

# A meshless method for the Reissner-Mindlin plate equations based on a stabilized mixed weak form using maximum-entropy basis functions

J.S. Hale\*, P.M. Baiz

11th September 2012

## Introduction

### Aim of the research project

Develop a meshless method for the simulation of Reissner-Mindlin plates that is free of shear locking.

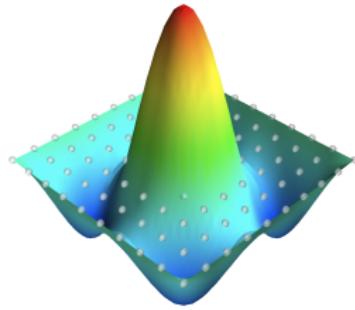


Figure : 6th free vibration mode of SSSS plate

## Existing Approaches (FE and Meshless)

- ▶ Reduced Integration (Many authors)
- ▶ Assumed Natural Strains (ANS) (eg. MITC elements, Bathe)
- ▶ Enhanced Assumed Strains (EAS) (Hughes, Simo etc.)
- ▶ Discrete Shear Gap Method (DSG) (Bletzinger, Bischoff, Ramm)
- ▶ Smoothed Conforming Nodal Integration (SCNI) (Wang and Chen)
- ▶ Matching Fields Method (Donning and Liu)
- ▶ Direct Application of Mixed Methods (Hale and Baiz)

### The Connection

Many of these methods are based on, or have been shown to be equivalent to, mixed variational methods.

## Key Features of the Method

### Weak Form

Design is based upon on a *Stabilised Mixed Weak Form*, like many successful approaches in the Finite Element literature.

Stabilised Mixed Weak Form (Brezzi and Arnold 1993, Boffi and Lovadina 1997)

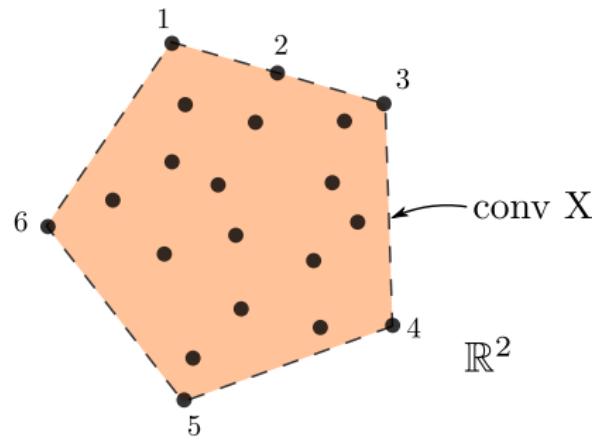
$$a_b(\theta; \eta) + \lambda \alpha a_s(\theta, z_3; \eta, y_3) + (\gamma, \nabla y_3 - \eta)_{L^2} = f(y_3) \quad (1a)$$

$$(\nabla z_3 - \theta, \psi)_{L^2} - \frac{\bar{t}^2}{\lambda(1 - \alpha \bar{t}^2)} (\gamma; \psi)_{L^2} = 0 \quad (1b)$$

## Key Features of the Method

### Basis Functions

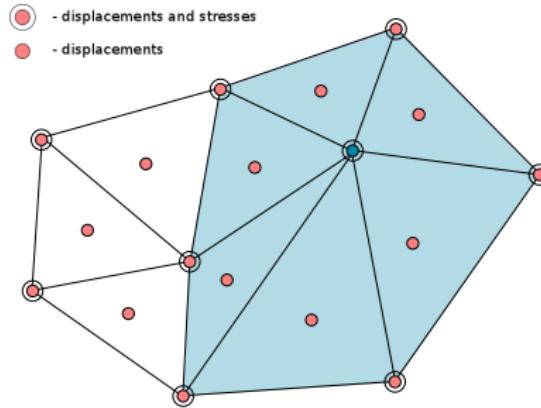
Uses (but is not limited to!) *Maximum-Entropy* Basis Functions which have a weak Kronecker-delta property. On convex node sets boundary conditions can be imposed *directly*.



