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Our Research

A meshless method for the Reissner-Mindlin plate problem that:

I is based on a sound variational principle

I is free from shear-locking

I avoids problems of previous approaches

I can be extended to the more complicated shell problem

“A locking-free meshfree method for the simulation of shear-deformable plates based on a mixed variational

formulation”, Accepted in Computer Methods in Applied Mechanics and Engineering
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Finite Elements
Of course, there are many successful approaches to the
Reissner-Mindlin problem in the Finite Element literature.

How can FE approaches inform the design of a new meshless
method?

Unifying themes with FEniCS

I Mixed variational form (robust, general)*

I Stabilisation (bubbles, parameters)*

I Reduction and projection operators to eliminate extra
unknowns (‘tricks’ become rigorous)**

*Easy with FEniCS, **Doable, but could be easier
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The Reissner-Mindlin Plate Problem
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The Kirchhoff Limit

Reissner-Mindlin Kirchhoff

γ = λt̄−2(∇z3 − θ) = 0
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Reissner-Mindlin Equations

Discrete Displacement Weak Form

Find (z3h,θh) ∈ (V3h ×Rh) such that for all (y3,η) ∈ (V3h ×Rh):∫
Ω0

Lε(θh) : ε(η) dΩ + λt̄−2
∫

Ω0
(∇z3 − θh) · (∇y3 − η) dΩ =

∫
Ω0

gy3 dΩ

or:
ab(θh; η) + λt̄−2as(θh, z3;η, y3) = f (y3)
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Find (z3h,θh) ∈ (V3h ×Rh) such that for all (y3,η) ∈ (V3h ×Rh):

...

degree = 1

V_3 = FunctionSpace(mesh , "Lagrange", degree)

R = VectorFunctionSpace(mesh , "Lagrange",

degree , dim=2)

U = MixedFunctionSpace([V_3 , R])

z_3 , theta = TrialFunctions(U)

y_3 , eta = TestFunctions(U)

...
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εij(u) := 1/2(∇u + (∇u)T )

L(εij) := D((1− ν)ε+ ν tr εI )

ab(θh,η) :=

∫
Ω0

Lε(θh) : ε(η) dΩ

...

e = lambda theta: 0.5*(grad(theta) +

grad(theta).T)

L = lambda e: D*((1 - nu)*e +

nu*tr(e)*Identity(2))

a_b = inner(L(e(theta)), e(eta))*dx

...
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as(θh, z3;η, y3) =

∫
Ω0

(∇z3 − θh) · (∇y3 − η) dΩ

...

a_s = inner(grad(z_3) - theta , grad(y_3) -

eta)*dx

...
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as(θh, z3;η, y3) =

∫
Ω0

(∇z3 − θh) · (∇y3 − η) dΩ

...
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ab(θh; η) + λt̄−2as(θh, z3h;η, y3) = f (y3)

...

a = a_b + lmbda*t**-2*a_s

f = force*y_3*dx

u_h = solve(a == f, bcs=[bc1 , bc2])

z_3h , theta_h = u_h.split ()

Done!
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Figure: Locking; Fix discretisation, decrease t̄
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Locking

Locking

Inability of the basis functions to represent the limiting Kirchhoff
mode.

Vb = {(y3,η) ∈ (V3 ×R) | ∇y3 − η = 0}

Vb ∩ Vh = {0}
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for degree in range(0,6):

V_3 = FunctionSpace(mesh , "Lagrange",

degree)

R = VectorFunctionSpace(mesh , "Lagrange",

degree , dim=2)

...
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Figure: Fix t̄, increase polynomial order p
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Figure: Fix t̄, refine mesh by decreasing h
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Error estimate

‖u − uh‖‖u − uh‖ ≤ C (Ω0, κ,E , ν)
hp

t̄
|u|

Conclusion

We can never fully eliminate locking with these approaches. It
would be better to remove the dependence on t̄ entirely.

