The MAGMA package HeckeAlgebra

Gabor Wiese

9th October 2007

Abstract

This is a short manual for the MsmA packageHeckeAl gebr a. The author would like to
thank Lloyd Kilford for very helpful suggestions.

1 Example

The following example explains the main functions of thekaaye. Let us suppose that the file
HeckeAl gebr a. ny is stored in the current path. We first attach the package.
> Attach("HeckeAlgebra.mg");
We want the package to be silent, so we put:
> SetVerbose ("HeckeAlgebra" false);
If we would like more information on the computations beirggfprmed, we should have put the
valuetrue. Since we want to store the data to be computed in a file, we neatecthe file.
>my_file := "datafile”;
> CreateStorageFile(my _file);
Next, we would like to compute the Hecke algebras of the diflezlgenforms of leve2039 over
extensions oF5. First, we create a list of such forms.
> dih := DihedralForms(2039 : ListOfPrimes := [2], completdy _split .= false);
Now, we compute the corresponding Hecke algebras, printopdine computed data in a human
readable format, and finally save the data to our file.
> for f in dih do
for> ha := HeckeAlgebras(f);
for> HeckeAlgebraPrintl1(ha);
for> StoreData(my _file, ha);
for> end for;
Level 2039
Weight 2
Characteristic 2
Gorenstein defect 0
Dimension 1

*Institut fir Experimentelle Mathematik, Universitat Duisburg-Essen ridigale 29, 45326 Essen, Germany, e-mail:
gabor . wi ese@ini - due. de, htt p: // mat hs. prat um net

Number of operators used 3
Primes It Hecke bound 68
Residue degree 2

Level 2039

Weight 2

Characteristic 2

Gorenstein defect 2
Dimension 6

Number of operators used 4
Primes It Hecke bound 68
Residue degree 2

Level 2039

Weight 2

Characteristic 2

Gorenstein defect 0
Dimension 1

Number of operators used 3
Primes It Hecke bound 68
Residue degree 6

Level 2039

Weight 2

Characteristic 2

Gorenstein defect 0
Dimension 1

Number of operators used 3
Primes It Hecke bound 68
Residue degree 4

Level 2039

Weight 2

Characteristic 2

Gorenstein defect 0
Dimension 1

Number of operators used 3
Primes It Hecke bound 68
Residue degree 4

Level 2039

Weight 2
Characteristic 2
Gorenstein defect 0

Dimension 1

Number of operators used 3
Primes It Hecke bound 68
Residue degree 12

Level 2039

Weight 2

Characteristic 2

Gorenstein defect 0
Dimension 1

Number of operators used 3
Primes It Hecke bound 68
Residue degree 12

With the functionDihedralForms one may also compute exclusively representations that are
completely split in the characteristic. The defaulic@mpletely split := true. By the option
bound we indicate primes up to which bound should be used as thacteaistic. The following
example illustrates this.
> dih1 := DihedralForms (431 : bound := 20);
> for fin dih1 do
for> ha := HeckeAlgebras(f);
for> HeckeAlgebraPrint1(ha);
for> StoreData(my _file, ha);
for> end for;
Level 431
Weight 2
Characteristic 2
Gorenstein defect 2
Dimension 4
Number of operators used 6
Primes It Hecke bound 20
Residue degree 1

Level 431

Weight 11

Characteristic 11
Gorenstein defect 2
Dimension 4

Number of operators used 5
Primes It Hecke bound 77
Residue degree 3

One can also compute icosahedral modular forms over ertensiF-, starting from an integer
polynomial with Galois groupis, as follows.

> R<x> := PolynomialRing(Integers());

> pol := X"5-x"4-780*x"3-1795*x"2+3106*x+344;

> f:= ASForm(pol);

With this kind of icosahedral examples one has to pay atiant the conductor, as it can be huge.
This polynomial has prime conductor. But conductors neddasquare-free, in general.
> print Modulus(f‘Character);

1951

So it's reasonable. We do the computation.

