = \lambda \bar{t}(\nabla z_3 - \theta) \in \mathcal{S}$$

Definition (Mixed Reissner Mindlin Problem)

Find the transverse deflection, rotations and transverse shear stresses $(z_3, \theta, \gamma) \in (\mathcal{V}_3, \mathcal{R}, \mathcal{S})$ such that:

$$\bar{t}^3 \int_{\Omega_0} L\epsilon(\theta) : \epsilon(\eta) \, d\Omega + \int_{\Omega_0} \gamma \cdot (\nabla y_3 - \eta) \, d\Omega = \int_{\Omega_0} p_3 y_3 \, d\Omega \quad (2a)$$

$$\lambda \bar{t} \int_{\Omega_0} (\nabla z_3 - \theta) \cdot \psi \, d\Omega - \int_{\Omega_0} \gamma \cdot \psi \, d\Omega = 0 \quad (2b)$$

$$\forall (y_3, \eta, \psi) \in (\mathcal{V}_3, \mathcal{R}, \mathcal{S})$$

Treat the shear stress γ as an independent variable:

$$\gamma = \lambda \bar{t}(\nabla z_3 - \theta) \in \mathcal{S}$$

Definition (Mixed Reissner Mindlin Problem)

Find the transverse deflection, rotations and transverse shear stresses $(z_3, \theta, \gamma) \in (\mathcal{V}_3, \mathcal{R}, \mathcal{S})$ such that:

$$\begin{aligned} \bar{t}^3 \int_{\Omega_0} L\epsilon(\theta) : \epsilon(\eta) \, d\Omega + \int_{\Omega_0} \gamma \cdot (\nabla y_3 - \eta) \, d\Omega \\ = \int_{\Omega_0} p_3 y_3 \, d\Omega \end{aligned} \tag{2a}$$

$$\lambda \bar{t} \int_{\Omega_0} (\nabla z_3 - \theta) \cdot \psi \, d\Omega - \int_{\Omega_0} \gamma \cdot \psi \, d\Omega = 0 \tag{2b}$$

$$\forall (y_3, \eta, \psi) \in (\mathcal{V}_3, \mathcal{R}, \mathcal{S})$$

Treat the shear stress γ as an independent variable:

$$\gamma = \lambda \bar{t}(\nabla z_3 - \theta) \in \mathcal{S}$$

Definition (Mixed Reissner Mindlin Problem)

Find the transverse deflection, rotations and transverse shear stresses $(z_3, \theta, \gamma) \in (\mathcal{V}_3, \mathcal{R}, \mathcal{S})$ such that:

$$\begin{aligned} \bar{t}^3 \int_{\Omega_0} L\epsilon(\theta) : \epsilon(\eta) \, d\Omega + \int_{\Omega_0} \gamma \cdot (\nabla y_3 - \eta) \, d\Omega \\ = \int_{\Omega_0} p_3 y_3 \, d\Omega \end{aligned} \tag{2a}$$

$$\lambda \bar{t} \int_{\Omega_0} (\nabla z_3 - \theta) \cdot \psi \, d\Omega - \int_{\Omega_0} \gamma \cdot \psi \, d\Omega = 0 \tag{2b}$$

$$\forall (y_3, \eta, \psi) \in (\mathcal{V}_3, \mathcal{R}, \mathcal{S})$$

On first inspection we see that the weak form contains no derivatives of γ or ψ . We therefore might assume that $\mathcal{S} = [L^2(\Omega_0)]^2$.

On first inspection we see that the weak form contains no derivatives of γ or ψ . We therefore might assume that $\mathcal{S} = [L^2(\Omega_0)]^2$.

Lemma

For fixed \bar{t} :

$$\mathcal{S} = H(\text{curl}, \Omega_0)$$

On first inspection we see that the weak form contains no derivatives of γ or ψ . We therefore might assume that $\mathcal{S} = [L^2(\Omega_0)]^2$.

