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Abstract

We describe a method for computing explicit models of hyperelliptic Shimura curves at-
tached to an indefinite quaternion algebra over Q and Atkin-Lehner quotients of them. It
exploits Cerednik-Drinfeld’s non-archimedean uniformisation of Shimura curves, a formula of
Gross and Zagier for the endomorphism ring of Heegner points over Artinian rings and the
connection between Ribet’s bimodules and the specialization of Heegner points, as introduced
n [22]. As an application, we provide a list of equations of Shimura curves and quotients of
them obtained by our method that had been conjectured by Kurihara.

1 Introduction

Let D be the reduced discriminant of an indefinite quaternion algebra B over Q and let N > 1 be
a positive integer, prime to D. Let X (N)/Q denote the Shimura curve over Q attached to an
Eichler order of level N in B.

As it is well-known, in the classical modular case automorphic forms of Xo(N) := X{(N)
admit Fourier expansions around the cusp of infinity. This allows to compute explicit generators
of the field of functions of such curves. Also, explicit methods are known to determine bases of
the space of their regular differentials, which are used to compute equations for them and their
quotients by Atkin-Lehner involutions.

In the general case, D > 1, the question of writing down explicit equations of curves X (V)
over Q remains quite unapproachable. The absence of cusps has been an obstacle for explicit
approaches to Shimura curves. Methods to handle functions and regular differential forms on
these curves are less accessible and we refer the reader to [1] for progress in this regard. IThara
[13] was probably one of the first to express an interest on this problem, and already found an
equation for the genus 0 curve X§(1), while challenged to find others. Since then, several authors
have contributed to this question (Kurihara [17], Jordan [15], Elkies [7], Clark and Voight [34] for
genus 0 or/and 1, Gonzalez and Rotger [10], [9] for genus 1 and 2).

Elkies computes equations for the list of Shimura curves that he deals with using their hy-
perbolic (rather than the non-Archimedean uniformizations at primes dividing the discriminant)
uniformizations. His method has the advantage that allows the identification of Heegner points in
the equation, but is limited to very small discriminants D and levels N.

The methods of Gonzélez and Rotger are heavily based on Cerednik-Drinfeld’s theory for the
special fiber at p | D and the arithmetic properties of Heegner points. It allows to work with larger
D and N but is again subjected to sever restrictions: the genus must be at most 2 and, in the
hyperelliptic case, the curve must be bielliptic. In addition, this method does not allow to locate
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Heegner points in the given model of the curve. The present paper is in the line of [9] and one of
the aims is removing such strong restrictions.

More precisely, the aim of this note is to introduce a procedure to compute equations for
hyperelliptic Shimura curves with good reduction at 2. Notice that equations of hyperelliptic
classical modular curves were computed by Gonzdlez in [8] by completely different methods. For
the sake of simplicity we restrict ourselves to the case N = 1 and write X = X (1), although
we believe that our method can be easily generalized to the case of arbitrary square-free N.
Polynomials defining equations of hyperelliptic curves are closely related to their set of Weierstrass
points. The set of Weierstrass points WP(X{) of a hyperelliptic Shimura curve X’ turns out to
be a disjoint union of Heegner points:

WP(XP) = | |CM(R,),

for suitable orders R; in imaginary quadratic fields. As a consequence, X’ admits an equation of
the form
y2 = Hpi(x)a (11)
i

where p;(x) is a polynomial attached to each set of Heegner points CM(R;).

Let X denote Morita’s integral model of XP. Over Z[1/2], XP will also be defined by an
equation of the form (1.1). As we shall explain in detail, the specialization of Weierstrass points
at the special fiber of X at a prime p can be exploited in order to compute the p-adic valuation
of the discriminants disc(p;) and resultants Res(p1,p;) of the above polynomials. We will make
use of the theory of specialization of Heegner points introduced in [22] in order to obtain such
information.

Moreover, by means of the classical theory of complex multiplication we can also compute the
splitting fields of each p;. Exploiting the theory developed by Gross-Zagier in [11] we can further
compute the leading coefficients of each p;, once we have fixed a pair of Heegner points at infinity.

As a combination of all this data, we are able to compute an explicit model (1.1) for X’. The
only algorithmic limitation of this method relies on the fact that it exploits certain instructions
which are currently implemented (e.g. in MAGMA) only for small degree field extensions. As long
as the genus increases, the degrees of the fields involved in the computation become so large that
make it impossible to proceed with the procedure.

In §2 we recall basic facts about semi-stable hyperelliptic curves and the specialization of their
Weierstrass points. In §3 we introduce Shimura curves with special emphasis to the finite list of
them which are hyperelliptic. In §4 we describe the singular specialization of Heegner points and
in §5 we give an explicit recipe to compute it in terms of Ribet bimodules. In §6 we exploit the
moduli interpretation of Shimura curves in order to compute the supersingular specialization of a
suitable set of Heegner points. This is a crucial step in the computation of the leading coefficients
of the polynomials involved, once we have fixed a pair of such Heegner points at infinity. In §7 we
present a detailed description of our method for computing equations of Shimura curves and we
devote §8 and §9 to exhibit two examples of its implementation.

Finally, in §10 we explain how to adapt this procedure to quotients of Shimura curves by Atkin-
Lehner involutions. The degrees of the fields involved in the computation in this case are smaller
and, consequently, we are able to compute more examples. In §10.4 we present a list of equations
of Shimura curves and Atkin-Lehner quotients obtained by means of the procedures introduced in
the previous sections. These equations were unknown until now and were conjectured by Kurihara
in [18].
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2 Semi-stable hyperelliptic curves

Let X be a smooth, geometrically connected, projective curve of genus g > 1 defined over a field k.
It is said that X is a hyperelliptic curve over k if there exists a finite separable morphism X — IP’}C
of degree 2. Whenever there is no risk of confusion about the field k& we shall only say that X
is hyperelliptic. This is equivalent to the existence of an involution w defined over k such that
the quotient curve X/w has genus 0 and k-rational points. When this is the case, this involution
is unique and is called the hyperelliptic involution. Moreover, it is well known that there exist
functions x,y € k(X) satisfying a relation of the type

>+ Q(z)y + P(x) =0, P,Q € k[z], 29+ 1 < max{deg P,2degQ} <29 +2, (2.2)

and such that the function field of X is k(X) = k(z,y). The hyperelliptic involution w is then
given by (x,y)—(x, Q(x) —y) and, for the particular case that char(k) # 2, we can take Q(z) = 0.
The set of k-rational points of X consists of the set of affine points defined by (2.2) together
with a k-rational point at infinity if deg(Q(z)? — 4P(x)) = 2g + 1, or a pair of points at infinity
if deg(Q(z)? — 4P(x)) = 2g + 2. In the later case, both points are either k-rational or Galois
conjugate over a quadratic extension of k.

We shall denote by WP(X) the set of Weierstrass points of X. It coincides with the set of fixed
points of w. Hence, WP(X) contains the point at infinity in case deg(Q?(x) —4P(z)) = 2g+1, and
all points of the form (v, Q(v)/2) or (v, +/P(7)), depending whether char(k) # 2 or not, where v
is a root of R(z) = Q*(x) — 4P(x).

If kK = Q, a Weierstrass model for X is a model W over Z, i.e. a normal fibered surface over
Spec(Z) with generic fiber X, such that w can be extended to an involution on W, which we still
denote by w, and the quotient W/(w) is smooth over Z. We shall also denote by WP(W) the set
of fixed points of w on W. By [21, Remark 3.5], every smooth model of Pg, is isomorphic to Pj.
Hence, any Weierstrass model W satisfies W/(w) = P}, and, by [19, Lemme 1], W is the projective
closure of the affine curve defined by:

>+ Q(x)y + P(x) =0, P,Q € Z[z], 29+ 1 < max{deg P,2degQ} < 2g + 2. (2.3)
Given such a hyperelliptic equation, we define the discriminant of the Weierstrass model as follows:

2749t D disc(R(z))  if deg R(x) =29 + 2,
AW) = { 2-49t) 2disc(R(z)) if degR(z) =29+ 1, (2:4)
where R(z) = Q(z)?> — 4P(z) and c is its leading coefficient. The special fiber W, of W at p is
smooth over F, if and only if pt AW) (c.f. [19]).
Assume now that & is algebraically closed, let C' be an algebraic curve over k, and let x € C(k).
We say that x is an ordinary double point if

0.2 =~ Kl[u, )]/ (wv) ~ K[[u, v]}/ (u® — v?), (2.5)

where 5(/: is the completion of the local ring O¢ ;. A curve C over k is said to be semi-stable if
it is reduced and all its singular points are ordinary double points.

Let S be an affine Dedekind scheme of dimension 1, with fraction field K. Let C be a normal,
connected, projective curve over K. A model of C over S is a normal fibered surface C— S together
with an isomorphism of its generic fiber f : C;,—C'. We say that the model C—S is semi-stable if

for each s € S the geometric fiber Cs Xy, (5) k(s) is semi-stable over k(s), where k(s) stands for the
residue field of S at s.



Proposition 2.1. [20, Corollary 10.8.22] Let C — S be a semi-stable model of a curve C. Let

s €8S, and let x € C, be a singular point of Cs. Then there exists a Dedekind scheme S’, i'g%tale
over S, such that any point ¥’ € C' :=C xg S’ above z lying on C., is an ordinary double point in
!, —Spec(k(s’)). Moreover,

—

Oc' o = Ogr o[[uv])]/(uv — ¢) ¢ € myOgr s,

where O/Cl,j and O/S/\gl are the completions of Oc: 5+ and Og: o respectively.
If C is smooth, then ¢ # 0. Let e, be the normalized valuation of ¢ in Og o, then e, does not
depend on the scheme S’ chosen.

Definition 2.2. The value e, described in the above proposition is called the thickness of the
singularity x € Cs.

Theorem 2.3. Let~W—>Spec(Z) be a Weierstrass semi-stable model, and let p be an odd prime of

bad reduction. Let P € W,(F,) be a singular point lying in an affine open defined by an equation
y? + Q(x)y + P(x) = 0. Then, there exist exactly two Weierstrass points Py, P, € WP(X) that
specialize to P. Moreover, the thickness of P is ep = 2v(y1 — 72), where v is the normalized
valuation at p and ~y; are the roots of R(z) = Q(x)? — 4P(z) corresponding to Py and P;.

To prove this result we need the following technical lemma.

