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Abstract

In this lecture course I present the idea of symmetries (of physical systems,
mathematical systems, systems in nature, ...) and try to show how it is related
to groups, Lie algebras and all such things. In particular, it is shown how the
existence of symmetries will help to understand and analyze such systems
better. In a first part I deal with finite-dimensional systems, finite groups
and Lie groups. In the second part I consider infinite dimensional systems,
like they appear in the context of partial differential equations, e.g. for the
Korteweg – de Vries equation, and in Conformal Field Theory. In this situation
infinite dimensional Lie algebras play a crucial role. Beside others I introduce
the Witt algebra and its central extensions the Virasoro algebra. It is shown that
the need to introduce central extension is very typical for infinite dimensional
situations. In this case one is often forced to regularize an action and this
forces us to consider central extensions. It is exemplified for the semi-infinite
wedge representation, also known as fermionic Fock space representation, and
for the Sugawara construction for affine Lie algebra representations. I close
with some remarks on Krichever - Novikov type algebras.
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1 Introduction

Most people who observe an object, a picture, or a situation which has a certain
kind of symmetries feel esthetically pleased. But there is more than this esthetic
aspect. Objects with symmetries make feel people more comfortable compared
to objects without any ordering structure which helps to understand the object
better. We might guess that both aspects are related.

It is undeniable that symmetries make life simpler. For example, to describe
to somebody the set in three-dimensional space given by the points lying on the
surface S of a ball B, it is enough to tell him what is the center point c ∈ R3 of the
ball, the radius r, and finally telling him that the object is rotational symmetric.
Meaning, if x ∈ S and R is any rotation with center c, then Rx also lies on S. Of
course, he needs to understand what a rotation is. In this case the situation is even
as optimal as it could be. It is enough just to give one point y on S, i.e. one point
y with

∥∥∥y − c
∥∥∥ = r and all other points will be given by rotating this point. From

the point of view of pure symmetry the situation for the full ball is the same. In
contrast to the sphere one point is not enough to “generate” all points.

Such kind of symmetries are quite often described with the help of groups.
Depending on the situation we have finite groups, infinite groups, discrete groups,
continuous groups, Lie groups, ... There are more general symmetries of relevance,
which have to be described by more general objects. Examples of such objects
are Hopf algebras, quantum groups, and group like categorical objects. We
will not consider them here. In fact in the main part of the lecture we will not
even discuss groups so much, but will talk more about Lie algebras. To every
finite-dimensional Lie group (see the definition below - it is a special case of a
continuous group - all rotations around a fixed center in R3 gives an example) one
can assign a finite-dimensional Lie algebra (also defined below). The Lie algebra
is in a certain sense the infinitesimal object. For example for the group of rotation
in R3 around the origin, denoted by SO(3), the Lie algebra is the vector space of
3× 3 skew-symmetric matrices.

In a Lie group the operation can be very non-linear, in the Lie algebra the
operation is linearized. Every action of a Lie group on a set induces a linearized
action of the Lie algebra. Very often the latter is more easy to treat with.

We will go even one step further. We will consider infinite-dimensional sys-
tems. As symmetries infinite dimensional Lie algebras show up. This will be
the main part of the lecture. But nevertheless I will start by discussing some
examples for the group and finite situation.

Let me close the introduction by making some remark on the style of this
write-up. The presented lecture was not intended to be complete in any respect.
It should make appetite to learn more in the field. At certain parts it was quite
informal. I was trying to keep this idea in this write-up. In particular, I decided
to stay short and not to add additional material to it, beyond that what I prepared
for the lecture. Anyway writing one single book would not suffice, for a complete
treatment of all the aspects touched here. Also references to literature are given
rather erratic.

Finally, let me thank the organisers of the summer school for doing this great
job to collect every summer quite a number of extremely interested and motivated
university and high school students. Moreover, I like to thank the participants,
for their lively feed back.
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2 Groups

I assume that most of the readers know the definition of a group. Nevertheless
for completeness let me just repeat it.

Definition 1. A group (G, ·) consists of a set G and a map (called the product)

· : G ×G→ G, (x,y) 7→ x · y (1)

such that

1. the product · is associative, i.e. ∀x,y,z ∈ G : (x · y) · z = x · (y · z),
2. there exists an element e ∈ G, such that ∀x ∈ G : e · x = x · e = x,
3. for every element x ∈ G there exists an element in G, denoted by x−1 such

that x · x−1 = x−1 · x = e.

The element e is called the neutral element. One easily shows that there is
only one such element. The element x−1 is called the inverse element to x. Again
it is uniquely given for x.

Those readers for which this is new, should spend some minutes in reflecting
that the set of rotations in 3-dimensional space R3 with a fixed point c as center
with product given by the composition of the rotations is indeed a group. In
this description one usually denotes it by (Rot(c), ·). Maybe, you are more used
to another description: After choosing a orthonormal basis in R3 with respect
to the standard scalar product, the rotations around the point 0 ∈ R3 can be
exactly described as the set of orthogonal matrices with determinant equal to one.
The composition of the rotations corresponds to matrix multiplication. In this
description the group is denoted by SO(3).

2.1 Platonic solids.

Let us consider convex bounded subset of R3. If we translate the situation by
a shift we do not change much. Also an overall rescaling is of no importance.
Hence, if we understand the situation with respect to the origin 0 we have the
complete picture.