> ha := HeckeAlgebras(f);

> HeckeAlgebraPrintl(ha);

Level 1951

Weight 2

Characteristic 2

Gorenstein defect 0

Dimension 3

Number of operators used 3

Primes It Hecke bound 66

Residue degree 4

Level 1951

Weight 2

Characteristic 2

Gorenstein defect 0
Dimension 6

Number of operators used 3
Primes It Hecke bound 66
Residue degree 4

There are two forms, which is okay, since they come from a tedgpe form in two different
ways and this case is not exceptional. We now save them, ayslw
> StoreData(my _file, ha);

It is also possible to compute all forms at a given charactdneeight.
> eps := DirichletGroup(229,GF(2)).1;

> ha := HeckeAlgebras(eps,2);

> HeckeAlgebraPrintl(ha);

Level 229

Weight 2

Characteristic 2

Gorenstein defect 0

Dimension 1

Number of operators used 12

Primes It Hecke bound 12

Residue degree 1

Level 229

Weight 2

Characteristic 2

Gorenstein defect 0
Dimension 2

Number of operators used 12
Primes It Hecke bound 12
Residue degree 2

Level 229

Weight 2

Characteristic 2

Gorenstein defect 0
Dimension 4

Number of operators used 12
Primes It Hecke bound 12
Residue degree 1

Level 229

Weight 2

Characteristic 2

Gorenstein defect 0
Dimension 2

Number of operators used 12
Primes It Hecke bound 12
Residue degree 5

> StoreData(my _file,ha);

Next, we illustrate how one reloads what has been saved. ©unklke to type:load my file;
but that does not work. One has to do it as follows.

> load "datafile";

> mf := RecoverData(LoadIn,LoadInRel);

Now, mf contains a list of all algebra data computed before. Thexeather concise printing
function, displaying part of the information, nametieckeAlgebraPrint(mf); .

One can also create a LaTeX longtable. The entries can berhoguite a flexible way. The
standard usage is the following.

> HeckeAlgebraLaTeX(mf, "table.tex");

A short LaTeX file displaying the table is the following:

\docunent cl ass[11pt]{articl e}

\usepackage{| ongt abl e}

\begi n{docunent }

\i nput {t abl e}

\end{docurent }

The table we created is this one:

Level | Wt | ResD | Dim | EmbDim | NilO | GorDef | #Ops | #(p<HB) | Gp
2039 | 2 2 1 0 0 0 3 68 Ds
2039 | 2 2 6 3 2 2 4 68 Ds
2039 | 2 6 1 0 0 0 3 68 Dy
2039 | 2 4 1 0 0 0 3 68 Dqs
2039 | 2 4 1 0 0 0 3 68 Ds5
2039 | 2 12 1 0 0 0 3 68 Dys
2039 | 2 12 1 0 0 0 3 68 Dys
431 | 2 1 4 3 1 2 6 20 Ds
431 | 11 3 4 3 1 2 5 77 D
1951 | 2 4 3 1 2 0 3 66 As
1951 | 2 4 6 2 3 0 3 66 As
229 | 2 1 1 0 0 0 12 12

229 | 2 2 2 1 1 0 12 12

229 | 2 1 4 1 3 0 12 12

229 | 2 5 2 1 1 0 12 12

In the examples of level29 the image of the Galois representation as an abstract gsongti
know. That is due to the fact that we created these examptbsutispecifying the Galois repre-
sentation in advance.

It is possible to compute arbitrary Hecke operators on tlallélecke factors generated by
HeckeAlgebras(), as the following example illustrates.

> A,B,M,C := HeckeAlgebras(DirichletGroup(253,GF(2)).12 : over_residue_field := true);
Suppose that we want to know the Hecke operd@teron the4th local factor.

>j:=4;

> T := BaseChange(HeckeOperator(M,17),C[i]);

The coefficients are the eigenvalues (only one):

> Eigenvalues(T);

{<%$.15,8>}

Let us remember the eigenvalue.

