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Abstract

This article covers three topics. (1) It establishes linksgen the density of certain subsets
of the set of primes and related subsets of the set of naturabars. (2) It extends previous
results on a conjecture of Bruinier and Kohnen in three wiys CM-case is included; under the
assumption of the same error term as in previous work onénsbtiae result in terms of natural
density instead of Dedekind-Dirichlet density; the latigre of density can already be achieved
by an error term like in the prime number theorem. (3) It alsavjules a complete proof of Sato-
Tate equidistribution for CM modular forms with an erromtesimilar to that in the prime number
theorem.
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1 Introduction

A very significant recent result in pure mathematics is the proof of the Seivebnjecture for non-
CM modular eigenforms (even for Hilbert eigenforms) [2]. It assertsfirea normalised4(1) = 1)
cuspidal eigenformf = >°° | A(n)g" (with ¢ = €>™%*) of weightk > 2 onTo(N) (someN) the
normalised coeﬁicient% € [-1, 1] are equidistributed with respect to the so-called Sato-Tate
measure, whep runs through the set of primes.

The corresponding result for CM forms has been known for a long tindeimfiact is quite a
simple corollary of the equidistribution of the values of Hecke charactarSettion 3 of this article
we include a proof of a form of this result that additionally provides aardround like the one in the
prime number theorem (see Theorem 3.1.1). It relies on an error boutttefequidistribution of the
values of Hecke characters given in [15].
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A special case of Sato-Tate equidistribution for non-CM eigenforms shioat the sets of primes
{p prime : A(p) > 0} and{p prime : A(p) < 0}

both have natural density equal 1@2. A conjecture of Bruinier and Kohnen ([3] and [9]) asserts
that something similar should hold for certain half-integral weight modulansgi = > "> | a(n)q™;
namely they conjecture that the sets

{n €N:a(n)>0}and{n € N:a(n) <0}

have the same natural density, namely, half of the natural densjty efN : a(n) # 0}. The interest
in the distribution of signs is explained by a famous theorem of Waldspuedgting the squares
(a(t))? for squarefree to the critical values of the Hecke L-function of the Shimura#ifttwisted by
an explicit quadratic character (see [23]); this precisely leaves the§igih) undetermined.

The Bruinier-Kohnen conjecture appears to be quite hard. The mairmgdidn of the previous
work [7] is the observation that the Shimura I} allows one to utilise Sato-Tate equidistribution for
the coefficients of the integral weight eigenfoifh in order to compute the densities of the sets of
primes

{p prime : a(tp?) > 0} and{p prime : a(tp?®) < 0}.

If the Shimura lift F; is non-CM, in [7] it is proved that the densities of these two sets are equal. |
this paper we extend this computation to the CM case, see Theorem 4.1.hslotrthat in the CM
case the densities can either be bbth or they can bd /4 and3/4 (see Example 4.1.2).

In order to study the set of natural numbérse N : a(tn?) > 0} (and similarly for < 0’) we set
up some general theory, that grew out of analysing the rather ad hoodseih[7]. We now describe
this. Lety : N — {—1,0,+1} be a multiplicative arithmetic function and define

St ={pprime: x(p) =+t1}andAL = {n € N: x(n) = £1}.

Motivated by the Bruinier-Kohnen conjecture (taki:) to be the sign ofi(tn?) supposing:(t) > 0),
we study the relation between the densitie§S.ofandA... We were unable to prove any results without
the assumption of some error term in the convergence of the natural dehSity If there is a rather
weak error term, then the sets of primg&s areweakly regular if the error term is strong (often
implied by variations of the Riemann Hypothesis), then we obtgnlar sets (see Definition 2.2.1).
Our main results in this abstract context are Propositions 2.2.2, 2.3.1, a@d [&.5his introduction
we do not repeat their precise assertions, but we explain what they impthd Bruinier-Kohnen
conjecture.