Lemma 2.4. Let A be a ring such thatn € A*. Then s = (14+t)"—1 € Alt] satisfies A[[t]] = A[[s]]
and, moreover, there exists f(s) € sA[[s]] such that 1 +s = (1+ f(s))™.

Proof. This is exercise 1.3.9 of [20]. The proof is left to the reader. O

Proof of Theorem 2.3. First we shall prove that there are exactly two Weierstrass points Py, P €
WP(X) specializing to P. Write W, = W x Spec(F,) for the geometric fiber of W at p. Since
p # 2, an affine open U of W, shall be of the form U = Spec(F, [z, y]/(y> — R(z))), where R(x) is
the reduction of R(z) modulo p. Hence it is clear that singularities of U correspond to multiple
roots of R(z). Without loss of generality, assume = = 0 is the multiple root of R(z) corresponding
to P. We get R(z) = x™h(z), where h(z) = h(0)(1 4 z7(z)) and h(0) # 0. The local ring Ow, .

at P is given by:

and it follows that

By Lemma 2.4, taking A = F,[[y]], t = z7(z) and n = 2, we obtain that h(z) is a square in

F,llz,y]])*. Hence O 5= A,,, where
(Fp[[z, y]]) W, P
A = ]Ip[[x,y]]/(y2 —z™), m>2.

Since W is semi-stable, W, /F, must be semi-stable. Therefore P is an ordinary double point
and O/W;5 ~ Fp[[z,y]]/(y* — ) = As. From Ay ~ A,,, it follows that m = 2. As a consequence,
P is attached to a root 4 of R(z) with multiplicity 2 and we conclude that there exist exactly two
Py, P, € WP(X) that specialize to P (attached to the roots v; and v of R(x) that reduce to 7).

Next, we proceed to compute the thickness e of P: the equation Y? = R(z) = Q(z)? —4P(x)
defines W in a neighborhood of (p) € Spec(Z). After extending to a finite extension k' D F,, if
necessary, we can suppose that any singular point P’ € W, x Spec(k’) lying over P is k/-rational.
Without loss of generality, assume that P’ is defined by # = 0,Y = 0. That is,

R(z) = z®h(z), h(0) #0.



We can choose an i, 3tale scheme S’ over Spec(Z) and a point m € S’ above (p) such that k' =
F,(n'). Notice that, if we write W' = W xg S’, the point P’ lies in (W), and its local ring is
Ow',(w/,ﬁ/) = (OS’,w’ [5f7 Y]/(Y2 - R(w)))(m,Y)°

Let Og:  be the completion of Og » and denote by v its normalized valuation. Let us consider

L —

R(z) over Og/ . Since its reduction is R(z) = 22h(z) with h(0) # 0, we apply the Classical
Hensel’s Lemma (cf.[25]) to 22 and h(z) and we obtain that R(z) = (22 + ax 4 b) - h(z), where
v(h(0)) =0, v(a) > 0 and v(b) > 0. Extending S’ to a bigger i;2tale Spec(Z)-scheme if necessary,
we can suppose that h(0) has a square root in O/S/\,T/ Since h(z) = h(0)(14+x-r(z)) € O/S/\,T/ [[z]]*,
by Lemma 2.4, there exists s(x) € (’)/sf\ﬂ/[[x]]* such that s(z)? = h(z). Therefore

Opyrorpry = Osrwrl[w YN/ (V2 = (2% +az+b) - h(w)) = /s?nx,m/((j@) (e 8) -2,

where A = a? — 4 -b. Writing u = Y/s(x) + 2 + a/2 and v = Y/s(x) — x — a/2, we obtain that
Ogr oz, Y]] = Og z[[u,v]] and

—_—

Ow',(w,ﬁf) = Ogr o [[u,v]]/(u-v = A).

Hence, we deduce that ep = v(A).

Since the roots of the polynomial 22 + az + b are precisely the two unique roots 71,2 € Q that
reduce to 7, and A is the discriminant of the polynomial #2 4+ ax + b, it follows that A = (y; —72)?
and ep = 2v(y1 — 72). O

3 Hyperelliptic Shimura curves

Let B be an indefinite division quaternion algebra over Q and let O be a maximal order in B.
By an abelian surface with quaternionic multiplication (QM) by O over a field K we mean a pair
(A,7) where:

i) A/K is an abelian surface.
ii) i: O — End(A) is an embedding.

For such a pair we denote by End(A, 7) the ring of endomorphisms which commute with i, i.e.,
End(A,i) = {¢ € End(A) : ¢i(a) = i(a)¢ for all a € O}. Two abelian surfaces (A,7) and (A4',)
with QM by O are isomorphic if there is an isomorphism ¢ : A — A’ such that ¢poi(a) =i'(a)o ¢
for all @ € O. Throughout, we shall denote by [A, 7] the isomorphism class of (4,1).

Let us denote by X’ /Q Shimura’s canonical model of the Shimura curve associated to O. As
Riemann surfaces, X (C) = TP\H, where H is the Poincari’;}% upper half plane and I'} is the
image of O through the embedding B — B ® R ~ M(2,R). As is well known, X’ represents,
as a coarse moduli space, the moduli problem of classifying abelian surfaces with quaternionic
multiplication by . Hence an isomorphism class P = [A, 4] shall be often regarded as a point on
XP.

It follows from the work of Morita, Cerednik and Drinfeld that XZ admits a proper integral
model X over Z, smooth over Z[;], which suitably extends the moduli interpretation to arbitrary
base schemes (cf.[23],[3]). Moreover, X is semi-stable at every prime p dividing D, and singular
points of &, are in correspondence with certain algebraic objects (see correspondence (4.7)), from
which we will recover their thicknesses (see Lemma 4.1).

Let K be an imaginary quadratic field and let R be an order in K. A point P = [4,i] € XP(C)
is a Heegner (or CM) point by R if End(A,¢) ~ R. Throughout, we shall fix the isomorphism
R ~ End(A,1) to be the canonical one described in [14, Definition 1.3.1]. We denote by CM(R)
the set of Heegner points by R. By main Theorem I of [29], the extension K (P) of K generated by
the coordinates any P € CM(R) C X[ is the ring class field of R, Hg. Moreover, [K(P) : Q(P)]



is 1 or 2 and the number field Q(P) can be determined, up to Galois conjugation (see Theorem
5.12 of [10]).

For every divisor m|D let us denote by w,, the corresponding Atkin-Lehner involution on X,
which is defined over Q. The property wy, - Wy = Wy /(m,n)> implies that the set W (D) = {wq :
d|D} is a subgroup of automorphisms of X& isomorphic to (Z/2Z)#{PIP}. The action of these
involutions on Heegner points can be found in Lemmas 5.9 and 5.10 of [10] and, as the following
result shows, their set of fixed points is also a set of Heegner points.

Proposition 3.1. [24, §1] Let m | D, m > 0. The set ., of fixed points of the Atkin-Lehner
involution w,y, acting on X& is

CM(Z[v=T1]) U CM(Z[v/=2]) if m =2
Sw, =4 OM(Z[y=—m]) U CM(Z[*="]) if m =3 mod 4

CM(Z[/—m)) otherwise.

Ogg determined in [24] the 24 values of D for which X is hyperelliptic over Q and proved
that only for 21 values of them the corresponding curves X’ are hyperelliptic over Q. The aim
of this paper is to give a procedure to compute equations for all these cases. Since those of genus
2 were computed by J. Gonzalez and V. Rotger in [9], we assume that X /Q is hyperelliptic over
Q of genus g > 2. We present the values of D and the corresponding genera for the remaining 18
cases:

D
-31,2-47,3-13,3-17,3-23,5 7,5 - 11
-37,2 43

.29

.67

73,337,519
-97,2-103,3-53,7- 17

Table 1

The hyperelliptic involution w of X& in all these cases turns out to be the Atkin-Lehner
involution wp. Since the action of wp has an interpretation in terms of the moduli problem, it can
be extended to an involution on the integral model X'. Moreover, we have an explicit description of
the fibers &}, and the action of w = wp on them. Hence we can easily check whether the quotient
X /{w) is smooth over Z. If X/(w) is not smooth over Z, then X is not a Weierstrass model for
XP. Sometimes it is possible to blow-down certain exceptional irreducible components in order
to obtain a model W such that W/(w) is smooth over Z and, thus, defined by an equation of the
form (2.3):

O© N O Uk Wk
NN NW N DN

Wiy +Qz)y+ Plx) =0, P,QeZz], 2g+1<max{2deg(Q),deg(P)} < 2g+ 2.

Remark 3.2. But this is not always possible. For example, the special fiber of Morita’s integral
model of X§7 at p = 29 has the following form:

Clearly, by blowing-down exceptional divisors it is not possible to obtain a fiber W, such that
W, /(w) is smooth over F,,.

In order to obtain explicit equations, we will focus our attention in two directions:



1. Determination of the thicknesses of Weierstrass points at every prime p|D. Since the
hyperelliptic involution is the Atkin-Lehner involution wp, we have that WP(W) = | |, CM(R;),
where {R;} is the set of the orders in the imaginary quadratic field K = Q(v/—D) containing the
order Z(v/—D). By Theorem 2.3, thicknesses of singular specializations of WP(W) are related
with roots of the polynomial R(z) = P(x)? —4Q(x). In §4 we shall discuss singular specialization
of Heegner points and we shall give an explicit recipe to obtain such thicknesses.

2. Determination of the leading coefficient of R(x) = P(x)? — 4Q(z).

Given the Weierstrass model W of X, let U be the affine open defined by the equation
y? + P(z)y + Q(x) = 0. The set of points at infinity of U is the set of geometric points of the
generic fiber of W\ U. Since Shimura curves do not have real points (cf. [30, Proposition 4.4]),
this set corresponds to a pair of conjugate points living in a quadratic extension of QQ such that the
hyperelliptic involution acts on them via the unique non-trivial Galois conjugation. In particular,
this implies that deg(P? — 4Q) = 2g + 2. In order to fix a hyperelliptic equation of W, we
must choose a pair of points defined over an imaginary quadratic field such that the hyperelliptic
involution acts suitably on them.

It turns out that for every value D in Table 1, there exists a maximal order R, in an imaginary
quadratic field Ko, with number class hr_ =1, i.e. Ko = Hp_, discriminant coprime to D and
such that CM(Ry,) # (0. By [10, Lemma 5.10], complex conjugation acts on every Py, € CM(Ro)
as the hyperelliptic involution wp. We fix Po, € CM(Ry) and we choose the set { P, wp (P )} to
be our set of points at infinity. This choice shall fix a hyperelliptic equation y? + P(x)y+Q(x) = 0
of W, up to transformations of the form (z,y) — (z+a,y+h(x)), a € Z, h(z) € Z[z], deg(h(x)) <
g+1.