Lemma

For fixed \bar{t} :

$$\mathcal{S} = H(\text{curl}, \Omega_0)$$

Definition

$$H(\text{curl}, \Omega_0) := \{\gamma \in [L^2(\Omega_0)]^2 \mid \text{curl } \gamma \in L^2(\Omega_0)\}$$

$$\text{curl}(\gamma) = \frac{\partial \gamma_2}{\partial x_1} - \frac{\partial \gamma_1}{\partial x_2}$$

On first inspection we see that the weak form contains no derivatives of γ or ψ . We therefore might assume that $\mathcal{S} = [L^2(\Omega_0)]^2$.

Lemma

For fixed \bar{t} :

$$\mathcal{S} = H(\text{curl}, \Omega_0)$$

Definition

$$H(\text{curl}, \Omega_0) := \{\gamma \in [L^2(\Omega_0)]^2 \mid \text{curl } \gamma \in L^2(\Omega_0)\}$$

$$\text{curl}(\gamma) = \frac{\partial \gamma_2}{\partial x_1} - \frac{\partial \gamma_1}{\partial x_2}$$

On first inspection we see that the weak form contains no derivatives of γ or ψ . We therefore might assume that $\mathcal{S} = [L^2(\Omega_0)]^2$.

Lemma

For fixed \bar{t} :

$$\mathcal{S} = H(\text{curl}, \Omega_0)$$

Definition

$$H(\text{curl}, \Omega_0) := \left\{ \gamma \in [L^2(\Omega_0)]^2 \mid \text{curl } \gamma \in L^2(\Omega_0) \right\}$$

$$\text{curl}(\gamma) = \frac{\partial \gamma_2}{\partial x_1} - \frac{\partial \gamma_1}{\partial x_2}$$

On first inspection we see that the weak form contains no derivatives of γ or ψ . We therefore might assume that $\mathcal{S} = [L^2(\Omega_0)]^2$.

Lemma

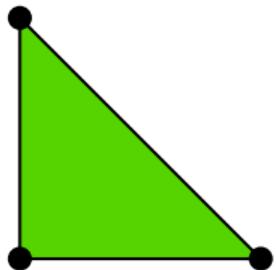
For fixed \bar{t} :

$$\mathcal{S} = H(\text{curl}, \Omega_0)$$

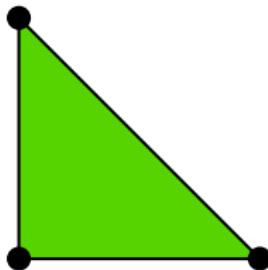
Definition

$$H(\text{curl}, \Omega_0) := \{\gamma \in [L^2(\Omega_0)]^2 \mid \text{curl } \gamma \in L^2(\Omega_0)\}$$

$$\text{curl}(\gamma) = \frac{\partial \gamma_2}{\partial x_1} - \frac{\partial \gamma_1}{\partial x_2}$$

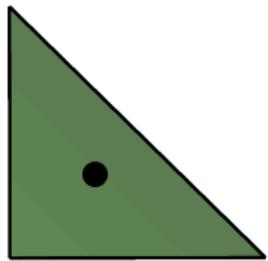


(a) Element for γ_{xz}

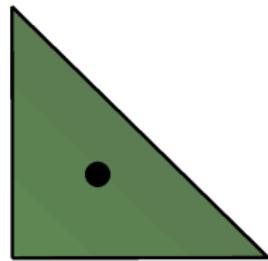


(b) Element for γ_{yz}

We cannot use continuous C^0 Lagrangian elements (or indeed standard meshless basis functions) to approximate each component ie. $\gamma_h \in [H_h^1(\Omega_0)]^2$. This approximation would be too **continuous**.



(c) Element for γ_{xz}



(d) Element for γ_{yz}

We cannot use discontinuous C^{-1} Lagrangian elements to approximate each component ie. $\gamma_h \in [L_h^2(\Omega_0)]^2$. This approximation would be too **discontinuous**

We need continuity for γ only in the tangential directions $\hat{\tau}_i$ to the edges \hat{e}_i . This element is a vector-valued element with three vector valued shape functions.

We need continuity for γ only in the tangential directions $\hat{\tau}_i$ to the edges \hat{e}_i . This element is a vector-valued element with three vector valued shape functions.

