
The MAGMA package HeckeAlgebra

Gabor Wiese∗

9th October 2007

Abstract

This is a short manual for the MAGMA packageHeckeAlgebra. The author would like to

thank Lloyd Kilford for very helpful suggestions.

1 Example

The following example explains the main functions of the package. Let us suppose that the file

HeckeAlgebra.mg is stored in the current path. We first attach the package.

> Attach("HeckeAlgebra.mg");
We want the package to be silent, so we put:

> SetVerbose ("HeckeAlgebra",false);
If we would like more information on the computations being performed, we should have put the

valuetrue . Since we want to store the data to be computed in a file, we now create the file.

> my_file := "datafile";
> CreateStorageFile(my_file);
Next, we would like to compute the Hecke algebras of the dihedral eigenforms of level2039 over

extensions ofF2. First, we create a list of such forms.

> dih := DihedralForms(2039 : ListOfPrimes := [2], completely_split := false);
Now, we compute the corresponding Hecke algebras, print part of the computed data in a human

readable format, and finally save the data to our file.

> for f in dih do
for> ha := HeckeAlgebras(f);
for> HeckeAlgebraPrint1(ha);
for> StoreData(my_file, ha);
for> end for;
Level 2039

Weight 2

Characteristic 2

Gorenstein defect 0

Dimension 1
∗Institut für Experimentelle Mathematik, Universität Duisburg-Essen, Ellernstraße 29, 45326 Essen, Germany, e-mail:

gabor.wiese@uni-due.de, http://maths.pratum.net

1

Number of operators used 3

Primes lt Hecke bound 68

Residue degree 2

—————————

Level 2039

Weight 2

Characteristic 2

Gorenstein defect 2

Dimension 6

Number of operators used 4

Primes lt Hecke bound 68

Residue degree 2

—————————

Level 2039

Weight 2

Characteristic 2

Gorenstein defect 0

Dimension 1

Number of operators used 3

Primes lt Hecke bound 68

Residue degree 6

—————————

Level 2039

Weight 2

Characteristic 2

Gorenstein defect 0

Dimension 1

Number of operators used 3

Primes lt Hecke bound 68

Residue degree 4

—————————

Level 2039

Weight 2

Characteristic 2

Gorenstein defect 0

Dimension 1

Number of operators used 3

Primes lt Hecke bound 68

Residue degree 4

—————————

Level 2039

Weight 2

Characteristic 2

Gorenstein defect 0

2

Dimension 1

Number of operators used 3

Primes lt Hecke bound 68

Residue degree 12

—————————

Level 2039

Weight 2

Characteristic 2

Gorenstein defect 0

Dimension 1

Number of operators used 3

Primes lt Hecke bound 68

Residue degree 12

—————————

With the functionDihedralForms one may also compute exclusively representations that are

completely split in the characteristic. The default iscompletely_split := true. By the option

bound we indicate primes up to which bound should be used as the characteristic. The following

example illustrates this.

> dih1 := DihedralForms (431 : bound := 20);
> for f in dih1 do
for> ha := HeckeAlgebras(f);
for> HeckeAlgebraPrint1(ha);
for> StoreData(my_file, ha);
for> end for;
Level 431

Weight 2

Characteristic 2

Gorenstein defect 2

Dimension 4

Number of operators used 6

Primes lt Hecke bound 20

Residue degree 1

—————————

Level 431

Weight 11

Characteristic 11

Gorenstein defect 2

Dimension 4

Number of operators used 5

Primes lt Hecke bound 77

Residue degree 3

—————————

One can also compute icosahedral modular forms over extensions ofF2, starting from an integer

polynomial with Galois groupA5, as follows.

3

> R<x> := PolynomialRing(Integers());
> pol := xˆ5-xˆ4-780*xˆ3-1795*xˆ2+3106*x+344;
> f := A5Form(pol);
With this kind of icosahedral examples one has to pay attention to the conductor, as it can be huge.

This polynomial has prime conductor. But conductors need not be square-free, in general.

> print Modulus(f‘Character);
1951

So it’s reasonable. We do the computation.