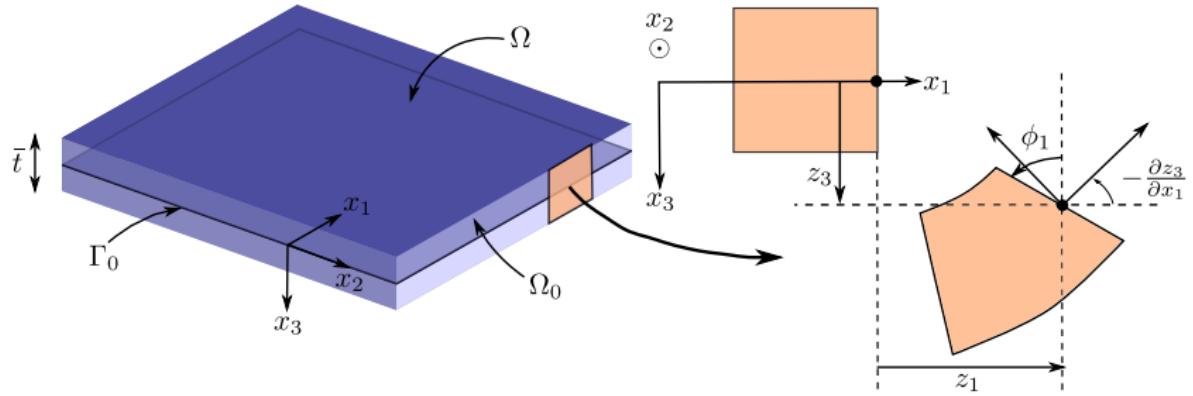
## Key Features of the Method

### Localised Projection Operator

Shear Stresses are *eliminated* on the 'patch' level using a localised projection operator which leaves a final system of equations in the *displacement unknowns only*.



## The Reissner-Mindlin Problem



## The Reissner-Mindlin Problem

### Displacement Weak Form

Find  $(z_3, \theta) \in (\mathcal{V}_3 \times \mathcal{R})$  such that for all  $(y_3, \eta) \in (\mathcal{V}_3 \times \mathcal{R})$ :

$$\int_{\Omega_0} L\epsilon(\theta) : \epsilon(\eta) \, d\Omega + \lambda \bar{t}^{-2} \int_{\Omega_0} (\nabla z_3 - \theta) \cdot (\nabla y_3 - \eta) \, d\Omega = \int_{\Omega_0} g y_3 \, d\Omega \quad (2)$$

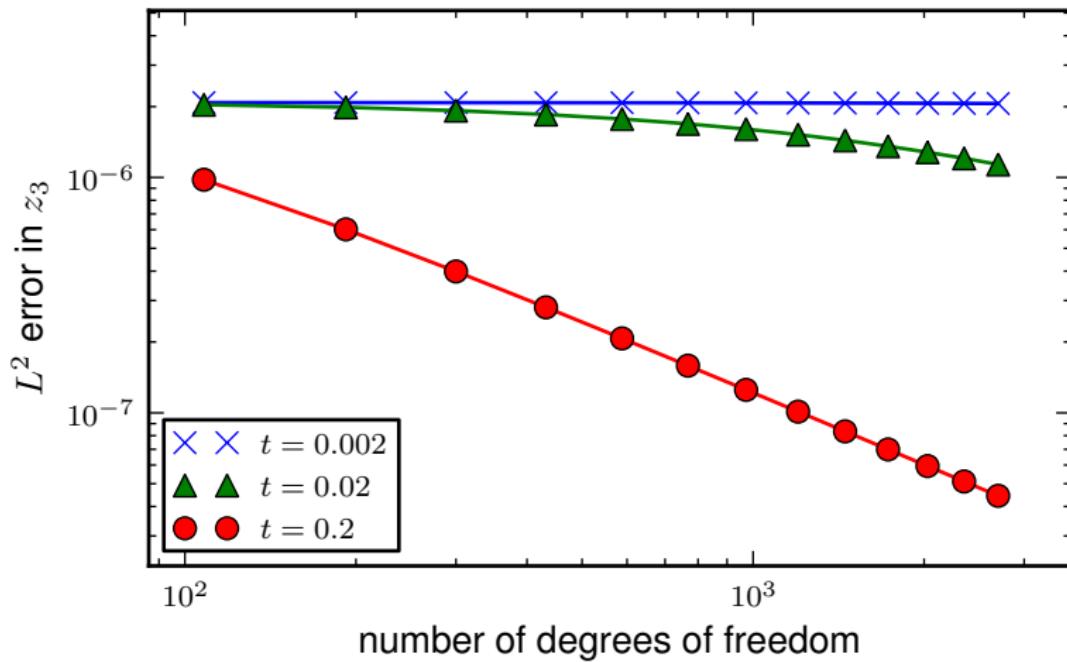
or:

$$a_b(\theta; \eta) + \lambda \bar{t}^{-2} a_s(\theta, z_3; \eta, y_3) = f(y_3) \quad (3)$$