Our goal is to determine the leading coefficient ar of the polynomial R(z) = P(x)? — 4Q(x).
As a first approach, recall that the field of definition of Py is Ko = Q(y/ar). Moreover, a prime
p divides ap if and only if Py, and wp(Ps) specialize to the same Fp-rational Weierstrass point.
Hence, the determination of the specialization of these specific Heegner points will give a valuable
information about the leading coefficient ap € Z.

Since any p | D is inert in Ry, P has good reduction at p. Any Weierstrass point has singular
specialization at any prime dividing D, hence (agr, D) = 1. In order to determine the remaining
p-adic valuations of agr, we introduce the following definition:

Definition 3.3. Let R be a local valuation ring with uniformizer w. The intersection index of
two ideals I; and Iy of an algebra A over R is the length of the algebra A/(I; + I2).

Let P, and P, be the points in Spec(A) defined by I; and I>. By [28, Lemma 3.13], the
intersection index of I; and I measures the maximal power n of 7 in which their inverse image
Py and P, coincide in Spec(A @ (R/7"R)).

Recall that P, lies in the affine open defined by the relation 22 + Q1 (v)z + Pi(v) = 0, where
Q1(v) = vIT1Q(1/v) and P;(v) = v?972P(1/v). Moreover, the ideals defining Py, and wp(Ps)

are

Ipoo :<’U,Z+M>, IwD(pm):<v,Z+M>.
Set Kp = Koo ®g Qp, let K™ be the maximal unramified extension of K, and let R;™ be its
integer ring with uniformizer . Write W,™* for the extension of scalars W x Spec(R,™") and denote
also by Py, and wp(Ps) their inverse image in Wy, Write (Pa,wp(Px))p for the intersection
index between Pu, and wp(Pax) in W™, Then, it is easy to check that (Pu,wp(Px))p is precisely
vp(ag), if p ramifies or splits in Ko, and vp(ag)/2, if p is inert in K.

Assume that p + D. Since X'/Z is the coarse moduli space associated to the algebraic stack
that classifies abelian surfaces with QM by O over any arbitrary base scheme (cf. [3]) and W™ =
A", this intersection index can be interpreted in terms of the algebraic objects classified by
Py =[Ax,ioo] and wp(Ps) = [AL,, 1. ]. Namely,

o0 Yoo

(Poo, wp(Poo))p :=max{n > 1: (Au,ino) =~ (AL, ir,) over Ry™/7"RyM}. (3.6)

(o oRiRde o}



In section §6 we describe the specialization of those Heegner points P € CM(R) with class
number hr = 1 and we provide a description of (P,wp(P)), in purely algebraic and computable
terms.

4 Specialization of Heegner points

For any two square-free positive integers d and n let Pic(d,n) stand for the set of isomorphism
classes of oriented Eichler orders of level n in a quaternion algebra of discriminant d (see [22, §2.1]
for the definition of oriented Eichler order).

Let X' /Z be Morita’s integral model of X as above. Let p | D be a prime of bad reduction of
X. Thanks to the work of Cerednik and Drinfeld (cf. [4],[5]), we know that the special fiber X, at
p is semi-stable. Moreover, its sets of singular points (X} )sing and irreducible components (X}).
are in one-to-one correspondence with the sets Pic(%, p) and two copies of Pic(%, 1), respectively.
We shall denote by

£ ¢ (&) )sing < Pic(D/p,p) (4.7)
and
ge: (X)e ¢35 Pic(D/p, 1) UPic(D/p, 1) (4.8)

the corresponding bijections.

For any P = [A,i] € (X,)sing, the endomorphism ring End(A,7) is an Eichler order of level
p in a definite quaternion algebra of discriminant D/p, equipped with natural orientations [27,
Proposition 2.1], hence its isomorphism class can be regarded as an element of Pic(%7 p). Moreover,

one can see in [22, §5] that e,(P) = End(A4, 7).

Lemma 4.1. [6, §3] The thickness ep of any P € (X,)sing s given by ep = e(es(P)), where
€ : Pic(D/p, p)—7Z stands for the natural map

€(0;) = #(0] /(£1)), for all O; € Pic(D/p,p). (4.9)

We proceed to introduce the concept of optimal embedding. It shall be useful for future compu-
tations since Heegner points are in correspondence with certain optimal embeddings. Throughout,
for any Z-algebra D, write D° = D ®7 Q.

Definition 4.2. Let Oy, be an oriented Eichler order in Pic(d,n) and let R be an order in an
imaginary quadratic field K. An optimal embedding with respect to R is a ring monomorphism
¢ : K = Of , such that o(K)N Oy, = @(R). For any oriented Eichler order Oy ., let CMo, , (R)
denote the set of optimal embeddings ¢ : R < Og,, up to conjugation by Oy . Let CMgn(R) =
Uo,.,ePic(d,n) CMo, ,, (R), where O4,, € Pic(d,n) runs over a set of representatives of oriented
Eichler orders.

It is well known (see [22, §2.2]) that there is a one-to-one correspondence between the set
CM(R) and the set of optimal embeddings CMp 1 (R). We denote this correspondence by:

¢:CM(R) — CMpi(R)
P o(P) (4.10)

Let Pic(R) be the Picard group of R, i.e. the group of isomorphism classes of projective R-
modules of rank 1. Let ®p : Pic(R)—Gal(Hr/K) be the group isomorphism given by Artin’s
reciprocity map. Recall that all P € CM(R) are defined over Hpg.

As is well known (cf. [33, §5]), there is a faithful action of Pic(R) on CMy,(R). For any
[J] € Pic(R) and ¢ € CMy,,(R), denote such action by [J] * 1. The following theorem, known as
the Shimura reciprocity law, describes the Galois action of Gal(Hg/K) in terms of the action of
Pic(R) on CMp 1(R), via the correspondence of (4.10):



Theorem 4.3. [29, Main Theorem I] Let P € CM(R) C X (HR). Then, if [J] € Pic(R),
[J]71 % p(P) = (PPrUD),
Fix an algebraic closure IF of FF,,. We proceed to describe the specialization map
IT: XP(Q)—4,(F), (4.11)

focusing on the specialization of Heegner points. Let P = [A,i] € XP(Q). Pick a field of
definition H of (A,4). Fix a prime 9 of H above p and let A be the specialization of A at 3. By
[26, Theorem 3], A has potential good reduction. Hence after extending H if necessary, we obtain
that A is smooth over F. The pair (A z) where the embedding ¢ stands for the composition
O < End(A) — End(A), defines an abelian surface with quaternionic multiplication by O.
Moreover, II(P) = [A, 7] € X,(F) is the specialization of P.

Let P = [A,i] € CM(R) be a Heegner point. By [22, Lemma 4.1], when P specializes to
a singular point the natural map ¢p : End(A,i) — End(/i,%) turns out to be an optimal em-
bedding in CMp, ,(R). If instead P has non-singular specialization, modifying the embedding
End(A,i) < End(A4, 1) as in [22, §5] one obtains an optimal embedding ¢¢ € CMpp,1(R). In both
cases, the isomorphism class of their target, that lies in Pic(D/p,p) and Pic(D/p, 1) respectively,
characterizes the singular point or the irreducible component where P lies.

The following result describes the specialization of the point P in terms of the behavior of p
in K = R® Q, and relates the action of Pic(R) ~ Gal(Hgr/K) on P with the corresponding ones
on ¢p and ¢%.

Theorem 4.4. Let P = [A,i] € CM(R). Then TI(P) = [A,4] € (X,)sing if and only if p ramifies
in K. In this case, the assignation P — ¢p defines a bijective map

65 : CM(R) — CMp (R) (4.12)

satisfying ¢s(PERUIDY = [J] % ¢5(P) for all [J] € Pic(R). Moreover, if II(P) & (X,)sing, the
assignation P — ¢% defines a bijective map

de : CM(R) — CMp  (R)UCM 2 (R) (4.13)

satisfying ¢o(P®R(ID) = [J] % ¢.(P) for all [J] € Pic(R)
Proof. Combine [22, Theorem 5.3], [22, Theorem 5.4] and [22, Theorem 5.8] with Theorem 4.3. O

Remark 4.5. Let 7 : CMp,, ,(R)—Pic(D/p,p) and 7" : CMp p, 1 (R)UCMp sy, 1 (R)—Pic(D/p, 1)U
Pic(D/p, 1) be the natural forgetful projections that map a conjugacy class of optimal embeddings
¢ : R < O; to the isomorphism class of its target O;. Notice that, if the specialization II(P) lies
in (A} )sing, such specialization is characterized by e5(II(P)) = 7(¢s(P)). On the other hand, if
T(P) & (X))sings then e.(TI(P)) = ' (¢c(P)).

If we are able to compute the map ¢, explicitly, by Lemma 4.1 we shall obtain the thickness
of the singular specialization of any Heegner point P € CM(R) through the rule:

er(p) = €(m(¢s(P)))- (4.14)

Once we know the specialization and the thickness of a singular Heegner point in X', we can easily
determine its specialization and its thickness in W. Indeed, if pr : X =W is the blown-down map,
then the thickness of a singular point P € W is:

ep = Z ep + #{C connected component, pr(C) = P} -1 (4.15)
Qex,, pr(Q)=P



5 Computable description of the CM map ¢,

In order to give a computable description of the map ¢4 we shall introduce the concept of (O, S)-
bimodule. We will see that the specialization of any point P € CM(R) is characterized by a certain
bimodule and the optimal embedding ¢(P) can be described in purely algebraic terms.

Let p be a prime and let S € Pic(p,1). An (O, S)-bimodule M is a free module of rank 4
over Z endowed with structures of left O-module and right S-module. The (O, S)-bimodules were
introduced by Ribet in [27] and they provide a useful tool for the analysis of certain supersingular
points on the fiber &}, as we now describe.

Let P = [A,i] € X,(F) such that A is isomorphic to the product of two supersingular elliptic
curves. By [31, Theorem 3.5], A~ E? for any fixed supersingular elliptic curve FE over F. Let S
be the endomorphism ring of E. Then S is a maximal order in a definite quaternion algebra of
discriminant p. By [27, p. 37], S comes equipped with a natural orientation at p and therefore
can be regarded as an element of Pic(p,1). Hence, giving such an abelian surface (A4,7) with QM
by O is equivalent to providing an optimal embedding

i:0 < M(2,8) ~ End(A).