> ha := HeckeAlgebras(f);
> HeckeAlgebraPrint1(ha);
Level 1951

Weight 2

Characteristic 2

Gorenstein defect 0

Dimension 3

Number of operators used 3

Primes lt Hecke bound 66

Residue degree 4

—————————

Level 1951

Weight 2

Characteristic 2

Gorenstein defect 0

Dimension 6

Number of operators used 3

Primes lt Hecke bound 66

Residue degree 4

—————————

There are two forms, which is okay, since they come from a weight one form in two different

ways and this case is not exceptional. We now save them, as always.

> StoreData(my_file, ha);
It is also possible to compute all forms at a given character and weight.

> eps := DirichletGroup(229,GF(2)).1;
> ha := HeckeAlgebras(eps,2);
> HeckeAlgebraPrint1(ha);
Level 229

Weight 2

Characteristic 2

Gorenstein defect 0

Dimension 1

Number of operators used 12

Primes lt Hecke bound 12

Residue degree 1

—————————

4

Level 229

Weight 2

Characteristic 2

Gorenstein defect 0

Dimension 2

Number of operators used 12

Primes lt Hecke bound 12

Residue degree 2

—————————

Level 229

Weight 2

Characteristic 2

Gorenstein defect 0

Dimension 4

Number of operators used 12

Primes lt Hecke bound 12

Residue degree 1

—————————

Level 229

Weight 2

Characteristic 2

Gorenstein defect 0

Dimension 2

Number of operators used 12

Primes lt Hecke bound 12

Residue degree 5

—————————

> StoreData(my_file,ha);
Next, we illustrate how one reloads what has been saved. One would like to type:load my_file;
but that does not work. One has to do it as follows.

> load "datafile";
> mf := RecoverData(LoadIn,LoadInRel);
Now, mf contains a list of all algebra data computed before. There’sa rather concise printing

function, displaying part of the information, namelyHeckeAlgebraPrint(mf); .

One can also create a LaTeX longtable. The entries can be chosen in quite a flexible way. The

standard usage is the following.

> HeckeAlgebraLaTeX(mf,"table.tex");
A short LaTeX file displaying the table is the following:

\documentclass[11pt]{article}
\usepackage{longtable}
\begin{document}
\input{table}
\end{document}
The table we created is this one:

5

Level Wt ResD Dim EmbDim NilO GorDef #Ops #(p<HB) Gp

2039 2 2 1 0 0 0 3 68 D3

2039 2 2 6 3 2 2 4 68 D5

2039 2 6 1 0 0 0 3 68 D9

2039 2 4 1 0 0 0 3 68 D15

2039 2 4 1 0 0 0 3 68 D15

2039 2 12 1 0 0 0 3 68 D45

2039 2 12 1 0 0 0 3 68 D45

431 2 1 4 3 1 2 6 20 D3

431 11 3 4 3 1 2 5 77 D7

1951 2 4 3 1 2 0 3 66 A5

1951 2 4 6 2 3 0 3 66 A5

229 2 1 1 0 0 0 12 12

229 2 2 2 1 1 0 12 12

229 2 1 4 1 3 0 12 12

229 2 5 2 1 1 0 12 12

In the examples of level229 the image of the Galois representation as an abstract group is not

know. That is due to the fact that we created these examples without specifying the Galois repre-

sentation in advance.

It is possible to compute arbitrary Hecke operators on the local Hecke factors generated by

HeckeAlgebras(·) , as the following example illustrates.

> A,B,M,C := HeckeAlgebras(DirichletGroup(253,GF(2)).1,2 : over_residue_field := true);
Suppose that we want to know the Hecke operatorT17 on the4th local factor.

> i := 4;
> T := BaseChange(HeckeOperator(M,17),C[i]);
The coefficients are the eigenvalues (only one):

> Eigenvalues(T);
{ < $. 1̂ 5, 8> }

Let us remember the eigenvalue.

