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ABSTRACT

Plate theories such as the Reissner-Mindlin theory have seen wide use throughout engineering practice
to simulate the mechanical response of structures that are far larger in their planar dimensions than
through their thickness [1]. Meshless methods such as the Element Free Galerkin method [2] have been
applied to the solution of the Reissner-Mindlin plate equations. Similarly to Finite Element methods,
meshless methods must be carefully designed to overcome the well-known shear locking problem.

A relatively recent development in meshless methods are Maximum-Entropy basis functions which pro-
vide a ‘weak’ Kronecker-delta property when constructed on convex node sets, amongst other advan-
tageous properties [3]. Unlike the more commonly used Moving Least-Squares approximation scheme
this allows for the direct imposition of Dirichlet boundary conditions.

We begin by recalling the normalised weak form of the Reissner-Mindlin plate problem defined on the
middle surface of the plate Ω0 [1]: Find the transverse displacements and rotations (z3,θ) ∈ V3 × R
such that for all (y3,η) ∈ V3 ×R∫

Ω0

Lϵ(θ) : ϵ(η) dΩ+ λt̄−2

∫
Ω0

(∇z3 − θ) · (∇y3 − η) dΩ =

∫
Ω0

gy3 dΩ (1a)

where ν is Poisson’s ratio, E is Young’s modulus, t̄ is the plate thickness, D = E/12(1 − ν2) is the
bending modulus, λ = Eκ/2(1+ ν) is the shear modulus and κ = 5/6 is a shear correction factor. The
operators L and ϵ are defined as:

ϵ(v) =
1

2

(
(∇v) + (∇v)T

)
L[ϵ] ≡ D [(1− ν)ϵ+ νtr(ϵ)I] (1b)

Many successful treatments of locking in the finite element literature are constructed through the appli-
cation of a mixed variational formulation. In mixed formulations the shear stress vector γ = (γxz, γyz)
is treated as an independent variable:

γ = λt̄−2(∇z3 − θ) (2)

giving the equivalent mixed problem as [1]: Find the transverse deflection, rotations and transverse
shear stresses (z3, θ, γ) ∈ (V3,R,S) such that for all (y3, η, ψ) ∈ (V3,R,S):∫

Ω0

Lϵ(θ) : ϵ(η) dΩ+

∫
Ω0

γ · (∇y3 − η) dΩ =

∫
Ω0

gy3 dΩ (3a)∫
Ω0

(∇z3 − θ) · ψ dΩ− t̄2

λ

∫
Ω0

γ ·ψ dΩ = 0 (3b)



In this work, we derive a shear-locking free meshless method using Maximum-Entropy basis functions
by considering a stabilised mixed weak form. This stabilisation is in the form of an augmented La-
grangian discussed in [4]. We split the energy from the shear bilinear form into two separate parts; one
a
(R,V3)
s calculated as usual from the displacement function spaces and a second aSs from an indepen-

dently interpolated shear strain function space [4]:

as = αa(R,V3)
s + (t̄−2 − α)aSs (4)

where 0 < α < t̄−2 is a scalar parameter with units of inverse length squared which is independent
of the plate thickness t̄. When α = 0 we recover the standard mixed formulation, and when α = t̄−2

we recover the standard displacement formulation. The effect of this stabilisation, or ‘blending’, is to
ensure the coercivity of the problem on the spaces V3h × Rh and V3h × V3h which was lost in our
original mixed problem, allowing the use of incompressible elasticity or Stokes type elements for the
Reissner-Mindlin plate problem.

Both the stabilised and standard mixed formulations are known to be well-behaved in the limiting case
as t̄ → 0, however at the cost of introducing extra degrees of freedom to representing the transverse
shear stresses into the problem. Clearly the elimination of these extra unknowns apriori to the solution
of the linear system of equations is a desirable outcome. To this end, our goal is to construct a discrete
operator Πh : (V3h,Rh) → Sh:∫

Ω0

Lϵ(θh) : ϵ(ηh) dΩ+ αλ

∫
Ω0

(∇z3h − θh) · (∇y3h − ηh) dΩ

+(t̄−2 − α)λ

∫
Ω0

Πh(∇z3h − θh) · (∇y3h − ηh) dΩ =

∫
Ω0

gy3h dΩ

(5)

eliminating the shear strain unknowns from the mixed formulation. We construct this operator using
the technique detailed in [5]; we discretise the shear strain field using Lagrangian Finite Elements (for
simplicity) and then using the elements attached to each node we calculate the volume averaged nodal
shear strain. This results in a system of equations in the original displacement unknowns only.

We show the performance of the method using common numerical examples and discuss the method’s
applicability to the more complicated asymptotic behaviours of Naghdi shells.
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