In the case that the Shimura liff, has CM, we use the error bound from Theorem 3.1.1 in order
to obtain the weak regularity of the sgt prime : a(tp?) > 0} (and similarly for < 0’ and ‘= 0’)
and to deduce that

{n €N:a(tn?) >0} and{n € N : a(tn?) < 0}



have the samPedekind-Dirichlet densit{see Definition 2.1.3), which is equal to half the Dedekind-
Dirichlet density of{n € N : a(tn?) # 0}. Maybe at first sight astonishingly, one obtains this result
even in the situation when the densities of the corresponding sets of primaetagqual. Under the
assumption of a similar error bound in the case #iatas no CM, one obtains the same result. This
had already been established in [7] under the assumption of a strongeb@und. See Remark 3.1.3
for some relation of this error bound and the Generalised Riemann HypotHésve assume this
stronger error bound (whethé&} is CM or not), then one can use a result of Delange to derive that the
previous statement even holds in termsafural density

The study of the densities ¢f. and A is done in Section|2. Our aim there is to give a coherent
treatment so that we also recall the relevant definitions. Section 3 is dewofgdving Sato-Tate
equidistribution for CM modular forms (in fact we show slightly more) with aroeterm as in the
prime number theorem. In the final Section 4 the results towards the Bruinlamdf conjecture are
derived from the techniques provided in the other sections.
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2 Densities and sets of primes
In this section we are concerned with the sets
Sy ={pprime : x(p) = £t1}andA; = {n € N: x(n) = 1}

for a multiplicative arithmetic functiory : N — {—1,0,+1}, as explained in the introduction.
We found it necessary to assume more than just$hahas a natural density in order to conclude
something about the density df.; namely, we obtain our results under the assumption $hais
(weakly) regular (see below). We also show that (weak) regularity anaexjuence of a sufficiently
good error bound for the convergence of the natural densify.of



2.1 Notions of density

Definition 2.1.1. LetP C N be the set of all prime numbers. For a set of prinseS P we make the
following definitions:

e Forx € R, denoterg(z) := #{p <z : p € S}. As usual denotep by .

Ps(2) := Zpes -=- This defines a holomorphic function ¢Re(z) > 1}.

For a multiplicative functiony : N — R we letD, (z) := > X(n) pe the corresponding

n>1 n?

Dirichlet series. If|x| is bounded, it also defines a holomorphic function{®e(z) > 1}. In
particular, D; = ((z) is the Riemann-zeta function.

A functiony : N — R is said to becharacteristic ory if y is multiplicative and its restriction
to P is the characteristic function of the sét

The following lemma links the Dirichlet serie3,, for somey that is characteristic of to Ps.
This link is the key to relating density statements on subsdbstofsubsets oN.

Lemma2.1.2.Lety : N — {-1,0,1} bea muItipIicative function. Then dRe(z) > 1} one has

log X

peP
whereg(z) is a function that is holomorphic ofRe(z) > 1/2}. In particular, if x is characteristic
on S, the equality becomdsg (D, (z)) = Ps(z) + g(z).

Proof. We use the Euler produd?, (z) = [[,cp (1 + 0> pm)) which is absolutely convergent

on{Re(z) > 1}inthesensethdt’ >, -, XISZZZ) converges absolutely in this region.

We first treat the following special case. L&tC P andy : N — {0, 1} be multiplicative such
that for any primep one hasy(p™) = 1 ifand only ifp € S andn = 1. Then the Euler factor ab,,
atp is eitherl + # or 1, depending on whether € S or not. We take the logarithm of the Euler

product

log D, ( Zlog Zplz—i—g( ) with g(z ZZ m+1<1>m.

peES peES pES M>2

It is elementary to prove tha{(z) defines a holomorphic function diRe(z) > 1}.
In order to tackle the general case, $&t := {p € P : x(p) = £1} and define the multiplicative
] ] 1 ifpeSyandn=1,
functionsy . on prime powers by (p") = .
0 otherwise.

Dy(2)-Dx_(2)
Dy (2)

log(®(2)) = log(Dx(2)) +1log(Dy_(2)) —log(Dy, (2)) = log(Dx(2)) + Ps_(2) = Ps, (2) +9(2),
whereg(z) is holomorphic on{Re(z) > 3}. On{Re(z) > 1} the function® is described by an
absolutely converging produdt(z) = [],cp ®(2), where®,,(z) satisfieg1 — @, (z)[ < }%. It easily
follows that this product converges absolutely{dte(z) > 3}, which implies the assertion. [

Define®(z) := . Then we have ofRe(z) > 1}
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The density of a set of prime numbers (if it exists) measures its size. Themeeeral notions
of density, e.g. Dirichlet density and natural density, which in geneeatlatinct. In a similar way,
one can define analogous notions of density for subsets dfere we recall the definitions. By the
symbollim,_,;+ we denote the limit defined by lettingtend tol on the real interva(l, co).

