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Meshless numerical methods

What's the difference with Finite Element Methods?

Well, of course, there is no mesh. But really, at least from a mathematical
perspective, there is very little difference between a mesh-based and a
mesh-less numerical method.
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Meshless numerical methods

What's the difference with Finite Element Methods?

Well, of course, there is no mesh. But really, at least from a mathematical
perspective, there is very little difference between a mesh-based and a
mesh-less numerical method.

Theorem (Partition of Unity, Babuska and Melenk 1993)

> hi=1 )

A\
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Meshless numerical methods

So, meshless methods just use different techniques to construct the
Partition of Unity, or basis, to approximate the functions within the domain.

Figure : Domain
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Meshless numerical methods

So, meshless methods just use different techniques to construct the
Partition of Unity, or basis, to approximate the functions within the domain.

Figure : Seed with nodes
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Meshless numerical methods

So, meshless methods just use different techniques to construct the
Partition of Unity, or basis, to approximate the functions within the domain.

Figure : Mesh
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Meshless numerical methods

So, meshless methods just use different techniques to construct the
Partition of Unity, or basis, to approximate the functions within the domain.

Reference

F

Mesh

Figure : Construct basis
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Meshless numerical methods

So, meshless methods just use different techniques to construct the
Partition of Unity, or basis, to approximate the functions within the domain.

Figure : Support defined by mesh
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Meshless numerical methods

So, meshless methods just use different techniques to construct the
Partition of Unity, or basis, to approximate the functions within the domain.

Figure : Meshless; support no longer defined by mesh
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Meshless numerical methods

So, meshless methods just use different techniques to construct the
Partition of Unity, or basis, to approximate the functions within the domain.

Figure : Give a node a support area
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Meshless numerical methods

So, meshless methods just use different techniques to construct the
Partition of Unity, or basis, to approximate the functions within the domain.

Figure : Give every node a support area
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Construct a meshless PU

Typically by minimisation or convex optimisation process.
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Construct a meshless PU

Typically by minimisation or convex optimisation process.

Moving Least-Squares (Shepard, Lancaster and Salkauskas)

Quadratic Weighted Least-Squares Minimisation

N
!
min Z} wilp'a — u]?
i=
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Construct a meshless PU

Typically by minimisation or convex optimisation process.

Moving Least-Squares (Shepard, Lancaster and Salkauskas)

Quadratic Weighted Least-Squares Minimisation

N
1
min Z} wilp'a — u]?
i=

V.

Maximum-Entropy (Sukumar, M. Ortiz and Arroyo)

Entropy functional maximisation

N &
m(;n ; ¢iln (;l)

\
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FE

0.0 0.2 0.4 0.6 0.8 1.0

Figure : Finite Element (P;) basis functions on unit interval
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MLS

1.0

Figure : Moving Least-Squares basis functions on unit interval
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MaxEnt

1.0

Figure : Maximum-Entropy basis functions on unit interval
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Summary

What are the key differences between a mesh-based and a mesh-less PU? I
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Summary
What are the key differences between a mesh-based and a mesh-less PU? l
Property Mesh-based Mesh-less
Space | local element + map global
Connectivity mesh support
Support | local, lower-bandwidth local, higher-bandwidth
Integration polynomial rational
Continuity C? easy, C! hard up to C*
Character interpolant approximant
Kronecker delta yes sometimes
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Solving the problem

Step 1: Begin with the weak (variational) form of your problem

Poisson Problem (Weak Form)

Find u € Vsuch thatforallv € Vwhere V = H}(Q):

/Vu-Vvdxz/fvdx
Q Q
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Solving the problem

Step 1: Begin with the weak (variational) form of your problem

Poisson Problem (Weak Form)

Find u € Vsuch thatforallv € Vwhere V = H}(Q):

/Vu-Vde:/fvdx
Q Q

Step 2: Construct a suitable Partition of Unity V), C V

Poisson Problem (Discrete Form)

