SOLVING CHISINI’S FUNCTIONAL EQUATION

JEAN-LUC MARICHAL

ABSTRACT. We investigate the n-variable real functions G that are solutions
of the Chisini functional equation F(x) = F(G(x), ..., G(x)), where F is a given
function of n real variables. We provide necessary and sufficient conditions on
F for the existence and uniqueness of solutions. When F is nondecreasing in
each variable, we show in a constructive way that if a solution exists then a
nondecreasing and idempotent solution always exists. We also provide neces-
sary and sufficient conditions on F for the existence of continuous solutions and
we show how to construct such a solution. We finally discuss a few applications
of these results.

1. INTRODUCTION

Let I be any nonempty real interval, bounded or not, and let F: I — R be
any given function. We are interested in the solutions G: I™ — I of the following
functional equation

(1) Fx1,...,2n) =F(G(z1,...;2n), ..., G(x1,...,24)).

This functional equation was implicitly considered in 1929 by Chisini [5, p. 108],
who investigated the concept of mean as an average or a numerical equalizer. More
precisely, Chisini defined a mean of n numbers z1,...,z, € I with respect to a
function F: I — R as a number M such that

Flz1,...,2n) =F(M,...,M).

For instance, when I = ]0, oo[ and F is the sum, the product, the sum of squares, the
sum of inverses, or the sum of exponentials, the solution M of the equation above
is unique and consists of the arithmetic mean, the geometric mean, the quadratic
mean, the harmonic mean, and the exponential mean, respectively.

By considering the diagonal section of F, i.e., the one-variable function ég: I — R
defined by ég(z) := F(z,...,x), we can rewrite equation (1) as

(2) F = 6F oG.

If, as in the examples above, we assume that F is nondecreasing (in each variable)
and that g is a bijection from I onto the range of F, then Chisini’s equation (2)
clearly has a unique solution G = g ! o F which is nondecreasing and idempotent
(i.e., such that dg(z) = x). Such a solution is then called a Chisini mean or a level
surface mean (see Bullen [2, VI.4.1]).

Date: March 17, 2010.

2010 Mathematics Subject Classification. 26E60, 39B12, 39B22 (Primary) 26B05, 26B35
(Secondary).

Key words and phrases. Chisini’s functional equation, Chisini mean, level surface mean, Shep-
ard’s metric interpolation, idempotency, quasi-idempotency, quasi-inverse function.

1



2 JEAN-LUC MARICHAL

In this paper, we consider Chisini’s functional equation (2) in its full general-
ity, i.e., without any assumption on F. We first provide necessary and sufficient
conditions on F for the existence of solutions and we show how the possible so-
lutions can be constructed (Section 2). We also investigate solutions of the form
g o F, where g is a quasi-inverse of d¢ (Section 3). We then elaborate on the case
when F is nondecreasing and we show that if a solution exists then at least one
nondecreasing and idempotent solution always exists. We construct such a solution
by means of a metric interpolation (inspired from Urysohn’s lemma and Shepard’s
interpolation method) and we discuss some of its properties (Section 4). We also
show that this solution obtained by interpolation is continuous whenever a con-
tinuous solution exists and we provide necessary and sufficient conditions for the
existence of continuous solutions (Section 5). Surprisingly enough, continuity of F
is neither necessary nor sufficient to ensure the existence of continuous solutions.
Finally, we discuss a few applications of the theory developed here to certain classes
of functions (Section 6). In particular, we revisit the concept of Chisini mean and
we extend it to the case when 0 is nondecreasing but not strictly increasing.

The terminology used throughout this paper is the following. For any integer
n > 1, weset [n] := {1,...,n}. The domain and range of any function f are denoted
by dom(f) and ran(f), respectively. The minimum and maximum functions are
denoted by Min and Max, respectively. That is,

Min(x) := min{z1,...,2,} and Max(x):= max{zy,..., 2z}

for any x € R™. The identity function is the function id: R — R defined by
id(z) = x. For any ¢ € [n], e; denotes the ith unit vector of R™. We also set
1:= (1,...,1) € R™. The diagonal restriction of a subset S C I" is the subset
diag(S) := {z1 : x € I} N S. Finally, inequalities between vectors in R”, such as
x < %X/, are understood componentwise.

2. RESOLUTION OF CHISINI’S EQUATION

In this section we provide necessary and sufficient conditions for the existence
and uniqueness of solutions of Chisini’s equation and we show how the solutions
can be constructed.

Let F: I — R be a given function and suppose that the associated Chisini
equation (2) has a solution G: I" — I. We immediately see that, for any x € I",
the possible values of G(x) are exactly those reals z € I for which the n-tuple
(z,...,2) belongs to the level set of F through x. In other terms, we must have

(3) G(x) € 6 "{F(x)}, vx e I".
Thus a necessary condition for equation (2) to have at least one solution is
(4) ran(dg) = ran(F).
This fact also follows from the following sequence of inclusions: ran(dg) C ran(F) =
ran(dr o G) C ran(df).

Assuming the Axiom of Choice (AC), we immediately see that condition (4) is
also sufficient for equation (2) to have at least one solution. Indeed, by assuming
both AC and (4), we can define a function G: I™ — I satisfying (3) and this function

then solves equation (2). Note however that AC is not always required to ensure the
existence of a solution. For instance, if 0f is monotonic (i.e., either nondecreasing



SOLVING CHISINTI'S FUNCTIONAL EQUATION 3

or nonincreasing), then every level set d- ' {F(x)} is a bounded interval (except two
of them at most) and for instance its midpoint could be chosen to define G(x).
Thus we have proved the following result.

Proposition 2.1. Let F: I" — R be a function. If equation (2) has at least one
solution G: I™ — T then ran(dg) = ran(F). Under AC (not necessary if o is
monotonic), the converse also holds.

The following example shows that condition (4) does not hold for every function
F, even if F is nondecreasing.

Example 2.2. The nilpotent minimum (see e.g. [11]) is the function T*™™: [0,1]? —
[0,1] defined as

0, if z1 + x9 < 1,

TM (21, 29) =
(@1,22) Min(x1,x2), otherwise.

We clearly have ran(T"™) = [0,1] and ran(dt.v) = {0}U]1,1] (see Figure 1), and
hence the associated Chisini equation has no solution.

1 =
Y.
0.8
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0.2
0
0 0.2 0.4 0.6 0.8 1

FIGURE 1. Nilpotent minimum (3D plot and contour plot)

Equation (3) shows how the possible solutions of the Chisini equation can be
constructed. We first observe that I" is a disjoint union of the level sets of F, i.e.,

= J Fiy
y€Eran(df)

Thus, constructing a solution G on I" reduces to constructing it on each level set
F~'{y}, with y € ran(d¢). That is, for every x € F~'{y}, we choose G(x) € d7 '{y}.