In a certain sense the ball BB {x ∈ R3 | ‖x‖ ≤ 1} is the most symmetric object
of the type we are looking for. To make this more precise, let us define for any
subset X of R3

Sym(X)B {A ∈ SO(3) | ∀x ∈ X : Ax ∈ X}. (2)

In this definition we do neither include reflections nor translations. Obviously,
Sym(B) = SO(3). Moreover, if we require that X is bounded and convex, then B is
the only set which has as symmetry group the full SO(3).

There are other such sets X which look still very symmetric. These are the
five platonic solids (polyhedrons). They are regular convex polyhedron. Regular
means that the faces are congruent regular polygons, with the same number
of faces meeting at each vertex. In fact the polyhedrons of Figure 1 are the
only examples: the tetrahedron T etra, the octahedron Octo, the cube Cube, the
icosahedron Icosa and the dodecahedron Dodeca.

The symmetry groups of these polyhedrons do not coincide with the full SO(3).
They are related to very interesting subgroups of it. In fact, for every subset X
of R3 the symmetry group will always be a subgroup of SO(3). In the extreme
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Figure 1: The five platonic solids.

case the subgroup will be the trivial subgroup. Meaning that X does not have any
symmetry at all. The larger the subgroup is the more symmetric X is.

The symmetry groups of the platonic solids are quite interesting

Sym(T etra) = T � A4, #T = 12,
Sym(Octo) = Sym(Cube) =O � S4, #O = 24

Sym(Icosa) = Sym(Dodeca) = I � A5, #I = 60
(3)

Here Sn is the symmetric group, consisting of the permutations of n elements,
and An is the alternating group of n elements, i.e. the subgroup of Sn consisting
of even permutations.

That both the octahedron and the cube and both the icosahedron and the
dodecahedron respectively, have the same symmetry group has to do with the fact,
that these pairs are dual to each others, meaning if one takes the middle points of
the faces of the polyhedron as vertices of another polyhedron one obtains just the
other element of the pair. Note that the tetrahedron is self-dual.

2.2 Crystals

Whereas above we considered bounded subsets of R3 we want to have a look on
mathematical crystals. Mathematical crystals are discrete subsets of R3 (called a
crystal lattice) which are invariant under a three-dimensional lattice of transla-
tions. Meaning there is a fundamental cell containing all informations and this
fundamental cell is replicated in all three spacial directions, see Figure 2 for the
two-dimensional situation.

Of course, real crystals are always cut in a finite region in the space. Let us
look on possible symmetries of a mathematical crystal. The lattice is by the very
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Figure 2: A two-dimensional crystal lattice.

definition a symmetry of the (mathematical) crystal. Which kind of lattices appear
gives a coarse classification. The lattice could be an orthogonal lattice, where
the basis lengths in all 3 spacial directions are the same, it could be a hexagonal
lattice, etc. We will not discuss the complete classification here. Additionally
the crystal could have other symmetries, like rotational symmetries of certain
order around certain axes, and also reflections might be allowed. All these other
symmetries have to be compatible with the translation symmetry coming from
the lattice. A quite elementary geometric reasoning shows that only rotational
axes of order 2, 3, 4 and 6 are possible.

If one has a look on the platonic solids and their symmetries again, one sees
that both the icosahedron (and of course its dual the dodecahedron) have 5-fold
rotational symmetry which is excluded in crystals. This corresponds to the fact
that such polyhedron cannot be observed in nature as crystals. Of course, real
crystals are always cut, but the possible arrangements of faces to the outside of
the crystal is governed by the internal structure. There are certain crystals in
nature who look nearly as they would be icosahedrons, but a closer inspection
shows that they are always distorted.

Hence, it came as a big surprise that in 1984 Shechtman, Blech, Gratius,
and Cahn were able to produce an Mn-Al alloy which had a ten-fold rotational
symmetry in the refraction picture, see Figure 3, meaning a five-fold symmetry
in the habitus [19]. In fact, the alloy exhibits an icosahedral symmetry. At the
beginning some people did not believe them, but very recently in 2011 Shechtman
got the Nobel prize in Chemistry for his discovery. Of course the question is:
was the mathematics wrong. Fortunately the answer is no. What was wrong was
the understanding of physicist who only thought that there are two structures of
solid materials possible: the amorphous structure or the crystal structure in the
above introduced sense. The work of Shechtman et al. showed that there are other
structures possible. These new ones are nowadays called quasi-crystals. See e.g.
the book of Senechal [18] for more mathematical background on quasi-crystals.
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Figure 3: Refraction picture of a Mn-Al quasi-crystal [19].

3 Lie groups

The groups discussed in the previous section where either finite or infinite but
discrete (the lattice of translations). We will discuss next continuous groups,
this means groups which depend on continuous parameters. More precisely, we
restrict our attention to the following extremely important subclass.

Definition 2. A Lie group is a group (G, ·) for which G is also a differentiable
manifold, such that the product and the inversion

(x,y) 7→ x · y , x 7→ x−1 (4)

are smooth maps, meaning that they are infinitely often differentiable.

Example 3. The standard, non-trivial example is the following. Let GL(n,R) be
the set of invertible n×n real-valued matrices. If we take all square matrices then
this set can be identified with the vector space Rn·n. Hence trivially the space
of all square matrices is a differentiable manifold. Parameters are given by the
entries aij in the matrix A = (aij ). The subset GL(n,R) is given as complement of
the closed subset consisting of matrices A with det(A) = 0. Hence it is an open
subset of all matrices and as such a differentiable manifold. As group structure
we take the matrix multiplication. Let C = A ·B then

cik =
n∑

j=1

aij · bjk .