> e := SetToSequence(Eigenvalues(T))[1][1];
In order to illustrate the optionover_residue_field, we also compute the following:

> A1,B1,M1,C1 := HeckeAlgebras(DirichletGroup(253,GF(2)).1,2 : over_residue_field :=
false);
> T1 := BaseChange(HeckeOperator(M1,17),C1[i]);
> Eigenvalues(T1);
{}

The base field is strictly smaller than the residue field in this example and the operatorT1 cannot

be diagonalised over the base field. We check thate is nevertheless a zero of the minimal polyno-

mial of T1 .

> Evaluate(MinimalPolynomial(T1),e);
0

The precise usage of the package is described in the following sections.

6

2 Hecke algebra computation

2.1 The modular form format

In the package, modular forms are often represented by the following record.

ModularFormFormat := recformat <

Character : GrpDrchElt,
Weight : RngIntElt,
CoefficientFunction : Map,
ImageName : MonStgElt,
Polynomial : RngUPolElt

>;
The fieldsCharacter andWeight have the obvious meaning. Sometimes, the image of the

associated Galois representation is known as an abstract group. Then that name is recorded in

ImageName, e.g.A_5 or D_3. In some cases, a polynomial is known whose splitting field isthe

number field cut out by the Galois representation. Then the polynomial is stored inPolynomial.
The cases in which polynomials are known are usually icosahedral ones. TheCoefficientFunc-
tion is a function from the integers to a polynomial ring. For all primes l different from the

characteristic and not dividing the level of the modular form (i.e. the modulus of theCharac-
ter), the coefficient function should return the minimal polynomial of thel-th coefficient in the

q-expansion of the modular form in question.

2.2 Dihedral modular forms

Eigenforms whose associated Galois representations take dihedral groups as images provide an

important source of examples, in many contexts. These eigenforms are calleddihedral. The big

advantage is that their Galois representation, and hence their q-coefficients, can be computed using

class field theory. That enables one to exhibit Galois representations in the context of modular

forms with certain number theoretic properties. The property for which these functions were

initially created is that the representations should be unramified in the characteristic, sayp, and

thatp is completely split in the number field cut out by the representation.

We consider dihedral representations whose determinant isthe Legendre symbol of a quadratic

field Q(
√

N). The representations produced by the functions to be described are obtained by

induction of an unramified characterχ of Q(
√

N) whose conjugate by the non-trivial element of

the Galois group ofQ(
√

N) overQ is assumed to beχ−1.

intrinsic GetLegendre (N :: RngIntElt, K :: FldFin) -> GrpDr chElt
For an odd positive integerN , this function returns the element ofDirichletGroup(Abs(N),K)
(with K a finite field of characteristic different from2) which corresponds to the Legendre symbol

p 7→
(

±N
p

)

. If N is 1 mod4 the sign is+1, and−1 otherwise.

intrinsic DihedralForms (N :: RngIntElt :
ListOfPrimes := [], bound := 100, odd_only := true, quad_disc := 0,
completely_split := true, all_conjugacy_classes := true)-> Rec

This function computes all modular forms (in the sense of Section 2.1) of levelN and weightp

7

over a finite field of characteristicp that come from dihedral representations whose determinant

is the Legendre symbol of the quadratic fieldK = Q(
√±quad_disc) and which are obtained

by induction of an unramified character ofK. If quad_disc is 1 mod4 the sign is+1, and−1

otherwise. Ifquad_disc is 0, the value ofN is used. If the optioncompletely_split is set, only

those representations are returned which are completely split at p. If the optionListOfPrimes is

assigned a non-empty list of primes, only those primes are considered as the characteristic. If it is

the empty set, all primesp up to thebound are taken into consideration. If the optionodd_only
is true, only odd Galois representations are returned. If the optionall_conjugacy_classesis true,

each unramified character as above up to Galois conjugacy andup to taking inverses is used.

Otherwise, a single choice is made. That there may be non-conjugate characters cutting out the

same number field is due to the fact that there may be non-conjugate elements of the same order

in the multiplicative group of a finite field.

2.3 Icosahedral modular forms

Eigenforms whose attached Galois representations take thegroupA5 as projective images are

calledicosahedral. Since extensive tables ofA5-extensions of the rationals are available, one can

consider icosahedral Galois representations which one knows very well. That allows one to test

certain conjectures concerning modular forms on icosahedral ones.