Moreover, such a map provides a left O-module structure on the right S-module Mz =& x S.
Since S x S is free of rank 4 over Z, M3 defines an (O, S)-bimodule.

Given P = [A,i] € X,(F) as above, one can compute the endomorphism ring End(A4,7) in
terms of the bimodule M 3. Let End$ (Mp) be the set of (O, S)-module endomorphism of M3,
i.e., Z-endomorphisms which are equivariant for the left action of @ and the right action of S.
Then it is easy to check that End(A,7) = End3) (Mp) (cf[22, p.7]).

Let P = [A,i] € CM(R) be a Heegner point and assume that p | D. It follows from [27, §4]
that if TI(P) = [A, ] € (X,)sing, the abelian surface A is isomorphic to a product of supersingular
elliptic curves. It thus makes sense to consider its attached bimodule My py. Next theorem allows
us to describe the maps ¢, in terms of the (O, S)-bimodule My(p).

Theorem 5.1. [22, Theorem 4.2] Let P = [A,i] € CM(R) be a Heegner point and let (p(P) : R —
0) € CMp 1(R) be its corresponding optimal embedding. Assume that p | D and II(P) € (Xp)sing-
Then,

(a) There exists an optimal embedding ¥, : R — S such that
Mupy =0 @RS, (5.16)
where S is regarded as left R-module via ¢, and O as right R-module via ¢(P).
(b) The optimal embedding ¢s(P) is given by the rule

R < End)(0O@rS)

0 — a®s— ad® s, (5-17)

up to conjugation by End‘é(@ ®RrS)*.

Remark 5.2. The embedding 7, : R — S depends on the immersion p : Hr — @p chosen
for the specialization. Given another optimal embedding w;, € CM,1(R), there exists a different
immersion p’ : Hg < @p such that, specializing via p, Theorem 5.1 applies with 1, instead of
1p. Indeed, as one can see in [22, §4], the embedding 1, corresponds to the inclusion End(E) —
End(E), where E is the CM elliptic curve C/R and E is its specialization via p. Both, the set
of immersions Hr < Q, and CM,, 1(R) are Pic(R)-torsors and the action of o € Gal(Hp/K) ~
Pic(R) turns v, into the embedding End(E?) < End(E?), where E is specialized by means of
p. It is clear that such an optimal embedding coincides with the one obtained specializing E via
pl=poo.
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Since the above theorem describes the map ¢ in terms of purely algebraic objects, we shall be
able to compute the image ¢4(P) starting from the corresponding embedding ¢(P) € CMp 1(R) of
(4.10). Next, we shall present an explicit description of ¢4 (P) obtained from an explicit description
of o(P).

Definition 5.3. Given a quaternion algebra B, an imaginary quadratic field K and an embedding
Y : K < B, the quaternionic complement of ¥(K) is the set

Y(K)- ={a e B: ay(z) =¢(a?)a, forallz € K},

where o is the single non-trivial element of Gal(K/Q). By [33, §1], ¥(K)_ is a K-vector space of
dimension 1. We sometimes refer the element of a basis as a quaternionic complement of . It is
an element j € B such that jy(x) = ¢(x%)j, for all x € K and 52 € Q.

Let (¢ : R — Oy.,) € CMg ,(R) be an optimal embedding. The free right R-module structure
of Oy, given by 9 provides a decomposition Og,, ~ R®el, where I is a locally free R-module and
e€ Og)n. This decomposition determines completely ). On the other hand, Ogm is characterized

by the presentation O% ~ K @ jK, where OY  is also regarded as a right K-vector space via
d,n d,n

and jK is the quaternionic complement of K i> (’)2’”. Recall that j is determined by j? € Q and
the fact that jy(z) = ¢(z7)j, for all z € K.

In conclusion, in order to compute (¢s(P) : R — A) € CMp, np(R) explicitly, we only have
to present the corresponding decompositions of A and A° via ¢,(P).

Theorem 5.4. Let P € CM(R) be a Heegner point and assume that p | D and II(P) € (X}p)sing-
Let (¢p : R 8) € CM,,1(R) be the fized optimal embedding of Theorem 5.1. Write S° = H and
let H=K® jaK, S~ R®exly, j3 = ma, eg = €21 + jaez2, be the presentations of H and S
induced by 1p. Analogously, let B=K ® j1 K and O ~ R® e 1, ji=m, e = e1,1 + jiei2, be
the presentations of B and O induced by ¢(P). Then, the optimal embedding ¢s(P) : R — A is
characterized by:

AN =K@ jsK and A=Resls,

where j3 is a quaternionic complement of ¢s(P) such that j3 = my-ma, e3 = e21-€7 1 —Jse2,2-€7 5
and

IQIf Zf €1,1 = 0, €21 = 0,
LI N %12 if e1,1 #0,e21 =0,
=9 (Ln LRIy if e1,1 = 0,21 #0,

(IQ n éR)If N é[g Zf €1,1 75 0, €21 75 0.

Proof. Attached to the right K-module structure of B via ¢(P) we have two distinct basis, namely

(1,41) and (1,e1). We denote by M., = ( L e the matrix attached to the change of basis.

0 e
It follows that an element z = x + j1y € K ® j1 K = B acts on K @ j; K via the matrix

_ x myy°
Mz = ( y z° ) € MQ(K)

Since B H= (K ® j1 K)®x H=H ® j1 H, any element z = x + j1y € B acts on Bg H
through the same matrix M,. Hence

AO—Endg(B@)KH)—{(CCL Z)eMZ(H)/MZ<i Z)—(‘; Z)Mz}.

This implies that a = d, miyc = b, a € {x € H: zy =yx, forally € K} = K and b € {z €
H: zy=y°x, forallye K} = jK. Thus

A%K@(i m(1)~72 )K:K@ng, h:(j% mé”) (5.18)
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where j3 satisfies zj3 = jzz° for all z € K and j3 = mymz € Q. Hence j3 is a quaternionic
complement of ¢,(P) : K < A°.

The R-module decomposition O = R @ e;l; yields the S-module structure of O ®r S as
S x (I ®g S) with basis (1, e;). We turn it into our original basis (1, j;) by means of M,,. Then,

A={(a+j3b) € A®zQ/ M, (a+ jsb)Mc, (S x (Iy ® S)) C S x (I ®r S)}.

We obtain that M. *(a + jsb) M., = a + M_'j3M,,b where:

Mt - (0 ) (e N Y.
! 0 J2 )ef, 1 €1,1

Hence the R-module A consists of elements a + jsb € A° with a,b € K such that, for all x € S
and all y € (I ®r S),

ax —j2 0 1 €], N(e) bx
C ) — ' eSx{ S).
(ay)+( 0 32>eg,2( e by x (I ®r S)

We deduce that

_efbr + N(ey)by €21 (e‘l”lbx + N(ep)by) eg 1bx + N(eq)by
ar — jop——————— =ar+ ~ — ey - eS
€12 €12 €22 €12 €22 (5.19)
Cbr+epqb ea1(bx + e11b bxr +e1.1b ’
ay + jo 01,1 Y —ay— 2,1(0 1,10y) + ey 1,19Y cl, ®rS.
€1,2 €1,2 €22 €1,2 €22

Set e3 = eg1 - € — jseaa - €7, For all a,b € K, we have that a + jzb = a’ + e3b’, where
a =a+ 1hand b = ——2

€2,2-€7y e2,2-ef 5"

Thus the expressions of (5.19) become (with this new basis (1, e3)):

o
€2.1€;

(a'x — eg1N(e1)b'y) + ea(ef 10’z + N(e1)b'y) € S (5.20)

(a'y + ez 1 Tr(e11)b'y + e b'z) — ea(V'x + e11b'y) € I @ S. (5.21)
In particular, assuming y = 0 we obtain from (5.20) that (a’ +ezef ;0" )r € S = R@ ealp. This

implies that @’ € R and ef ;0" € I,. It follows from (5.21) that (ez1 — e2)b'z € (I ®r S), that is
b7 joeo s = (€21 — e2)b' € (I1 ®r S). Hence b’ € I{ I, where

I, _ IQQiR if €21 #0
2 12 lf 6271 = O

Assuming that z = 0, it follows from (5.20) that —(ez1 — e2)N(e1)b'y € S, which is deduced
from (ez1 —e2)b € (I1 ®r S) above and the fact that, since e1]; € O, N(e1)I1I{ C R. Moreover,
by (5.21) we have that (a’ + ez 1Tr(e1,1)b — ese11V)y € I1 ®r S, which is again deduced from
(€21 —e2)b' € 1 ®r S and (a’ + eze] (V' )x € S, since

(a' + eg1Tr(e11)b" — ezer1b')y = y(a' + egef 1b') + (e21 — e2)Tr(er1y)b’ € I @R S.

for all y € I and Tr(e11y) = Tr(e1y) € Tr(e11) CZ C R.
In conclusion, a’ + e3b’ € A if and only if a’ € R and ¥’ € I3, where

I { BITO g1y ifers #0

5.22
ILI? if e11 = 0. (5.22)

Thus A >~ R @ ezl3, where e3 = ez 1 - e1,1 — jsez2 - €1,2, and js is a quaternionic complement of
¢s(P), such that j3 = myma.
O
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6 Specialization of Heegner points with class number 1

Let p be a prime not dividing D. Notice that the special fiber X, at p is a smooth curve over
[F,. We say that a point P = [A,i] € X, (IF}) is supersingular if A is isogenous to a product of
supersingular elliptic curves over F,,. Write (X),)ss for the set of supersingular points of X,.

It is well known that the set (X),)ss is in one-to-one correspondence with Pic(Dp, 1) (cf. [27,
§3]). We denote the corresponding bijection by:

Ess 1 (Xp)ss <3 Pic(Dp, 1). (6.23)
In analogy with the previous situation, for any P = [A,i] € (&,)ss the endomorphism ring

End([l, 5) is a maximal order in a quaternion algebra of discriminant Dp endowed with a natural
orientation (cf. [27, Proposition 2.1]). Moreover, the map &4, is given by £4s(P) = End(4, i) €
Pic(Dp, 1).