Consequently the parameters of the product are differentiable functions of the
parameters of the individual factors. For an invertible matrix A its inverse will be
given by

A−1 = 1/(det(A)) · ad.
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Here, adA is the adjugate matrix of A. Its elements are as subdeterminants
differentiable functions of the entries of A, the same is of course true for the
determinant. As the determinant is different from zero the quotient is also
differentiable with respect to the entries of A. Altogether we showed that GL(n,R)
is a (real) Lie group. The same is true for complex-valued matrices GL(n,C),
which is now also a complex Lie group.

This allows us to construct a lot of more examples. One can show that every
closed subgroup of a Lie group is again a Lie group. Next we will deal again with
the group SO(3), the (matrix) rotation group. The most conceptional definition
is the definition that its elements are invariant with respect to the standard
scalar product and do not change the orientation. This is equivalent to tA ·A = I ,
the identity matrix, and detA = 1. These conditions obviously define a closed
submanifold and a subgroup of GL(3,R). Hence SO(3) (and more generally any
SO(n)) is a Lie group. It is of dimension 3 (as real differentiable manifold).

3.1 Examples of a symmetry and its consequences

The following example is taken from the book of Schottenloher [16] which con-
tains much more examples – but unfortunately it is only available in German.

We are in R3 and let F be a central force. This means that

F : R3 \ {(0,0,0)} → R3, q 7→ F(q) = ϕ(‖q‖) q‖q‖ , with ϕ : R≥0→ R. (5)

In other words, the direction of the force F at a point q is always pointing to
or from the origin (0,0,0), and its strength depends only on the distance to the
origin. The gravitational force or the electrostatic force are examples of such
central forces. In both cases the force is given by

F(q) = −k q

‖q‖3

where in the gravitational case k is always positive, in the electrostatic case its sign
depends on the signs of the charges of the involved particles. But also oscillatory
systems are given by a central force. E.g. the ideal pendulum is described by the
central force F(q) = −k · q (even defined on all R3).

We denote by q(t) a trajectory of a particle in the central force field. The
variable t should be interpreted as time. We adopt the physicists’ convention to

denote time derivatives by q̇ = dq
dt . In this way we obtain the speed or velocity

v = q̇ as first derivative and the acceleration a = q̈ as second derivative.
Recall Newton’s law of motion

F =mq̈ =mv̇ =ma. (6)

The task is to find the trajectory q(t) starting from an initial position at time t = 0,
i.e. q(0) = q0 ∈ R3.

The important observation is that central forces are rotational symmetric,
meaning

∀A ∈ SO(3), ∀q ∈ R3 : F(A · q) = A ·F(q). (7)
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This says that it does not matter whether we rotate before evaluation of the force
or after evaluation 1. Hence, if q(t) is a solution of the equation of motion (6) then
Aq(t) is also a solution. We obtain an action of SO(3) on the set of solutions. If one
takes the initial condition into account the solution Aq(t) is a solution with initial
value Aq0. Hence, the subgroup of rotations leaving the initial vector q0 invariant
will act on the space of solution of the initial value problem. Knowing that a set
of solutions admits a group action of a certain group already gives quite a lot of
informations on the set, without knowing any of the solutions individually. This
we will explain in more detail in the following.

The angular momentum is defined as

I B q∧mv. (8)

Here ∧ stands for the vector product in R3 (Sometimes also written as ×). Recall
that the vector product of two parallel vectors will vanish. If we evaluate the
angular momentum with respect to a given solution q : [0,∞[→ R3 it will depend
(a priori) on the time t,

I(q(t)) = q(t)∧mv(t) (9)

(note v(t) = q̇(t)). We will show that I(q(t)) will be constant with respect to t. The
proof will use the fact that the F is a central force. For this goal we consider the
(total) derivative of (9) with respect to t

d
dt
I(q(t)) = q̇(t)∧mv(t) + q(t)∧mv̇(t)

= v(t)∧mv(t) + q(t)∧F(q(t)) = 0.

Here we used Newton’s Law, and the fact that F is central, hence F(q) is parallel
to q, and all vector product expressions will vanish.

This means that for a fixed solution q(t) with initial value q(0) = q0 the value
of I(q(t)) will remain constant “along” the solution, i.e. I(q(t)) = I(q(0)) = I(q0).
The angular momentum I is called an integral of motion. That it is a constant was
forced by the existence of the rotational symmetry. Let me stress the fact, that its
value will depend on the solution chosen.

For our system we have another integral of motion. Again it has to do with a
symmetry. It is the invariance under time translation. If we release, let us say a
particle in the field, at time t0 or at t0 + c will not change the outcome (considered
in the shifted time scale). It is the energy

E(q,v)B
1
2
mv2 +U (q), F(q) = −gradU (q), (10)

which will be conserved. Here U (q) is any function R3 \ {(0,0,0)} → R, such
that F(q) = −gradU (q). It is called a potential of F. Not every force F admits
a potential, but central forces do. U will be unique up to adding a constant.
Important is that our force does not depend on the time t, this corresponds to the
fact that the system is time translation invariant. We calculate

d
dt
E =m · v · v̇ + (gradU ) · q̇ = (mv̇ −F) · v = 0.

1. In more fancy notation one might call F equivariant instead of invariant.
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Here we used again Newton’s law F = mv̇. Consequently, the energy will stay
constant along the particle trajectory.

In physics there is another conservation law the conservation of momentum
p = mv. It corresponds to translation invariance in space. Our system is not
translation invariant as the center is a singled out point. And obviously (in the
gravitational field) a particle prepared with zero velocity at a point q0 will start
with zero momentum, but it will fall with higher and higher speed into the center.
Hence, the momentum mv will increase.