### Locking Problem

Whilst this problem is always stable, it is poorly behaved in the thin-plate limit  $\bar{t} \rightarrow 0$

## Shear Locking



## Shear Locking

### The Problem

Inability of the basis functions to represent the limiting Kirchhoff mode

$$\nabla z_3 - \eta = 0 \quad (4)$$

### A solution?

Move to a mixed weak form

## Mixed Weak Form

Treat the shear stresses as an *independent* variational quantity:

$$\gamma = \lambda \bar{t}^{-2} (\nabla z_3 - \theta) \in \mathcal{S} \quad (5)$$

### Mixed Weak Form

Find  $(z_3, \theta, \gamma) \in (\mathcal{V}_3 \times \mathcal{R} \times \mathcal{S})$  such that for all  $(y_3, \eta, \psi) \in (\mathcal{V}_3 \times \mathcal{R} \times \mathcal{S})$ :

$$a_b(\theta; \eta) + (\gamma; \nabla y_3 - \eta)_{L^2} = f(y_3) \quad (6a)$$

$$(\nabla z_3 - \theta; \psi)_{L^2} - \frac{\bar{t}^2}{\lambda} (\gamma; \psi)_{L^2} = 0 \quad (6b)$$

### Stability Problem

Whilst this problem is well-posed in the thin-plate limit, ensuring stability is no longer straightforward

## Stabilised Mixed Weak Form

Displacement Formulation

Locking as  $\bar{t} \rightarrow 0$

Mixed Formulation

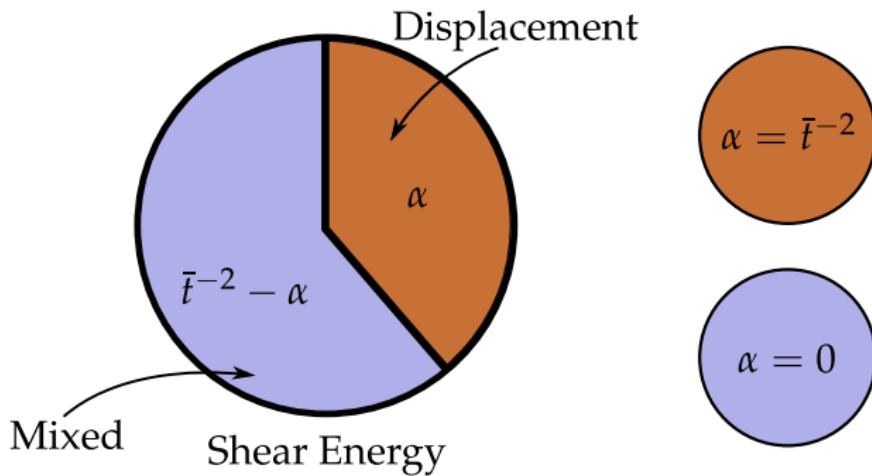
Not necessarily stable

### Solution

Combine the displacement and mixed formulation to retain the advantageous properties of both

## Stabilised Mixed Weak Form

Split the discrete shear term with a parameter  $0 < \alpha < \bar{t}^{-2}$  that is *independent of the plate thickness*:



$$a_s = \alpha a^{\text{displacement}} + (\bar{t}^{-2} - \alpha)a^{\text{mixed}} \quad (7)$$