The next proposition yields an alternative description of the solutions of the
Chisini equation through the concept of quasi-inverse function. Recall first that a
function g is a quasi-inverse of a function f if

(5) f o g|ran(f) = id|ran(f)a
(6) ran(glran(f)) = ran(g).
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For any function f, denote by Q(f) the set of its quasi-inverses. This set is
nonempty whenever we assume AC, which is actually just another form of the
statement “every function has a quasi-inverse.” Recall also that the relation of
being quasi-inverse is symmetric, i.e., if g € Q(f) then f € Q(g); moreover ran(f) C
dom(g) and ran(g) C dom(f) (see [14, Sect. 2.1]).

By definition, if g € Q(f) then g|an(s) € Q(f). Thus we can always restrict the
domain of any quasi-inverse g € Q(f) to ran(f). These “restricted” quasi-inverses,
also called right-inverses, are then simply characterized by condition (5), which can
be rewritten as

(7) g) e fy},  Vyeran(f).

Proposition 2.3. Let F: I" — R be a function satisfying (4) and let G: I — T be
any function. Then, assuming AC (not necessary if 0 is monotonic), the following
assertions are equivalent:

(i) We have F = §r o G.
(ii) For any x € I", we have G(x) € 6f '{F(x)}.
(i) For any x € I, there is gx € Q(dr) such that G(x) = (gx o F)(x).

Proof. The implications (i) = (ii) = (i) are immediate. Let us prove that (i) =
(i77). Fix x € I" and set y = F(x). We have G(x) € 6z '{y} and, by (7), there
exists gx € Q(IF) such that G(x) = gx(y) = (gx o F)(x). O

A necessary and sufficient condition for equation (2) to have a unique solution
immediately follows from the assertion (ii) of Proposition 2.3.

Corollary 2.4. Let F: I™ — R be a function satisfying (4). Then, assuming AC
(not necessary if O0g is monotonic), the associated Chisini equation (2) has a unique
solution if and only if 6¢ is one-to-one. The solution is then given by G = 5;1 oF.

The special case when F is a symmetric function of its variables is of particular
interest. For instance, it is then easy to see that there are always symmetric solu-
tions of the Chisini equation. We now state a slightly more general (but immediate)
result.

Let &,, be the set of permutations on [n] and let F: I" — R be any function.
We say that o € &, is a symmetry of F if F([x],) = F(x) for every x € I", where
[x]s denotes the n-tuple (T (1), ..., Towm))-

Proposition 2.5. Let F: I" — R be a function satisfying (4) and let o € &,, be
a symmetry of F. If G: I™ — 1 is a solution of Chisini’s equation (2), then the
function G, : I — 1, defined by G,(x) = G([x]s), is also a solution of (2).

3. QUASI-INVERSE BASED SOLUTIONS

In this section, we investigate special solutions whose construction is inspired
from Proposition 2.3 (iii). These solutions are described in the following immediate
result.

Proposition 3.1. Let F: I — R be a function satisfying condition (4). Then,
assuming AC (not necessary if O is monotonic), for any g € Q(0F), the function
G=goF, fromI™ to 1, is well defined and solves Chisini’s equation (2).
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Proposition 3.1 motivates the following definition. Given a function F: I" — R
satisfying condition (4), we say that a function G: I" — I is a quasi-inverse based
solution (or Q-solution) of Chisini’s equation (2) if there exists g € Q(dF) such that
G=goF.

Recall that a function F: I™ — R is said to be idempotent if op = id. We say
that F is range-idempotent if ran(F) C I and 6 |ran(F) = id|ran(F), Where the latter
condition can be rewritten as g o F = F. We can readily see that any @-solution
G: I — T of Chisini’s equation (2) is range-idempotent. Indeed, since G = goF for
some g € Q(0F), we simply have o G=godroG=goF =G.

An interesting feature of @Q-solutions G is that, in addition of being range-
idempotent, they may inherit certain properties from F, such as nondecreasing
monotonicity, symmetry, continuity, etc. For instance, o € &,, is a symmetry of G
if and only if it is a symmetry of F. Also, G is nondecreasing as soon as F is either
nondecreasing or nonincreasing. The latter result follows from the fact that if a
function f: I — R is nondecreasing (resp. nonincreasing) then so is every g € Q(f);
see [14, Sect. 4.4]. However, as the following example shows, Chisini’s equation
may have non-@Q-solutions and the @)-solutions may be non-idempotent.

Example 3.2. The Lukasiewicz t-norm (see e.g. [11]) is the function T%: [0,1]? —
[0, 1] defined as

TL(xl,xg) := Max (0,21 + x2 — 1).
We have 01w (z) = Max(0,2z — 1) and any g € Q(d7v) is such that g(z) = 2 (z + 1)
on ]0,1] and g(0) € [0, 3]. Thus, no function of the form g o T* is idempotent on
[0, 1]2. However, the idempotent function G(z1,22) = 3(z1 + x2) clearly solves the
Chisini equation T" = §rr o G.

The @-solutions of Chisini’s equation can be easily transformed into idempotent
solutions. Indeed, for any g € Q(Jg), the function G: I" — I, defined by

G(x) = x1, if x € diag(I"™),
" | (goF)(x), otherwise,

is an idempotent solution. However, for such solutions, some properties of the
@-solutions, such as nondecreasing monotonicity, might be lost.

This motivates the natural question whether the Chisini equation, when solvable,
has nondecreasing and idempotent solutions. In the next section, we show in a
constructive way that, if F is nondecreasing and satisfies condition (4), at least one
such solution always exists.

4. NONDECREASING AND IDEMPOTENT SOLUTIONS

We now examine the situation when F is nondecreasing, in which case condition
(4) alone ensures the solvability of Chisini’s equation. Clearly g is then nonde-
creasing and hence its level sets d¢ 1{y}, y € ran(dg), are intervals. It follows that
Jr always has a nondecreasing quasi-inverse g € Q(Jdg) (without an appeal to AC)
and hence the @-solution G = goF is also nondecreasing and even range-idempotent
(see Section 3). However, as we observed in Example 3.2, this solution need not be
idempotent.

In this section we show that, assuming condition (4), at least one nondecreasing
and idempotent solution always exists and we show how to construct such a solution
(see Theorem 4.4). Roughly speaking, the idea consists in constructing on each level
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set F~1{y}, for y € ran(d¢), a nondecreasing and idempotent function that assumes
the value inf 6= ' {y} (resp. sup 6 '{y}) on the common edge of the level set F~*{y}
and the adjacent lower (resp. upper) level set. As we will discuss in Remark 4.5
(i4)-(#4), this construction actually consists of a metric interpolation based on both
Urysohn’s lemma and Shepard’s interpolation method.