Note that the movement is governed by a second order equation (Newton’s
law), which implies that both q0 and v0 need to be given to fix a solution. This
corresponds to 6 parameters. From the fact that we have four independent
integrals of motions (three components of I and in addition E) this reduces to two
degrees of freedom.

There is a general treatment of continuous symmetries and related integrals of
motions. This is the famous Noether Theorem [16].

4 Lie algebras

For the moment let K be a field with characteristics different from 2. Below we
will only consider R or C.

Definition 4. A Lie algebra over a field K is a K-vector space L endowed with a
product (denoted by brackets)

[ , ] : L×L→ L

which has the following properties (for all x,y,z ∈ L, λ ∈K)

1. bilinearity : [x+λz,y] = [x,y] +λ[z,y],

2. anti-symmetry : [x,y] = −[y,x],

3. Jacobi identity : [[x,y], z] + [[y,z],x] + [[z,x], y] = 0.

Examples

1. Any vector space L can be considered as a Lie algebra by defining
[x,y]B 0 for all x,y ∈ L. Such a Lie algebra is called abelian Lie algebra.

2. If L = R3, then taking [x,y]B x∧ y, with the vector product ∧ yields a Lie
algebra.

3. If L is any associative algebra (where the product is denoted by ·), then the
commutator [x,y]B x · y − y · x defines a Lie algebra structure on the vector
space L.

4. The set of smooth vector fields over a smooth manifold is a Lie algebra by
taking the Lie bracket as Lie product.

4.1 Lie groups – Lie algebras

Lie groups are (at least in general) nonlinear objects. Whereas Lie algebras are
linear objects. Linear objects are in general easier to deal with. In the finite-
dimensional case of a Lie group there is a way to assign to every Lie group a
corresponding Lie algebra. Here I will not introduce the general construction,
but concentrate on some examples where the Lie groups are matrix groups. Let
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GL(n,C) be the general linear group of invertible n×n complex-valued matrices
and G any closed (continuous) subgroup, and let K = R or C.

gB Lie GB {X ∈Mat(n×n,K) | ∀t ∈ R : etX ∈ G}. (11)

Recall that the series

etX =
∞∑

k=0

tk

k!
Xk (12)

converges for every X ∈Mat(n× n,K) and every t ∈ R. The set Lie G is a vector
subspace of all n×n matrices. The matrix commutator

[X,Y ]B X ·Y −Y ·X (13)

endows the space with a Lie algebra structure.

Example 5. In the case of the full general linear group, its Lie algebra gl(n,K) is
the set of all n×n matrices (non-invertible ones included).

Example 6. In the special case of SO(n), or O(n) we obtain as Lie algebra

so(n) = o(n) = {X ∈Mat(n×n,R) | tX +X = 0}, (14)

the skew-symmetric matrices. IndeedA ∈O(n) if an only if is tA·A = In. Using (11)
we get as criterion for X ∈ o(n) that

In =
t
(etX ) · etX = et(

tX+X) ∀t ∈ R.

This is true if and only if tX +X = 0. Hence the left hand side of (14) is indeed the
Lie algebra of O(n). For SO(n) we have to impose the additional condition that
det(A) = 1. But

det(etX ) = et·tr(X) = 1

is automatic as all skew-symmetric matrices have trace zero. In particular, we
see by this example that the same Lie algebra might correspond to different
Lie groups. In this case it comes from the fact that the elements of O(n) with
determinant −1 cannot be “reached” via etA.

In the general functorial correspondence, the Lie algebra to a (finite-
dimensional) Lie group is constructed as the set of left-invariant vector fields with
Lie bracket given by the bracket of vector field. Equivalently, the Lie algebra can
be realized on the tangent space of the Lie group (considered as differentiable
manifold) at the unit element. In fact one can define a general exponential in a
suitable manner. In the case of the above matrix groups the construction yield
the same structure.

From the functorial point one can conclude that if the Lie group G has a repre-
sentation on a vector space H , i.e. a group homomorphism ϕ : G→GL(H), one
can construct a Lie homomorphism Lie(ϕ) : g→ gl(H). If H is finite-dimensional
and in the matrix case then

Lie(ϕ)(X) =
d
dt
ϕ(etX )|t=0

. (15)
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The obtained representation Lie(ϕ) is the infinitesimal version of the representa-
tion.

An interesting point is, given a representation of the Lie algebra g whether we
can find a representation of the Lie groupG yielding the given one as infinitesimal
representation. This means can we integrate the representation. In general these
are hard problems. In physics quite often one is satisfied with the infinitesimal
version. In fact, quite often the fundamental physical model is only described
locally on the infinitesimal level.

Another problem is that in infinite dimensions there is no such close relation-
ship between the group and the algebra. There is no exponential map. In fact it is
not even clear what manifold structure we should take on G. We will now turn to
the the infinite dimensional situation and will only discuss Lie algebras.

5 From finite to infinite dimensional systems

In the examples we considered so far the systems were finite-dimensional. This
means that we have a finite-dimensional system of parameters describing the
system. The system of independent symmetries is also only “finite-dimensional”.
This means on the level of the Lie group it is a finite-dimensional Lie group and
on the infinitesimal level it is a finite-dimensional Lie algebra. But there are other
systems, for example systems related to fields, partial differential equations, etc.,
where we have infinitely many independent degrees of freedom. In this section I
only want to indicate some important examples where in the infinite dimensional
case symmetries also give important clues about the system.