Definition 2.1.3. Let S C P be a set of primes. The s#tis said to haveDirichlet densityequal to
0(.9) if the limit
ZpGS p% . ZpGS piz . ZpES 1%

lim ——— = lim ———— = lim —————
z—1t ZpEIP’ 1% z—1+ log (C(Z)) z—1* log (zil)

exists and is equal t6(.S). Moreover,S is said to havenatural density equal td(S) if the limit

ms(x)
)

exists and is equal ta(S). Let nowA C N be a subset. It is said to haedekind-Dirichlet density
0(A) if the limit

z

1 1
doncAns D neA ne Y 1

lim = lim === = lim (2 —

o1t S s et ((2) 21+ =

exists and is equal td(A). Similarly, A is said to havenatural densityl(A) if the limit

<ux: A
lim #{n<zx:necA}

T—00 T

exists and is equal ta(A).

The equalities in the statements all follow from Lemma 2.1.2 and the well-knownHatthe
Riemann-zeta function has a simple pole of residws 1. It is well known that if a set of prime
numbersS (resp. a set of natural numbed3 has a natural density, then it also has a Dirichlet density
(resp. a Dedekind-Dirichlet density) and they coincide. A functionN — {0,1} that is charac-
teristic onS C P links the setS to the set of natural number$ = {n € N : x(n) = 1}. The
following proposition, the proof of which is evident in view of Lemma 2/1.2, nsailear the nature
of the relation between the Dirichlet density.$find the Dedekind-Dirichlet density .

Proposition 2.1.4. Let S be a set of primes ang : N — {0, 1} be a multiplicative function char-
acteristic onS and letA = {n € N : x(n) = 1}. Then the Dirichlet density aof, if it exists,

equals
. log Dy (z2)
= lim ——X2
25) e log ((2)
and the Dedekind-Dirichlet density df, if it exists, equals

. Dy(2) .
o(4) = tim 2 — exp ( 1im (10w D, (2) ~ 0 ().



We now prove a precise relationship between the densitidsaoid.S. This result will be strength-
ened below in Proposition 2.2.2 under the extra assumption of weak reguldrith is introduced in
the next section.

Proposition 2.1.5. Let S be a set of primes ang : N — {0,1} be characteristic onS and let
A={neN:x(n)=1}.1f6(A) # 0 (in particular, the limit exists), then(S) = 1.

Proof. As§(A) # 0, it follows from Proposition 2.1.4 that
lim (log Dy (2) — log ¢(2))

exists. But we have by Lemma 2.1.2

log D, (%) —log (= Z——Zf—i—g Z%—&-g(z), (2.1)

pES pEIF’ pgS p

whereyg is a function that is holomorphic ofRe(z) > 1}. This implies the convergence df ¢ %
showing that? \ S is a set of Dirichlet densitg, thusS is of Dirichlet densityl. O

2.2 Regular and weakly regular sets of primes

Definition 2.2.1. LetS C P be a set of primes. We callweakly regulaif there isa € R and a func-
tion g(z) which is holomorphic o§Re(z) > 1} and continuous (in particular, finite) ofRe(z) > 1}
such that

Ps(z) = alog (i) +9(2).

Asin [13] (and [7]) we say thaf5 is reguIaE if the functiong is holomorphic on{Re(z) > 1}.

Clearly, every regular sef is weakly regular. IfS is weakly regular, it directly follows that it
has a Dirichlet density, namely(S) = a. If S is regular (weakly regular) of density thenPg is
holomorphic (continuous) ofRe(z) > 1}.

Proposition 2.2.2. Let S be a weakly regular set of primes and: N — {0, 1} be a multiplicative
function characteristic on primes with respectdand letA = {n € N: x(n) = 1}. Then

S(A)£0 & §(5) =

Proof. The direction =’ was proved in Propositian 2.1.5 without the assumption of weak regularity.
Hence, we now assume théitis weakly regular such that.S) = 1. It follows thatP \ S is weakly
regular of density), meaning thad_ ¢ ]% defines a continuous function dike(z) > 1}. From
Equation|(2.1) we get thabg D, (z) —log {(z) is continuous o{Re(z) > 1}, in particular the limit
lim,_,;+ exists, whence by Proposition 2.1.4 it follows thia#l) exists and is nonzero. O

1Added in proof: The notion of a regular set of primes already appdari].