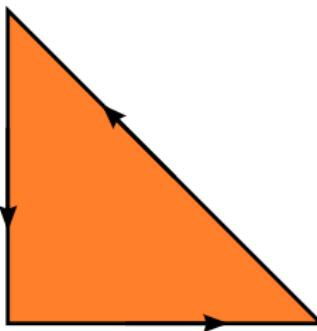


Figure: Nedelec Element of First Kind on reference element \hat{K} . Also known as Rotated Raviart-Thomas Element.

From Automated Scientific Computing. GNU Free Documentation License.

Construction

- ▶ Set of polynomials: $\left\langle \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} \hat{x}_2 \\ -\hat{x}_1 \end{bmatrix} \right\rangle$
- ▶ Degrees of freedom: $\int_{\hat{e}_i} (\hat{\gamma} \cdot \hat{t}) \, d\hat{s}$

Performing all the calculations gives the shape functions on a reference element \hat{K} .

Nédélec's Element of First Kind on \hat{K}

$$\gamma = \left[\begin{pmatrix} -\hat{x}_2 \\ \hat{x}_1 \end{pmatrix} \begin{pmatrix} -\hat{x}_2 \\ \hat{x}_1 - 1 \end{pmatrix} \begin{pmatrix} 1 - \hat{x}_2 \\ \hat{x}_1 \end{pmatrix} \right] \begin{Bmatrix} a_1 \\ a_2 \\ a_3 \end{Bmatrix}$$

$$\gamma = \mathbf{N}_\gamma \mathbf{a}$$

To construct approximations for θ and z_3 we use Maximum Entropy (MaxEnt) meshless basis functions (Arroyo, Ortiz 2006) (Sukumar, Wright 2007)

Advantages

- ▶ 'Weak' Kronecker Delta property on convex node sets
- ▶ Seamless and straightforward blending with Finite Elements

Disadvantages

- ▶ Trickier implementation
- ▶ Non-trivial (although possible) to extend to second-order or higher intrinsic consistency