5.1 KdV (Korteweg – de Vries) equation

The KdV equation describes wave propagation on the surface of shallow water
like it appears in a canal. Let x be the essential spatial coordinate along the canal
and t the time. The amplitude u(x, t) fulfills the nonlinear partial differential
equation

ut − 6uux +uxxx = 0. (16)

Here as usual ui denotes the partial derivative of u with respect to the direction
i (either t or x). John Scott Russell, a Scottish naval engineer, observed in 1834
on a horse ride along a canal solitary traveling waves. They were traveling
with different speed, overtaking each other, and keeping after the collision their
form. This was a nonlinear phenomena. Russell himself was trying to analyze
these solitary waves. But he could not convince all his contemporaries. In 1895
Korteweg and de Vries studied the phenomena mathematically in a satisfactory
way and showed that Russell was right.

The described waves are nowadays called solitons, a name which comes from
solitary waves. The deeper reason for this behaviour is that the KdV equation
has infinitely many integrals of motions. The fact that they have to be conserved
forces the soliton behaviour. Again these integrals of motions are related to
symmetries. They are related to the Virasoro algebra which will be introduced in
the next section [1].

5.2 Conformal Field Theory

Conformal Field Theories (CFTs) are field theories which are invariant under
conformal transformations. A prominent example where two-dimensional CFTs
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play an important role is in string theory. There is huge amount of literature on
the subject, both from the physics and from the mathematics side. We will not
need the field theoretical aspects in the following. Hence I will not say much here.
I refer to [17] for a mathematical treatment.

Here I mention only the following. Let Rn be the n-dimensional space
equipped with the metric (gab). The conformal coordinate transformations are
those coordinate transformations which leave the metric invariant up to a multi-
plicative (maybe varying) positive factor ρ. To be more precise, let ξ = (ξa) be a
system of coordinates and ν(ξ) = (νb) new coordinates, then ν(ξ) is a conformal
transformation if there exists ρ : Rn→ R>0 such that

∑

a′ ,b′

∂ξa
′

∂νa

∂ξb
′

∂νb
ga′b′ = ρ(ξ)gab. (17)

There is a fundamental difference between space dimension n = 2 and n > 2.
If n > 2 the “conformal group” is finite-dimensional, consisting essentially of
translations, rotations, dilatations, and inversions. In particular, the Lie algebra
corresponding to infinitesimal transformations, will be finite-dimensional. In
dimension two if we describe R2 as complex plane C all analytic or anti-analytic
maps are conformal maps. Hence, we have an infinite space of infinitesimal
conformal coordinate transformations. It is the Witt algebra (Virasoro algebra
without central term) introduced in the next section which is related to the
infinitesimal transformations. For a discussion of the local-global problem in this
context see [17].

6 Examples of infinite dimensional Lie algebras

In the following I will introduce the basic examples of infinite dimensional Lie
algebras. In particular they appear in string theory and conformal field theory.
But not only there. Typically they show up if we have systems of infinitely many
degrees of freedoms. We already had a short look on the KdV partial differential
equation.

6.1 Witt algebra

We start from the circle S1. Consider Diff+(S1) the orientation preserving diffeo-
morphisms of the circle. It is an infinite dimensional group. To make it to some
kind of a “Lie group” we have to consider topological questions. As we are not
interested in the group but only in the algebra we will not go into details here.
Instead we refer to the book [2] for a careful treatment.

Morally the Lie algebra of Diff+(S1) would be the set Vect(S1) of vector fields
on S1. That is a complicated object, so we consider only the so called polynomial
vector fields Vectpoly (S1) of S1. Strictly speaking, one should use the naming
“vector fields with only finitely many Fourier modes”. We take as basis

en B −ie(inϕ) d
dϕ

, n ∈ Z. (18)

The Lie bracket is the Lie bracket of vector fields. A direct calculation yields

[en, em] = (m−n)en+m. (19)
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This algebra is the Witt algebra over R. In conformal field theory we have to
consider its complexification

W B Vectpoly(S1)⊗C. (20)

We can extend the vector fields on S1 to the punctured complex plane C∗ = C\ {0}.
In terms of the complex variable z = reiϕ the complexified basis elements are

en = zn+1 d
dz
, n ∈ Z. (21)

The Lie product (19) remains unchanged. This (complex) algebra is the Witt
algebraW . Sometimes physicists call it also the Virasoro algebra without central
extension 2, (now over C).

After the complexification we can give a different (but related) interpretation
of the algebra. We consider the Riemann sphere S2 as Riemann surface with its
complex structure. This means that S2 = Ĉ = C∪{∞} is the compactified complex
plane C = R2. Equivalently, it is the complex projective line P1(C).

Let z be the (quasi) global coordinate z (quasi, because it is not defined at∞).
Let w = 1/z be the local coordinate at∞. A global meromorphic vector field v on
S2 will be given on the corresponding subsets where z resp. w are defined as

v =
(
v1(z)

d
dz
, v2(w)

d
dw

)
, v2(w) = −v1(z(w))w2. (22)

It is clear that from the knowledge of v1 the whole vector field v will follow.
Hence, we will usually just write down v1 and in fact identify the vector field v
with its local representing function v1, which we will denote by the same letter.
For the bracket we calculate

[v,u] =
(
v

d
dz
u −u d

dz
v

)
d
dz
. (23)

All meromorphic vector fields constitute a Lie algebra. The subspace of those
meromorphic vector fields which are holomorphic outside of {0,∞} is a Lie subal-
gebra. Its elements can be given as

v(z) = f (z)
d
dz

(24)

where f is a meromorphic function on S2, which is holomorphic outside {0,∞}.
Those are exactly the Laurent polynomials C[z,z−1]. Consequently, this subalge-
bra has the set {en,n ∈ Z} as basis elements. The Lie product is the same and it
can be identified with the Witt algebraW .