Let F: I" — R be a nondecreasing function satisfying (4). For any y € ran(dg),
consider the corresponding lower and upper level sets of F, defined by

Foly):={xel":F(x) <y} and Fol(y) == {x eI": F(x) >y},
respectively. Consider the Chebyshev distance between two points x,x” € R™ and
between a point x € R™ and a subset S C R"”,

doo(x, %) =[x =Xl = max |z — @il

— 3 _ !
doo(x,5) = inf [|Ix —x'|co,

with the convention that de(x, @) = co. Define also the following functions, from
I" to [—o0, 0],

ap(x) := inf 6¢ '{F(x)}, br(x) := sup &7 {F(x)},
and

G = du(xFIFO) = b x =X,
F(x')<F(x)

dg (x) = doo<x, F;l(F(x))) = inf  [|x — x| 0o-

The next lemma concerns the case when dg (x) = oo (resp. dg (x) = 00), which
means that FZ'(F(x)) = & (resp. F3!'(F(x)) = 2).

Lemma 4.1. Let F: I" — R be a nondecreasing function satisfying (4) and let
x € I". If df(x) = oo (resp. dg (x) = 00) then ap(x) = inf (resp. bp(x) = supl).
The converse holds if inf 1 ¢ I (resp. supl ¢ 1).

Proof. We prove the lower bound statement only; the other one can be established
dually. Let x € I" and assume that df(x) = oo, which means that F(x) < F(x')
for all x’ € I". Then the result immediately follows for if there were x € T such
that © < ap(x) then we would obtain df(x) < F(x), a contradiction. To prove the
converse claim, assume that ap(x) = infI ¢ T and suppose that there is x’ € I"
such that F(x) < F(x). By nondecreasing monotonicity, we have

(8¢ o Min)(x') < F(x') < F(x).
But then we must have Min(x’) = inf I and hence x’ ¢ 1", a contradiction. O

Remark 4.2. In the second part of Lemma 4.1, the condition inf I ¢ T (resp. supl ¢
I) cannot be dropped off. Indeed, let e.g. F: [a,b]™ — R be defined by F(al) =0
and F(x) = 1 if x # al. Then, for any x # al, we have ar(x) = a but dg (x) < co.

Now, consider the following subdomain of 1™:

QF = {xel":df (x) +dg(x) > 0}
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and define the function Ug: QF — R by
07 (x) ag(x) + dg (x) b (x)
Ur(x) := = =
dz (x) + dg (x)
By Lemma 4.1, we immediately observe that this function is well defined if and only

if both df (x) and dg (x) are bounded. By extension, when only dZ (x) is bounded,
we naturally consider the limiting value

L dE(x)a+ deo(x,al) be(x)
Ur(x) == lim = dE(X)eroo(x,al)F

— be(x) — dF ().

Similarly, when only dg (x) is bounded, we consider the limiting value

L doo(x,01) ap(x) + dE(x) b
Ur(x) = blﬂloo doo(x,b1) + dF (x)

= ap(x) + df (x).

Finally, when both dZ (x) and dg(x) are unbounded (i.e., when F is a constant
function), we consider

. doo(%,01)(=b) + doo(x, —01) ]
U = 1
PO = e T + do (x, —D1)
We now define the function Mg: I — R by

UF(X), if x € QF,
Mr(x) = 1 1p ifxel"\Q
20,|:(X)<|~ 5 |:(X)7 I x e \ E.

= 1Min(x) + 1 Max(x).

(8)

Even though the function Mg is well defined on I, there are still situations in
which this function needs to be slightly modified on certain level sets to ensure the
solvability condition Mg(x) € 0z *{F(x)} (see Proposition 2.3).

In fact, suppose there exists x* € 1" such that

(9)  ar(x*) ¢ 6g {F(x*)} and 3x € F"1{F(x*)} N QF such that df (x) = 0,
or
(10) br(x*) ¢ 0f *{F(x*)} and 3x € F~*{F(x*)} N QF such that d7 (x) = 0.
In either case, we replace the restriction of Mg to the level set F~1{F(x*)} by
UF(X):::Js<x>gF<x>+—§é<x>bF<x>
dg (%) + dg (%)

(or by the corresponding limiting value as defined above), where

de(x) = deo(x, [iInf [, ap(x")]") = Max(x) — ap(x*),

dZ (x) = deo(x, [br(x*),supT]™) = be(x*) — Min(x).

We then note that dZ (x) + dg (x) > 0 so that the new function Mg is well defined
on I".

Remark 4.3. (i) When any of the conditions (9) and (10) hold, the proposed
modification of M is necessary to ensure the solvability condition Mg(x) €
6 '{F(x)}. Indeed, if e.g. ap(x*) ¢ 07 '{F(x*)}, then Mg must satisfy
Mg (x*) > ap(x*), which fails to hold with the original definition (8) of Mg
whenever x* € Qf and d5(x*) = 0. For instance, consider F: [0,1]? —
R defined by F = 1 on [1,1]> \ {3,1} and F = 0 elsewhere. Then, for

272
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x* = (3,1), we have Ug(x*) = 1 and hence (6 o Ug)(x*) = 6r(3) = 0 #
1 = F(x*). To solve this problem, we consider Mg = Max on [1,1]? and
Mg = Min elsewhere, and then we have dg o Mg = F.

(if) It is immediate to see that none of the conditions (9) and (10) hold as soon
as Of is a continuous function, in which case condition (4) immediately

follows.

The next theorem essentially states that, thus defined, the function Mg: I" — R
is a nondecreasing and idempotent solution to Chisini’s equation (2).

Theorem 4.4. For any nondecreasing function F: I™ — R satisfying (4), we have
ran(Mg) C T and F = §g o Mg. Moreover, Mg is nondecreasing and idempotent.

Proof. See Appendix A. O

Remark 4.5. (i) We will see in Section 6.1 that nondecreasing and idempotent
solutions of Chisini’s equation are of particular interest. We will call those
solutions Chisini means or level surface means exactly as in the simple case
when Jf is one-to-one. Theorem 4.4 actually provides such a solution in a
constructive way.

(ii) The idea of the construction of Mf is the following. Let x* € Qf and, to
keep the description simple, assume that conditions (9) and (10) fail to
hold. Then, on the whole level set F71{F(x*)}, we consider the classical
Urysohn function (hence the notation Ug) used in metric spaces, i.e., a
continuous function defined by an inverse distance-weighted average of the
values ap(x*) and bg(x*):

1 * 1 b (X*)
760 F )+ g be
(11) Url) = L~
0 T E®

Thus, the value Up(x) partitions the interval [ag(x*), br(x*)] into two subin-
tervals whose lengths are proportional to df(x) and dg (x), respectively.
The two-dimensional case is illustrated in Figure 2. Moreover, looking
into the proof of Theorem 4.4, it is easy to see that, from among all the
Minkowski distances that could have been chosen to define Ug, only the
Chebyshev distance always ensures the nondecreasing monotonicity and
idempotency of Ug.