## Stabilised Mixed Weak Form

### Mixed Weak Form

Find  $(z_3, \theta, \gamma) \in (\mathcal{V}_3 \times \mathcal{R} \times \mathcal{S})$  such that for all  $(y_3, \eta, \psi) \in (\mathcal{V}_3 \times \mathcal{R} \times \mathcal{S})$ :

$$a_b(\theta; \eta) + (\gamma; \nabla y_3 - \eta)_{L^2} = f(y_3) \quad (8a)$$

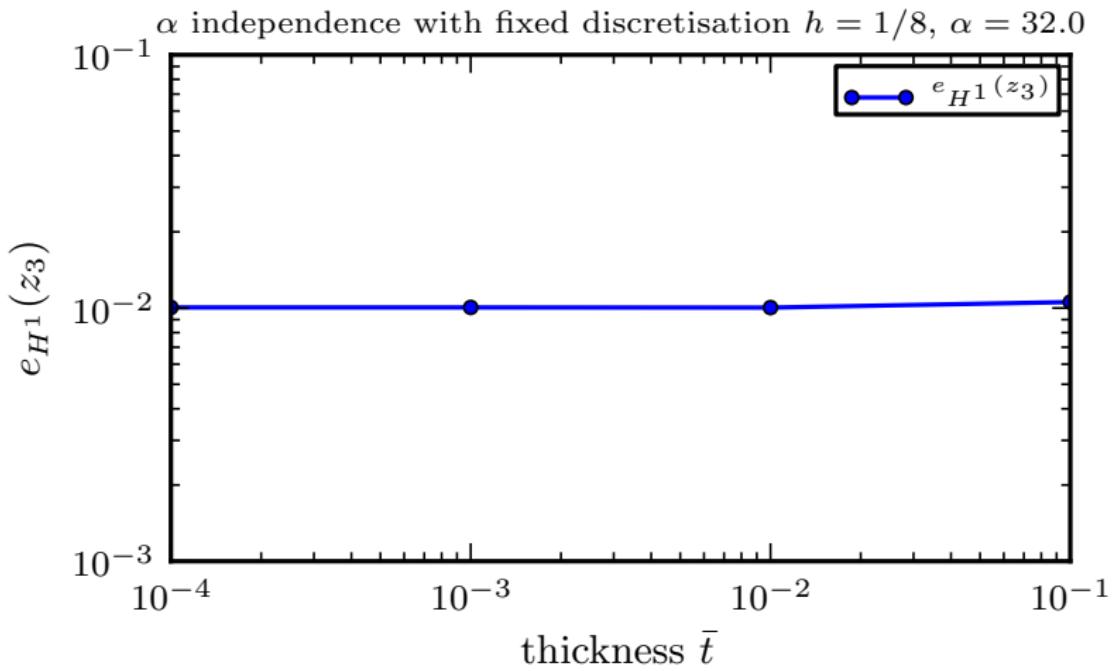
$$(\nabla z_3 - \theta; \psi)_{L^2} - \frac{\bar{t}^2}{\lambda} (\gamma; \psi)_{L^2} = 0 \quad (8b)$$

### Stabilised Mixed Weak Form (Brezzi and Arnold 1993, Boffi and Lovadina 1997)

$$a_b(\theta; \eta) + \lambda \alpha a_s(\theta, z_3; \eta, y_3) + (\gamma; \nabla y_3 - \eta)_{L^2} = f(y_3) \quad (9a)$$

$$(\nabla z_3 - \theta, \psi)_{L^2} - \frac{\bar{t}^2}{\lambda(1 - \alpha \bar{t}^2)} (\gamma; \psi)_{L^2} = 0 \quad (9b)$$

$\alpha$  independence

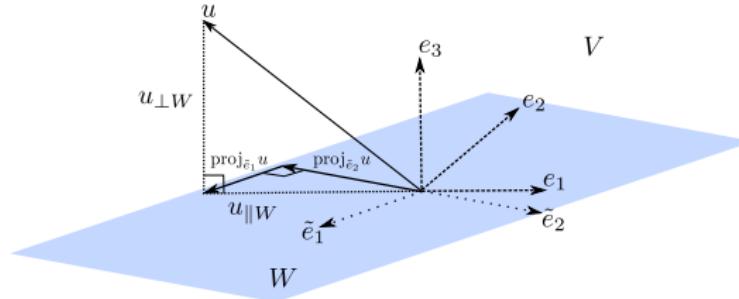


## Eliminating the Stress Unknowns

- ▶ Find a (cheap) way of eliminating the extra unknowns associated with the shear-stress variables

$$\gamma_h = \frac{\lambda(1 - \alpha \bar{t}^2)}{\bar{t}^2} \Pi_h(\nabla z_{3h} - \theta_h, \psi_h) \quad (10)$$