The subalgebra of global holomorphic vector fields is 〈e−1, e0, e1〉C. It is iso-
morphic to the Lie algebra sl(2,C).

2. In fact the story with the naming is rather confusing. It gives another example of the principle
“use a person for the name which has no or only minor relation to the object”. Witt considered the
corresponding algebra in the context of characteristics p, and there the algebra looks different. See the
book [2] for certain remarks on the issue.
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The algebraW is more than just a Lie algebra. It is a graded Lie algebra. If we
set for the degree deg(en)B n then

W =
⊕

n∈Z
Wn, Wn = 〈en〉C. (25)

Obviously, deg([en, em]) = deg(en) + deg(em). Note that [e0, en] = nen, which says
that the degree decomposition is the eigen-space decomposition with respect to
the adjoint action of e0 onW . I close this section by pointing out that algebraically
W can also be given as Lie algebra of derivations of the algebra of Laurent
polynomials C[z,z−1].

6.2 Current algebras

Now I will introduce another important class of symmetry algebras. They appear
as so-called gauge algebras. The starting point is a finite-dimensional complex
Lie algebra g. One considers g-valued meromorphic maps on S2 which are
holomorphic outside of {0,∞}. They can be given algebraically as elements of the
set

g = g⊗C[z,z−1]. (26)

With the Lie product

[x⊗ f ,y ⊗ g]B [x,y]⊗ (f · g), (27)

the space g becomes an infinite dimensional Lie algebra. Again we have a graded
structure by setting deg(x⊗ zn)B n. These Lie algebras are called current algebras
or sometimes loop algebras.

7 Representations

We return to our Witt algebraW . Representations (also calledW-modules) are
important. As explained, if we have a symmetry algebra, let us say of a PDE,
then the solution space carries a representation of the symmetry algebra. Hence,
knowing the representations ofW will help to understand the space of solutions
of a system which hasW as symmetry algebra.

Some naturally defined representations are given by the forms F λ of weight
λ. Here λ is either an integer or a half-integer. Again we consider meromorphic
forms which are holomorphic outside of {0,∞}. Such elements can be described
by f (z)(dz)λ. The elements e ∈W operate on F λ by taking the Lie derivative

(
e(z)

d
dz

)
. (f (z)(dz)λ)B

(
e(z)

df
dz

(z) +λ · f (z)
de
dz

(z)
)

(dz)λ. (28)

The space F λ becomes a Lie module overW
[e,h] . f = e . (h.f )− h. (e . f ). (29)

In F λ we introduce the basis

f λn (z) = zn−λ(dz)λ, n ∈ Z. (30)
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In case that λ is a half-integer the index n will run over the half-integers. In terms
of the basis the module structure calculates to

en . f
λ
m = (m+λn)f λn+m. (31)

Note that for λ = −1 we obtain backW .
In this way we get nice, naturally defined, infinite-dimensional representations.

The problem is that in quantum physics we need representations which are gener-
ated from ground states, the vacuum states. We need creation and annihilation
operators. The above introduced representation spaces are not of this type, there
is no ground state.

7.1 Semi-infinite wedge representations

To obtain representations which behave in the required manner we consider
something similar to exterior forms in the finite dimensional case. We start with
F λ for a fixed weight λ and its system of basis elements f λn . To avoid cumbersome
notation we drop the λ. Next we consider formal expressions of the type

Φ = fi1 ∧ fi2 ∧ · · · ∧ fr ∧ fr+1 ∧ · · · (32)

with strictly increasing indices

i1 < i2 < i3 < · · · < r < r + 1 < · · · .
Starting from a certain position (which depends on the individual Φ) it is strictly
increasing by 1. The semi-infinite wedge space Hλ is the vector space freely gener-
ated by all such formal expressions. Also the term fermionic Fock space is used.
Special elements are given by

φT = fT ∧ fT+1 ∧ fT+2 ∧ · · · . (33)

These elements are called vacuum of level T .
We extend the action of e ∈W from F λ to Hλ by Leibniz rule

e .Φ = (e . fi1 ) ∧ fi2 ∧ · · · ∧ fr ∧ fr+1 ∧ · · ·
+ fi1 ∧ (e . fi2 ) ∧ · · · ∧ fr ∧ fr+1 ∧ · · ·
...

+ fi1 ∧ fi2 ∧ · · · ∧ (e . fr ) ∧ fr+1 ∧ · · ·
...

(34)

Now the symbol ∧ comes into play. If in the result the increasing order is violated
we interchange the entries accordingly and take up sign changes. If two entries
are the same the result will be zero.