> e := SetToSequence(Eigenvalues(T))[1][1];

In order to illustrate the optionver_residue_field we also compute the following:

> Al1,B1,M1,C1 := HeckeAlgebras(DirichletGroup(253,GF(2).1,2 : over_residue_field :=
false);

> T1 := BaseChange(HeckeOperator(M1,17),C1][i]);

> Eigenvalues(T1);

{

The base field is strictly smaller than the residue field ia &Xample and the operatdéd cannot
be diagonalised over the base field. We check#tiainevertheless a zero of the minimal polyno-
mial of T1.

> Evaluate(MinimalPolynomial(T1),e);

0

The precise usage of the package is described in the folipsentions.

2 Hecke algebra computation

2.1 The modular form format

In the package, modular forms are often represented by Hoavfog record.
ModularFormFormat := recformat <

Character : GrpDrcheElt,
Weight ! RngIntElt,
CoefficientFunction : Map,
ImageName . MonStgElt,
Polynomial : RngUPOIEIt

>
The fieldsCharacter and Weight have the obvious meaning. Sometimes, the image of the

associated Galois representation is known as an abstm@ap.giThen that name is recorded in

ImageName e.g.A_5 or D_3. In some cases, a polynomial is known whose splitting fiettiés

number field cut out by the Galois representation. Then thgnpamial is stored inPolynomial.

The cases in which polynomials are known are usually icat@henes. TheCoefficientFunc-

tion is a function from the integers to a polynomial ring. For diinpes! different from the

characteristic and not dividing the level of the modulamiafi.e. the modulus of th€harac-

ter), the coefficient function should return the minimal polymial of thel-th coefficient in the

g-expansion of the modular form in question.

2.2 Dihedral modular forms

Eigenforms whose associated Galois representations takdrdl groups as images provide an
important source of examples, in many contexts. These feiges are calledlihedral. The big
advantage is that their Galois representation, and heeagthoefficients, can be computed using
class field theory. That enables one to exhibit Galois remtasions in the context of modular
forms with certain number theoretic properties. The prgpéar which these functions were
initially created is that the representations should beumnified in the characteristic, say and
thatp is completely split in the number field cut out by the représton.

We consider dihedral representations whose determintre lsegendre symbol of a quadratic
field Q(v/N). The representations produced by the functions to be destare obtained by
induction of an unramified charactgrof Q(+/N) whose conjugate by the non-trivial element of
the Galois group of)(v/N) overQ is assumed to bg .

intrinsic GetLegendre (N :: RngIntElt, K :: FIdFin) -> GrpDr chElt

For an odd positive integg¥, this function returns the element BfirichletGroup(Abs(N),K)
(with K a finite field of characteristic different frof) which corresponds to the Legendre symbol
D (iTN) If N is1 mod4 the signist1, and—1 otherwise.

intrinsic DihedralForms (N :: RngIntElt :
ListOfPrimes :=[], bound := 100, odd_only := true, quad_dig := 0,
completely_split := true, all_conjugacy_classes := true > Rec

This function computes all modular forms (in the sense otiSe@.1) of levelN and weightp

over a finite field of characteristje that come from dihedral representations whose determinant
is the Legendre symbol of the quadratic fi¢td = Q(v/%quad_disc) and which are obtained
by induction of an unramified character &f. If quad_discis 1 mod4 the sign is+1, and—1
otherwise. Ifquad_discis 0, the value ofN is used. If the optiocompletely_splitis set, only
those representations are returned which are completitiyasp. If the optionListOfPrimes is
assigned a non-empty list of primes, only those primes aneidered as the characteristic. Ifitis
the empty set, all primes up to thebound are taken into consideration. If the optiodd only

is true, only odd Galois representations are returnedelbittionall_conjugacy_classess true,
each unramified character as above up to Galois conjugacyand taking inverses is used.
Otherwise, a single choice is made. That there may be nojugate characters cutting out the
same number field is due to the fact that there may be non-gatgelements of the same order
in the multiplicative group of a finite field.

2.3 lcosahedral modular forms

Eigenforms whose attached Galois representations takgrthg As as projective images are
calledicosahedral. Since extensive tables df;-extensions of the rationals are available, one can
consider icosahedral Galois representations which one&wery well. That allows one to test
certain conjectures concerning modular forms on icosathedies.