We note the isomorphismA5
∼= SL2(F4). Thus,A5-extentions of the rationals give rise to

icosahedral Galois representations in characteristic2 which (should) come from modular forms

mod2. It would also be possible to use certain other primes, but this has not been implemented.

intrinsic A5Form (f :: RngUPolElt) -> Rec
Returns the icosahedral form in characteristic2 and weight2 of smallest predicted level corre-

sponding to the polynomialf which is expected to be of degree5 and whose Galois group is

supposed to beA5. No checks aboutf are performed.

2.4 The Hecke algebra format

The data concerning the Hecke algebra of an eigenform that iscomputed by the functionHeck-
eAlgebras is a record of the following form.

AlgebraData := recformat <

Level : RngIntElt,
Weight : RngIntElt,
Characteristic : RngIntElt,
BaseFieldDegree : RngIntElt,
CharacterOrder : RngIntElt,
CharacterConductor : RngIntElt,
CharacterIndex : RngIntElt,
AlgebraFieldDegree : RngIntElt,
ResidueDegree : RngIntElt,
Dimension : RngIntElt,
GorensteinDefect : RngIntElt,
EmbeddingDimension : RngIntElt,

8

NilpotencyOrder : RngIntElt,
Relations : Tup,
NumberGenUsed : RngIntElt,
ImageName : MonStgElt,
Polynomial : RngUPolElt

>;
Level andWeight have the obvious meaning. LetK be the base field for the space of mod-

ular symbols used. It is (expected to be) a finite field. ThenCharacteristic is the character-

istic of K and BaseFieldDegreeis the degree ofK over its prime field. The entriesChar-
acterOrder , CharacterConductor and CharacterIndex concern the Dirichlet character for

which the modular symbols have been computed. The latter field is the index of the charac-

ter in Elements(DirichletGroup(·)) . Note that that might change between different versions of

MAGMA . The fieldsResidueDegree(over the prime field),Dimension andGorensteinDefect
have their obvious meaning for the Hecke algebra in question. The tuple

<AlgebraFieldDegree, EmbeddingDimension, NilpotencyOrder, Relations>

are data from whichAffineAlgebra can recreate the Hecke algebra up to isomorphism.Num-
berGenUsedindicates the number of generators used by the package for the computation of the

Hecke algebra. This number is usually much smaller than the Sturm bound. ImageNameand

Polynomial have the same meaning as in the recordModularFormFormat .

2.5 Hecke algebras

intrinsic HeckeAlgebras (eps :: GrpDrchElt, weight :: RngIntElt :
UserBound := 0, first_test := 3, test_interval := 1, when_test_p := 3,
when_test_bad := 4, test_sequence := [], dimension_factor:= 2,
ms_space := 0, cuspidal := true, DegreeBound := 0, OperatorList := [],
over_residue_field := true, try_minimal := true, force_local := false,

) -> SeqEnum, SeqEnum, ModSym, Tup, Tup
intrinsic HeckeAlgebras (t :: Rec :

UserBound := 0, first_test := 3, test_interval := 1, when_test_p := 3,
when_test_bad := 4, test_sequence := [], dimension_factor:= 2,
ms_space := 0, cuspidal := true, DegreeBound := 0, OperatorList := [],
over_residue_field := true, try_minimal := true, force_local := false,

) -> SeqEnum, SeqEnum, ModSym, Tup, Tup

These functions compute all local Hecke algebras (up to Galois conjugacy) in the speci-

fied weight for the given Dirichlet charactereps, respectively those corresponding to the mod-

ular form t given by a record of typeModularFormFormat . The functions return 5 values

A,B,C,D,E. A contains a list of records of typeAlgebraData describing the local Hecke algebra

factors.B is a list containing the local Hecke algebra factors as matrix algebras.C is the space

of modular symbols used in the computations.D is a tuple containing the base change tuples

describing the local Hecke factors. We need to knowD in order to compute matrices representing

9

Hecke operators for the local factor. Finally,E contains a tuple consisting of all Hecke operators

computed so far for each local factor of the Hecke algebra.