Next we study the effect of the action of the basis elements ek , k ∈ Z ofW in
more detail. As long as k , 0 there will be only finitely many summands in (34)
as for a fixed k the regular tail (indices increasing by 1) will take care that finally
all the appearing summands will be zero. Just to give examples

e1 .Φ0 = (e1 . f0)∧ f1 · · ·+ · · · = (λf1)∧ f1 + · · · = 0

e−1 .Φ0 = (e−1 . f0)∧ f1 · · ·+ f0 ∧ (e−1 . f1)∧ · · · = −λf−1 ∧ f1 ∧ · · ·
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In fact we obtain that
enΦT = 0, ∀n ≥ 1. (35)

This means that the subalgebraW+ = 〈ek | k ≥ 1〉 annihilates the vacuum ΦT .
The only problem is the action of e0. Recall that e0 . fn = nfn. This means the

entry fn reproduces itself with a certain scalar. Hence we obtain

eo .Φ0 = (
∞∑

k=0

k) Φ0, (36)

which is clearly not defined. As physicists say, one has to regularize the action, or
one has to subtract∞·Φ0. But this has to be done in a coherent manner. One way
is to put

∞B
∞∑

k=0

k and then
∞∑

m

k −∞ = −
m−1∑

k=0

k. (37)

This heuristic formula can be made mathematically perfectly rigorous (see [4]). If
we denote the modified action with ẽ0, we get for the convention (37)

ẽ0Φ0 = 0 ·Φ0, ẽ0ΦT =


−

m−1∑

k=0

k


 ΦT . (38)

The actions of the other ek will not change.
Now the action is well-defined but we have the problem that it is not a rep-

resentation of the Witt algebra anymore. This we will show at an example InW
we have the relation [e−2, e2] = 4e0. Let us check whether for λ = 0 (as would be
necessary) we have

e−2 . (e2 .Φ0)− e2 . (e−2 .Φ0) = 4(ẽ0 .Φ0).

As Φ0 is annihilated by e2 the first summand on the left hand side will vanish.
Also by the definition of the action of ẽ0 the right hand side will vanish. The
second summand on the left hand side gives

−e2 . (e−2 .Φ0) = Φ0.

Hence, obviously both side do not coincide. But in any case the difference of both
sides will be only a scalar multiple of the identity. This means it is a projective
action. It might be the hope that if we add an element to the algebra which
commutes with all other elements and define that the additional element acts
by a fixed scalar times the identity that we obtain back a honest action of the
extended algebra. Indeed in the described case this work. The extended algebra
will be the centrally extended Witt algebra which is the Virasoro algebra to be
discussed in the next section. I like to stress the fact, that we were forced to pass
to a centrally extended Witt algebra due to the fact that we need to regularize a
naturally given action.

Also I have to point out that the expression for “∞” in (37) was to a certain
extend arbitrary. We could have started with e.g. k = 1 in the infinite sum. Then
also the modification of the action will be different. This ambiguity will appear
in the next section again.
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8 The Virasoro algebra

The Virasoro algebra V is a one-dimensional non-trivial central extension of the
Witt algebra W . As vector space it is the direct sum V = C ⊕W . If we set for
x ∈W , x̂B (0,x), and tB (1,0) then its basis elements are ên, n ∈ Z and t. The Lie
product is given by

[ên, êm] = (m−n)ên+m − 1
12

(n3 −n)δ−mn t, [ên, t] = [t, t] = 0, (39)

for all n,m ∈ Z 3. If we set deg(ên)B deg(en) = n and deg(t)B 0 then V becomes
a graded algebra. The algebraW will only be a subspace, not a subalgebra of V .
But it will be in a natural way a quotient.

There is a general theory of central extensions valid for every Lie algebra. The
crucial point is the expression coming with the central element t. Let us denote
this by c. The c will depend bilinearly on en and em. In the above case it will be

c(en, em) = − 1
12

(n3 −n)δ−mn . (40)

Using the condition that V should be a Lie algebra, c has to be an anti-symmetric
bilinear form onW , fulfilling the Lie algebra cohomology two-cocycle condition

c([x,y], z) + c([y,z],x) + c([z,x], y) = 0. (41)

A cocycle c is called a coboundary if there exists a linear map ϕ :W → C such
that

c(x,y) = ϕ([x,y]). (42)

Two cocycles are cohomologous if their difference is a coboundary. The quotient
space cocycles modulo coboundaries is called cohomology space and denoted by
H2(g,C).

There is a notion of equivalence of central extensions of a given Lie algebra g
(in our example g =W ). Instead of taking x̂ to be (0,x) as element corresponding
to x ∈ g we could also take x̂ = (ϕ(x),x) with ϕ : g → C a linear map. In this
way we obtain what is called an equivalent central extension. Equivalent central
extensions are always isomorphic. How we introduced them they correspond
just to a change of basis of certain type. On the level of the cohomology this
correspond to the fact that the cocycles differ by a coboundary. The cohomology
space H2(g,C) classifies central extensions up to equivalence.

In fact, one can show that for the Witt algebra H2(W ,C) is one-dimensional.
This means that up to equivalence and rescaling the central element there is only
one non-trivial central extension of the Witt algebraW and this is the Virasoro
algebra V . One can even show that V is the universal central extension meaning
that every one-dimensional central extension is a surjective image of V . Also note
that one always has the trivial central extension which is just the direct sum of
the Lie algebra with the one-dimensional abelian Lie algebra.

Now we can resolve the problem with the ambiguity of the regularisation. If
we choose a different “∞” then we will obtain a cocycle which will be different,
e.g. from the one given in (39). But it will define an equivalent central extension.

3. Here δlk is the Kronecker delta which is equal to 1 if k = l, otherwise zero.
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In any case the semi-infinite wedge representation will define a cocycle after
regularization. Hence up to equivalence (meaning a change of basis) the given
projective representation ofW will give a linear representation of the Virasoro
algebra.