(iii) The definition of Ug, as given in (11), recalls Shepard’s metric interpola-
tion technique [9], which can be described as follows. Consider a function
F:R"™ — R and p points x(1), ..., x®) € R?. Then, for any metric d on
R™, the continuous extension of the function U: R™ — R defined by

LR®) /& 1
1 d(X7X(/€)>/kZ_1 d(X,X(k))

interpolates F' at the points x(), ..., x(?). By letting p = 2 and replacing
the interpolating points by the lower and upper level sets of F, we retrieve
(11) immediately.

Example 4.6. Consider the continuous function F: [0,1]? — [0, 1] defined by
F(zy,29) := I\/Iin(xh:vg, % + Max(0, 21 + 2 — 1))
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F{F(x")) FZL(F(x"))
3(""515(%5""777&)”
ar (x") Ur(x)  be(x")

FIGURE 2. Geometric interpretation of the function Ug

Thus defined, F is an ordinal sum constructed from the Lukasiewicz t-norm; see
e.g. [11]. Figure 3 shows the 3D plot and the contour plot of F. Figure 4 shows
those of the function Mg. Note that the restriction of Mg to the open triangle of
vertices (1, 3), (1, 1), (3, 1) is the function Ug, with ap(z1,z2) = 1, be(z1,22) = 1,
d (z1,32) = Min(z1,22) — 1, and d7 (z1,22) = & — (21 + 22).
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FIGURE 3. Function F of Example 4.6 (3D plot and contour plot)

We now discuss a few properties of the solution Mg. Continuity issues will be dis-
cussed in the next section. We start with the following straightforward result, which

shows that Mg can also be constructed from any strictly increasing transformation
of F.
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FIGURE 4. Function Mg of Example 4.6 (3D plot and contour plot)

Proposition 4.7. Let F: I — R be a nondecreasing function satisfying condition
(4). For any strictly increasing function g: ran(dg) — R, we have Mg = Myor.

Proposition 4.7 has an important application. Any g € Q(dF) such that dom(g) =
ran(dg) is strictly increasing and g o F is range-idempotent (see Section 3). The
calculation of Mr can then be greatly simplified if we consider Mo instead. Observe
for instance that, for every x € I™ such that ar(x) = br(x), we have Myor(x) =
M (x) = (g 0 F) ().

We now investigate the effect of dualization of F over Mg when F is defined on a
compact domain [a, b]™. Recall first the concepts of dual and self-dual functions (see
[8] for a recent background). The dual of a function F: [a,b]” — [a, b] is the function
Fe: [a,b]™ — [a,b], defined by F® =4 oFo (1,...,%), where ¢: [a,b] — [a,b] is the
order-reversing involutive transformation ¢(x) = a +b—x (! = 1). A function
F: [a,b]™ — [a,b] is said to be self-dual if F? = F.

The following results essentially states that the map F — Mg commutes with
dualization. In rough terms, our “metric interpolation” commutes with dualization.

Proposition 4.8. Let F: [a,b]" — [a,b] be a nondecreasing function satisfying
condition (4). Then Mga = M. In particular, if F is self-dual then so is M.

Proof. 1t is straightforward to verify that apa = ¢ obro (¢,...,9), bpa = tpoaro

(o), dfy = dF 0 (.. ), &2y = df o (..., v), d5 = dZ o (..., ¥), and
dg, =dg o (1,...,1). It is then immediate to see that Mga = M. O

Although the map F — Mg commutes with dualization, it may not commute
with restrictions, i.e., we may have Mg, # Mg|j» for some J C I. This shows that
MEe is not a “local” concept; its values depend not only on F but also on the domain
I" considered. This fact can be illustrated by the binary function F(zq,22) =
Min(z1 + o, %) over the sets I = R and J = [0, 1]. We have Mg(z1,x2) = %(xl +x2)
and

1 .
Mgy, (21, 22) = ﬁ/l(xl *o2), 1 ?f 1 = 22| <
ax(x1, ) — 7, if|zy — x| >

N =
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However, the following result shows that, although Mg, and Mg|;» may be differ-
ent, both functions solve the Chisini equation associated with F|n.

Proposition 4.9. Let F: I" — R be a nondecreasing function satisfying condition
(4) and let ] C 1. Then F|pm = 0f),, © (ME[gn).

Proof. We have F|jn = (8¢ o ME)|;n = 6 o Mg|gn. Since Mg|j» is nondecreasing and
idempotent, it takes on its values in J. Hence the result. ([l

As far as the symmetries of F are concerned, we also have the following result.

Proposition 4.10. Let F: I™ — R be a nondecreasing function satisfying condition
(4). Then o € &, is a symmetry of F if and only if it is a symmetry of Mg.

Proof. The condition is clearly sufficient. Let us show that it is necessary. We
can assume without loss of generality that o is a transposition (ij), with i, j € [n],
i # j. Clearly, o is a symmetry of af, be, d, and dZ. To show that it is also a
symmetry of both df and df, we only need to show that, for any given x € I,
the level set F~!'{F(x)} is symmetric with respect to the hyperplane z; = z;.
Let x' € F71{F(x)}. Then F(x') = F(x) and hence F([x'],) = F([x],). That is,
X, € FH{F(ixlo)} = F-{F ()} 0

5. NONDECREASING, IDEMPOTENT, AND CONTINUOUS SOLUTIONS

In this section, assuming again that F is nondecreasing, we yield necessary and
sufficient conditions on F for the associated Chisini equation to have at least one
continuous solution. We also show that the idempotent solution Mg is continuous
whenever a continuous solution exists (see Theorem 5.7). As we shall see, contin-
uous solutions may exist even if F is not continuous. However, given a continuous
function F, the associated Chisini equation may have no continuous solutions. Thus,
surprisingly enough, continuity of F is neither necessary nor sufficient to ensure the
existence of continuous solutions.

The following lemma states that if a continuous solution of Chisini’s equation
exists then 67 '{F(x)} must be a singleton for every x € I" \ Qg. Equivalently,

(12) ar(x) = be(x), Vx € I"\ QF.

Lemma 5.1. Let F: I" — R be a nondecreasing function satisfying condition (4)
and let G: 1" — I be any solution of Chisini’s equation (2). Suppose there exists
x* € I"\ Q such that ap(x*) < be(x*). Then x* is a discontinuity point of G.