We note the isomorphism; = SLy(F,). Thus, As-extentions of the rationals give rise to
icosahedral Galois representations in characterdstitich (should) come from modular forms
mod?2. It would also be possible to use certain other primes, bstths not been implemented.

intrinsic A5Form (f :: RngUPOIEIt) -> Rec

Returns the icosahedral form in characterigtiand weight2 of smallest predicted level corre-
sponding to the polynomial which is expected to be of degréeand whose Galois group is
supposed to be 5. No checks about are performed.

2.4 The Hecke algebra format

The data concerning the Hecke algebra of an eigenform tleatnigouted by the functiokeck-
eAlgebrasis a record of the following form.
AlgebraData := recformat <

Level . RngIntElt,
Weight . RngintElt,
Characteristic . RngIntElt,
BaseFieldDegree . RngintElt,
CharacterOrder . RngintElt,
CharacterConductor : RngIntElt,
Characterindex . RngintElt,
AlgebraFieldDegree ! RngintElt,
ResidueDegree . RnglIntElt,
Dimension ! RngIntElt,
GorensteinDefect . RngintElt,

EmbeddingDimension : RngIntElt,

NilpotencyOrder : RngIntElt,

Relations - Tup,
NumberGenUsed . RngIntElt,
ImageName : MonStgElt,
Polynomial . RngUPoIEIt

>
Level and Weight have the obvious meaning. L&t be the base field for the space of mod-
ular symbols used. It is (expected to be) a finite field. Ti#maracteristic is the character-
istic of K and BaseFieldDegreeis the degree of< over its prime field. The entrie€har-
acterOrder, CharacterConductor and Characterindex concern the Dirichlet character for
which the modular symbols have been computed. The lattaf ifsethe index of the charac-
ter in Elements(DirichletGroup(:)). Note that that might change between different versions of
MAGMA. The fieldsResidueDegregover the prime field) Dimension and GorensteinDefect

have their obvious meaning for the Hecke algebra in quesliba tuple
<AlgebraFieldDegree, EmbeddingDimension, NilpotencyOrdr, Relations>

are data from whichAffineAlgebra can recreate the Hecke algebra up to isomorphismm-
berGenUsedindicates the number of generators used by the packagedaothputation of the
Hecke algebra. This number is usually much smaller than thevSbound. ImageNameand
Polynomial have the same meaning as in the reddi@biularFormFormat .

2.5 Hecke algebras

intrinsic HeckeAlgebras (eps :: GrpDrchElt, weight :: RnglntElt :
UserBound := 0, first_test := 3, test _interval := 1, when_tdsp := 3,
when_test_bad := 4, test_sequence := [], dimension_facter 2,
ms_space := 0, cuspidal := true, DegreeBound := 0, Operatortt := [],
over_residue_field := true, try_minimal := true, force loaal := false,
) ->SeqEnum, SeqEnum, ModSym, Tup, Tup
intrinsic HeckeAlgebras (t:: Rec:
UserBound := 0, first_test := 3, test_interval := 1, when_tdsp := 3,
when_test_bad := 4, test_sequence := [], dimension_factor 2,
ms_space := 0, cuspidal := true, DegreeBound := 0, Operatoikt := [],
over_residue_field := true, try_minimal := true, force_local := false,
) -> SeqEnum, SeqEnum, ModSym, Tup, Tup

These functions compute all local Hecke algebras (up to iSa&onjugacy) in the speci-
fied weight for the given Dirichlet charactegps respectively those corresponding to the mod-
ular form t given by a record of typdlodularFormFormat . The functions return 5 values
A,B,C,D,E. A contains a list of records of typ&lgebraData describing the local Hecke algebra
factors. B is a list containing the local Hecke algebra factors as malgebras.C is the space
of modular symbols used in the computatiori3.is a tuple containing the base change tuples
describing the local Hecke factors. We need to kridwn order to compute matrices representing

Hecke operators for the local factor. Finalfy,contains a tuple consisting of all Hecke operators
computed so far for each local factor of the Hecke algebra.