9 Affine Lie algebras

Also for the current algebra g associated to a finite-dimensional Lie algebra g there
exists central extensions. As discussed in the previous section central extensions
are given by Lie algebra two-cocycles ψ. Let β be an invariant, symmetric bilinear
form for g, then a two-cocycle for g is given by

ψ(x⊗ zn, y ⊗ zm) = β(x,y) ·m · δ−mn . (43)

If g is a simple Lie algebra, then up to equivalence and rescaling there is only one
non-trivial central extension. Note also that in this case there is only one (up to
rescaling) β, which is given by the Cartan-Killing form.

It has to be remarked that the central extension in the simple case will become
trivial if restricted to the finite-dimensional Lie algebra g, as the corresponding
cohomology space H2(g,C) = {0}, due to the second Whitehead lemma in Lie
algebra cohomology.

9.1 Sugawara construction

As already mentioned in this write-up the symmetry given by g (or the centrally
extended algebra ĝ) corresponds to gauge symmetry of the conformal field theory.
Let g be either simple or abelian. In this case there is a relation between the gauge
symmetry algebra and the centrally extended conformal symmetry algebra, the
Virasoro algebra. The relation is via the Sugawara construction. Let V be an
admissible representation of ĝ. This means

1. the central element operates as c · id, (c is called the central charge of the
representation)

2. every element v ∈ V will be annihilated by the elements of ĝ of sufficiently
high degree (the degree depends on v).

Let ui , i = 1, . . . ,dimg be a basis of g and ui the dual basis with respect to β. The
k-th Sugawara operator is defined as

Tk B
1
2

∑

j∈Z

dimg∑

i=1

: (ui ⊗ z−j )(ui ⊗ zj+k) : . (44)

This looks like a formal sum, but here the elements (ui⊗z−j ) have to be considered
as operators on V . Furthermore : a · b : denotes normal ordering of the operators
a and b. This means that if the degree of the element a is greater than the degree
of b (here in our case if −j > j + k ) then the product has to be switched to b · a. In
this way the annihilation operators will be brought to the right to act first. By the
normal ordering Tkv will be well-defined for all v and all k.

Let κ be the dual Coxeter number. If you do not know its definition, do not
mind. It will be a non-negative number. If you are interested in getting the



SYMMETRIES AND INFINITE DIMENSIONAL LIE ALGEBRAS 85

definition, see [3]. Recall that c was the central charge. Then one shows that

[Tn,Tk] = (c+κ)(k −n)Tn+k + δ−kn
n3 −n

12
dimg · (c+ k) · id. (45)

For c + κ , 0 we can rescale the operators and obtain a representation of the
Virasoro algebra with central charge

− c ·dimg

c+κ
. (46)

Here as in the case of the semi-infinite wedge representations a regularization
procedure was necessary to make the representation work. Without the normal
ordering prescription the T0 would not be a well-defined operator. Hence, we
are forced again to consider the Virasoro algebra and not only the Witt algebra.
Again there is the ambiguity due to the precise form of the normal ordering which
can be changed. This ambiguity corresponds to a cohomologous change of the
cocycle.

I like to close this section by mentioning that the affine Lie algebras are in the
classification of Kac and Moody, the untwisted affine Kac-Moody algebras. If you
want to learn more about them you should study the book of Kac [3].

10 Krichever-Novikov type algebras

The Witt, Virasoro, and affine Lie algebra case is the genus zero situation, i.e.
where we consider the Riemann sphere (which is the unique Riemann surface of
genus zero), and our objects are allowed to have poles at the two points {0,∞}.
From the application in CFT we have to look for generalizations to (compact)
Riemann surfaces of arbitrary genus. Also one needs to allow poles at a finite, but
arbitrary number of marked points. In the interpretation of CFT they correspond
to incoming fields and outgoing fields. Hence, the set of marked points will have
a natural decomposition into two disjoint subsets.

More precisely, let Σ be a compact Riemann surface of genus g, and N,K ∈ N
with N ≥ 2 and 1 ≤ K < N . Fix

I = (P1, . . . , PK ), and O = (Q1, . . . ,QN−K ) (47)

disjoint ordered tuples of distinct points (“marked points”, “punctures”) on the
Riemann surface. In particular, we assume Pi ,Qj for every pair (i, j). The points
in I are called the in-points, the points in O the out-points.

The Figures 4, 5, 6 show different geometric situations.
The global objects, algebras, structures, ... will be meromorphic objects on the

Riemann surface Σ which are holomorphic outside of the points in A.
The grading of the Witt and Virasoro algebra is very important for the con-

struction of certain type of representations (e.g. the vacuum representations).
For our generalized situation, we do not have an honest grading, but only an
almost-grading (for the definition I refer to the quoted work below). The almost-
grading will be induced by the splitting of A into I and O. Krichever and Novikov
introduced it in the case where A has only two points. In this case the splitting is
uniquely given. I gave the generalization to arbitrary (finite) sets A and splittings
in Refs. [10], [11], [9], [12], [13]. In the case of two points my description gives
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Figure 4: Riemann surface of genus zero with one incoming and one outgoing
point.

Figure 5: Riemann surface of genus two with one incoming and one outgoing
point.

P1

P2

Q1

Figure 6: Riemann surface of genus two with two incoming and one outgoing
point.

back the Krichever-Novikov description. If one specializes even more to g = 0
and A consisting of two points, which we might assume to be {0} and {∞}, i.e.

Σ = P1(C) = S2, I = {z = 0}, O = {z =∞} (48)

then we obtain back the well-known algebras of Conformal Field Theory discussed
in the previous sections, like the Witt, Virasoro, and affine algebra. Here a lot of
things could be added, but for this I have to refer to the forthcoming book [8].
For the application of Krichever-Novikov type algebras to CFT see also [15], [14]
and [20].
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