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Introduction

Aim of the research project

Develop a meshless method for the simulation of Reissner-Mindlin
plates that is free of shear locking.

Figure : 6th free vibration mode of SSSS plate
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Existing Approaches (FE and Meshless)

I Reduced Integration (Many authors)

I Assumed Natural Strains (ANS) (eg. MITC elements, Bathe)

I Enhanced Assumed Strains (EAS) (Hughes, Simo etc.)

I Discrete Shear Gap Method (DSG) (Bletzinger, Bischoff, Ramm)

I Smoothed Conforming Nodal Integration (SCNI) (Wang and Chen)

I Matching Fields Method (Donning and Liu)

I Direct Application of Mixed Methods (Hale and Baiz)

The Connection
Many of these methods are based on, or have been shown to be
equivalent to, mixed variational methods.
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Key Features of the Method

Weak Form

Design is based upon on a Stabilised Mixed Weak Form, like many
successful approaches in the Finite Element literature.

Stabilised Mixed Weak Form (Brezzi and Arnold 1993, Boffi
and Lovadina 1997)

ab(θ; η) + λαas(θ, z3; η, y3) + (γ,∇y3 − η)L2 = f (y3) (1a)

(∇z3 − θ, ψ)L2 − t̄2

λ(1− αt̄2)
(γ;ψ)L2 = 0 (1b)
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Key Features of the Method

Basis Functions

Uses (but is not limited to!) Maximum-Entropy Basis Functions
which have a weak Kronecker-delta property. On convex node sets
boundary conditions can be imposed directly.
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Key Features of the Method

Localised Projection Operator

Shear Stresses are eliminated on the ‘patch’ level using a localised
projection operator which leaves a final system of equations in the
displacement unknowns only.
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The Reissner-Mindlin Problem
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The Reissner-Mindlin Problem

Displacement Weak Form

Find (z3, θ) ∈ (V3 ×R) such that for all (y3, η) ∈ (V3 ×R):∫
Ω0

Lε(θ) : ε(η) dΩ + λt̄−2

∫
Ω0

(∇z3 − θ) · (∇y3 − η) dΩ

=

∫
Ω0

gy3 dΩ

(2)

or:
ab(θ; η) + λt̄−2as(θ, z3; η, y3) = f (y3) (3)

Locking Problem

Whilst this problem is always stable, it is poorly behaved in the
thin-plate limit t̄ → 0
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Shear Locking
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Shear Locking

The Problem

Inability of the basis functions to represent the limiting Kirchhoff
mode

∇z3 − η = 0 (4)

A solution?

Move to a mixed weak form
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Mixed Weak Form
Treat the shear stresses as an independent variational quantity:

γ = λt̄−2(∇z3 − θ) ∈ S (5)

Mixed Weak Form

Find (z3, θ, γ) ∈ (V3 ×R×S) such that for all (y3, η, ψ) ∈ (V3 ×R×S):

ab(θ; η) + (γ;∇y3 − η)L2 = f (y3) (6a)

(∇z3 − θ;ψ)L2 − t̄2

λ
(γ;ψ)L2 = 0 (6b)

Stability Problem

Whilst this problem is well-posed in the thin-plate limit, ensuring
stability is no longer straightforward
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Stabilised Mixed Weak Form

Displacement Formulation

Locking as t̄ → 0

Mixed Formulation

Not necessarily stable

Solution

Combine the displacement and mixed formulation to retain the
advantageous properties of both
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Stabilised Mixed Weak Form
Split the discrete shear term with a parameter 0 < α < t̄−2 that is
independent of the plate thickness:

as = αadisplacement + (t̄−2 − α)amixed (7)
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Stabilised Mixed Weak Form

Mixed Weak Form

Find (z3, θ, γ) ∈ (V3 ×R×S) such that for all (y3, η, ψ) ∈ (V3 ×R×S):

ab(θ; η) + (γ;∇y3 − η)L2 = f (y3) (8a)

(∇z3 − θ;ψ)L2 − t̄2

λ
(γ;ψ)L2 = 0 (8b)

Stabilised Mixed Weak Form (Brezzi and Arnold 1993, Boffi
and Lovadina 1997)

ab(θ; η) + λαas(θ, z3; η, y3) + (γ,∇y3 − η)L2 = f (y3) (9a)

(∇z3 − θ, ψ)L2 − t̄2

λ(1− αt̄2)
(γ;ψ)L2 = 0 (9b)
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α independence
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Eliminating the Stress Unknowns

I Find a (cheap) way of eliminating the extra unknowns
associated with the shear-stress variables

γh =
λ(1− αt̄2)

t̄2
Πh(∇z3h − θh, ψh) (10)

Figure : The Projection Πh represents a softening of the energy
associated with the shear term
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Eliminating the Stress Unknowns

I We use a version of a technique proposed by Ortiz, Puso and
Sukumar for the Incompressible-Elasticity/Stokes’ flow
problem which they call the “Volume-Averaged Nodal
Pressure” technique.

I A more general name might be the “Local Patch Projection”
technique.
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Eliminating the Stress Unknowns
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Eliminating the Stress Unknowns

For one component of shear (for simplicity):

(z3,x −θ1, ψ13)L2 − t̄2

λ(1− αt̄2)
(γ13;ψ13)L2 = 0 (11)

Substitute in meshfree and FE basis, perform row-sum
(mass-lumping) and rearrange to give nodal shear unknown for a
node a. Integration is performed over local domain Ωa:

γ13a =
N∑
i=1

∫
Ωa

Na {−φi φi ,x} dΩ∫
Ωa

Na dΩ

{
φi
z3i

}
(12)
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Choosing α

The dimensionally consistent choice for α is length−2. In the FE
literature typically this paramemeter has been chosen as either h−1

or h−2 where h is the local mesh size.

Meshless methods

A sensible place to start would be ρ−2 where ρ is the local support
size.
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Results - Convergence
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Results - Surface Plots

Figure : Displacement z3h of SSSS plate on 12× 12 node field +
‘bubbles’, t = 10−4, α = 120

J.S. Hale
Mixed MaxEnt Method for Plates - ECCOMAS 2012 24



Results - Surface Plots

Figure : Rotation component θ1 of SSSS plate on 12× 12 node field +
‘bubbles’, t = 10−4, α = 120

J.S. Hale
Mixed MaxEnt Method for Plates - ECCOMAS 2012 25



Summary

A method:

I using (but not limited to) Maximum-Entropy basis functions
for the Reissner-Mindlin plate problem that is free of
shear-locking

I based on a stabilised mixed weak form

I where secondary stress are eliminated from the system of
equations a priori using “Local Patch Projection” technique

Possible future work:

I Extension to Naghdi Shell model

I Investigate locking-free PUM enriched methods
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Thanks for listening.
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LBB Stability Conditions

Theorem (LBB Stability)

The discretised mixed problem is uniquely solvable if there exists
two positive constants αh and βh such that:

ab(ηh; ηh) ≥ αh‖ηh‖2
Rh

∀ηh ∈ Kh (13a)

inf
ψh∈Sh

sup
(ηh,y3h)∈(Rh×V3h)

((∇y3h − ηh), ψh)L2

(‖ηh‖Rh
+ ‖y3h‖V3h

)‖ψh‖S′h
≥ βh (13b)
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LBB Stability Conditions

The Problem
I To satisfy the second condition 13b make displacement spaces
Rh × V3h ‘rich’ with respect to the shear space Sh

I If Rh × V3h is too ‘rich’ then the first condition 13a may fail
as Kh grows.

I Balancing these two competing requirements makes the
design of a stable formulation difficult.
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