Proof. Let G: I™ — T be a solution of Chisini’s equation (2) and assume that
there exists x* € I"™ \ Qf such that ap(x*) < be(x*). It follows immediately that
x* ¢ diag(I™). Now, since dg (x*) = dg (x*) = 0, there exist unit vectors u,v € R",
with nonnegative components, and a number 2* > 0 such that F(x*—hu) < F(x*) <
F(x* + hv) for all h € ]0, h*[. Since G(x) € dz '{F(x)} for all x € I", it follows that
G(x* — hu) < ap(x*) < bp(x*) < G(x* + hv) for all h € ]0, h*[, which means that
G is discontinuous at x*. O

The following example shows that, even if F is continuous, we may have ag # b
on I" \ Q, in which case the corresponding Chisini equation has no continuous
solutions.
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Example 5.2. Consider again the function F described in Example 4.6. We can
easily see that any solution G: I — T of the Chisini equation (2) is discontinuous
along the line segment ]3,1] x {1} (and, by symmetry, along the line segment
{1}x]3,1]). Indeed, for any = €]2,1] and any 0 < h < %, we have F(z,1 £ h) =

3
4 87
1 + h, which implies that (z,1) €

a
» 4 0,12\ Q¢. However, 67 ' {3 + h} = {12},
6 {2 —h} ={%—h}, and 65 {3} = [%, 1], which shows that no function G: I? — I
satisfying G(x) € o7 ' {F(x)} is continuous.
We now show that, if a continuous solution of Chisini’s equation exists, then the
following conditions must hold:

(13) df(x) =0 = ap(x)€ o {F(x)}, vx eI",
(14) dZ(x)=0 = be(x) €' {F(x)}, vxel

Lemma 5.3. Let F: I" — R be a nondecreasing function satisfying condition (4)
and let G: 1™ — T be any solution of Chisini’s equation (2). Suppose that any of the
conditions (13) and (14) are violated by some x* € I™. Then x* is a discontinuity
point of G.

Proof. Let G: I™ — I be a solution of Chisini’s equation (2) and suppose that (13)
is violated by x* € I". The other case can be dealt with dually. We clearly have
x* ¢ diag(I"). Now, since df(x*) = 0, there exists a unit vector u € R", with
nonnegative components, and a number h* > 0 such that F(x* — hu) < F(x*) for
all h € ]0,h*[. Since G(x) € o7 '{F(x)} for all x € I", we must have G(x* — hu) <
ap(x*) < G(x*) for all h €]0,h*[. If G were continuous at x*, then we would have
G(x*) = ap(x*). But then (0poG)(x*) = (droar)(x*) # F(x*), a contradiction. O

In the next lemma, we give two further necessary conditions for the existence of
a continuous solution, namely

(15) hlirgl be(x + he;) = ar(x), Vx € I, Vi € [n],
L

(16) lim ap(x + he;) < bp(x), Vx € I", Vi € [n].
h—0+t

Lemma 5.4. Let F: I" — R be a nondecreasing function satisfying condition (4)
and let G: I™ — T be any solution of Chisini’s equation (2). Let x* € 1™ and assume
there are i € [n] and h < 0 (resp. h > 0) such that x*+he; € I". Iflim;,_,o- bp(x*+
he;) < ap(x*) (resp. limy, o+ ap(x* + he;) > bp(x*)) then limy, ,o- G(x* + he;) <
G(x*) (resp. limy,_,o+ G(x* + he;) > G(x*)).

Proof. We prove the statement related to the left-discontinuity of G. The other
one can be proved dually. Under the assumptions of the lemma, there exist h* < 0
and € > 0 such that be(x* 4+ he;) < ap(x*) — ¢ for all h € |h*,0[. It follows that
G(x*+he;) < bp(x*+he;) < ap(x*) —e < G(x*) —e for all h € |h*, 0], which proves
the result. O

The converse of Lemma 5.4 does not hold in general. Indeed, when F is a constant
function, any function G: I™ — I (continuous or not) solves the corresponding
Chisini equation. However, we now show that, assuming conditions (12), (13), and
(14), the converse of Lemma 5.4 holds for the special solution Mg.

Lemma 5.5. Let F: I — R be a nondecreasing function satisfying conditions (4),
(12), (18), and (14). Let x* € I"™ and assume there are i € [n] and h < 0 (resp.
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h > 0) such that x* + he; € I". We have limy, ,o- br(x* + he;) < ap(x*) (resp.
limy,_yo+ ap(x* + he;) > bp(x*)) if and only if lim;,_,o- Me(x* + he;) < Mp(x*)
(resp. limy,_,o+ Mg(x* + he;) > Mg(x*)).

Proof. Again, we prove the left-discontinuity result. The other one can be proved
dually. The necessity immediately follows from Lemma 5.4. Let us prove the
sufficiency. For the sake of a contradiction, suppose that

(17) lim Mp(x* + he;) < Mp(x*) and  lim bp(x* + he;) > ap(x”).
h—0~ h—0-

Due to (13) and (14), both conditions (9) and (10) fail to hold and hence Mg is
given by (8). Two exclusive cases are to be examined:
(i) If x* € QF then Mg(x*) = Up(x*).

(a) Suppose that there exists h* < 0 such that x* +he; € Qe NF~1{F(x*)}
for all h € Jh*,0[. Then Mg = Ufr on the half-closed line segment
|x* 4+ h*e;,x*]. This contradicts (17) since Ur is continuous on each
level set QF NF~1{y}, with y € ran(dF).

(b) Suppose that there exists h* < 0 such that x* + he; € Qr NF_! (F(x*))
for all h € |h*,0[. Then there exists h’ € |h*,0[ such that F is constant
on the open line segment |x* + h'e;, x*| (otherwise x* + he; ¢ Qf).
Therefore, limy, ,o- F(x* + he;) < F(x*) and hence limy,_,o- df (x* +
he;) = 0. This implies limy,_,q- Mg(x* + he;) = limy,_.g- be(x* + he;).
However, we also have dg (x*) = 0 and hence Mg(x*) = ap(x*), thus
contradicting (17).

(c¢) Suppose that there exists h* < 0 such that x* + he; € I \ Qf for all
h € |h*,0[. Then Mg(x* + he;) = bp(x* + he;) for all h € |h*,0[ and
we conclude as in case (b) above.

(if) If x* € I"™ \ Qf then Mg (x*) = ap(x*) = be(x*) (cf. condition (12)).

(a) Suppose that there exists h* < 0 such that x* + he; € Qf for all
h € ]h*,0[. Then there exists h’ € |h*, 0] such that F is constant on the
line segment |x* + h'e;, x*[. It follows that limj_,o- dg (x* + he;) =0
and we conclude as in case (b) above.

(b) Suppose that there exists h* < 0 such that x* + he; € I" \ Qf for
all h € |h*,0[. Then Mg = ar = br on the half-closed line segment
]x* + h*e;,x*] and this contradicts (17). O

We now state our main result related to the existence of continuous solutions.
We first recall an important result on nondecreasing functions. For a detailed proof,
see e.g. [10, Chapter 2].