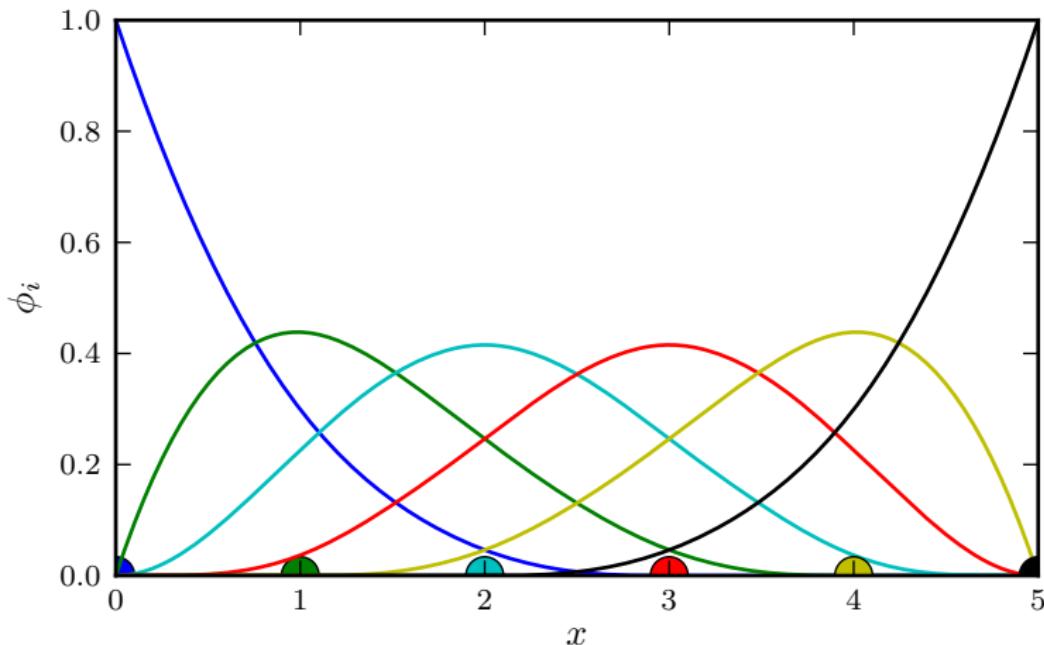


Figure: MaxEnt basis functions for 6 evenly distributed nodes

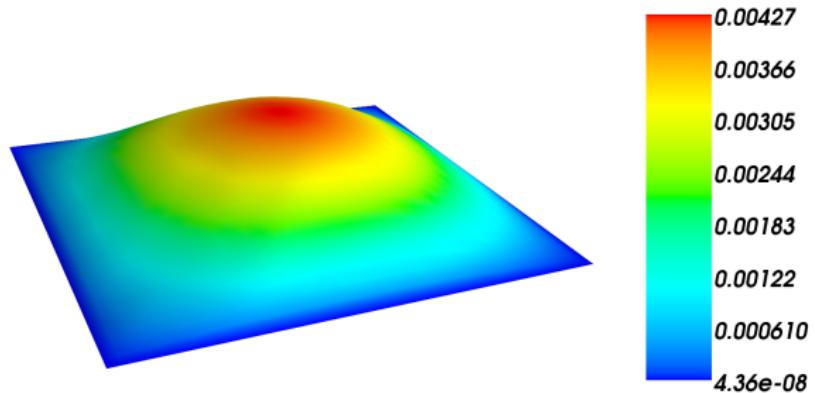
$$\left[\begin{array}{c|c} \mathbf{K}_b & \mathbf{0} \\ \hline \mathbf{0} & \mathbf{0} \end{array} \right] \left[\begin{array}{c} \mathbf{C} \\ \hline \mathbf{C}^T \end{array} \right] \left\{ \begin{array}{c} \theta \\ z_3 \\ \gamma \end{array} \right\} = \left\{ \begin{array}{c} 0 \\ f_{z3} \\ 0 \end{array} \right\} \quad (3a)$$

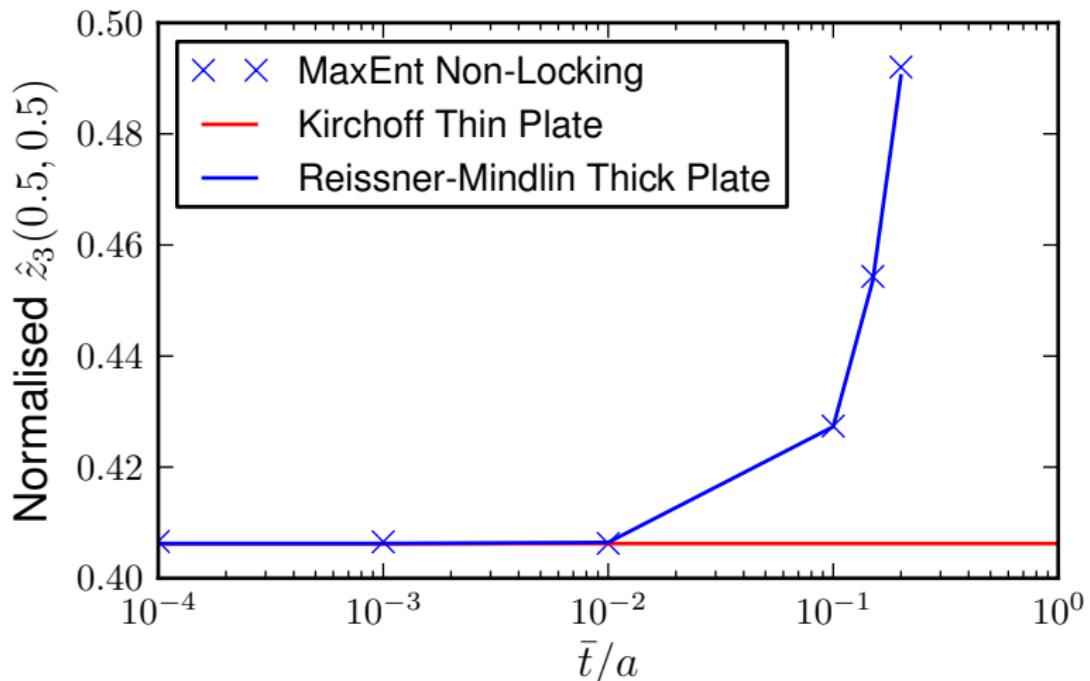
$$\mathbf{K}_b = \bar{t}^3 \int_{\Omega_0} \mathbf{B}_b^T \mathbf{D}_b \mathbf{B}_b \, d\Omega \quad (3b)$$