The usage in practice is described in the example at the beginning of this manual. We now

explain the different options in detail.

The modular symbols space to be used in the computations can be determined as follows. The

optionms_spacecan be set to the values1 (the plus-space),−1 (the minus-space) and0 (the full

space). Whether the restriction to the cuspidal subspace is taken, is determined bycuspidal. It is

not necessary to pass to the cuspidal subspace, for example,if a cusp form is given by a coefficient

function (see the description of the recordModularFormFormat).

In some cases, a list of Hecke operators on the modular symbols space in question may already

have been computed. In order to prevent MAGMA from redoing their computations, they may be

passed on to the function using the optionOperatorList .

Often, one wants to compute the local Hecke algebra of a modular form whose degree of the

coefficient field over its prime field is known, e.g. in the caseof an icosahedral form in character-

istic 2 for the trivial Dirichlet character the coefficient field isF4. By assigning a positive value

to the optionDegreeBound the function will automatically discard any systems of eigenvalues

beyond that bound, which speeds up the computations. One must be a bit careful with this option,

as there may be cases when the bound may not be respected at “bad primes”. But it usually suf-

fices to take twice the degree of the coefficient field, e.g. onechoosesDegreeBound := 4in the

icosahedral example just described. If no system of eigenvalues should be discarded for degree

reasons, one must setDegreeBound := 0.
All of the optionsfirst_test, test_interval, when_test_p,when_test_bad, test_sequence,

force_local, dimension_factor andUserBound concern the stop criterion. Theoretically, the

Sturm bound (seeHeckeBound) tells us up to which bound Hecke operators must be computed

in order to be sure that they generate the whole Hecke algebra. In practice, however, the algorithm

can often determine itself when enough Hecke operators havebeen computed to generate the

algebra. That number is usually much smaller than the Sturm bound. The Sturm bound can be

overwritten by assigning a positive number toUserBound.

The stop criterion is the following. LetM be the modular symbols space used andS the set

of Hecke operators computed so far. ThenM =
⊕r

i=1
Mi (for somer) such that eachMi is

respected by the Hecke operators and the minimal polynomialof eachT ∈ S restricted toMi is a

power of an irreducible polynomial (i.e. eachMi is a primary space for the action of the algebra

generated by all elements ofS). Let Ai be the algebra generated byT |Mi
for all T ∈ S. One

knows (in many cases, and in all cases of interest) thatAi is equal to a direct product of local

Hecke algebras if one has the equality

f × dim(Ai) = dimension ofMi.

Here,f is given bydimension_factor and should be1 if the plus-space or the minus space of

modular symbols are used, and2 otherwise. The correct assignment ofdimension_factor must

be made by hand, whence experimentations are possible. If the stop criterion is not reached, the

algorithm terminates at the Hecke bound.

It may happen that, when the stop criterion is reached, oneAi is isomorphic to a direct product

of more than one local Hecke algebras. If in that case the option force_local is true , the com-

putation of Hecke operators is continued until eachAi is isomorphic to a single Hecke factor. If

10

force_local is false, then a fast localisation algorithm is applied to eachAi. The option is useful,

when one expects only a single local Hecke algebra factor, for example, when a modular form is

given.

In many cases of interest the Hecke operatorTp with p the characteristic is needed in order

to generate the whole Hecke algebra. The optionwhen_test_ptells the algorithm at which step

to computeTp. It is very advisable to choose a small number. In practice, the stop criterion is

reached after very few steps, e.g. 5 steps, whenTp is computed early. Otherwise, the algorithm

often has to continue untilTp is computed, although most of the operators before did not change

the generated algebra. The optionwhen_test_badhas a similar meaning for theTl for primesl

dividing the level. However, paying attention to them is only required when the modular form is

old atl. Moreover, one can assign a list of primes totest_sequence. The algorithm will then start

with the Hecke operators indicated by that sequence, and then continue with the others.

The optionfirst_test tells the algorithm at which step the first test for the stop criterion is

to be performed. The next test is then carried out aftertest_interval many steps, and so on.