Proposition 5.6. A nondecreasing function of n wvariables is continuous if and
only if it is continuous in each of its variables.

Theorem 5.7. Let F: I™ — R be a nondecreasing function satisfying condition (4).
Then the following assertions are equivalent:

(i) There exists a continuous solution of Chisini’s equation (2).
(ii) Mg is a continuous solution of Chisini’s equation (2).
(iii) F satisfies conditions (12), (13), (14), (15), and (16).
Proof. The implication (i7) = () is immediate. The implication (i) = (ii) follows
from Lemmas 5.1, 5.3, and 5.4. To complete the proof, it remains to show that
(#9i) = (i1). By Theorem 4.4, Mf is a nondecreasing solution of Chisini’s equation.
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Hence, by Proposition 5.6, it suffices to show that Mg is continuous in each variable,
which follows immediately from Lemma 5.5. (]

Remark 5.8. (i) Theorem 5.7 provides necessary and sufficient conditions on
a nondecreasing function F: I — R satisfying condition (4) for its associ-
ated Chisini equation to have continuous solutions. When these conditions
are satisfied, then the function Mg is a nondecreasing, idempotent, and
continuous solution.

(ii) The following examples show that the conditions mentioned in assertion

(iii) of Theorem 5.7 are independent:

(a) The function F in Example 4.6 satisfies all but condition (12).

(b) Consider an idempotent and noncontinuous function F. Then condi-
tions (12), (13), and (14) are clearly satisfied but Mg = F is noncon-
tinuous, which shows that (15) or (16) fails.

(¢) The example given in Remark 4.3 (i) satisfies all but condition (13)
and a dual example would make (14) fail.

The following two corollaries particularize Theorem 5.7 to the cases when Jg is
continuous and when F is continuous. As already observed in Example 5.2, conti-
nuity of F does not ensure the existence of continuous solutions. These corollaries
show that condition (12) remains the key property of F to ensure the existence of
continuous solutions.

We first consider a lemma.

Lemma 5.9. Let F: I — R be a nondecreasing and continuous function. Then the
function ag (resp. bg) is left-continuous (resp. right-continuous) in each variable.

Proof. Let us establish the result for ag only. The other function can be dealt with
similarly. Let ¢ € [n] and, for the sake of contradiction, suppose that there exist
h* <0, >0, and x € I" such that ap(x* + he;) < ap(x*) — ¢ for all h € |h*,0].
By nondecreasing monotonicity of d,
F(x* + he;) = op(ap(x™ + he;)) < Op(ap(x™) — &) < Ip(ar(x™)) = F(x")
for all h € |h*,0[. By continuity of F, we must have F(x*) = dr(ar(x*) — ¢) and
hence
ap(x*) = inf 6 "{F(x*)} = inf 6 ' {dr(ar(x*) — €)} < ap(x*) —¢,

a contradiction. O

Corollary 5.10. Let F: I™ — R be a nondecreasing function such that o is con-
tinuous. Then the following assertions are equivalent:

(i) There exists a continuous solution of Chisini’s equation (2).
(ii) Mg is a continuous solution of Chisini’s equation (2).
(iii) F satisfies conditions (12), (15), and (16).

Proof. Since Jf is continuous, the function F satisfies conditions (4), (13), and (14);
see Remark 4.3 (ii). We then conclude by Theorem 5.7. O

Corollary 5.11. Let F: " — R be a nondecreasing and continuous function. Then
the following assertions are equivalent:

(i) There exists a continuous solution of Chisini’s equation (2).

(ii) Mg is a continuous solution of Chisini’s equation (2).
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(iii) F satisfies condition (12).

Proof. By Lemma 5.9, F satisfies conditions (15) and (16). We then conclude by
Corollary 5.10. |

6. APPLICATIONS

We briefly describe four applications for these special solutions of Chisini’s equa-
tion: revisiting the concept of Chisini mean, proposing and investigating gener-
alizations of idempotency, extending the idempotization process to nondecreasing
functions whose diagonal section is not one-to-one, and characterizing certain trans-
formed continuous functions.

6.1. The concepts of mean and average revisited. The study of Chisini’s func-
tional equation enables us to better understand the concepts of mean and average.
Already discovered and studied by the ancient Greeks (see e.g. [1, Chapter 3]), the
concept of mean has given rise today to a very wide field of investigation with a
huge variety of applications. For general background, see [2, 10].

The first modern definition of mean was probably due to Cauchy [4] who consid-
ered in 1821 a mean as an internal function, i.e., a function M: I" — T satisfying
Min < M < Max. As it is natural to ask a mean to be nondecreasing, we say that a
function M: I™ — T is a mean in I" if it is nondecreasing and internal. As a conse-
quence, every mean is idempotent. Conversely, any nondecreasing and idempotent
function is internal and hence is a mean. This well-known fact follows from the
immediate inequalities

5M0Min<M <(5MOM3X.
Moreover, if M: I™ — I is a mean in I" then, for any subinterval J C I, M is also a
mean in J".

The concept of mean as an average is usually ascribed to Chisini [5, p. 108],
who defined in 1929 a mean associated with a function F: I" — R as a solution
M: I™ — T of the equation F = 6 o M. Unfortunately, as noted by de Finetti [7,
p. 378] in 1931, Chisini’s definition is so general that it does not even imply that the
“mean” (provided there exists a unique solution to Chisini’s equation) satisfies the
internality property. To ensure existence, uniqueness, nondecreasing monotonicity,
and internality of the solution of Chisini’s equation it is enough to assume that F
is nondecreasing and that 0 is a bijection from I onto ran(F) (see Corollary 2.4).
Thus, we say that a function M: I" — T is an average in 1" if there exists a
nondecreasing function F: I — R, whose diagonal section Jg is a bijection from I
onto ran(F), such that F = dg o M. In this case, we say that M = 5;1 o F is the
average associated with F (or the F-level mean [2, V1.4.1]) in I™.

Thus defined, the concepts of mean and average coincide. Indeed, any average
is nondecreasing and idempotent and hence is a mean. Conversely, any mean is the
average associated with itself.

Now, by relaxing the strict increasing monotonicity of d¢ into condition (4),
the existence (but not the uniqueness) of solutions of the Chisini equation is still
ensured (see Proposition 2.1) and we have even seen that, if F is nondecreasing,
there are always means among the solutions (see Theorem 4.4). This motivates the
following general definition.

Definition 6.1. A function M: I” — I is an average (or a Chisini mean or a level
surface mean) in I" if it is a nondecreasing and idempotent solution of the equation
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F = 6 o M for some nondecreasing function F: I — R. In this case, we say that
M is an average associated with F (or an F-level mean) in I™.