Let K be an imaginary quadratic field and let R be an order in K of conductor c. Let
P = [A,i] € CM(R) be a Heegner point. Recall the description of the specialization map II :
XP(Q)—=X,(F) of (4.11). By [22, §2.2], A is isomorphic to the product of two isogenous elliptic
curves with CM by R, say A ~ FE; x E5. Therefore, since a CM elliptic curve specializes to a
supersingular elliptic curve if and only if p does not split in K, we deduce that II(P) = [fl,ﬂ €
(Xp)ss if and only if p does not split in K.

We proceed to describe the specialization of those Heegner points that lie in X}, \ (&})ss.

Proposition 6.1. Let P = [A,i] € CM(R) be a Heegner point and assume that TI(P) = [A,1] ¢
(X)) ss (i-e. p splits in K ). Then the natural map ¢p : End° (A, i) < End®(A, 1) is an isomorphism.

Proof. We have A = E; x E,, where E) are Ey are isogenous elliptic curves with CM by R. Write
Ey and Es for their specialization modulo p. Since [A,i] & (X,)ss, each curve E; is an ordinary
elliptic curve over F, such that K = End’(E;) = End’(E;). This implies that End’(A) =
M, (K) = End°(A) and consequently ¢p(End’(A, 7)) = End(A, 7). O

In order to describe supersingular specialization, recall that, in case P = [A,i] € CM(R) and
p does not split in K, the endomorphism ring End(fl,;) acquires structure of oriented Eichler
order in Pic(Dp,1). If in addition we assume that ¢ is prime-to-p, by [22, Remark 4.2] the
natural monomorphism ¢p : End(A,i)—End(4,7) can be regarded as an optimal embedding in
CMpyp,1(R). One can see in [22, §2.1] that the set CMp, 1(R) is equipped with an action of the
group W (D) of Atkin-Lehner involutions. The following theorem relates the action of W (D) on
P € CM(R) with the one on ¢p € CMp,1(R).

Theorem 6.2. [22, Theorem 6.1] Let P = [A,i] € CM(R). Assume that p does not split in K
and ptc. Then, the map P — (End(A,i) < End(A, 1)) defines an injective map

¢ss : CM(R) — CMpy 1(R), (6.24)

SatiSfying ¢ss(wn(P)) = Wn((bss(P))f fOT all wp, € W(D)

Remark 6.3. Recall the natural forgetful projection 7 : CMp, 1(R)—Pic(Dp,1) defined in Re-
mark 4.5. Then, as in the previous setting, the specialization II(P) € (X},)ss is determined by:

599(H(P)) == W((ZSSS(P))

Assume from now on that R has class number hr = 1. For any P = [4, ] € CM(R), we proceed
to compute the intersection index (P, wy,(P)), of (3.6) for any m | D in case of supersingular
specialization.

Write K, = K ®q Qp, let K™ be the maximal unramified extension of K, and let Ry™ be
its integer ring with uniformizer 7. Write W,, = R)™ /7" Ry™. If w,,(P) = [A,4i'] € CM(R), we
deduced in §3 that (w.,(P),P), = max{n : (4,i) ~ (A’,i') over W,,}. The following theorem
computes (wy, (P), P), explicitly.

13



Theorem 6.4. Let P = [A,i] € CM(R) be a Heegner point and let p 4 D be a prime that does
not split in K and does not divide the conductor of R. Let A = End(A,7) € Pic(Dp, 1) and write
A% =AY +A°%, where A = ¢ss(P)(K) and A is its quaternionic complement. Let A ~ R@®eR be
the decomposition of A provided by its free right R-module structure via ¢ss(P). For any A € A°,
write X = Ay + A_, where Ay € AY and A= € A%. Finally, for any A € A, write A = AT +eX™,
where AT, A\~ € R. Then, the integer (wy,(P), P), is given by:

ord, (N(A7))
- (5)

where d is the discriminant of K and (%) 1s the usual Legendre symbol. Moreover, if A € A is
such that N(A\) = m, the following equality holds:

(W (P), P), = max +1:XeA, NA)=m (6.25)

dgw%m<M)+NO)D4gcﬁN<M>GZ. (6.26)
m m m
Proof. Since hg = 1, there is a single isomorphism class of elliptic curves E¥ with CM by R, and F
has supersingular specialization modulo p. Due to the fact that E has potentially good reduction,
after extending K" if necessary, we can choose a smooth model £ of E over R)™.

Denote by 8" = Endyy, (£). In particular, S' = § = End(E) shall be regarded as an element
of Pic(p, 1). The monomorphism of algebras ¢ : K ~ End’(E) < End"(E) yields a decomposition

S'=82as°,

where 8§ = ¢(K) and S is its quaternionic complement. Then by the work of Gross-Zagier [11,
Proposition 3.7.3],

S" =Endw, (§) ={a €S : d-N(a_)=0 mod p-N(P)" '},

where 3 C R is the prime ideal lying above p.

By [22, §2.2], the abelian surface A is isomorphic to E2. Hence, in order to specialize (4,1)
over W, as in the above setting, we must consider a smooth model A of A over R;™ and reduce
modulo 7". Write

A" :=Endw, (4,7) = {\ € Endw, (A) : i(e)A = Ni(a) Yo € O}.

We claim that:
A"={a€A :d-Na_)=0 modp-N(E)" '}

Indeed, since A ~ E?, we have Endy, (A) ~ M5(S™). Moreover, due to the fact that O ~ R x R
as a right R-module via ¢(P), the (O, S™)-bimodule M = O®rS™ is isomorphic to §™ x 8™ as a
right S"-order. By a similar argument as in [22, Theorem 4.2], we obtain that A” = End$ (M2).

For any prime ¢ # p S; = §;. Hence we deduce that A} = A; = A4 On the other hand, A}
corresponds to matrices in M»(S;') that commute with O, = M(Z,), thus A} ~ S;'. Applying
the description of 8™ above, the desired claim follows.

Let us consider wy,(P) = [A’,i'] € CM(R). By [12, Corollary 2], the abelian surfaces with QM
(A,i) and (A’,i") are isogenous. By this we mean that there exists an isogeny A : A— A’ making,
for all a € O, the following diagram commutative:
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Write I, = Homw, ((4,1), (A’,4)) for the set of isogenies between (4,7)/W,, and (A’,")/W,,.
Then it is easy to check that I} = Hom‘g"( ’];,MZW(P)) and, consequently, I is a right A"-
module. Clearly, (A,i) ~ (A’,4") over W, if and only if I" is principal.

By [22, Remark 4.10], I}, = Homp((A, i), (A’,i’)) is the single (two-sided) ideal of A of norm
m. Hence, if (A4,7) and (A’,4") were isomorphic over F, I}, would be principal, i.e. it would be
generated by an element A € A of norm m.

Since p 1 D, under the embedding A™ < A, the ideal I" is the only ideal in A™ lying above
I!,. This means that I7 is principal if and only if there exists an element A € A,, that generates
I}, or equivalently, A € A, N(\) = m and dN(A_) = 0 mod p - N(B)"!. Computing the norm

m?

N() in both cases p | d and p t d we conclude that :

max{ord,(d-N(A_)) : A€ A, N(A) =m} pld

(@ (P), P)p = { max{2 (ord,(N(A\_)) +1) : A€ A, N(\)=m} ptd (6:27)

Finally, the decomposition A ~ R @ eR, where e = e; + e_, allows us to compute the reduced
discriminant of A in terms of R and e. Indeed we obtain that disc(A) = e2c%d. Since A €
2
Pic(Dp, 1) we deduce Dp = €2 c2d (Notice that d < 0 and €2 < 0 since A? = (dg’) is definite).
For any A € A, we have that A, = AT + A~ -ey and A_ = e_ - A™. If in addition N(\) = m,

then N(A) = N(A) + N(A_) = m, where N(A_) = —e2 - N(A\7) = = X2 )PP g,

—dc*m = —dc*N(\y) + N(\7)Dp.

Since m | de?N()\;) and all primes dividing m | D are inert in K, m? | de?N(A\;) which implies
dczN(%) € Z. Dividing the above equation by m one obtains (6.26).
Since by hypothesis ord,(c) = 0, we have that

ord,(d - N(A_)) = ord,(de? - N(A_)) = ord,(—pD - N(A7)) = ord,(N(A7)) + 1.
Finally, one obtains the desired formula from (6.27). O

Remark 6.5. Notice that the integers —dc?, —dc2N(%) and N(A_)2p are all positive. Hence,
given D, m and d, equation (6.26) gives a finite number of possible p and N(A_). Moreover, the
valuation of such N(A_) at p provides the intersection index (wp, (P), P)p.

7 Method for computing equations

Let X = X% /Q be an hyperelliptic Shimura curve of genus g > 3 and let X' /Z be Morita’s integral
model of X. Assume that we can obtain a Weierstrass model W of X by blowing down certain
exceptional divisors of some special fibers of X'. We proceed to describe a procedure to compute
an hyperelliptic equation for W over Z[1/2]:

W:y?=R(z), R(z)€Zz], deg(R)=2g+2.

Step 1: Reduction of the set of Weierstrass points at bad primes

Let CM(R;) be a set of Heegner points in WP(X). By [33, Theorem 5.11 and Theorem 3.1],
CMp,1(R;) is a Pic(R;)-orbit. Thus by Theorem 4.3, the set CM(R;) is a Galois orbit. The
decomposition WP(W) = | |; CM(R;) gives rise to a factorization R(x) =[], pr, (), where each
Pr; € Zlx] is irreducible, deg(pr,) = #Pic(R;) and roots of pg, correspond to Weierstrass points
CM(R;). Moreover, the splitting field of each pg, coincides with the field of definition of any
P e CM(R)).

Fix P € CM(R;) and let p | D be a prime. Since RY = Q(v/—D), Theorem 4.4 asserts that
its specialization II(P) lies in the singular locus (X} )sing. By Remark 4.5, we are able to compute
II(P) through the map ¢ of Theorem 4.4. Indeed, upon the correspondence €, of (4.7):

es(II(P)) = m(¢s(P)) € Pic(D/p, p).
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Finally, in order to compute ¢ we exploit the theory of bimodules and the algebraic description
of ¢s. In fact, Theorem 5.4 gives ¢ (P) explicitly.

Once we have obtained e, (II(P)) for a fixed P € CM(R;), we proceed to obtain the specializa-
tion of all @ € CM(R;) using the fact that CM(R;) is a Galois orbit. By Theorem 4.4,

s (PP D)) = 7(g, (PP D)) = 7 ([J] * ¢ (P)). (7.28)

Moreover, since we have an explicit description of ¢s(P) and the Pic(R)-action on ¢4(P) is easily
computable with MAGMA [2], we obtain the specialization of all points in CM(R;).