These numbers should be chosen small, too, unless the dimension test takes much time, which is

rare, so that one wants to perform it less often, meaning thatpossibly more Hecke operators than

necessary are computed (time consuming).

The optionover_residue_fieldtells the algorithm whether at the end of the computation the

local Hecke factors should be base changed to their residue field. If that is done, only one of the

conjugate local factors of the base changed algebra is retained.

Finally, the optiontry_minimal is passed on toAffineAlgebra , when the output is generated.

Calling that function with the option settrue can sometimes be very time consuming, but makes

the output much shorter.

2.6 Storage functions

The package provides functions to store a list whose elements are records of typeAlgebraData in

a file, and to re-read it. The usage of these functions is explained in the example at the beginning

of this manual.

intrinsic CreateStorageFile (filename :: MonStgElt)
This function prepares the filefilename for storing the data.

intrinsic StoreData (filename :: MonStgElt, forms :: SeqEnum)
This functions appends the listforms of Hecke algebra data to the filefilename. That file must

have been created byCreateStorageFile.

intrinsic StoreData (filename :: MonStgElt, form :: Rec)
This function appends the Hecke algebra dataform to the filefilename. That file must have been

created byCreateStorageFile.

intrinsic RecoverData (LoadIn :: SeqEnum, LoadInRel :: Tup) -> SeqEnum
In order to read Hecke algebra data from file“name” , proceed as follows:

> load “name”;
> readData := RecoverData(LoadIn,LoadInRel).

ThenreadData will contain a list whose elements are records of typeAlgebraData.

11

2.7 Output functions

intrinsic HeckeAlgebraPrint (ha :: SeqEnum)
intrinsic HeckeAlgebraPrint1 (ha :: SeqEnum)
These functions print part of the data stored in the listha of records of typeAlgebraData in a

human readable format.

intrinsic GetLevel (a :: Rec) -> Any
intrinsic GetWeight (a :: Rec) -> Any
intrinsic GetCharacteristic (a :: Rec) -> Any
intrinsic GetResidueDegree (a :: Rec) -> Any
intrinsic GetDimension (a :: Rec) -> Any
intrinsic GetGorensteinDefect (a :: Rec) -> Any
intrinsic GetEmbeddingDimension (a :: Rec) -> Any
intrinsic GetNilpotencyOrder (a :: Rec) -> Any
intrinsic GetHeckeBound (a :: Rec) -> Any
intrinsic GetPrimesUpToHeckeBound (a :: Rec) -> Any
intrinsic GetNumberOperatorsUsed (a :: Rec) -> Any
intrinsic GetPolynomial (a :: Rec) -> Any
intrinsic GetImageName (a :: Rec) -> Any
These functions return the property of the recorda of typeAlgebraData specified by the name

of the function. If the corresponding attribute is not assigned, the empty string is returned.

intrinsic HeckeAlgebraLaTeX (ha :: SeqEnum, filename :: MonStgElt : which := [
<GetLevel,"Level">, <GetWeight,"Wt">, <GetResidueDegree,"ResD">,
<GetDimension,"Dim">, <GetEmbeddingDimension,"EmbDim">,
<GetNilpotencyOrder,"NilO">, <GetGorensteinDefect,"GorD ef">,
<GetNumberOperatorsUsed,"#Ops">,
<GetPrimesUpToHeckeBound,"#(p<HB)">, <GetImageName,"Gp">])

This function creates the LaTeX filefilename containing a longtable consisting of certain proper-

ties of the objects inha which are supposed to be records of typeAlgebraData. The properties

to be written are indicated by the list given in the optionwhich consisting of tuples<f, name>.

Heref is a function that evaluates a record of typeAlgebraData to some Magma object which

is afterwards transformed into a string usingSprint . Examples forf are the functionsGetLevel
etc., which are described above. Thename will appear in the table header. For a sample usage,

see the example at the beginning of this manual.