We next show that sets of primes that have a natural density and additieatiflfy certain error
bounds for the convergence of the limit defining the natural density aeakly) regular. In [7],
Proposition 2.2, we proved such a statement. We will now weaken the assoropttbe error term
in a way that still allows to conclude weak regularity instead of regularity.

Proposition 2.2.3. Let S be a set of primes having natural densityS). Let E(z) := ”j(gf)) —d(9)

be the error function. If the mtegrqi2 zlog()‘)dx converges, thes is a weakly regular set of primes
having Dirichlet density(S) = d(S).

Proof. The proof follows the proof of [7], Proposition 2.2, very closely andrireeder is referred there
for some of the calculations. We pytz) := E(z)r(z) and f(z) = [,° ;’z(f)l dz. ThenPg(z) =
d(S)P(z) + zf(z). Hence, it suffices to show thdtis continuous o{Re(z) > 1}. We user(z) <

71%(;)74 for z > 55 (by Theorem 29 of [17]) in order to obtain the estimate
z|E(z)|
9(a)] = [B@)m(@)] < 57

We now use this to estimap@(z) for Re(z) > 1:

* g(a)] T_AB@L oy [T IEGL
|/ a:z+1 | - /56 xRe(Z)de = /56 z(log(x) —4)d = 2/56 xlog(m)d

The assumption ensures that the last integral is convergent. Let now. There is hence som¥

such that [ g(fff] < ¢/4 for anyz with Re(z) > 1. Moreover,fy(z f2 z+1 is continuous
in a neighbourhood of any such In particular, for anyz; with Re(zl) > 1 close enough ta we
have|fn(z1) — fn(2)| < €/2. Thisimplies|f(z1) — f(2)| < e, as required. O

The following corollary for an explicit error function will be applied in the siton of CM mod-
ular forms in Section 3 (see also Proposition 2.2.7 below).

Corollary 2.2.4. Let S be a set of primes having natural density5). Let E(z) := ’:f((af;) —d(S) be

the error function. If there aree > 0, C > 0 and B > 0 such thatl E(z)| < W forall z > B,
thensS is a weakly regular set of primes having Dirichlet densify) = d(.5).

Proof. Note that the derivative of - L_is L. Thus the former is a primitive function for
(@) z log(z)+

the upper bound of the error term. As it clearly tend8 for z — oo, it follows that the assumptions

of Proposition 2.2.3 are satisfied. O

The Chebotarev Density Theorem, which plays an essential role in Se¢tpodes us with
examples of (weakly) regular sets of primes (see Proposition 2.2.7 b&lbieh are used in Section 4.

Definition 2.2.5. Let K/Q be a finite Galois extension with Galois grodp We will say that a
set S of finite rational primes is &hebotarev set fof</Q if for all p € S, p is unramified in
K/Q and moreover there exists a subgétC @, invariant under conjugation, such tha&t =
{p rational prime:Frob, € C}, whereFrob, denotes a lift toG' of the Frobenius element of the
residual extension ok’ /Q at a primep|p.



We quote the effective version of the Chebotarev Density Theorem[&6m

Theorem 2.2.6(Chebotarev Density Theoremllet K/Q be a finite Galois extension, and I8the a
Chebotarev set, which correspondsioC Gal(K/Q). Then the following hold:

(a) For all sufficiently larger, mg(x) = %ﬂ(x) + O(z exp(—cy/log(z))) for some constant > 0.
(b) If we assume the Riemann Hypothesis for the Dedekind zeta funcfigriteén for all sufficiently

large x, mg(x) = %w(ﬂs) + O(x'/? log(z)).

Proposition 2.2.7. Let K/Q be a finite Galois extension arffla Chebotarev set. The$iis weakly
regular. If the Riemann Hypothesis for the Dedekind zeta functidt bblds, thenS is regula

Proof. Let C' C Gal(K/Q) be the set corresponding t Then by part (a) of Theorem 2.2.6, and
taking into account th Og(i)ﬁ < 7(zx) for x > 55 (see Theorem 29 of [17]), it follows that, for all
sufficiently largez,

f(f)) R :g: < cﬁexp(if?x{m ) < e1(10g + 2) expl(—er/log()

for some positive constants andcs. It is clear that this quantity is less than or equalﬁgi’:W
for sufficiently largex, wherea andcz are any positive constants. Thus by Corollary 2.2.4 we can
conclude that5 is weakly regular.