Find up, € Vj, such thatforallv € Vj:

/Vuh-Vvdx:/fvdx
Q Q
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Solving the problem

Problem 1: Typically for a meshless PU we do not have V}, C V = H}(£2) so
we cannot enforce Dirichlet (essential) boundary conditions in a
straightforward manner as with finite elements
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Solving the problem

Step 3a: Modify the weak form of the problem to enforce boundary conditions
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Solving the problem

Step 3a: Modify the weak form of the problem to enforce boundary conditions

Poisson Problem (Discrete Form + Constraint)
Find (up, An) € Vi, X Wy such thatforall (v,y) € Vi, x Wy

/Vuh'Vvdx—i-/)\hvds:/fvdx
Q r Q
/uh’yds:O
r

Problem 2: More unknowns, non positive-definite matrix, possible stability
problems
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Solving the problem

Il
=
B

Step 3b: Use Maximum-Entropy basis functions V;, C V
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Solving the problem

Step 4: Substitute in trial and test basis functions

J.S. Hale

Meshless mixed methods for plates



Imperial College
London

Solving the problem

Step 4: Substitute in trial and test basis functions

Poisson Problem (Linear System Form)
Au=>=>

where

Q

@:Kﬁja
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Solving the problem

-0.2

-0.3137
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The Reissner-Mindlin Problem
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The Reissner-Mindlin Problem

Displacement Weak Form

Find (z3,0) € (V3 x R) such thatforall (y3,7) € (V3 X R):

/ Le(6) : () dOY + AF2 / (V25— 0) - (Vys — 1) dO
Qo Q0
= / gy3 dQ
Qo

ap(0; 1) + Xt *a,(0, 2351, y3) = f(13) 3

)

or:
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The Reissner-Mindlin Problem

Displacement Weak Form

Find (z3,0) € (V3 x R) such thatforall (y3,7) € (V3 X R):

/ Le(6) : () dOY + AF2 / (V25— 0) - (Vys — 1) dO
Qo Q0
= / gy3 dQ
Qo

ap(0; 1) + Xt *a,(0, 2351, y3) = f(13) 3

)

| \

Locking Problem

Whilst this problem is always stable, it is poorly behaved in the thin-plate
limitt — 0

J.S. Hale

Meshless mixed methods for plates



Imperial College

London
Cantilever Beam Problem
| L
X1
I ¢
v,E, k
vx3 P~

Figure : Cantilever Beam with Point Load
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Analytical Solution

1\/ il L*/EI
€ = — =
LV Gbts’ P

Scaling with:
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Analytical Solution

1\/ il L*/EI
€ = — =
LV Gbts’ P

Kirchhoff Theory (t = 0, thin)

Scaling with:

sla=0=3m=73
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Analytical Solution

1\/ il L*/EI
€ = — =
LV Gbts’ P

Kirchhoff Theory (t = 0, thin)

Scaling with:

= 3E Gbirl? 3

PL}? EI oL
z3(x = L) (l—l- > ) :17_(1+362)
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Analytical Solution

4~0 M AL | M T T T
—— Kirchhoff

3.5 ——  Timoshenko
3.0 F i

25 1
2.0 h

23(1’1 = L)

1.5 1

1.0
0.5 4
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Thicke =1

4.0 T T T T
—— Exact
3.5 @e—e MaxEnt N = 10

2.5 R
2.0 F R

z3

1.0 1
0.5 ]

0.0 0.2 0.4 0.6 0.8 1.0
z1
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Thine = 0.01

1.2 T T T T
—— Exact
10 a o—=0 MaxEnt N = 10
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Very thine = 0.001

1.0 T T T T

— Exact

®—@ MaxEnt N =10
0.8 i

z3

04 ]

0.2 ]

0.0 0.2 0.4 0.6 0.8 1.0
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Summary
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Table : The effect of h-refinement on the error z3;,(L) /z3(L) at the tip of the
cantilever beam using P; finite elements