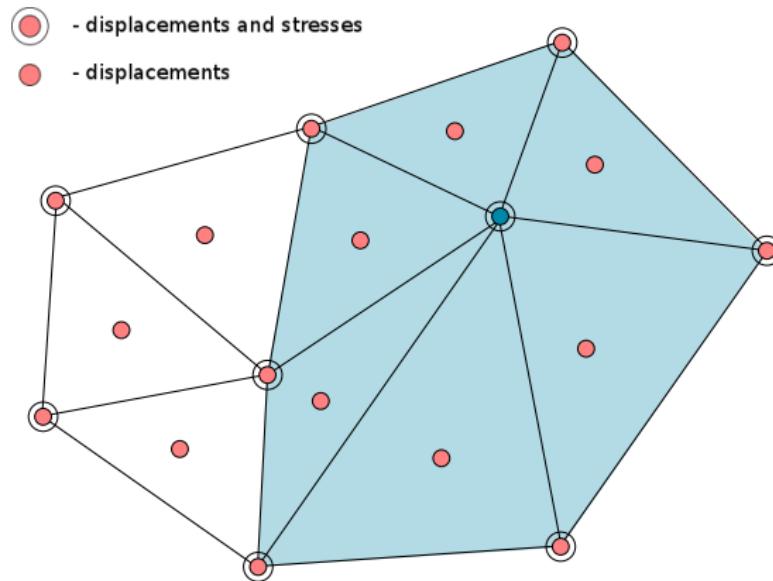
Figure : The Projection  $\Pi_h$  represents a softening of the energy associated with the shear term



## Eliminating the Stress Unknowns

- ▶ We use a version of a technique proposed by Ortiz, Puso and Sukumar for the Incompressible-Elasticity/Stokes' flow problem which they call the “Volume-Averaged Nodal Pressure” technique.
- ▶ A more general name might be the “Local Patch Projection” technique.

## Eliminating the Stress Unknowns



## Eliminating the Stress Unknowns

For one component of shear (for simplicity):

$$(z_{3,x} - \theta_1, \psi_{13})_{L^2} - \frac{\bar{t}^2}{\lambda(1 - \alpha\bar{t}^2)} (\gamma_{13}; \psi_{13})_{L^2} = 0 \quad (11)$$

Substitute in meshfree and FE basis, perform row-sum (mass-lumping) and rearrange to give nodal shear unknown for a node  $a$ . Integration is performed over local domain  $\Omega_a$ :

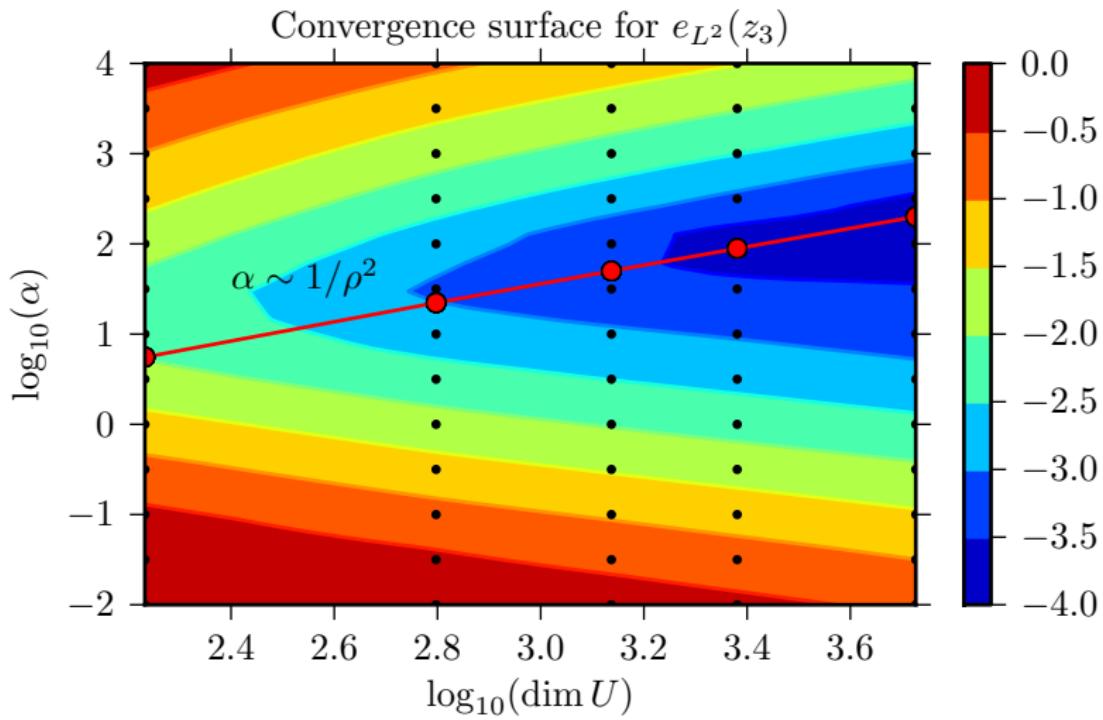
$$\gamma_{13a} = \sum_{i=1}^N \frac{\int_{\Omega_a} N_a \{-\phi_i \quad \phi_{i,x}\} \ d\Omega}{\int_{\Omega_a} N_a \ d\Omega} \begin{Bmatrix} \phi_i \\ z_{3i} \end{Bmatrix} \quad (12)$$