If we assume that the Dedekind zeta functiorko$atisfies the Riemann Hypothesis, then part (b)
of Theorem 2.2.6 yields
ms(z) |C] 2'/? log(x)

S ol § -\ G| 21 —1/2

for all big enough values af, wherec; is some positive constant. Proposition 2.2 of [7] implies that
S'is regular. Ol

2.3 An application: weak regularity yields Dedekind-Dirichlet density

In this section we derive an equidistribution result, which will allow us to establis results towards
the Bruinier-Kohnen conjecture in Section 4.

Proposition 2.3.1. LetP = P_o U P~ U P be a partition of the set of all primes into three weakly
regular sets such that_ is of Dirichlet density0 and the Dirichlet density dP.q is not zero. Let
¥ : N — {0,1, -1} be a multiplicative arithmetic function such that, for every prime)(p) = 0
(resp.¢(p) = 1,9(p) = —1) ifand only ifp € P_q (resp.p € P~g, p € P-g).

Then{n : ¢(n) > 0} and{n : ¢(n) < 0} have a Dedekind-Dirichlet density, which for both is
1/2 of the Dedekind-Dirichlet density @f. : ¢)(n) # 0}.

2Added in proof: The assumption of the Riemann Hypothesis is not regesse [19], Proposition 1.5.



Proof. Let us record first that the sét : ¢)(n) # 0} indeed has a positive Dedekind-Dirichlet density
by Proposition 2.2.2, that is, the limit

lim (z— 1)) W =d (2.2)

1+
= neN

exists with0 < d < 1. Lemma 2.1.2 yields

log(Dy (2 Zw Z**Z*Jrg

peP pEP>0 pEP<0

where g(z) is a function that is holomorphic ofRe(z) > 1/2}. Using the definition of weak
regularity for the set®-( andP.(, we obtain

log(Dy(2)) = alog(——) + Alz),

-1

or, equivalently,
Dy(z) =

g R(h(2)

wherea is 6(Psg) — §(P<o), which is strictly less thath by assumption, and(z) is a function that is
continuous o{Re(z) > 1}. Taking the exponential yields

D)= Y = Y o= o) 23)

neNY(n)=1 neNY(n)=—1

whereg(z) = exp(h(z)) is also continuous ofiRe(z) > 1}. Adding Equations (2.2) and (2.3) yields

lim (z-1)(2 ) %):d,

z—1
neNy(n)=1

which is the claimed formula. O

2.4 Towards natural density

In this section we show that regularity of densitjor a setS C P suffices to conclude that the set of
natural numbers corresponding to a function that is characteristith@s a positivaatural density,
and not only a Dedekind-Dirichlet density, whose existence was shoRrojposition 2.2.2. In fact,
one sees that a slightly weaker assumption than regularity works, hgwewere unable to prove
that weak regularity is enough.

Proposition 2.4.1.LetS C P be a set of primes of densityand lety : N — {0, 1} be a multiplicative
function characteristic ory. We assume that satisfies the following condition (which is implied by
regularity but not weak regularity):



The function

9(x) =3~ —log(——),

p? z—1
pES
which is holomorphic oqRe(z) > 1}, is once differentiable at = 1 in the sense that
o(z) = %‘1’(1) can be continued to a continuous function{de(z) > 1}.

Then there ar® < a € R and a continuous functioh on {Re(z) > 1} such that
a
Dy(z) = —— .
x(2) > —1 + h(z)
Proof. Lemma 2.1.2 yields
log Dy(2) = Ps + g1(2),

whereg; (z) is holomorphic on{Re(z) > 1}. Combining this with the assumption yields

log D, (z) = log + k(2), (2.4)

z—1
k(2)—k(1)
z—1

wherek(z) is continuous o{Re(z) > 1} and satisfies that the difference quotiefit) :=
also defines a continuous function fRe(z) > 1}. An elementary calculation yields

o0 o — n—1 2\
exp(k(2)) = exp(k(L)) + (= — 1) exp(k(1)) (Z (= () ) |

n=1

Note that the series on the right hand side defines a continuous functibRegn) > 1}. Putting
a = exp(k(1)) and combining the previous calculation with Equation (2.4) finishes the proofl]

We now use the following version of the famous Wiener-lkehara theorkemtiiom [8] in order
to conclude the existence of natural density instead of ‘only’ Dedekimidtilet density in some
cases.