N dofs e=1 e=0.1 €=0.01 €=0.001 €=0.0001

1 4 092308 0.10714  0.00120 0.00001 0.00000
10 22 099917 0.92308 0.10714 0.00120 0.00001
100 202  0.99999 0.99917  0.92308 0.10714 0.00120

1000 2002 1.00000 0.99999  0.99917 0.92308 0.10714
10000 20002 1.00000 1.00000  0.99999 0.99942 0.92292
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Table : The effect of h-refinement on the error z3;,(L) /z3(L) at the tip of the
cantilever beam using P; finite elements

N dofs e=1 e=0.1 €=0.01 €=0.001 €=0.0001

1 4 092308 0.10714  0.00120 0.00001 0.00000

10 22 099917 0.92308 0.10714 0.00120 0.00001
100 202  0.99999 0.99917  0.92308 0.10714 0.00120
1000 2002 1.00000 0.99999  0.99917 0.92308 0.10714
10000 20002 1.00000 1.00000  0.99999 0.99942 0.92292

To obtain uniform convergence with respect to € using standard methods
we must use a huge number of elements
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Shear Locking

The Problem

Inability of the basis functions to represent the limiting Kirchhoff mode

Vzz —n =0 (4)
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Shear Locking

The Problem

Inability of the basis functions to represent the limiting Kirchhoff mode

Vzz —n =0 (4)

Move to a mixed weak form I
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Mixed Weak Form
Treat the shear stresses as an independent variational quantity:
y=A%Vz-0)eS (5)

Mixed Weak Form

Find (z3,6,7) € (V3 x R X 8) such thatforall (y3,7,7%) € (V3 Xx R x S):

ap(0;m) + (v; Vys — )z = fly3) (6a)

[

Ly =0 (6b)

(Vzz — 0;9)2 — 5y

J.S. Hale
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Mixed Weak Form
Treat the shear stresses as an independent variational quantity:
y=A%Vz-0)eS (5)

Mixed Weak Form

Find (z3,6,7) € (Vs x R x S) such thatforall (y3,7,%) € (V3 X R X S):

ap(0;m) + (v; Vys — )z = fly3) (6a)

2
(Vzz — 0;9)2 — X(’)’Q Y)p =0 (6b)

Stability Problem

Whilst this problem is well-posed in the thin-plate limit, ensuring stability is
no longer straightforward
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Stabilised Mixed Weak Form

Displacement Formulation Mixed Formulation
Lockingast — 0 Not necessarily stable
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Stabilised Mixed Weak Form

Displacement Formulation Mixed Formulation
Lockingast — 0 Not necessarily stable

Combine the displacement and mixed formulation to retain the
advantageous properties of both

ss mixed methods for plates
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Stabilised Mixed Weak Form

Split the discrete shear term with a parameter 0 < o < £~ 2 that is
independent of the plate thickness:

Displacement

Mixed

Shear Energy

a; = adisplacement + 672 . Oé) amixed

J.S. Hale
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Stabilised Mixed Weak Form

Mixed Weak Form

Find (z3,6,7) € (V3 x R X 8) such thatforall (y3,7,7%) € (V3 Xx R x S):

ap(0;m) + (v; Vys = )2 = fy3) (8a)

7
(Vzs — 0;9)2 — X(’Y; V) =0 (8b)

Stabilised Mixed Weak Form (Brezzi and Arnold 1993, Boffi and

Lovadina 1997)
ap(0;m) + Aaas(0, 23,1, y3) + (7, Vys —n)z = flys) (%)

(VZ3 — 9) w)LZ — ?2

m(% V)2 =0 (9b)

J.S. Hale
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Stabilised Mixed Weak Form

Mixed Weak Form

Find (z3,6,7) € (V3 x R X 8) such thatforall (y3,7,7%) € (V3 Xx R x S):

ap(0;m) + (v; Vys = )2 = fy3) (8a)