The usage in practice is described in the example at the hiegirof this manual. We now
explain the different options in detail.

The modular symbols space to be used in the computationsecdetermined as follows. The
optionms_spacecan be set to the valuadgthe plus-space);1 (the minus-space) arti(the full
space). Whether the restriction to the cuspidal subspae&éstis determined bguspidal. It is
not necessary to pass to the cuspidal subspace, for exafigpdeisp form is given by a coefficient
function (see the description of the recdvbdularFormFormat).

In some cases, a list of Hecke operators on the modular sgspate in question may already
have been computed. In order to prevenidmA from redoing their computations, they may be
passed on to the function using the opti@peratorList .

Often, one wants to compute the local Hecke algebra of a mofiodim whose degree of the
coefficient field over its prime field is known, e.g. in the caan icosahedral form in character-
istic 2 for the trivial Dirichlet character the coefficient fieldlfg. By assigning a positive value
to the optionDegreeBoundthe function will automatically discard any systems of eimues
beyond that bound, which speeds up the computations. Onebmasbit careful with this option,
as there may be cases when the bound may not be respected atrifbas”. But it usually suf-
fices to take twice the degree of the coefficient field, e.g.awmmsesDegreeBound := 4in the
icosahedral example just described. If no system of eideesashould be discarded for degree
reasons, one must sbegreeBound :=Q

All of the optionsfirst_test, test_interval, when_test pwhen_test _bad test _sequence
force_local, dimension_factor and UserBound concern the stop criterion. Theoretically, the
Sturm bound (seéleckeBound) tells us up to which bound Hecke operators must be computed
in order to be sure that they generate the whole Hecke algkbpaactice, however, the algorithm
can often determine itself when enough Hecke operators bega computed to generate the
algebra. That number is usually much smaller than the Stwuamdb. The Sturm bound can be
overwritten by assigning a positive numberldserBound.

The stop criterion is the following. Le¥ be the modular symbols space used &nthe set
of Hecke operators computed so far. Theh= @;_, M; (for somer) such that eactd/; is
respected by the Hecke operators and the minimal polynarhedchl’ € S restricted tal/; is a
power of an irreducible polynomial (i.e. eadlf; is a primary space for the action of the algebra
generated by all elements 6. Let A; be the algebra generated BY,,, for all T € S. One
knows (in many cases, and in all cases of interest) thas equal to a direct product of local
Hecke algebras if one has the equality

f x dim(A4;) = dimension ofM;.

Here, f is given bydimension_factor and should bd if the plus-space or the minus space of
modular symbols are used, addtherwise. The correct assignmentdifnension_factor must
be made by hand, whence experimentations are possibles $tdip criterion is not reached, the
algorithm terminates at the Hecke bound.

It may happen that, when the stop criterion is reached Angisomorphic to a direct product
of more than one local Hecke algebras. If in that case th@wobirce local is true, the com-
putation of Hecke operators is continued until eaghs isomorphic to a single Hecke factor. If

10

force_localis false, then a fast localisation algorithm is applied to eagh The option is useful,
when one expects only a single local Hecke algebra factoeXample, when a modular form is
given.

In many cases of interest the Hecke operdtpwith p the characteristic is needed in order
to generate the whole Hecke algebra. The optidren_test ptells the algorithm at which step
to computeT,. It is very advisable to choose a small number. In practice,stop criterion is
reached after very few steps, e.g. 5 steps, whgis computed early. Otherwise, the algorithm
often has to continue until,, is computed, although most of the operators before did rangh
the generated algebra. The optimhen_test badhas a similar meaning for tHg for primesl
dividing the level. However, paying attention to them isyordquired when the modular form is
old ati. Moreover, one can assign a list of primegast_sequenceThe algorithm will then start
with the Hecke operators indicated by that sequence, amdcthrdtinue with the others.