Notice that this recipe provides 5(II(Q)) € Pic(D/p, Np) for all Q € | |CM(R;) which, by
Lemma 4.1, describes its specialization and its thickness in A},. In order to obtain its thickness in
W, we apply formula (4.15).

Step 2: Choice of the points at infinity

As pointed out in §3, we may choose an order Ry, with class number hgp_ = 1 in an imaginary
quadratic field K, of discriminant prime-to-D, such that CM(R.,) # 0. Notice that we can always
assume that Reo is maximal. Fix Py = [Ao, o] € CM(Reo) and assume that {Px,wp(Pso)}
are the points at infinity. This fixes an affine open set of W defined, over Z[1/2], by the equation
y?> = R(z) = [[pr,(z), where deg(R(z)) = 2g + 2 and the factorization R(z) = [[pr,(z) is
attached to the decomposition WP(W) = | |, CM(R;). Let ag and agr, be the leading coefficients
of R(z) and pg, (z) respectively, ar = [[, ar,. Since Q(y/ar) = K, we control the sign of ar
(which is negative since K, is imaginary) and its absolute value modulo squares.

In order to determine ag, recall that (ag,D) = 1 and primes dividing ar correspond to
places where both points at infinity specialize to the same F,-rational Weierstrass point. Thus,
[I(Py) = H(wp(Ps)) = II(P) = [A,i] for some P = [A,i] € WP(W). Suppose that TI(Ps,) =
II(P) ¢ (X,)ss. Then, by Proposition 6.1, K ~ End’(A4,) ~ End’(4,7) ~ End®(Aue, iss) ~ Koo,
which is impossible since discriminant of K is prime-to-D. Hence, for all primes p | ag, II(Px) =
II(wp(Px)) € (Xp)ss; equivalently, p does not split in both K and K.

Assume that p | ag. By relation (3.6), the valuation of ag at p is given by

vplar) = (1 - (d)) (Pso,wp(Pxo))p-

p
Since II(Ps) € (Xp)ss, we deduce from Theorem 6.4 that:

d
vp(ar) = max {ordp(N(/\)) +1-— <p) A€ e(Il(Px)), N(y) = D}
where d is the discriminant of K,. Moreover, for any A € A such that N(\) = D, the following

relation holds:
Ay At

camax () oo ax(%) ez

This gives a finite number of possible p and N(A™) for given D and d = disc(K ). Consequently,
we have a finite number of possible v, (ag).

Once we have the set of possible p dividing ar, in order to determine which ap, is divisible
by p recall the maps ¢ss of (6.24) attached to supersingular specialization. By Remark 6.3,
p # 2 divides ap, if and only if e(II(Px)) = 7(¢ss(Po)) € m(¢hss(CM(R;))). Equivalently, R; is
embedded in e(II(Px)) € Pic(Dp, 1) optimally. There exists no pair of orders R; # R; embedding
optimally in the same A € Pic(Dp,1) since ¢ss is injective and two Weierstrass points can not
have the same specialization whenever p is a prime of good reduction.

We are able to compute £(II(Px)) = Roo @ eR, and consequently we shall check whether R;
is embedded optimally in it.

In case p = 2, we control the valuation v5(agr) but we do not control the 2-valuation of each
ag, if va(ar) # 0. In any case we have an upper bound; va(ag,) < va(ag).
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Step 3: Discriminants, Resultants and Fields of definition

For any P € WP(W), write yp for the root of R(z) attached to P. Since we control the spe-
cialization of every point in WP(W) and we know how to compute its thickness, Theorem 2.3
yields the valuations v,(yp — vp/) for every P, P’ € WP(W) and every p # 2. This provides the
discriminants disc(pr,) and the resultants Res(pr,,pr,) up to a power-of-2 factor, namely

vp(disc(pr,)) = E 2-vp(vp —vpr), vp(Res(pr,,pr;)) = E vp(vp —7q)- (7.29)
P,P'ECM(R{) PECMERi%
QECM(R,

If in addition we assume good reduction at 2, by (2.4) we have that

1g+1) = wa(disc(R) = 3 waldise(pr,)) + 3 a(Res(pr,» pr, )?). (7.30)
i ij
In general we obtain a finite number of possible powers of 2 dividing disc(pr,) and Res(pr,, pr,)-
By Theorem 4.3, points in CM(R;) are defined over a subfield of the ring class field Hg, of R;.
We compute such field using the following theorem:

Theorem 7.1. [10, Theorem 5.12] Let Q € CM(R) C XP (HRg) for some order R in the imaginary
quadratic field K = Q(v/—D). Fixz an embedding Hr C C and denote by ¢ the complex conjugation.

Then [Hg : Q(Q)] = 2 and Q(Q) C Hpg is the subfield fized by o = c- Pr([a]) € Gal(Hr/Q) for
some ideal a such that B ~ (%W).

Remark 7.2. One can see in [10, §5] that the class [a] € Pic(R) does depend on ). Assume that
[a] = [c]?[b]. Then, the Heegner point P = ®x([c])(Q) € CM(R) is fixed by c- ®g([b]), indeed

c- PR([6])(P) = ¢ ®r([b][))(Q) = ¢+ Pr([] 7" [a])(Q) = r([¢]) - ¢ Pr([a])(Q) = P

Thus, for any b verifying that [a] - [b] 7! € Pic(R)?, there exists some P € CM(R) such that Q(P)
is the fixed field by c¢- ®g([b]).
Let Mp, be the isomorphism class of the field Q(P), for any P € CM(R;). Then Mg, is

characterized by the class {a} € Pic(R)/Pic(R)?. It is clear that any ideal b in {a} satisfies the

isomorphism B ~ (%’f/@(b) . In general, the converse is not true, but if [Hg : H] is odd,

where H is the Hilbert class field of K, then {a} € Pic(R)/Pic(R)? is uniquely determined by such
isomorphism (see [10, Remark 5.11]). In our particular setting, the conductor of R is 2 and, thus,
[Hg : H] is either 1 or 3.

This results yields the field Mg, attached to CM(R;). Recall that this field coincides with the
splitting field of pg, (x).

Step 4: Computing equations

Since we have computed the leading coefficients of each pg,, we are able to convert them into
monic polynomials. Given pg,(x) € Z[z] of discriminant d, leading coefficient agr, and degree n,
the polynomial qg,(z) = a}@;l(pm (x/ag,)) turns out to be monic with integer coefficients and
discriminant a?{i‘Qd. It defines the same field as pg, (x).

Let 6gr, be any root of ggr,. Since gr, € Z[z| is monic, the root dg, belongs to O, , the
ring of integers of Mp,. Moreover, disc(qp,) provides the Z-index [Ony, @ Z[dR,]]. Through the
instruction IndexzFormEquation of MAGMA [2] we obtain all possible dg, of given index, up to
sign and translations by integers. Thus, we are able compute all possible polynomials gr, (and
consequently pg,) up to transformations of the form p(z) — p(+x+r) with r € Z. The polynomials
PR, can be determined with no ambiguity by means of the resultants R; ; = Res(pr,,pr;). Namely,
given pr, (x + r;) and pr, (z +r;), the equation R; ; = Res(pr, (x + 1i), pr, (x + r;)) provides the
difference 7; — r;. This way we obtain the product pg, - pgr, up to translations by an integer.
Notice that, given the equation y? = R(z), the polynomial R(z) is also defined up to translations
by an integer.
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8 Siksek-Skorogatov Shimura curve D = 3 - 13

In this section we shall compute an explicit equation for the hyperelliptic Shimura curve of dis-
criminant D = 39 exploiting the method explained above. This curve was used in [32] by Siksek
and Skorogatov in order to find a counterexample to the Hasse principle explained by the Manin
obstruction. Since their results depend on the conjectural equation of the curve given by Kurihara
[18], the verification of such conjectural equation shows that the results of [32] are unconditionally
true.

Step 1: Reduction of the set of Weierstrass points at bad primes

Let X denote the hyperelliptic Shimura curve X3°/Q. By Proposition 3.1, WP(X) = CM(R) | | CM(Ry),
where Ry = Z[H'T‘/j’g} and R = Z[v/—39]. Let K = Q(v/—39). Notice that both R and Ry have
class number 4, so their ring class fields have degree 4 over K.

We can compute the geometric special fiber of X at 3 and 13 by means of Cerednik-Drinfeld’s
theory (cf. [16, §3] for a step-by-step guide on the computation of these special fibers using
MAGMA [2]). Notice that, in this case, X = W since X'/(wp) is smooth over Z. In the drawings
below, the integer on each singular point stands for its thickness:

Special fiber at p=3 Special fiber at p=13

Let O be a maximal order in the quaternion algebra B of discriminant 39. Choose arbitrary
points P € CM(R) and Py € CM(Ry). As it is more convenient for computations to work with
optimal embeddings instead of Heegner points, let ¢(P) € CMsg 1(R) and ¢(FPy) € CMsg1(Ro) be
the optimal embeddings attached to P and Py, respectively, via (4.10). In particular, ¢(P) and
»(Py) yield the following decompositions computed with MAGMA [2]:

i1 is a quaternionic complement of p(P), % = 447

RV ERT S B e
_ N _ 1 /=39 | 63
I = (3, %51 T 298)R
and
B=K®iK 2/1, iia., quaternionic complement of p(F), i =6
O=Ry@eir; Wy 70
111 I =1, \/?_%Ro

Reduction modulo 3

In order to compute the specialization modulo p = 3 of P and P, we shall compute the optimal
embeddings ¥r € CMi33(R) and ¢r, € CMi33(Ro) of Theorem 5.1. Their targets are maximal
orders 83 and 8% of the quaternion algebra Hs of discriminant 3. Again both embeddings define
the following decompositions:

io is a quaternionic complement, of 12 = —43
Hy— K @ iyK ZQI_'qll rnionic complement, of ¥, i3
Si— Roerl where ey =iy — 387
3 = ol _ V=39 10
Iy = <§7 1118~ T3>R

and
i%, is a quaternionic complement of vp,, 7 = —12
H. =K K 2 ) 09 2
{ 8’3* I gfj Y where { e5 =15 —12
3 = 1o @ ezl /1 V/=39-1 29
Iy = (1, Y565 — %5/ Ro
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Hence, by Theorem 5.4 the optimal embedding ¢(P) : R < End%} (O ®p S3) = Az of (4.12)
is given by the decomposition:

{ A3®Q:K@13K

=—387- (18 = 7-v/—39) —1¢
Ag:R@eglgg “s ( T ) 3

Is=(I:N &R N

i3 is a quaternionic complement of ¢4(P), i3 = —43-447
where
38

1 T
18—7-v/—39" 2

Similarly ¢,(Py) : Ro < EndS (O @p, S}) = A is given by:

N, ®Q=K & iLK ) z% iia g/uaternionic complement of ¢s(Pp), i =—-12-6
Ny=Rowesly N DT P
I, =(I4n TQRO)Ir

Once we have a characterization of the embeddings ¢s(P) and ¢s(Py), we proceed to describe the
specialization of all Heegner points in CM(R) and CM(Ry). Recall that, in both cases, the sets
CM(R) and CM(Ry) are Pic(R) and Pic(Ry)-orbits respectively. Moreover, Pic(R) ~ Pic(Ry) ~
ZJAZ.