‖u − uh‖
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Mixed Form
Treat the shear stress as an independent variational quantity:

γh = λt̄−2(∇z3h − θh) ∈ Sh

Discrete Mixed Weak Form

Find (z3h,θh,γh) ∈ (V3h,Rh,Sh) such that for all
(y3h,η,ψ) ∈ (V3h,Rh,Sh):

ab(θh;η) + (γh;∇y3 − η)L2 = f (y3)

(∇z3h − θh;ψ)L2 −
t̄2

λ
(γh;ψ)L2 = 0

J. S. Hale
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Stability

Theorem (Brezzi 1974)

The classical saddle point problem (t̄ = 0) is stable, if and only if, the following
conditions hold:

1. (Z-Ellipticity of a)(Z-Ellipticity of a) There exists a constant α ≥ 0 such that:

a(v , v) ≥ α‖v‖2
X ∀v ∈ Z

where Z is the kernel of the bilinear form b:

Z := {v ∈ X | b(v , q) = 0 ∀q ∈M}

2. (inf-sup condition on b) The bilinear form b satisfies an inf-sup condition:

inf
q∈M

sup
v∈X

b(v , q)

‖v‖X‖q‖M
= β > 0

...

(Z-Ellipticity of a)
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Displacement Formulation

Locking as t̄ → 0

Mixed Formulation

Not necessarily stable

Solution

Combine the displacement and mixed formulation to retain the
advantageous properties of both
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as = αadisplacement + (t̄−2 − α)amixed

Displacement

Mixed
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Stabilised Mixed Weak Form

Discrete Mixed Weak Form

ab(θh;η) + (γh;∇y3 − η)L2 = f (y3)

(∇z3h − θh;ψ)L2 −
t̄2

λ
(γh;ψ)L2 = 0

Stabilised Mixed Weak Form (Brezzi and Arnold 1993, Boffi
and Lovadina 1997)

ab(θ; η) + λαas(θ, z3; η, y3) + (γ,∇y3 − η)L2 = f (y3)

(∇z3 − θ, ψ)L2 − t̄2

λ(1−αt̄2)
(γ;ψ)L2 = 0
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Stability revisited

Theorem (Brezzi 1974)

The classical saddle point problem (t̄ = 0) is stable, if and only if, the following
conditions hold:

1. (Z-Ellipticity of a)(Z-Ellipticity of a) There exists a constant α ≥ 0 such that:

a(v , v) ≥ α‖v‖2
X ∀v ∈ Z

where Z is the kernel of the bilinear form b:

Z := {v ∈ X | b(v , q) = 0 ∀q ∈M}

2. (inf-sup condition on b) The bilinear form b satisfies an inf-sup condition:

inf
q∈M

sup
v∈X

b(v , q)

‖v‖X‖q‖M
= β > 0

...

(Z-Ellipticity of a)
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...

S = VectorFunctionSpace(mesh , "DG", 0, dim=2)

...

gamma = TrialFunction(S)

psi = TestFunction(S)

...

a = a_b + alpha*lmbda*a_s + inner(gamma ,

grad(y_3) - eta) + inner(grad(z_3) -

theta , psi) - t**2/(lmbda*(1.0 -

alpha*t**2))*inner(gamma , psi)

...
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Convergence in z3h for varying α
with t = 10−3, h = 1/8
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Figure: Various elements, Fix h, vary α.
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Figure: TRIA0220 element. Fix h, vary α.
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h = CellSize(mesh)

alpha = h**(-2.0)*constant
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TRIA0220. Convergence of z3h in H1 norm
Varying α recipes and t = 10−3
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Figure: Trying different α recipes; convergence can be improved
(Lovadina)
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Conclusions

I The FEniCS project allows for rapid testing of different Finite
Element strategies.

I ∼ 400 lines of code; Displacement, Mixed, Projections, Errors,
Command Line Interface, Output Results etc.

I The stabilisation parameter α should be chosen based on
some local discretisation dependent length measure.

I Convergence rates can even be improved by a ‘good’ choice of
α

I Based on these results, we have designed a novel meshfree
method based on a stabilised weak form with a Local Patch
Projection technique to eliminate the shear-stress unknowns a
priori
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Thanks for listening.
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