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Overview
▶ Meshless numerical methods

▶ Similarities with önite element methods
▶ Differences with önite element methods

▶ Reissner-Mindlin plate problem
▶ Physics of the problem
▶ Scaling
▶ The Kirchhoff limit

▶ Shear-locking
▶ Numerical demonstration in 1D
▶ Why does it happen?
▶ What are the potential solutions?

▶ Mixed variational form
▶ Projection Operator
▶ Stability
▶ Results
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Meshless numerical methods

.
What’s the difference with Finite Element Methods?
..

......

Well, of course, there is no mesh. But really, at least from a mathematical
perspective, there is very little difference between a mesh-based and a
mesh-less numerical method.

.
Theorem (Partition of Unity, Babuška and Melenk 1993)
..

......

∑
i

ϕi = 1 (1)
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Meshless numerical methods
So, meshless methods just use different techniques to construct the
Partition of Unity, or basis, to approximate the functions within the domain.

Figure : Domain

J. S. Hale
Meshless mixed methods for plates 4



Meshless numerical methods
So, meshless methods just use different techniques to construct the
Partition of Unity, or basis, to approximate the functions within the domain.

Figure : Seed with nodes
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Meshless numerical methods
So, meshless methods just use different techniques to construct the
Partition of Unity, or basis, to approximate the functions within the domain.

Figure : Mesh
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Meshless numerical methods
So, meshless methods just use different techniques to construct the
Partition of Unity, or basis, to approximate the functions within the domain.

Reference

Mesh

F

Figure : Construct basis
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Meshless numerical methods
So, meshless methods just use different techniques to construct the
Partition of Unity, or basis, to approximate the functions within the domain.

Figure : Support deöned bymesh
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Meshless numerical methods
So, meshless methods just use different techniques to construct the
Partition of Unity, or basis, to approximate the functions within the domain.

Figure : Meshless; support no longer deöned by mesh
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Meshless numerical methods
So, meshless methods just use different techniques to construct the
Partition of Unity, or basis, to approximate the functions within the domain.

Figure : Give a node a support area
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Meshless numerical methods
So, meshless methods just use different techniques to construct the
Partition of Unity, or basis, to approximate the functions within the domain.

Figure : Give every node a support area
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Construct a meshless PU
Typically by minimisation or convex optimisation process.

.
Moving Least-Squares (Shepard, Lancaster and Salkauskas)
..

......

Quadratic Weighted Least-Squares Minimisation

min
a

1
2

N∑
i=1

wi[pTa− ui]2

.
Maximum-Entropy (Sukumar, M. Ortiz and Arroyo)
..

......

Entropy functional maximisation

min
ϕ

N∑
i=1

ϕi ln
(
ϕi
wi

)
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FE
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Figure : Finite Element (P1) basis functions on unit interval
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MLS
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Figure : Moving Least-Squares basis functions on unit interval
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MaxEnt
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Figure : Maximum-Entropy basis functions on unit interval
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Summary

.
Question
..
......What are the key differences between a mesh-based and a mesh-less PU?

Property Mesh-based Mesh-less
Space local element + map global

Connectivity mesh support
Support local, lower-bandwidth local, higher-bandwidth

Integration polynomial rational
Continuity C0 easy, C1 hard up to C∞

Character interpolant approximant
Kronecker delta yes sometimes
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Solving the problem

Step 1: Begin with the weak (variational) form of your problem
.
Poisson Problem (Weak Form)
..

......

Find u ∈ V such that for all v ∈ VwhereV ≡ H1
0(Ω):∫

Ω
∇u · ∇v dx =

∫
Ω
fv dx

Step 2: Construct a suitable Partition of UnityVh ⊂ V
.
Poisson Problem (Discrete Form)
..

......