Case CM(R): We pick a representative J of a generator [J] € Pic(R). We construct the left-As-
ideals A3 (P)(J), Aszds(P)(J?), Azpps(P)(J3) and we compute their right orders 7([J?] * ¢ (P)).
We obtain that their number of units are:

#(A5)/2 = #(m([J] % ¢s(P))") /2 = #(m ([J%] * §(P))") /2 = #(x([T*]  6:(P))")/2 = 1.

Thus, by (4.9), such integers are the thickness of each singular specializations.
Besides, we checked that Az (P)(J) and Azps(P)(J?)(Azds(P)(J3))~! are principal, whereas
A3 (P)(J?), M3ds(P)(J%), Nsds(P)(J)(A3s(P)(J?)) 7, Asos(P)(J)(Ases(P)(J%))~" are not.

Since for any pair of left As-ideals I; and I their right orders are isomorphic as oriented Eichler
orders if and only if I; - I; ' is principal, it follows from (7.28) that

II(P) = e~ H(n(¢s(P))) = e H(m([J] * §5(P))) = I(PPrIID)

(PP = e (w([J2) * 65(P))) = e (w([J%] * 65 (P))) = TL(PP=WD),

Case CM(Ry): Let J' be a representative of a generator of Pic(Rg). Similarly as above, we
construct the corresponding left-A%-ideals and we obtain:

#(A5)/2 = (] 65(P0))") /2 = #(m ([J?]  65(P0))") /2 = #(7 ([T7]  ¢5(P0)) ") /2 = 1.

Moreover, we checked that A5¢s(Po)(J') and Ayds(Po)(J"?)(Ayés(Po)(J"))~! are principal,

’ 2 13
whereas the remaining ones are not. ThusII(FPy) = H(P(;DR”([J ])) and H(P(;I)RO([J ])) = H(P(;I)R"([J ])).
In conclusion we obtain the following diagram, describing the specialization of the Weierstrass

points modulo p = 3.

CM(R) CM(Ry)

7] [77] [°] [’ [J72 [J73
N e e
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Reduction modulo 13

With the same computations as in the previous setting, we obtain that the reduction of CM(R)
and CM(Ryp) modulo p = 13 is given by the following diagram:

CM(R) CM(Ry)
e e e e e

X mod 13

Step 2: Choice of the points at infinity

Let Koo = Q(+v/—7) and let R be its maximal order. As it is well known, #Pic(R.) = 1. Hence,
by §7, for any Py, € CM(Rs) we can choose P, and wsg(Ps) to be our points at infinity. This
choice of the points at infinity gives rise to an equation

y* = R(x), deg(R(z)) =2g+2=S38,

defining the Weierstrass model W. Let R(x) = pr(z) - pr, (z) be the factorization attached to the
decomposition WP(W) = CM(R)UCM(Ry). Let ag and ag, be the leading coeflicients of pr and
DR, respectively.

Since Q(\/ar - ar,) = Koo = Q(v/~7), we deduce that ag - ar, = —7 - N? for some N € Z.
Given a prime p dividing ag - ag,, by (6.26) we know that:

A
7=39m+N(\") - p, where m =7N <35) YA
Thus m = 0, p = 7 and N(A\7) = 1. Finally, by (6.25) one concludes that the leading coefficient
of the hyperelliptic equation must be agr - ar, = —7.
Moreover, we can compute 7(¢ss(¢(Ps))) € Pic(39 - 7,1) of Remark 6.3. Namely,

T(¢ss(P(Poc))) = Roo @ j Roc,

where jR is the quaternionic complement of R, with j2 = —39. Since it can be checked that

Ry = Z[**%=2%] can not be embedded in A, we conclude that R = Z[/=39)] is embedded optimally
in it. Therefore, ar, =1 and ar = —7.

Step 3: Discriminants, Resultants and Fields of definition

By Theorem 7.1, points in CM(R) and CM(Ry) are defined over a subfield of index 2 of the Hilbert
class field Hg of K. By Remark 7.2, to find such subextension we must find an ideal a of R such

that B ~ (%’W) As one checks, any a such that N ,g(a) = 5 does. Notice that 5 splits

in K, hence writing 5 =B - P’ we have Ny /o(B) = Ng,o(P’) = 5.

We used MAGMA [2] to compute that the Hilbert class field of K is defined by the polynomial
q(z) = z* + 422 — 48 over K. If a is any root of ¢(z), then Hx = Q(a, v/—39).

The automorphisms ®z(*P3) and complex conjugation ¢ act on Hg by the rules:

() - { V=39 —= V-39 . . { —39 — —v/—39
R . —39a° 7v/—39a . _
o —  TT186 T 39 a - T
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Thus o = ¢- Pr(P) acts as:
{ -39 — —v/-39
g .

— 3 —
a N 39« 7v/—3%x

156 39

We obtain that Mg, the fixed field by o, is defined by the polynomial z* + 822 — 24z + 16 over Q.
Since disc(Mg) = 3% - 13, we have that disc(pr),disc(pr,) = N? - 32 - 13, for certain N € Z.
Recall the following diagram summarizing the specialization of the Weierstrass points:

X mod 13

By Theorem 2.3 and (7.29), we have that |disc(pg)| = 22 - 32 - 133, |disc(pr, )| = 22* - 3% - 13
and Res(pgr,pr,)? = 2% - 13%. Moreover, since X3° has good reduction at 2, (7.30) shows that
2k + 2k + 2k" = 16.

Step 4: Computing equations

Since the leading coefficient of pr is ar = —7, we deduce that qr(z) = 73pr(x/7) is a monic
polynomial of discriminant 7%disc(pg) = 22% - 3% . 133 . 76.

The instruction IndexFormEquation of MAGMA [2] provides the possible candidates for pg,, ¢r
and pr (denoted pr,, §r and pr respectively), up to transformations of the form p(x) — p(£z+r)
with r € Z. We obtain that

—Tz* — 5123 — 11622 — 84z — 19 disc(pr) = 3% - 133
pr(z) = —Tx* — T4x® — 20022 — 222 — 1 N 012 a2 qa3
7ot 4+ 3827 4+ 1622 — 1820 — 169 [ Hs(Pr) = 2773713

and there are 16 more candidates pr, () for pg, (), with discriminants 3-13, 24-3-13, 212.3-13
and 216 .3.13. If we compute the resultant Res(pr(Fz + ), pr, (7)) and look for solutions « € Z
such that Res(pr(Fz + ), pr, (z))? = 22" - 134, we obtain a single solution:

PR, (x) =t + 923 + 2922 + 392 +19, pr(z) = —T2z* — 7923 — 3112 — 497z — 277.

In conclusion the equation we are looking for is

] y? = —(Ta* + 7923 + 3112% + 4972 + 277) - (x* + 92° + 292° + 39z + 19). \

Notice that this curve coincides with the one conjectured by Kurihara in [18].

9 CaseD=5-11

Let X be the hyperelliptic Shimura curve X§5°/Q. In this case the set of Weierstrass points is
WP(X) = CM(Z[v/=55]) || CM(Z[*4=22]) and both Z[*4=3] and Z[/=55] have class number
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4. As is the above situation, we can compute the geometric special fiber of X at 5 and 11 using [16,
§3]. In this case, the integral model X does not correspond to a Weierstrass model since X' /{(wp)
is not smooth over Z.

1
m m

Special fiber of X at p=>5 Special fiber of X at p=11

In order to transform A" into a Weierstrass model W we shall need to blow down the exceptional
divisors and apply relation (4.15) to obtain new thicknesses.

Special fiber of W at p=5 Special fiber of W at p=11

Applying our procedure, we obtain that the specialization of the Heegner points CM(Z[v/—55])
and CM(Z[1H4=22 {55]) in X is given by the following diagram:

Hence, blowing-down X" as above, we obtain the thickness of the specialization of each Weier-
strass point P € WP(W). Applying the rest of the procedure just as in §8, we obtain that the
model W over Z[1/2] is given by the equation:

(4% = (~32* +320° — 13027 + 237 — 163) - (' — 82° + 34 — 83z + 81).|

This curve also coincides with the one conjectured by Kurihara (cf. [18]) in this case.

10 Atkin-Lehner quotients

In §7 we gave a procedure which in principle works for any hyperelliptic Shimura curve of odd
discriminant admitting a Weierstrass model W obtained by blowing-down exceptional divisors of
X. However, this method exploits the instruction InderFormFEquation, which is implemented in
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MAGMA only for small degree field extensions. As long as the genus increases, the degrees of the
fields involved in the computation become so large that make impossible to apply our procedure.

In this section we shall explain how to adapt such procedure to compute equations of hyperel-
liptic quotients of Shimura curves by Atkin-Lehner involutions. We expect that the degrees of the
fields involved in this case will be smaller and, consequently, we shall be able to compute more
examples.