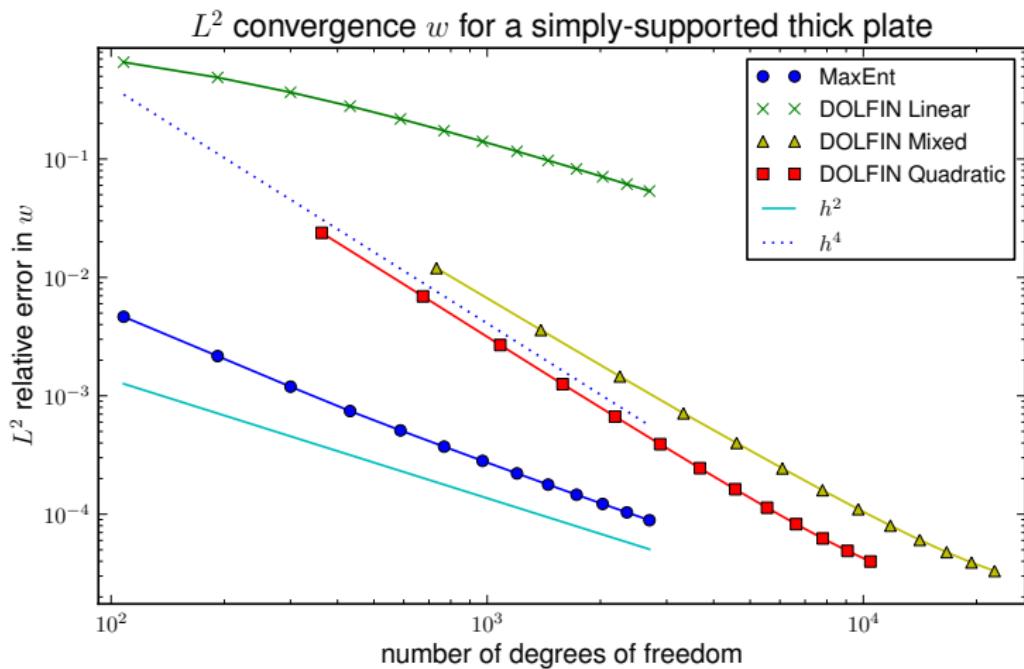
$$\mathbf{C} = \int_{\Omega_0} \mathbf{N}_\gamma^T \mathbf{D}_s \mathbf{B}_s \, d\Omega \quad (3c)$$

$$\mathbf{V} = \frac{1}{\bar{t}} \int_{\Omega_0} \mathbf{N}_\gamma^T \mathbf{N}_\gamma \, d\Omega \quad (3d)$$

$$f_{z3} = p_3 \int_{\Omega_0} \phi^T \, d\Omega \quad (3e)$$







Thanks for listening. Questions?

Extra Slides

Plane Stress

$$\sigma_{33} = 0$$

Figure: TODO: Graphic showing displacement of Mindlin plate

We can write the displacement vector $u : \Omega \rightarrow \mathbb{R}^3$ in the form:

$$u(x_1, x_2, x_3) = \begin{Bmatrix} z_1(x_1, x_2) - \theta_1(x_1, x_2)x_3 \\ z_2(x_1, x_2) - \theta_2(x_1, x_2)x_3 \\ z_3(x_1, x_2) \end{Bmatrix}$$

Substitute in our Galerkin subspaces $\mathcal{V}_{3h} \subset H_0^1(\Omega)$ and $\mathcal{R}_{3h} \subset H_0^1(\Omega)$ built using our linear polynomial Lagrangian elements:

$$\sum_{i=1}^n \nabla N_i z_{3i} - \sum_{i=1}^n N_i \theta_i = 0$$

Problem!

$$\nabla N_i = \text{const. } \forall x$$

but we have specified clamped boundary conditions $\mathcal{R}_{3h} \subset H_0^1(\Omega)$.