Find uh ∈ Vh such that for all v ∈ Vh:∫
Ω
∇uh · ∇v dx =

∫
Ω
fv dx
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Solving the problem
Problem 1: Typically for ameshless PUwe do not haveVh ⊂ V ≡ H1

0(Ω) so
we cannot enforce Dirichlet (essential) boundary conditions in a
straightforwardmanner as with önite elements

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

φ

J. S. Hale
Meshless mixed methods for plates 11



Solving the problem

Step 3a: Modify the weak form of the problem to enforce boundary conditions

.
Poisson Problem (Discrete Form + Constraint)
..

......

Find (uh, λh) ∈ Vh ×Wh such that for all (v, γ) ∈ Vh ×Wh:∫
Ω
∇uh · ∇v dx+

∫
Γ
λhv ds =

∫
Ω
fv dx∫

Γ
uhγ ds = 0

Problem 2: More unknowns, non positive-deönite matrix, possible stability
problems
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Solving the problem

Step 3b: UseMaximum-Entropy basis functionsVh ⊂ V ≡ H1
0(Ω)
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Solving the problem

Step 4: Substitute in trial and test basis functions

.
Poisson Problem (Linear System Form)
..

......

Au = b

where

Aij =

∫
Ω
∇ϕi · ∇ϕj dx

bi =
∫
Ω
ϕi f dx
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Solving the problem
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The Reissner-Mindlin Problem
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The Reissner-Mindlin Problem
.
Displacement Weak Form
..

......

Find (z3, θ) ∈ (V3 ×R) such that for all (y3, η) ∈ (V3 ×R):∫
Ω0

Lϵ(θ) : ϵ(η) dΩ+ λ̄t−2
∫
Ω0

(∇z3 − θ) · (∇y3 − η) dΩ

=

∫
Ω0

gy3 dΩ
(2)

or:
ab(θ; η) + λ̄t−2as(θ, z3; η, y3) = f(y3) (3)

.
Locking Problem
..

......
Whilst this problem is always stable, it is poorly behaved in the thin-plate
limit t̄ → 0
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Cantilever Beam Problem

Figure : Cantilever Beam with Point Load

J. S. Hale
Meshless mixed methods for plates 18



Analytical Solution

Scaling with:

ϵ =
1
L

√
EI

Gbtκ
, p̃ = L2/EI

.
Kirchhoff Theory (t = 0, thin)
..

......
z3(x1 = L) =

PL3

3EI
=

p̃L
3

.
Timoshenko Theory (t ≥ 0, thin through moderately thick)
..

......
z3(x1 = L) =

PL3

3EI

(
1+

3EI
GbtκL2

)
=

p̃L
3

(
1+ 3ϵ2

)
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Analytical Solution
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Thick ϵ = 1
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Thin ϵ = 0.01
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Very thin ϵ = 0.001
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Summary
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Table : The effect of h-reönement on the error z3h(L)/z3(L) at the tip of the
cantilever beam using P1 önite elements

N dofs ϵ = 1 ϵ = 0.1 ϵ = 0.01 ϵ = 0.001 ϵ = 0.0001

1 4 0.92308 0.10714 0.00120 0.00001 0.00000
10 22 0.99917 0.92308 0.10714 0.00120 0.00001
100 202 0.99999 0.99917 0.92308 0.10714 0.00120
1000 2002 1.00000 0.99999 0.99917 0.92308 0.10714
10000 20002 1.00000 1.00000 0.99999 0.99942 0.92292

.
Conclusion
..

......

To obtain uniform convergence with respect to ϵ using standard methods
we must use a huge number of elements
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Shear Locking

.
The Problem
..

......

Inability of the basis functions to represent the limiting Kirchhoff mode

∇z3 − η = 0 (4)

.
A solution?
..
......Move to a mixed weak form
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Mixed Weak Form
Treat the shear stresses as an independent variational quantity:

γ = λ̄t−2(∇z3 − θ) ∈ S (5)

.
Mixed Weak Form
..

......