Theorem 2.4.2(Wiener-lkehara) Let (a,, ), be a sequence of real numbers satisfying:

1. a, > 0forall n € N.

2. ) ,>1 y2 converges foRe z > 1.

3. There existas € C, g(z) continuous o{Re z > 1} such that

In _ 4 . +g(z)forall z € {Rez > 1}.

n* z —
n>1

4. There exist§’ > 0 such that, foralln € N, >~ ; a; < Cn.

Then "
lim 721@:1 A _
n—oo n
The hard assumption in our case is 3; it is a strong form of Dedekind-Détidensity. The con-
clusion of Proposition 2.4.1 is that this strong form holds under the assurmmifdhat proposition.

Thus we obtain from the Wiener-lkehara Theorem 2.4.2:

Corollary 2.4.3. Assume the set-up of Proposition 2/4.1. Het= {n € N : x(n) # 0}. ThenA has
a natural density, which is equal to> 0.
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2.5 An application: regularity yields natural density

In this section, we utilise the following theorem of Delange in order to streng®neposition 2.3.1 to
natural density under the assumption of regularity.

Theorem 2.5.1([5]). Let f : N — C be a multiplicative arithmetic function, satisfying:

1. |f(n)] < 1lforalln e N.
ZPSTJ’ primef(p)

2. There existg € C, a # 1 such thaflim, .., =) = q.
Then
hm —_— = O
T—00 xX

Proposition 2.5.2. LetP = P_y U P~¢ U Py be a partition of the set of all primes into three sets
with natural density, such thdt_ is regular of density) and the natural density df is not zero.
Lety : N — {0,1, —1} be a multiplicative arithmetic function such that, for every prime (p) = 0
(resp.v(p) = 1, ¢¥(p) = —1) ifand only ifp € P—g (resp.p € P~q, p € P-p).

Then{n : ¢»(n) > 0} and{n : ¢¥)(n) < 0} have a natural density, which for both ig2 of the
natural density ofn : ¢(n) # 0}.

Proof. We want to apply Delange’s Theorem 2.5.1 wijth= 7). The first condition is trivially satis-
fied. Concerning the second condition, note that

Yt =#{p<z:pePsol—#{p<a:pePy},

p<z,p prime
thus
lim Zpgz,p primef(p) — lim #{p<z:pePso} B #{p<z:pePo}
T—00 Tr(:p) r—00 W(l‘) 7T(.7J)

exists because both. o andP.y have natural density by hypothesis, and since the natural density
of P.q is not zero, the limit does not equil Therefore the second condition is also satisfied. As a
conclusion, we obtain that

In other words,
lim #{n<z:1Yn)>0}—#{n<z:1¢(n) <0} _

T—00 T
Note that|¢| is characteristic o \ P, thus by Corollary 2.4/3 the st : ¢(n) # 0} has a natural
density, call ita. Therefore

lim #{ngxzw(n)>0}+#{n§x:1/1(n)<0}:a

0. (2.5)

(2.6)
r—00 €
Adding and substracting (2.5) and (2.6) we obtain that both limits
<z: <x:
lim #{n <z :9¢(n) >0} and Tim #{n <z :9¢(n) <0}
r—00 €T r—00 x
exist, and by (2.5) they coincide. O
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3 Sato-Tate Conjecture with error terms

In this section we collect some known results about the distribution of Fauoefficients of modular
eigenforms and for the CM case we provide a proof of an error boimniths to the one in the prime
number theorem.