10.1 Quotient of the special fiber

As above, denote by X' /Z Morita’s integral model of X = X. Write Y = X/(w,,) and Y =
X /{wpm). Due to Cerednik-Drinfeld’s uniformization, we have an explicit description of the fiber
X, at p | D and the action of the Atkin-Lehner involutions on its set of irreducible components
and singular points. This allows us to compute the irreducible components of the fiber V,. In
order to obtain the thicknesses of its singular points () )sing, recall that the completed local ring
of any singular point x of X}, is of the form:

Oz = O yl[u,v]]/(uv —¢) ¢ €my,

Here, v and v vanish respectively on each of the irreducible components that meet in x.
Let 7 : X—=) be the quotient map. If w,, fixes z there are two possibilities: w,, fixes u and v
or wy, exchanges them. If w,, fixes v and v, the completed local ring of the image m(x) is given by

Oy x(@) =~ Osr pllz, Y]]/ (zy — ¢2),

where the induced pull-back 7* : Om/)%O/X\W is given by z + 12, y + v2. Thus the thickness
of the singular point 7 (z) is twice the thickness of z. If w,,u = v, the completed local ring of the
image 7(z) is given by

Oy n(ary = Osr p[[2ll/ (2 = ©),

—

where the induced pull-back 7* : Oy/,w(w/)%()//y-; is given by z + wv. Thus 7(x) becomes a
non-singular point of },. Finally, if w,,(z) = @’ # « the map 7 is not ramified at z. Hence it
provides an isomorphism of local rings Ox ; ~ Oy r(y). This implies that the thickness of 7(x)
coincides with that of x. Notice that, since we control the singular specialization of Heegner points
in X}, we also control that of their image in ).

10.2 Weierstrass points, leading coefficients and fields of definition

We shall assume that there exists a quadratic order Ro, C K of discriminant prime-to-D and
class number hr_ = 1 such that § # CM(Rw) C X (Ko). Assume also that Y is hyperelliptic
and that the hyperelliptic involution w of Y is the image of w,, for some n | D. Notice that all
hyperelliptic Shimura curves in Table 1 verify these assumptions. Clearly n # m since w,, is
trivial in Y. Finally, assume that blowing-down suitably exceptional divisors of ) we can obtain
a Weierstrass model Wy of Y.

As above, the set of Weierstrass points WP(Y") coincides with the set of fixed points of w.
Let m(P) € WP(Y). Then n(P) = w(n(P)) = m(wn(P)), thus w,(P) = P or w,(P) = wy,(P).
It follows that the set WP(Y') is the image of the union of the set of fixed points of w, and
of Wy 0o Wn = Whun/ ged(myn)2- By Theorem 3.1, this set coincides with a set of Heegner points
Ll; CM(R;), where R) = Q(y/—n) or Q(v/—n - m).

Recall that if P € CM(R;) is fixed by wp, then Q(P) can be computed by means of Theorem
7.1. Besides, if P is fixed by wy, n # D, then the field of definition of P is just Hg, by [10,
Theorem 5.12]. The following proposition describes the field of definition of each 7(P) € WP(Y):

Proposition 10.1. Let n # m be divisors of D. Let P € CM(R) be a Heegner point fized by wy, .
Write Y = X/{wm) and set 7 : X—=Y for the quotient map. Fiz an embedding Hr C C and let ¢
denote complex conjugation.
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(1) If m | n then Q(w(P)) is the subfield of Q(P) fized by ®r(m), where m is the unique ideal

of R of norm m.

(2) If wn(P) = wp(P) (i.e. either m = D or n = D/m) then Q(w(P)) is the subfield of Q(P)
fized by c- O, ([a]), where a is an ideal of R (depending on P) satisfying

B~ <_n’ a NRO/Q(CO) : (10.31)

Q

(3) If wm(P) # wp(P) and m 1 n then Q(x(P)) = Q(P).

Proof. This follows immediately from the fact that if m | n then w,, (P) = P*r(™) (cf. [10, Lemma
5.9]), if wm(P) = wp(P) then wy,(P) = Po®r:(a) (cf. [10, Lemma 5.10]), and if neither m | n
nor wy, (P) = wp(P) then w,, acts transitively on the Gal(Hg/Q)-orbit of P. O

Just as in Remark 7.2, the ideal a depends on P but its class {a} € Pic(R;)/Pic(R;)? only
depends on R and determines the isomorphism class of Q(7(P)) for every P € CM(R). Further-
more, in our particular setting where [H : Hg] is odd, the class {a} is uniquely determined by
(10.31).

As in the previous case, the model ) can be non-hyperelliptic (i.e. V/{w) may not be smooth
over Z). According to our previous assumptions, we can turn it into an hyperelliptic model Wy /Z
by blowing-down suitably irreducible components. By means of formula (4.15), we can recover
the thicknesses of the singular points of the fiber (Wy),. Since we control the specialization of
the Weierstrass points WP(Y') in ), we also control the specialization of the Weierstrass points
in WP(Wy).

Notice that there may exist Weierstrass points m(P) € WP(Y') specializing to non-singular
points on Y, but having singular specialization on (Wy),. This happens because their special-
ization on ), lie on irreducible components which were blown-down in order to obtain Wy. By
means of (4.13), we control the irreducible component where the specialization P lies. Hence we
control the singular specialization of 7(P) in the fiber Wy ),.

Choose Py, € CM(Rw). Since hg_ = 1, the set CM(Ry) is a W(D)-orbit. Moreover,
T(wn(Pro)) = w(m(Psx)) # m(Poo) since wy,(Ps) # wim(Pao), and 7(Ps,) is defined over a subfield
of K. This implies that we can set 7(Ps) and w(7(Px)) to be our points at infinity.

Once we fix the points at infinity, the model Wy is defined, over Z[1/2], by an equation of the

form
v = R@) = [ (o)

where each of the polynomials pg, (z) is attached to m7(CM(R;)), and we control the field that each
one defines.

We deduced in §3 that the valuation of the leading coefficient ag at any prime p can be obtained
from the intersection index between 7(Py) and w(m(Ps)) at p. By the projection formula,

(m(Poo); T(wn(Posc)))p = (Poo, ™ m(wn (Poo)))p = (Poo, wn(Poc))p + (Poo, wnr (Pos))ps  (10.32)

. Hence, the valuation of the leading coefficient at any prime,

’_
where n’ = zed(m,m)

wlar) = (1 (522) ) (1(P). 7l (P

can be computed by means of (6.25). Since the leading coefficient ag, of each pg,(x) also detects
whether P, specializes to the same supersingular point as an element of CM(R;), we can compute
each ap, just as in §7.

At this point, assuming that D is odd, we can proceed with our method in order to obtain
an equation for Wy . Indeed, we control the leading coefficient of each pg, (x), their splitting field
and the singular specialization of any w(P) € WP(Wy).
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10.3 Example

Let X = X3°/Q be the Shimura curve of discriminant 35. In this section we shall compute the
quotient curve Y = X/{ws). Since X is itself hyperelliptic we deduce that Y is hyperelliptic.
Moreover, we check that it satisfies the assumptions of the previous section.

Write 7 : X—) for the quotient map as above. The set of Weierstrass points of Y is the image
through 7 of the set of Heegner points & = CM(R?*®) LU CM(R3®) U CM(R") L CM(RY]), where
R3S = 7[M/=55] B35 — 7[\/=35], R” = Z[**Y="] and R} = Z[\/—7]. We obtain that R has
Picard number 2, R3% has Picard number 6, and both R” and R] have Picard number 1. Here,
we present a diagram that describes the special fibers of X' at p = 5,7 and the specialization of &
computed using the techniques of §7.

By Cerednik-Drinfeld’s description of the fiber X5, we know that ws exchanges its irreducible
components, moreover, it exchanges its singular points of thickness 1 and its singular points of
thickness 2. Similarly, ws fixes the irreducible components of A7, exchanges its singular points
of thickness 3 and fixes its singular points of thickness 1. Applying the recipe detailed in §10.1,
we obtained that the specialization of 7(&) and the special fibers V5 and )7 are given by the
following diagram:

X mod 7

©(CM(R")) =(C T(CM(R3Y))

X mod 5

Let R be the maximal order of K, = Q(v/—43). Since hr_ = 1 and CM(R) # 0, we
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choose {7(Px), "(wp(Px))} € 7(CM(R)) to be our points at infinity. Then, by (10.32),

vy (am) = (1 _ (ij@)) (Pooron(Poc))p + (Pocs0nym(Po)),)

In order to compute (Ps,wp(Px))p, we apply (6.26) and it follows that
- At
43=35-n+NWA7)-p, n=43-N 35 eZ.

Hence the solutions are n =0, p =43, N(A7) =1land n =1, p = 2, N(A~) = 4. Applying formula
(6.25), we deduce that (Pso,wp(Px))as =1 and (Pao,wp(Pso))2 = 2.
Similarly for (Peo,wp/m(Pso))p, We apply formula (6.26) obtaining:

A
43=T-n+5-NA7)-p, n:43.N<7+) €z

This implies n = 4 (mod 5) and, thus, n =4, p =3, N(A7) = 1. By means of (6.25) we have that
(Poo,wp(Poo))s = 1.

Therefore the unique primes that divide ag are 43, 3 and 2 and their valuations are v43(ag) = 1,
v3(ag) = 2 and va(ag) = 4. Moreover, we can compute the specialization of Py, and w(Ps) at
p = 3,43 and determine which Weierstrass point lie at the same supersingular point as them. We
obtained that v43(agss) = 1 and v3(agz) = 2. We can not control the 2-valuation of any leading
coefficient ar, but we know the valuation of the product 4 = v2(ar) = >, ¥2(ar,) and this gives
an upper bound for all of them.

Finally, applying the rest of the algorithm of §7, we obtained that Y is defined by the equation:

v = —x-(9z+4) - (4o + 1) - (17223 4+ 17622 + 60z + 7).

10.4 Results

In this section we present a table with all the equations obtained using the method explained in
§7 and §10:

g curve y? = p(x)
3 X5 [y = —(7a" + 7925 4 31127 + 497z + 277) - (¢ + 92° + 2927 4 39z + 19)
3| X35 |y =—(32* — 3223 4 13022 — 237z + 163) - (¢* — 82 + 3422 — 83z + 81)
2| X3%/(ws) y?=—x-(9z+4)- (4o + 1) - (17223 + 17622 + 602 + 7)
2 | X5t/ (wir) y? = —x - (723 + 5222 + 1162 +68) - (x — 1) - (v + 3)
2| X57/(ws) Y2 = —(z—9) (2° — 1922 4+ 119z — 249) - (722 — 104z + 388)
2 | X8/ (wis) y? = —(22 =3z + 1) (To* — 323 — 3222 + 252 — 5)
2| X§°/(ws) Y2 = —(a® + Tz +9) - (Tz* + 8123 + 31922 + 508z + 268)
2 | X§/(was) Y2 =—a- (v +4) - (4ot — 1623 + 1122 + 10z + 3)
2| X5°/(ws) y? = —(32? — 41z +133) - (2* — 232 4 18322 — 556 + 412)
2 | X85/ (wss) Y2 = (22 — 3z +1) - (z* + 2% — 1522 4 20z — 8)
Table 2
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