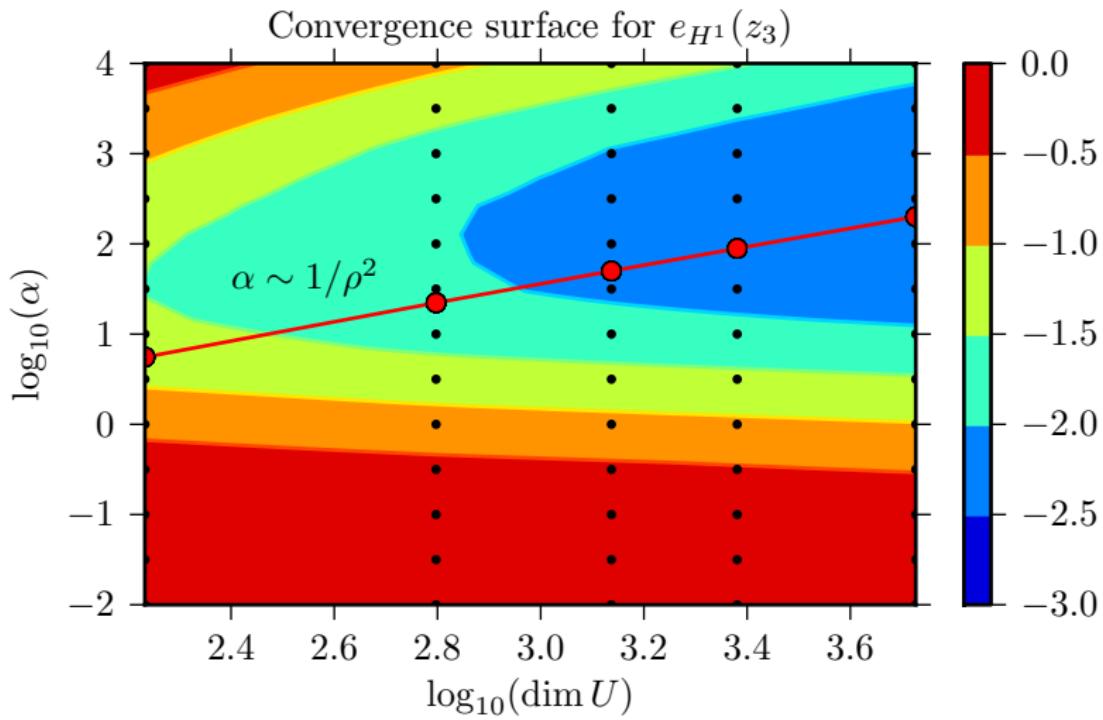
## Choosing $\alpha$

The *dimensionally consistent* choice for  $\alpha$  is  $\text{length}^{-2}$ . In the FE literature typically this parameter has been chosen as either  $h^{-1}$  or  $h^{-2}$  where  $h$  is the local mesh size.