7
(Vzs — 0;9)2 — X(’Y; V) =0 (8b)

Stabilised Mixed Weak Form (Brezzi and Arnold 1993, Boffi and

Lovadina 1997)
ap(0;m) + Aaag(0, 2351, y3) + (7, Vys =)z = flys) (%)

=
(VZ3 — 9) w)LZ —

m(% V)2 =0 (9b)
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Eliminating the Stress Unknowns

» Find a (cheap) way of eliminating the extra unknowns associated with
the shear-stress variables

1— af?
Vh = (t)Hh(VZM — O, ) (10)

Figure : The Projection 11}, represents a softening of the energy associated with the
shear term

uLw
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Eliminating the Stress Unknowns

» We use a version of a technique proposed by A. Ortiz, Puso and
Sukumar for the Incompressible-Elasticity/Stokes’ flow problem which
they call the “Volume-Averaged Nodal Pressure” technique.

> A more general name might be the “Local Patch Projection” technique.
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Eliminating the Stress Unknowns

@ - displacements and stresses

@© -displacements
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Eliminating the Stress Unknowns

For one component of shear (for simplicity):

7

z3,x — 01, - ; =0 (11)
(2355 =01, 913) 12 0 _atz)(’m V132

Substitute in meshfree and FE basis, perform row-sum (mass-lumping) and
rearrange to give nodal shear unknown for a node a. Integration is

performed over local domain €;:

N Na — @i i,x s i
713a=ZfQ“ (=0 did {¢’} (12)

—1 fQu Na dQ Z3i
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Choosing «

The dimensionally consistent choice for o is length —2. In the FE literature
typically this paramemeter has been chosen as either k! or h=? where his
the local mesh size.
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Choosing «

The dimensionally consistent choice for o is length —2. In the FE literature
typically this paramemeter has been chosen as either k! or h=? where his
the local mesh size.

Meshless methods

A sensible place to start would be p~2 where p is the local support size.
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Convergence surface for eyz(z3)
| | | |
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Convergence surface for egi(z3)
| ! | | |

4 |
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Results - Convergence
) Convergence of deflection in norms with o ~ O(h™2)

101 g ————— -

E ' o—e 12(=3) |

| 3 Cpr1 (z3) ]

1072 F E

v 103 F .

1074 F E
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Results - « independence
la independence with fixed discretisation h = 1/8, a = 32.0
107+ F — T L B B B
[ I I o—e “r1(%3)
"o
I
= 1072} * o
] [
)
1073 n | n — P | i
1073 10~2 10~1

thickness ¢

J.S. Hale
Meshless mixed methods for plates




Imperial College
London

Results - Surface Plots

Se_\é\ Ll \Ae‘_é

4.062e-6

Figure : Displacement z3;, of SSSS plate on 12 X 12 node field + ‘bubbles;
t=10"* a =120
Ha
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Results - Surface Plots

Figure : Rotation component ¢, of SSSS plate on 12 X 12 node field + ‘bubbles;,
t=10"* a =120
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Summary

A method:

» using (but not limited to) Maximum-Entropy basis functions for the
Reissner-Mindlin plate problem that is free of shear-locking
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Summary

A method:

» using (but not limited to) Maximum-Entropy basis functions for the
Reissner-Mindlin plate problem that is free of shear-locking

» based on a stabilised mixed weak form
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Summary

A method:

» using (but not limited to) Maximum-Entropy basis functions for the
Reissner-Mindlin plate problem that is free of shear-locking

» based on a stabilised mixed weak form

> where secondary stress are eliminated from the system of equations a
priori using “Local Patch Projection” technique
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Summary

A method:

» using (but not limited to) Maximum-Entropy basis functions for the
Reissner-Mindlin plate problem that is free of shear-locking

» based on a stabilised mixed weak form

> where secondary stress are eliminated from the system of equations a
priori using “Local Patch Projection” technique
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