Given a nondecreasing function F: I — R satisfying (4), the solution Mg of the
associated Chisini’s equation is a noteworthy F-level mean. Indeed, it is a mean (see
Theorem 4.4) which has the same symmetries as F (see Proposition 4.10). Also,
if F is continuous then Mg is continuous if and only if agp = b on I" \ Q¢ (see
Corollary 5.11). Moreover, when I is compact, the map F — Mg commutes with
dualization (see Proposition 4.8).

6.2. Quasi-idempotency and range-idempotency. Let F: I — R be a func-
tion satisfying (4). We have seen in Section 3 that, assuming AC (not necessary if d¢
is monotonic), there exists an idempotent function G: I — I such that F = ég o G.
This result motivates the following definition. We say that a function F: I — R
satisfying condition (4) is quasi-idempotent if 0 is monotonic. We say that it is
idempotizable if O is strictly monotonic.

Proposition 6.2. Let F: I" — R be a function. Then the following assertions are
equivalent:
(i) F is quasi-idempotent.
(ii) OF s monotonic and there is a function G: I — T such that F = 0f o G.
(iii) of is monotonic and there is an idempotent function G: I — 1 such that
F= §|: oG.
(iv) &g is monotonic and there are functions G: I — 1 and f: ran(G) — R such
that ran(dg) = ran(G) and F = f o G.
(v) O is monotonic and there are functions G: I — I and f: ran(G) — R such
that G is idempotent and F = f o G. In this case, f = 0F.

Proof. The solvability of Chisini’s equation does not require AC since dg is mono-
tonic. This shows that (i) < (i¢) < (ii4). To prove that (iii) = (v), just define
[ = 0F|ran(c) and observe that F = 6r 0 G = f o G. Evidently, (v) = (iv). Finally,
to prove that (iv) = (i), just observe that ran(dg) = ran(f o ég) = ran(f o G) =
ran(F). O

Corollary 6.3. A function F: I™ — R is idempotizable if and only if 6 is a strictly
monotonic bijection from I onto ran(F) and there is a unique idempotent function
G: 1" = I, namely G = 6;1 oF, such that F = g o G.

Recall that a function F: I" — T is range-idempotent if 6goF = F (see Section 3).
In this case, f := F necessarily satisfies the functional equation fo f = f, called the
idempotency equation [13, Sect. 11.9E]. We can easily see [12] that a function f: T —
R solves this equation if and only if flian(f) = id|an(s); see also [14, Sect. 2.1].
The next two results characterize the family of nondecreasing solutions and the
subfamily of nondecreasing and continuous solutions of the idempotency equation.
The proofs are straightforward and hence omitted.

Proposition 6.4. A nondecreasing function f: 1 — R satisfies fo f = f if and
only if the following conditions hold:

(i) If f is strictly increasing on J C 1 (J not a singleton) then f|y = id|y.
(ii) If f = cy is constant on J C 1 then c; € f~{cy}.
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Corollary 6.5. A nondecreasing and continuous function f: 1 — R satisfies fof =
f if and only if there are a,b € TU{—00,00}, a < b, witha <bifa ¢l orb¢l,
such that f(z) = Max(a, Min(z,b)).

Remark 6.6. Corollary 6.5 was established in [14, Sect. 2.2] when I is a bounded
closed interval. It was also established in a more general setting when the domain
of variables is a bounded distributive lattice; see [6].

It is an immediate fact that a range-idempotent function F: I™ — I with mono-
tonic 0 is quasi-idempotent. Therefore, by combining Proposition 6.2 and Corol-
lary 6.5, we see that a function F: I™ — [ is range-idempotent with nondecreasing
and continuous & if and only if there are a,b € TU {—00,00}, a < b, with a < b if
a¢lorb¢l and an idempotent function G: I" — I such that

F(x) = Max(a, Min(G(x), b)).

6.3. Idempotization process. Corollary 6.3 makes it possible to define an idem-
potent function G from any idempotizable function F (see Section 6.2), simply by
writing G = f 16 F, hence the name “idempotizable”. This generation process
is known as the idempotization process; see [3, Sect. 3.1]. Of course, if F is non-
decreasing then so is G and hence G is a mean, namely the F-level mean Mg (see
Section 6.1).

Example 6.7. From the Einstein sum, defined on ]—1,1[> by
_ T1 + T2
F = ! == 17
(@1,22) = ¢~ (plar) + p(a2) = T2
where ¢ = arctanh, we generate the quasi-arithmetic mean

(1_2\1/2/q_ 2\1/2
Mg (21, 72) zw—l(%¢(zl)+%¢(b)) _ ma (1:6:1;2 (—z3) /7

Theorem 4.4 shows that we can extend this process to any nondecreasing and
quasi-idempotent function F simply by considering any F-level mean (e.g., Mg). We
call this process the generalized idempotization process.

It may happen that Mg be very difficult to calculate. The following result may
then be helpful in obtaining alternative F-level means.

Proposition 6.8. Let F: I" — R be a nondecreasing function satisfying condition
(4), let J be a real interval, and let F': J™ — R be defined by F' := Fo (p,...,p),
where @: J — 1 is a strictly monotonic and continuous function. Then, for any
P € Q(p), the function G': J™ — J, defined by G' := 1 oMgo (p,...,¢),

(i) is a well-defined F'-level mean,

)
(ii) has the same symmetries as F and F', and
(iil) s continuous if F satisfies conditions (12), (13), (14), (15), and (16).

Proof. Since Mg is nondecreasing and idempotent, it is internal (see Section 6.1).
Thus, ¢ and Mg o (¢, ..., ¢) have the same range and hence G’ is well defined and
even nondecreasing. Also, since p € Q(¢) and ran(vy)) = J, we have dg: = oy = id,
which means that G’ is idempotent. Moreover, we have

dpr oG =dpopotpoMpo(p,...,0) =0k oMgo(p,...,0) =Fo(p,...,0) =F,

which shows that G’ is an F’-level mean. Evidently, G’ has the same symmetries as
Mg which, in turn, has the same symmetries as F (see Proposition 4.10). Finally,



18 JEAN-LUC MARICHAL

if F satisfies conditions (12), (13), (14), (15), and (16), then Mf is continuous (see
Theorem 5.7) and, since both ¢ and 1) are continuous, so is G. ([l

Example 6.9. The continuous Archimedean t-norm T#: [0,1]2 — [0, 1] generated
by the continuous strictly decreasing function ¢: [0,1] — [0, c0], with ¢(1) = 0, is
defined by
T2 (21, 22) = ¢(p(21) + @(22)),
where ¢ € Q(p) (see [11]). When ¢(0) = oo, the t-norm is said to be strict and is
of the form
T (x1,22) = ¢ (p(a1) + p(a2)).
The mean Mt is then the quasi-arithmetic mean

My (21, 22) = ¢ (30(21) + 3(22))
and we can write T¥ = d1-0M,. When ¢(0) < oo, the t-norm is said to be nilpotent
and is of the form

T#(z1,22) = ¢~ (Min(p(0), p(z1) + @(x2)))-
In this case, the mean Mt may be very difficult to calculate. However, using
Proposition 6.8 with F being the sum function, it is easy to see that the quasi-
arithmetic mean M, is again a T¥-level mean so that we can write T¥ = dte o M,
with &t (z) = =1 (Min(¢(0), 2¢(x))).