The only way the above can be satisfied is if:

$$z_{3i} = \theta_i = 0 \quad \forall x \in \Omega$$

Take a two component vector field $\gamma = (\gamma_1, \gamma_2)$. The curl operator can be defined as:

$$\text{curl}(\gamma) = \frac{\partial \gamma_2}{\partial x_1} - \frac{\partial \gamma_1}{\partial x_2}$$

In \mathbb{R}^2 curl is directly related to the familiar div operator. Setting:

$$\mathbf{R} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$

$$\text{curl } \gamma \equiv \text{div } \mathbf{R} \gamma$$

The curl operator crops up frequently in electromagnetic problems.

It is the Sobelov space of functions with square integrable curl:

$$H(\text{curl}, \Omega_0) := \{\gamma \in [L^2(\Omega_0)]^2 \mid \text{curl } \gamma \in L^2(\Omega_0)\} \quad (4)$$

So as in all conforming Galerkin methods we must construct a conforming subspace:

$$\mathcal{S}_h \subset \mathcal{S} \quad (5)$$

This requires continuity in the **tangential** component of γ across the element edges. Problem: Standard Lagrangian elements are too continuous.

A quick reminder from elementary statistics: A discrete probability distribution associates N outcomes $\mathbf{X} = \{X_1, X_2, X_3, \dots, X_N\}^T$ with N probabilities $\mathbf{p} = \{p_1, p_2, p_3, \dots, p_N\}^T$.

A quick reminder from elementary statistics: A discrete probability distribution associates N outcomes $\mathbf{X} = \{X_1, X_2, X_3, \dots, X_N\}^T$ with N probabilities $\mathbf{p} = \{p_1, p_2, p_3, \dots, p_N\}^T$.

Definition

The **least statistically biased** discrete probability distribution is the one that **maximises** Shannon's informational entropy (1948) $H(\mathbf{p})$:

$$H(\mathbf{p}) = \langle -\ln p \rangle = - \sum_{i=1}^n p_i \ln p_i \quad (6)$$

and satisfies all prior known information about the probability distribution.

I have a coin with two outcomes $\mathbf{X} = \{X_1, X_2\}^T$ associated with two probabilities $\mathbf{p} = \{p_1, p_2\}^T$. I have **no other testable information**.

I have a coin with two outcomes $\mathbf{X} = \{X_1, X_2\}^T$ associated with two probabilities $\mathbf{p} = \{p_1, p_2\}^T$. I have **no other testable information**.

What are the least biased probabilities \mathbf{p}^* according to Shannon's measure of informational entropy? I know that:

I have a coin with two outcomes $\mathbf{X} = \{X_1, X_2\}^T$ associated with two probabilities $\mathbf{p} = \{p_1, p_2\}^T$. I have **no other testable information**.

What are the least biased probabilities \mathbf{p}^* according to Shannon's measure of informational entropy? I know that:

$$p_1 + p_2 = 1 \tag{7a}$$

$$p_1 \geq 0, p_2 \geq 0 \tag{7b}$$

I have a coin with two outcomes $\mathbf{X} = \{X_1, X_2\}^T$ associated with two probabilities $\mathbf{p} = \{p_1, p_2\}^T$. I have **no other testable information**.

What are the least biased probabilities \mathbf{p}^* according to Shannon's measure of informational entropy? I know that:

$$p_1 + p_2 = 1 \tag{7a}$$

$$p_1 \geq 0, p_2 \geq 0 \tag{7b}$$

and that:

$$\mathbf{p}^* = \arg \max_{p_1, p_2} - \sum_{i=1}^n p_i \ln p_i \tag{7c}$$

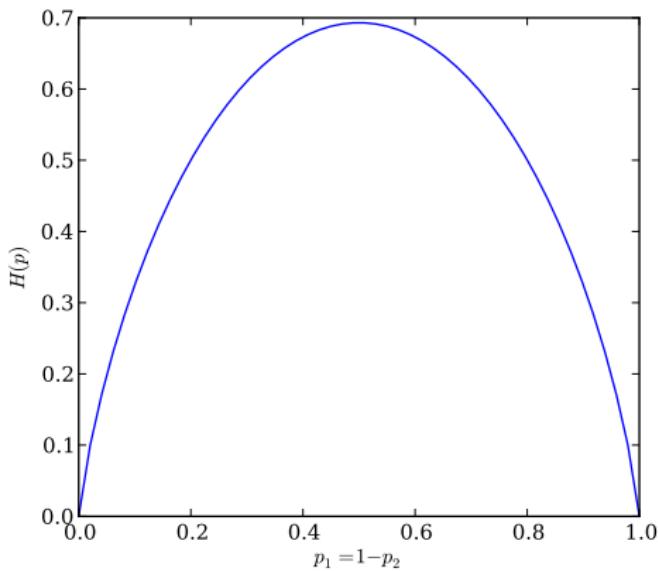


Figure: Maximum $\mathbf{p}^* = \{0.5, 0.5\}$

Probability and Basis Functions

Arroyo and Ortiz^a as well as Sukumar and Wright^b had the idea to view the basis functions ϕ_i as a **discrete probability distribution** p_i :

$$\phi_i \iff p_i \quad (8)$$

^aLocal maximum-entropy approximation schemes: a seamless bridge between finite elements and meshfree methods, M. Arroyo M. Ortiz 2006 DOI: 10.1002/nme.1534

^bOverview and construction of meshfree basis functions: From moving least squares to maximum entropy approximants N. Sukumar, R. W. Wright 2007 DOI: 10.1002/nme.1885

So in other words, the shape function $\phi_i(x)$ is the **probability** that the approximate solution $u_h(x)$ takes the value of the i th solution node.

Probabilities can only be **positive** thus we have:

$$\phi_i \geq 0 \quad \forall i \quad (9)$$

Probabilities can only be **positive** thus we have:

$$\phi_i \geq 0 \quad \forall i \quad (9)$$

We want to construct a **partition of unity**:

$$\sum_{i \in \mathcal{S}} \phi_i(\mathbf{x}) = 1 \quad (10)$$

Probabilities can only be **positive** thus we have:

$$\phi_i \geq 0 \quad \forall i \quad (9)$$

We want to construct a **partition of unity**:

$$\sum_{i \in \mathcal{S}} \phi_i(\mathbf{x}) = 1 \quad (10)$$

We also want to be able to interpolate **linear functions** exactly:

$$\sum_{i \in \mathcal{S}} \phi_i(\mathbf{x}) \mathbf{x}_i = \mathbf{x} \quad (11)$$

Finally, we want the nodes nearest to the point x to have a greater influence over the approximation than those further away.

Finally, we want the nodes nearest to the point \mathbf{x} to have a greater influence over the approximation than those further away. We introduce a weighting function w_i for each node i .

Finally, we want the nodes nearest to the point x to have a greater influence over the approximation than those further away. We introduce a weighting function w_i for each node i .

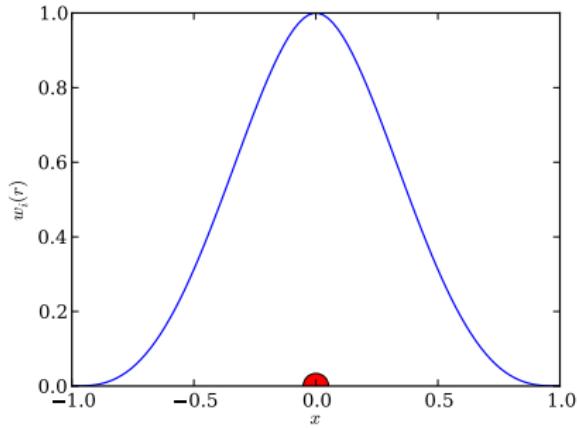


Figure: Quartic Spline Weight Function $w(r) = 1 - 6r^2 + 8r^3 - 3r^4$

We can show that the above is a **constrained convex** optimisation problem, and thus there is a **unique** minimum ϕ^* :

$$\phi^* = \arg \min_{\phi \in \mathbb{R}_+^n} \sum_{i \in \mathcal{S}} \phi_i \ln \left(\frac{\phi_i}{w_i} \right) \quad (12a)$$

subject to the constraints:

$$\sum_{i \in \mathcal{S}} \phi_i(\mathbf{x}) = 1 \quad (12b)$$

$$\sum_{i \in \mathcal{S}} \phi_i(\mathbf{x}) \mathbf{x}_i = \mathbf{x} \quad (12c)$$