Find (z3, θ, γ) ∈ (V3 ×R× S) such that for all (y3, η, ψ) ∈ (V3 ×R× S):

ab(θ; η) + (γ;∇y3 − η)L2 = f(y3) (6a)

(∇z3 − θ;ψ)L2 −
t̄2

λ
(γ;ψ)L2 = 0 (6b)

.
Stability Problem
..

......

Whilst this problem is well-posed in the thin-plate limit, ensuring stability is
no longer straightforward
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Stabilised Mixed Weak Form

.
Displacement Formulation
..
......Locking as t̄ → 0

.
Mixed Formulation
..
......Not necessarily stable

.
Solution
..

......

Combine the displacement and mixed formulation to retain the
advantageous properties of both
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Stabilised Mixed Weak Form
Split the discrete shear term with a parameter 0 < α < t̄−2 that is
independent of the plate thickness:

as = αadisplacement + (̄t−2 − α)amixed (7)
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Stabilised Mixed Weak Form
.
Mixed Weak Form
..

......

Find (z3, θ, γ) ∈ (V3 ×R× S) such that for all (y3, η, ψ) ∈ (V3 ×R× S):

ab(θ; η) + (γ;∇y3 − η)L2 = f(y3) (8a)

(∇z3 − θ;ψ)L2 −
t̄2

λ
(γ;ψ)L2 = 0 (8b)

.
Stabilised Mixed Weak Form (Brezzi and Arnold 1993, Boffi and
Lovadina 1997)
..

......

ab(θ; η) + λαas(θ, z3; η, y3) + (γ,∇y3 − η)L2 = f(y3) (9a)

(∇z3 − θ, ψ)L2 −
t̄2

λ(1− ᾱt2)
(γ;ψ)L2 = 0 (9b)
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Eliminating the Stress Unknowns

▶ Find a (cheap) way of eliminating the extra unknowns associated with
the shear-stress variables

γh =
λ(1− ᾱt2)

t̄2
Πh(∇z3h − θh, ψh) (10)

Figure : The ProjectionΠh represents a softening of the energy associated with the
shear term
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Eliminating the Stress Unknowns

▶ We use a version of a technique proposed by A. Ortiz, Puso and
Sukumar for the Incompressible-Elasticity/Stokes’ øow problem which
they call the “Volume-Averaged Nodal Pressure” technique.

▶ A more general name might be the “Local Patch Projection” technique.
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Eliminating the Stress Unknowns
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Eliminating the Stress Unknowns

For one component of shear (for simplicity):

(z3,x−θ1, ψ13)L2 −
t̄2

λ(1− ᾱt2)
(γ13;ψ13)L2 = 0 (11)

Substitute in meshfree and FE basis, perform row-sum (mass-lumping) and
rearrange to give nodal shear unknown for a node a. Integration is
performed over local domainΩa:

γ13a =

N∑
i=1

∫
Ωa

Na {−ϕi ϕi,x} dΩ∫
Ωa

Na dΩ

{
ϕi
z3i

}
(12)
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Choosing α

The dimensionally consistent choice forα is length−2. In the FE literature
typically this paramemeter has been chosen as either h−1 or h−2 where h is
the local mesh size.

.
Meshless methods
..
......A sensible place to start would be ρ−2 where ρ is the local support size.
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Results - Convergence
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Results - α independence
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Results - Surface Plots

Figure : Displacement z3h of SSSS plate on 12× 12 node öeld + ‘bubbles’,
t = 10−4,α = 120
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Results - Surface Plots

Figure : Rotation component θ1 of SSSS plate on 12× 12 node öeld + ‘bubbles’,
t = 10−4,α = 120
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Summary

A method:

▶ using (but not limited to) Maximum-Entropy basis functions for the
Reissner-Mindlin plate problem that is free of shear-locking

▶ based on a stabilised mixed weak form

▶ where secondary stress are eliminated from the system of equations a
priori using “Local Patch Projection” technique
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