The optionfirst_test tells the algorithm at which step the first test for the stdpedon is
to be performed. The next test is then carried out afst_interval many steps, and so on.
These numbers should be chosen small, too, unless the dondast takes much time, which is
rare, so that one wants to perform it less often, meaningatbsgibly more Hecke operators than
necessary are computed (time consuming).

The optionover_residue_fieldtells the algorithm whether at the end of the computation the
local Hecke factors should be base changed to their resielge ff that is done, only one of the
conjugate local factors of the base changed algebra inestai

Finally, the optiortry_minimal is passed on téffineAlgebra, when the output is generated.
Calling that function with the option sétue can sometimes be very time consuming, but makes
the output much shorter.

2.6 Storage functions

The package provides functions to store a list whose elesyaeatrecords of typalgebraData in
a file, and to re-read it. The usage of these functions is ggalan the example at the beginning
of this manual.

intrinsic CreateStorageFile (filename :: MonStgElt)
This function prepares the fildename for storing the data.

intrinsic StoreData (filename :: MonStgElt, forms :: SeqEnum)
This functions appends the ligirms of Hecke algebra data to the fifdename. That file must
have been created WyreateStorageFile

intrinsic StoreData (filename :: MonStgElt, form :: Rec)
This function appends the Hecke algebra dataen to the filefilename. That file must have been
created byCreateStorageFile

intrinsic RecoverData (Loadin :: SeqEnum, LoadInRel :: Tup) -> SeqEnum
In order to read Hecke algebra data from fitame” , proceed as follows:

> load “name”;

> readData := RecoverData(LoadIn,LoadInRel).
ThenreadData will contain a list whose elements are records of tyggebraData.

11

2.7 Output functions

intrinsic HeckeAlgebraPrint (ha :: SeqEnum)

intrinsic HeckeAlgebraPrintl (ha :: SeqEnum)

These functions print part of the data stored in theHitof records of typeAlgebraData in a
human readable format.

intrinsic GetLevel (a :: Rec) -> Any

intrinsic GetWeight (a :: Rec) -> Any

intrinsic GetCharacteristic (a :: Rec) -> Any

intrinsic GetResidueDegree (a :: Rec) -> Any

intrinsic GetDimension (a :: Rec) -> Any

intrinsic GetGorensteinDefect (a :: Rec) -> Any

intrinsic GetEmbeddingDimension (a :: Rec) -> Any

intrinsic GetNilpotencyOrder (a :: Rec) -> Any

intrinsic GetHeckeBound (a :: Rec) -> Any

intrinsic GetPrimesUpToHeckeBound (a :: Rec) -> Any

intrinsic GetNumberOperatorsUsed (a :: Rec) -> Any

intrinsic GetPolynomial (a :: Rec) -> Any

intrinsic GetlmageName (a :: Rec) -> Any

These functions return the property of the recardf type AlgebraData specified by the name
of the function. If the corresponding attribute is not assid), the empty string is returned.

intrinsic HeckeAlgebralLaTeX (ha :: SeqEnum, filename :: MonSgElt : which :=[
<GetLevel,"Level">, <GetWeight,"Wt">, <GetResidueDegree,"ResD">,
<GetDimension,"Dim">, <GetEmbeddingDimension,"EmbDim">,
<GetNilpotencyOrder,"NilO">, <GetGorensteinDefect,"GorD ef">,
<GetNumberOperatorsUsed, "#Ops">,
<GetPrimesUpToHeckeBound, "#(p<HB)">, <GetlmageName,"Gp">])
This function creates the LaTeX fifdename containing a longtable consisting of certain proper-
ties of the objects ima which are supposed to be records of tyjlgebraData. The properties
to be written are indicated by the list given in the optiohich consisting of tuplesf, name>.
Heref is a function that evaluates a record of typlgebraData to some Magma object which
is afterwards transformed into a string usifigrint. Examples forf are the function&GetLevel
etc., which are described above. Thame will appear in the table header. For a sample usage,
see the example at the beginning of this manual.