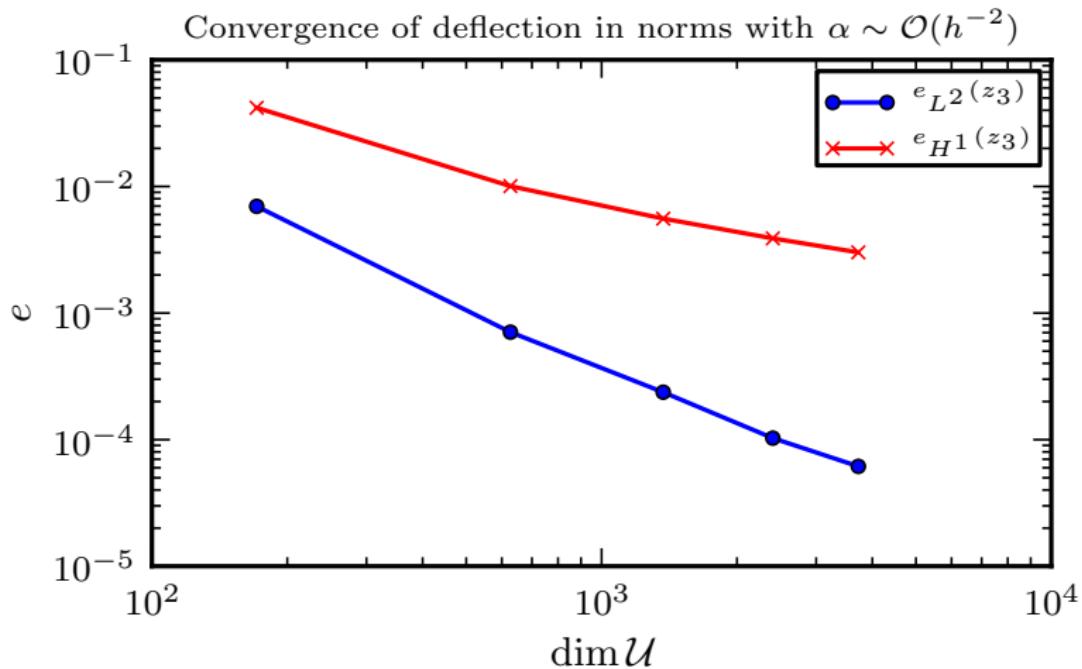
### Meshless methods

A sensible place to start would be  $\rho^{-2}$  where  $\rho$  is the local support size.





## Results - Convergence



## Results - Surface Plots

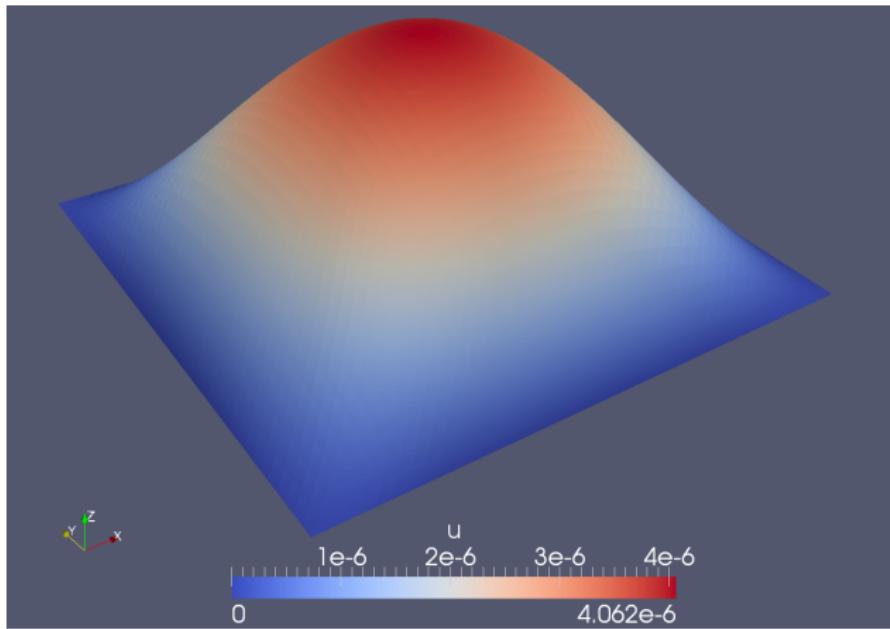


Figure : Displacement  $z_{3h}$  of SSSS plate on  $12 \times 12$  node field + 'bubbles',  $t = 10^{-4}$ ,  $\alpha = 120$

