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ABSTRACT

In this paper, we present a multiscale method to analyse quasi-brittle crack propagation in metals. The
fracture model is described at the grain level by damage mechanics. In order a tractable solution to be
obtained by numerical means in an engineering component, the microscale behaviour is upscaled at an
engineering scale by classical computational homogenization. The lack of scale separation due to the
coalescence of microscopic defects is tackled by a concurrent computation of the process zone. The
paper focuses on the tools for such a method to be used in practice. In particular, we investigate the
adaptive refinement of the process zone within the hybrid concurrent/homogenization-based multiscale
strategy, and the time integration of the resulting multiscale problem by an arc-length method.

1 INTRODUCTION

Multiscale approaches aim at solving problems at the engineering (macro) scale while considering the
complexity of the micro structure with minimum cost. By splitting the solution between micro and
macro contributions, one upscales the features of the fine scale problem to the macroscale where the
solution becomes tractable. The macroscale problem is obtained by averaging the microscale properties
over representative volume elements (RVE). When both the macroscale problem and local averages are
obtained by finite element, the resulting strategy is called FE? in the engineering community [1, 2, 3, 4].
This method suffers from a well-known lack of scale separation when strain localization appears in a
representative volume element. In other words, when the balance equations of an RVE lose ellipticity, a
statistically representative volume element cannot be identified in this region. Consequently, the average
theorem on which FE? relies is not valid in the corresponding region. This difficulty is particularly
stringent in the case of grain plasticity, which we describe in this contribution by cohesive zone models
at the scale of the grains.

We propose to devise an adaptive strategy that alleviates this difficulty. The FE? technique is used in
the safe regions of the granular structure, where representative volume elements of relatively small size
can be defined. In the region where localization appears, a domain decomposition scheme is used to
solve the problem exactly at the scale of the material heterogeneities A schematic of the combined
concurrent-hierarchical multiscale method is shown in Figure 1.

The present contribution defines the basic tools for such a method to be successfully used in grain plas-
ticity. In particular, we investigate (i) the coupling scheme between hierarchical multiscale modelling
and domain decomposition approach (ii) the adaptive identification of the region where localisation
happens (ii) the time integration of the quasi-static multiscale problem by a dissipation control.
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Figure 1: Adaptive hybrid multiscale method
2 HIERARCHICAL / CONCURRENT MULTISCALE METHOD

Microscale problem. Let us consider a domain €2 occupied by a structure consisting of randomly
distributed linear orthotropic grains (figure 1) undergoing quasi-static small perturbations. The potential
failure of the interface between adjacent grains is described by a cohesive model:
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where (n, t) is the local basis defined by the normal and tangential unit vectors to the interface between
two grains, h is the heaviside step function, k,, and k; are the normal and tangential stiffness coefficients
of the elastic damageable model and d,, and d; are two damage indicators that range from 0 (safe
interface) to 1 (completely damaged). The damage variable are related to the history over time of the
jump of displacement [u] in order to represent the irreversible fracture process.

Model-based computational homogenisation proposes to search for an effective displacement field
u’ € UM () defined over 2 which satisfies the macroscale variational equilibrium (under the assump-
tion that no volume force is applied to the structure):
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At arbitrary point x¢ € (2, the relationship between the effective stress tensor o and the symmetric
part of the effective displacement gradient € = % (Vuc + (VuC)T) is defined via averaging of the
microscopic constitutive law over a representative volume element 6(x°):
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In the above equations, u/ € U/ (0(x°)) is the microscale displacement field defined over 6(x°), the
symmetrised tensor product operator is defined by u/ @, n = %(uf @n+neul ), and x/ is an
arbitrary point of the RVE. The fine-scale boundary traction field t/ and fine scale displacement u/
are found by solving the equilibrium and constitutive laws of the microstructure over the RVE, which
reads: VY ou' € U0(9(x°)),
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where G(6(x°)) is the ensemble of domains occupied by individual grains belonging to the RVE, and
H(%) is the Hooke’s tensor corresponding to the orthotropic linear behaviour of grain G € G(6(x°)).
The second term of the equation is the virtual work of the cohesive tractions t(©) = o/ .n(%) in the
fine scale virtual displacement field. The last term of this equation accounts for the (dualised) boundary
conditions applied to RVE. In a strain-driven homogenisation procedure, these conditions are chosen
such that (i) the strain averaging in equation (3) is automatically enforced, and (ii) a separation of scale
in an energy sense (Hill-Mandel macrohomogeneity condition) is obtained:

/ t/ . duwdl =0 V& such that / dul ®,ndl =0 (5)
96(x°) 00(x°)

Discretisation The coarse-scale problem is discretised in space by linear finite element. The scale-
transition is enforced at each of the quadrature points of the coarse mesh. The grain distribution of the
fine-scale problem required to compute the average quantities is generated randomly, and the resulting
fine-scale problem is discretised by linear finite element (FE?). The semi-discrete multiscale problem
is solved by a classical time-stepping integration scheme. A Newton algorithm is employed to solve the
nonlinear fully discrete system at each step of the time integration algorithm.

Concurrent approach for the solution in the process zone. Domain () is partitioned into a safe
domain Q° and the process zone 2” such that Q°* U QP = Q. The FE? method is used to solve approx-
imately the grain plasticity problem over {2°. A direct solution strategy is used to find the fine scale
displacement in £2P. The coupled problem reads:
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where we have assumed for simplicity that no Neumann boundary conditions are applied to the process
zone. G? is the set of domains corresponding to the grains that belong to the process zone. The relation-
ship between o¢ and d€° is obtained implicitly in £2° by the computational homogenisation approach.
The coupled problem is complemented by a constraint equation for interface I'*? = 9€2° N 9OP:
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The choice of the admissibility space for Lagrange multiplier A” characterises the transfer of interface
fields between the safe domain and the process zone. We choose in this work to look for this field in
the trace on the interface of the macroscale finite element space (’zero fluctuation of the traction fields”
across the interface).

3 ADAPTIVITY AND SOLUTION SCHEME

Adaptive identification of the process zone. The idea of the refinement process of the hybrid mul-
tiscale method is the following. Where needed, the macroscale mesh used in the computational ho-
mogenisation strategy is refined, until the size of a macroscale element is of the order of the charac-
teristic size of the RVE. At this stage, a set of surrounding macroelements are defined as the process
zone and the corresponding fine-scale problem is solved in a concurrent manner. Both FE? refinement
strategy and transition from non-concurrent to concurrent approach require to project internal variables
onto newly introduced fine-scale granular structures. Doing so, the dissipation and virtual work of the
multiscale problem before and after the refinement should be conserved. This is a difficult issue that we
are currently investigating. The other difficulty is to find a reliable criterion to drive the adaptivity. We
consider three types of criteria of increasing complexities and associated computational costs:

* A local indicator at the micro-level. The value of the local damage indicators in each RVEs can
be used to drive the adaptivity. Such an empirical criterion has the advantage to be extremely
easy to implement. It however leads to a pessimistic indication of the loss of scale-separation,
and consequently to an early refinement of the FE? method.



* A macroscale local empirical criterion which measures a “distance” to the loss of ellipticity.
We will show some first results based on the use of the condition number of a normalised ho-
mogenised tangent operator to drive the refinement process.

* An error estimation based on a solid mathematical background. In [2], the authors proposed
an error estimation and adaptivity framework for multiscale methods applied to nonlinear solid
mechanics. Our long-term aim is to extend this method to adaptive multiscale fracture mechanics,
and use it to validate (or invalidate) the use of empirical but cheaper and mathematically less
complex refinement criteria.

Time integration by dissipation-controlled arc-length method. A robust path-following method is
developed to follow the globally unstable quasi-static response of the damaged structure in the proposed
multiscale framework (see a related work in[5]). Our strategy is essentially an extension of the arc-
length method introduced in [6] for time-stepping incremental solution schemes. The amplitude of the
external load is constrained to satisfy a condition on the increase of local microscopic quantities such as
damage or local energy dissipation. We will show how this idea can be adapted to the hybrid multiscale
framework.

4 CONCLUSION

A hybrid hierarchical / concurrent multiscale technique is proposed for the reliable simulation of frac-
ture in heterogeneous materials. We will show that such a strategy is a promising alternative to classical
sub-modelling techniques. We will discuss some of our later developments concerning the analysis of
the method and the identification of numerical parameters for the transition of scales and adaptivity.
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