2.8 Other functions

intrinsic HeckeBound (N :: RngIntElt, k :: RngIntElt) -> Rng IntElt

intrinsic HeckeBound (eps :: GrpDrchElt, k :: RngIntElt) -> RngIntElt

These functions compute the Hecke bound for welghind levelN, respectively Dirichlet char-
actereps. Note that the Hecke bound is also often called the Sturmdboun

12

3 Algebra handling

3.1 Affine algebras

Let A be a commutative local Artin algebra with maximal ideabver a finite fieldk. The residue
field K = A/mis a finite extension of. By base changing t& and taking one of the conjugate
local factors, we now assume thiat= K. The embedding dimension e is the k-dimension of
m/m2. By Nakayama’s Lemma, this is the minimal number of genesator m. The name
comes from the fact that there is a surjection

7w klxy, ...,z & A

Its kernel is called theelations ideal. By the nilpotency order we mean the maximal integer
n such thatm™ is not the zero ideal. (As the algebra is local and Artin, isximal ideal is
nilpotent.) We know that the ideal

J with J = (2q,..., 2.)

is in the kernel ofr. So, in order to store, we only need to store the kernlof the linear map
between two finite dimension&tvector spaces

71 [z, .. xe] /T = Al

From the tuple< k, e, n, R > the algebra can be recreated (up to isomorphism). Let us$ poin
out, however, that from the tuple it is not obvious whetheo ®igebras are isomorphic. That
would have to be tested after recreating the algebras.

These functions are used in order to store the Hecke algebraputed byHeckeAlgebras
in a way that does not use much memory, but retains the alggti@isomorphism.

intrinsic AffineAlgebra (A :: AlgMat : try_minimal := true) -> RngMPolRes

intrinsic AffineAlgebra (A :: AlgAss : try_minimal := true) - > RngMPolRes

This function turns the local commutative algebranto an affine algebra over its residue field. In
fact, the algebra is first base changed to its residue fieda, fibr one of the conjugate local factors
an affine presentation is computed. If the optign minimal is true, the number of relations will
in general be smaller, but the computation time may be longer

intrinsic AffineAlgebraTup (A :: AlgMat : try_minimal := true) ->Tup

intrinsic AffineAlgebraTup (A :: AlgAss : try_minimal := tru e) -> Tup

Given a commutative local Artin algebr, this function returns a tuplek,e,n,R>, consisting
of the residue fielk of A, the embedding dimensias the nilpotency orden and relationsR.
From these data, an affine algebra can be recreated whiamisiphic to one of the local factors
of A base changed to its residue field. If the optign minimal is true, the number of relations
will in general be smaller, but the computation time may begkr.

intrinsic AffineAlgebra (form :: Rec) -> RngMPolRes
Given a record of typégebraData, this function returns the corresponding Hecke algebranas a
affine algebra.

intrinsic AffineAlgebra (A :: Tup) -> RngMPoIRes
This function turns a tupleck,e,n,R>, as above consisting of a field, two integerse, n (the
embedding dimension and the nilpotency order) and relafiyrinto an affine algebra.

13

3.2 Matrix algebra functions

intrinsic MatrixAlgebra (L :: Seqenum) -> AlgMat
Given a list of matriced , this function returns the matrix algebra generated by teenbers
of L.

intrinsic RegularRepresentation (A :: AlgMat) -> AlgMat
This function computes the regular representation of tmencatative matrix algebra .

intrinsic CommonLowerTriangular (A :: AlgMat) -> AlgMat

Given a local commutative matrix algeb#g this function returns an isomorphic matrix algebra
whose matrices are all lower triangular, after a scalamesxts to the residue field and taking one
of the Galois conjugate factors.