6.4. Transformed continuous functions. We now consider the problem of find-
ing necessary and sufficient conditions on a given nondecreasing function F: I" — R
for its factorization as F = f o G, where G: I — I is nondecreasing and continuous
and f: ran(G) — R is nondecreasing. Such a function F is then continuous up to
possible discontinuities of f.

The following result solves this problem when we further assume that G satisfies
condition (12). The general case remains an interesting open problem.

Theorem 6.10. Let F: 1" — R be a nondecreasing function. The following asser-
tions are equivalent:

(i) There is a nondecreasing and continuous function G: 1" — 1, satisfying
condition (12), and a nondecreasing function f: ran(G) — R such that
F=/foG.

(ii) F sai;sﬁes conditions (4), (12), (18), (14), (15), and (16).

If these conditions hold, then we can choose G = Mg and f = dF.

Proof. Let us prove that (i) = (i¢). By Corollary 5.11 we have that G = dg o Mg,
where Mg is continuous. If follows that F = f o §g o Mg = 0 o Mg and hence F
satisfies (4). We then conclude by Theorem 5.7.

Let us prove that (i7) = (i). By Theorem 5.7, we have F = §r o Mg, where Mg
is nondecreasing, idempotent (hence G satisfies (12)), and continuous. O

Remark 6.11. If we remove condition (12) from assertion () of Theorem 6.10, then
F still satisfies (4) but may or may not satisfy (12).
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APPENDIX A. PROOF OF THEOREM 4.4

We first consider a definition and two lemmas.

A subset C of I" is said to be an upper subset if for any x € C' and any x’ € 1",
with x < x’, we have x’ € C. To give an example, for every y € ran(dg), the upper
level set FZ!(y) is an upper subset of 1",

Lemma A.1. Let x,x’ € I, with x < x’, and let C be a nonempty upper subset
of I". Then doo(x,C) = doo (X', C).

Proof. Denote by C* the smallest upper subset of R™ containing C'. For every
z € C*, we have do(X,2) = doo (X', 2+ %' — %) and z+ x' —x € C*. It follows that
{doo(x,2) : 2z € C*} C{dw(x,2') : 2’ € C*} and hence doo(x,C) = doo(x,C*) >
doo (%', C*) = doo (%, C). O

Lemma A.2. Assume F: 1" — R is nondecreasing. Then any solution G: 1" — 1
of Chisini’s equation (2) is nondecreasing if and only if it is nondecreasing on each
level set of F.

Proof. The necessity is trivial. For the sufficiency, assume that the solution G: 1™ —
I is nondecreasing on each level set of F. Let x,x’ € I" be such that x < x’ and
F(x) < F(x'). By Proposition 2.3, we must have G(x) € 6z '{F(x)} and G(x') €
6 *{F(x')}. Therefore, since 0 is nondecreasing, we also have G(x) < G(x'). O

Proof of Theorem 4.4. Let us first prove that F = df o Mg or, equivalently, that
Mg (x) € 07 '{F(x)} for all x € I" (see Proposition 2.3). Fix x* € I". By definition
of Mg, we always have Mp(x*) € [ap(x*),br(x*)]. We now have to prove that if
ap(x*) ¢ 6 "{F(x*)} (which implies ar(x*) < b(x*)) then necessarily Mg(x*) >
ap(x*). For the sake of contradiction, suppose that Mg(x*) = ag(x*).

(i) If x* € Qf then df (x*) = 0 and hence condition (9) holds. It then follows
that dg (x*) = 0, that is ar(x*) = Max(x*). This implies x* < ag(x*)1 and
hence F(x*) < dr(ar(x*)) < F(x*), a contradiction.

(if) If x* ¢ QF then at least one of the conditions (9) and (10) must hold. This
implies ap(x*) = Max(x*), again a contradiction.

The case when be(x) ¢ 6z '{F(x)} can be dealt with dually.

Let us now prove that Mg is nondecreasing. By Lemma A.2 we only need to
prove that Mg is nondecreasing on each level set of F. Fix x* € I" and let x,x’ €
F=H{F(x*)}, with x < x’. We only need to show that Mg(x) < Mg(x).

If the set FS!'(F(x*)) is nonempty (which means that dg (x*) < oc), then it is
an upper subset of I" and, by Lemma A.1, we must have df (x) > dg (x’) and
dz (x) > dZ (x), and we prove dually that ds(x) < ds(x') and df(x) < df (x)).
We can now assume without loss of generality that FZ'(F(x*)) and F3*(F(x*)) are
nonempty. Assume also that conditions (9) and (10) do not hold. Four exclusive
cases are to be examined:

(i) If x,x" € QF then, assuming df (x) > 0, we have
be(x) — ap(x) o be(x) — ap(x)

47 (%) < ar(x) Z (x)
e 1 =6 T 1

MF(X) = aF(x) + = MF(X/).

If df (x) = 0 then we simply have Mg(x) = ap(x) = ar(x’) < Mg(x').
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(ii) If x,x’ € I" \ QF then Mp(x) = Lar(x) + 2br(x) = Sar(x') + 1bp(x') =
MF(X/).
(iii) If x € QF and x’ € I" \ Qf then df (x) < df (x’) = 0 and hence dg (x) = 0.
Therefore, Mp(x) = ap(x) = ap(x’) < Mg(x').
(iv) If x € I" \ QF and x’ € Qf then, similarly to the previous case, we must
have dg (x’) = 0 and hence Mp(x") = bp(x') = bp(x) = Mg(x).
The situation when any of the conditions (9) and (10) hold can be dealt with
similarly as in case (i) above.

Let us now prove that Mg is idempotent. Let 1 € diag(QF). Again, we can
assume that FZ!(F(21)) and FS!(F(x1)) are nonempty. Then dg (z1) = df (21) =
z — ap(r1) and dZ (z1) = dZ (#1) = be(21) — = and hence Mg(21) = 2. Now, let
x1 € diag(I™ \ Qf), which means that df (z1) = dZ (v1) = 0. Then 6z '{F(21)}
6 {0k ()} is the singleton {x}. Indeed, suppose on the contrary that Jg(z’)
¢ () for some 2’ > x. Then F would be constant on [z,z']™ and hence dg (z1) >
a contradiction. Therefore, Mg(z1) = z.

S|
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