2.8 Other functions

intrinsic HeckeBound (N :: RngIntElt, k :: RngIntElt) -> Rng IntElt
intrinsic HeckeBound (eps :: GrpDrchElt, k :: RngIntElt) -> RngIntElt
These functions compute the Hecke bound for weightk and levelN , respectively Dirichlet char-

actereps. Note that the Hecke bound is also often called the Sturm bound.

12

3 Algebra handling

3.1 Affine algebras

Let A be a commutative local Artin algebra with maximal idealm over a finite fieldk. The residue

field K = A/m is a finite extension ofk. By base changing toK and taking one of the conjugate

local factors, we now assume thatk = K. The embedding dimension e is thek-dimension of

m/m
2. By Nakayama’s Lemma, this is the minimal number of generators for m. The name

comes from the fact that there is a surjection

π : k[x1, . . . , xe] ։ A.

Its kernel is called therelations ideal. By the nilpotency order we mean the maximal integer

n such thatmn is not the zero ideal. (As the algebra is local and Artin, its maximal ideal is

nilpotent.) We know that the ideal

Jn+1 with J := (x1, . . . , xe)

is in the kernel ofπ. So, in order to storeπ, we only need to store the kernelR of the linear map

between two finite dimensionalk-vector spaces

π1 : k[x1, . . . , xe]/Jn+1
։ A.

From the tuple< k, e, n,R > the algebra can be recreated (up to isomorphism). Let us point

out, however, that from the tuple it is not obvious whether two algebras are isomorphic. That

would have to be tested after recreating the algebras.

These functions are used in order to store the Hecke algebrascomputed byHeckeAlgebras
in a way that does not use much memory, but retains the algebraup to isomorphism.

intrinsic AffineAlgebra (A :: AlgMat : try_minimal := true) -> RngMPolRes
intrinsic AffineAlgebra (A :: AlgAss : try_minimal := true) - > RngMPolRes
This function turns the local commutative algebraA into an affine algebra over its residue field. In

fact, the algebra is first base changed to its residue field, then for one of the conjugate local factors

an affine presentation is computed. If the optiontry_minimal is true, the number of relations will

in general be smaller, but the computation time may be longer.

intrinsic AffineAlgebraTup (A :: AlgMat : try_minimal := true) -> Tup
intrinsic AffineAlgebraTup (A :: AlgAss : try_minimal := tru e) -> Tup
Given a commutative local Artin algebraA , this function returns a tuple<k,e,n,R>, consisting

of the residue fieldk of A , the embedding dimensione, the nilpotency ordern and relationsR .

From these data, an affine algebra can be recreated which is isomorphic to one of the local factors

of A base changed to its residue field. If the optiontry_minimal is true, the number of relations

will in general be smaller, but the computation time may be longer.

intrinsic AffineAlgebra (form :: Rec) -> RngMPolRes
Given a record of typeAlgebraData, this function returns the corresponding Hecke algebra as an

affine algebra.

intrinsic AffineAlgebra (A :: Tup) -> RngMPolRes
This function turns a tuple<k,e,n,R>, as above consisting of a fieldk , two integerse, n (the

embedding dimension and the nilpotency order) and relations R , into an affine algebra.

13

3.2 Matrix algebra functions

intrinsic MatrixAlgebra (L :: SeqEnum) -> AlgMat
Given a list of matricesL , this function returns the matrix algebra generated by the members

of L .

intrinsic RegularRepresentation (A :: AlgMat) -> AlgMat
This function computes the regular representation of the commutative matrix algebraA .

intrinsic CommonLowerTriangular (A :: AlgMat) -> AlgMat
Given a local commutative matrix algebraA , this function returns an isomorphic matrix algebra

whose matrices are all lower triangular, after a scalar extension to the residue field and taking one

of the Galois conjugate factors.

Base change

intrinsic BaseChange (S :: Tup, T :: Tup) -> Tup
This function computes the composition of the base change matricesT = <C,D>, followed by

those inS = <E,F>.

intrinsic BaseChange (M :: Mtrx, T :: Tup) -> Mtrx
Given a matrixM and a tupleT = <C,D> of base change matrices (for a subspace), this function

computes the matrix ofM with respect to the basis corresponding toT .

intrinsic BaseChange (M :: AlgMat, T :: Tup) -> AlgMat
Given a matrix algebraM and a tupleT = <C,D> of base change matrices (for a subspace), this

function computes the matrix algebra ofM with respect to the basis corresponding toT .