## Results - Surface Plots

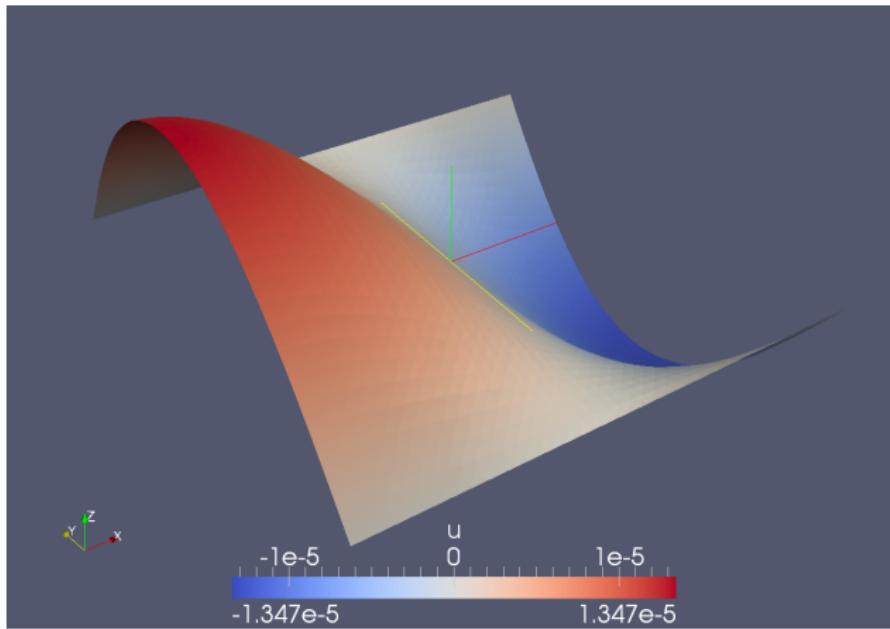


Figure : Rotation component  $\theta_1$  of SSSS plate on  $12 \times 12$  node field + 'bubbles',  $t = 10^{-4}$ ,  $\alpha = 120$

## Summary

A method:

- ▶ using (but not limited to) Maximum-Entropy basis functions for the Reissner-Mindlin plate problem that is *free of shear-locking*
- ▶ based on a stabilised mixed weak form
- ▶ where secondary stress are eliminated from the system of equations *a priori* using “Local Patch Projection” technique

Possible future work:

- ▶ Extension to Naghdi Shell model
- ▶ Investigate locking-free PUM enriched methods

Thanks for listening.

## LBB Stability Conditions

### Theorem (LBB Stability)

*The discretised mixed problem is uniquely solvable if there exists two positive constants  $\alpha_h$  and  $\beta_h$  such that:*

$$a_b(\eta_h; \eta_h) \geq \alpha_h \|\eta_h\|_{\mathcal{R}_h}^2 \quad \forall \eta_h \in \mathcal{K}_h \quad (13a)$$

$$\inf_{\psi_h \in \mathcal{S}_h} \sup_{(\eta_h, y_{3h}) \in (\mathcal{R}_h \times \mathcal{V}_{3h})} \frac{((\nabla y_{3h} - \eta_h), \psi_h)_{L^2}}{(\|\eta_h\|_{\mathcal{R}_h} + \|y_{3h}\|_{\mathcal{V}_{3h}}) \|\psi_h\|_{\mathcal{S}'_h}} \geq \beta_h \quad (13b)$$

## LBB Stability Conditions

### The Problem

- ▶ To satisfy the second condition 13b make displacement spaces  $\mathcal{R}_h \times \mathcal{V}_{3h}$  'rich' with respect to the shear space  $\mathcal{S}_h$
- ▶ If  $\mathcal{R}_h \times \mathcal{V}_{3h}$  is too 'rich' then the first condition 13a may fail as  $\mathcal{K}_h$  grows.
- ▶ *Balancing these two competing requirements makes the design of a stable formulation difficult.*