Base change

intrinsic BaseChange (S :: Tup, T :: Tup) -> Tup
This function computes the composition of the base changeaeaT = <C,D>, followed by
those inS = <E,F>.

intrinsic BaseChange (M :: Mtrx, T :: Tup) -> Mtrx
Given a matrixM and a tupleT = <C,D> of base change matrices (for a subspace), this function
computes the matrix d¥1 with respect to the basis corresponding’to

intrinsic BaseChange (M :: AlgMat, T :: Tup) -> AlgMat
Given a matrix algebrd/ and a tuplel = <C,D> of base change matrices (for a subspace), this
function computes the matrix algebraMf with respect to the basis correspondingito

Decomposition

intrinsic Decomposition (M :: Mtrx : DegBound :=0) -> Tup

intrinsic DecompositionUpToConjugation (M :: Mtrx : DegBou nd :=0) -> Tup

Given a matrixM , these functions compute a decomposition of the standarivepace such
that M acts as multiplication by a scalar on each summand. The bigtutuple consisting of
base change tuplesC,D> corresponding to the summands. With the second usage, suilsma
conjugate under the absolute Galois group only appear once.

intrinsic Decomposition (L :: SeqEnum : DegBound :=0) -> Tup

intrinsic DecompositionUpToConjugation (L :: SeqEnum : DegBound := 0) -> Tup

Given a sequende of commuting matrices, these functions compute a decoriposif the stan-
dard vector space such that each matrik iacts as multiplication by a scalar on each summand.
The output is a tuple consisting of base change tuglé€> corresponding to the summands.
With the second usage, summands conjugate under the ab&aidis group only appear once.

intrinsic Decomposition (A :: AlgMat : DegBound :=0) -> Tup

intrinsic DecompositionUpToConjugation (A :: AlgMat : DegBound :=0) -> Tup

Given a commutative matrix algeb#g, these functions compute a decomposition of the standard
vector space such that each elemer iacts as multiplication by a scalar on each summand. The
output is a tuple consisting of base change tugl€sD> corresponding to the summands. With
the second usage, summands conjugate under the absolote @alup only appear once.

14

intrinsic AlgebraDecomposition (A :: AlgMat : DegBound := 0) -> SeqEnum
intrinsic AlgebraDecompositionUpToConjugation (A :: AlgMat : DegBound :=0)

-> SeqEnum
Given a matrix algebrd over a finite field, these functions return a local factoAoéfter scalar
extension to the residue field. With the second usage, fctorjugate under the absolute Galois
group only appear once.

intrinsic ChangeToResidueField (A :: AlgMat) -> SeqEnum
This function is identical tAlgebraDecompositionUpToConjugation

Localisations

intrinsic Localisations (L :: SeqEnum) -> Tup, Tup

intrinsic Localisations (A :: AlgMat) -> Tup, Tup

Given a listL of commuting matrices or a commutative matrix algefirahis function computes
two tuplesC, D, whereC contains a tuple consisting of the localisationg\gfrespectively of the
matrix algebra generated ly, andD consists of the corresponding base change tuples.

3.3 Associative algebras

intrinsic Localisations (A :: AlgAss) -> SeqEnum
This function returns a list of all localisations of the AxtalgebraA, which is assumed to be
commutative. The output is a list of associative algebras.

3.4 Gorenstein defect

Let A be alocal Artin algebra over a field with unigue maximal idealWe define th&Sorenstein
defect of A to be(dim 4/ A[m]) — 1, which is equal to the number ef-module generators of the
annihilator of the maximal ideal minus one. The algebraid tabeGorenstein if its Gorenstein
defect is equal tO.

intrinsic GorensteinDefect (A :: RngMPolRes) -> RngIntElt

intrinsic GorensteinDefect (A :: AlgAss) -> RngIntElt

intrinsic GorensteinDefect (A :: AlgMat) -> RngIntElt

These functions return the Gorenstein defect of the localncotative algebra .

intrinsic IsGorenstein (M :: RngMPolRes) -> BoolElt

intrinsic IsGorenstein (M :: AlgAss) -> BoolElt

intrinsic IsGorenstein (M :: AlgMat) -> BoolElt

These functions test whether the commutative local algkbia Gorenstein.

15

	Example
	Hecke algebra computation
	The modular form format
	Dihedral modular forms
	Icosahedral modular forms
	The Hecke algebra format
	Hecke algebras
	Storage functions
	Output functions
	Other functions

	Algebra handling
	Affine algebras
	Matrix algebra functions
	Associative algebras
	Gorenstein defect