Decomposition

intrinsic Decomposition (M :: Mtrx : DegBound := 0) -> Tup
intrinsic DecompositionUpToConjugation (M :: Mtrx : DegBou nd := 0) -> Tup
Given a matrixM , these functions compute a decomposition of the standard vector space such

that M acts as multiplication by a scalar on each summand. The output is a tuple consisting of

base change tuples<C,D> corresponding to the summands. With the second usage, summands

conjugate under the absolute Galois group only appear once.

intrinsic Decomposition (L :: SeqEnum : DegBound := 0) -> Tup
intrinsic DecompositionUpToConjugation (L :: SeqEnum : DegBound := 0) -> Tup
Given a sequenceL of commuting matrices, these functions compute a decomposition of the stan-

dard vector space such that each matrix inL acts as multiplication by a scalar on each summand.

The output is a tuple consisting of base change tuples<C,D> corresponding to the summands.

With the second usage, summands conjugate under the absolute Galois group only appear once.

intrinsic Decomposition (A :: AlgMat : DegBound := 0) -> Tup
intrinsic DecompositionUpToConjugation (A :: AlgMat : DegBound := 0) -> Tup
Given a commutative matrix algebraA , these functions compute a decomposition of the standard

vector space such that each element inA acts as multiplication by a scalar on each summand. The

output is a tuple consisting of base change tuples<C,D> corresponding to the summands. With

the second usage, summands conjugate under the absolute Galois group only appear once.

14

intrinsic AlgebraDecomposition (A :: AlgMat : DegBound := 0) -> SeqEnum
intrinsic AlgebraDecompositionUpToConjugation (A :: AlgMat : DegBound := 0)

-> SeqEnum
Given a matrix algebraA over a finite field, these functions return a local factor ofA after scalar

extension to the residue field. With the second usage, factors conjugate under the absolute Galois

group only appear once.

intrinsic ChangeToResidueField (A :: AlgMat) -> SeqEnum
This function is identical toAlgebraDecompositionUpToConjugation.

Localisations

intrinsic Localisations (L :: SeqEnum) -> Tup, Tup
intrinsic Localisations (A :: AlgMat) -> Tup, Tup
Given a listL of commuting matrices or a commutative matrix algebraA , this function computes

two tuplesC , D , whereC contains a tuple consisting of the localisations ofA , respectively of the

matrix algebra generated byL , andD consists of the corresponding base change tuples.

3.3 Associative algebras

intrinsic Localisations (A :: AlgAss) -> SeqEnum
This function returns a list of all localisations of the Artin algebraA , which is assumed to be

commutative. The output is a list of associative algebras.

3.4 Gorenstein defect

Let A be a local Artin algebra over a field with unique maximal idealm. We define theGorenstein

defect of A to be(dimA/m
A[m])−1, which is equal to the number ofA-module generators of the

annihilator of the maximal ideal minus one. The algebra is said to beGorenstein if its Gorenstein

defect is equal to0.

intrinsic GorensteinDefect (A :: RngMPolRes) -> RngIntElt
intrinsic GorensteinDefect (A :: AlgAss) -> RngIntElt
intrinsic GorensteinDefect (A :: AlgMat) -> RngIntElt
These functions return the Gorenstein defect of the local commutative algebraA .

intrinsic IsGorenstein (M :: RngMPolRes) -> BoolElt
intrinsic IsGorenstein (M :: AlgAss) -> BoolElt
intrinsic IsGorenstein (M :: AlgMat) -> BoolElt
These functions test whether the commutative local algebraM is Gorenstein.

15

	Example
	Hecke algebra computation
	The modular form format
	Dihedral modular forms
	Icosahedral modular forms
	The Hecke algebra format
	Hecke algebras
	Storage functions
	Output functions
	Other functions

	Algebra handling
	Affine algebras
	Matrix algebra functions
	Associative algebras
	Gorenstein defect