3.1 Statements

A sequencdx,),en C [—1,1] is said to beu-equidistributed(see [10], Chapter 3, Def. 1.1) for a
nonnegative regular normed Borel measuren [—1, 1] if for all continuous functiong : [-1,1] —
R

lim foxn [ sin

Letk, N € N, and letf € Si(I'o(/V)) be a normalised cuspidal modular eigenform. [fét) =

> o2 1 ang™ be the Fourier expansion gfat infinity. Sincef has trivial character,, € R for all

n € N and by the Ramanujan-Petersson boujags < 2p*~1)/2. It is then natural to study the
distribution ofW in the interval[—1, 1] asp runs through the prime numbers. It turns out
that these values are equidistributed, but the distribution is quite diffecentding to whether the
modular eigenform has complex multiplication or not. T¥eto-Tate measureenotedugr, and the
Sato-Tate measure in the CM caslenoted.cy, are the probability measures defined[ef, 1] by
the following expressions: for every Borel-measurableset

pst (A /ﬂdt andpucn(A) =;5o(A)+1/ ;dt,
A

2m 1—t2

whered, denotes the Dirac measure at zero.

The Sato-Tate conjecture, now a theorem (cf. [2]), asserts tifahdfs no CM, the real numbers
W are equidistributed ifi-1, 1] with respect to the measurgr asp runs through the primes.
Instead of equidistribution in the sense of its definition, we are rather iteer@sthe set of primes
defined by the condition

SI::{peP:%(kafplWeI},
wherel C [-1,1] is a subinterval (open, closed or half-open)ef, 1]. The Sato-Tate conjecture
implies thatS; has a natural density equalggr (7). If f has CM it follows from the equidistribution
of the values of Hecke characters titgt has a natural density equal t@n(Z). Theorem 1.2 in
Chapter 3 of [10] can be used to show that also in this case the vg{ﬁé% areucy-equidistributed
in the sense of the definition; but note that fram,-equidistribution alone one may not conclude
anything on the natural density 87 if the boundary off has positive mass.

In Section 4 we need some knowledge of the speed of the convergetieegqfotient

#{peP:p<zandpe S}
()

3.7)
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to its limit. In the CM case the following theorem provides such an error term hwhllows from the
work of Hecke on equidistribution of the values of Hecke characterseSim did not find a reference
with the precise statement as above (the result of equidistribution of thesvafli¢ecke characters
with an error term only seems to have been published in 1998 in [15]), viedm@ proof in this
section with and without assuming the Generalised Riemann Hypothesis.

Theorem 3.1.1.Letk, N € N, and letf € S;(I'¢(INV)) be a normalised cuspidal modular eigenform
with Fourier expansiory (z) = >, an,q". Assume thaf has CM.

(a) Then there exists a constant > 0 (depending only orf) such that, for all subintervals (open,
closed, or half-openj C [—1, 1],

#{p prime: p < z, 2]3(,?%”1)/2 € I}t = pem(I)m(z) + O(z exp(—c1v/log 7)),
where the implied constant depends onlyfon

(b) Assume the Generalised Riemann Hypothesis for all powers of the ldiearacter underlying
(see Section 3.2). Then for all subintervals (open, closed, or half)dpen—1, 1] and alle > 0

. a .
#{p prime: p < z, QPTZW e I} = pom(Im(z) + O(x1/2F9).

Very recently, the following theorem covering the case of non-CM modolang$ of squarefree
level was proved.

Theorem 3.1.2(Rouse, Thorner)Let k&, N € N with squarefreeV, and letf € Sx(T'o(N)) be a

normalised cuspidal modular eigenform with Fourier expansi¢n) = > > ; a,q¢™. Assume that
f does not have CM. Assume that all the symmetric power L-functiofisacé automorphic and
satisfy the Generalised Riemann Hypothesis. Then for all subintervals,(olmsed, or half-open)
IC[-1,1],

. a
#{p prime: p < x, m e I} = pst(Dr(z) + O(®%).

Proof. This is an easy consequence of Theorem 1.3 of [18]. O

Remark 3.1.3. For non-CM modular formg we have not found in the literature any unconditional
result for the error term in the convergence of the quoti@nif)to the natural density of;.

When f is attached to an elliptic curvé’/Q, if we assume analytic continuation, functional
equation, and the Generalised Riemann Hypothesis fof thenction attached to the:-th symmetric
power of E for everym € N, then V. Kumar Murty (cf| [12]) states the error bound

#{pprime: p < z, 2})(%1)/2 €I}t =pusr(I)m(x) + O(x%+f)_ (3.8)

Akiyama and Tanigawa proved a converse of this statement. Namelyrtheythat, if formula
(3.8) holds for an elliptic curveF’ /Q without CM, then the Generalised Riemann Hypothesis holds
for the L-function L (s, E) (cf. Theorem 2 of [1]).

Jeremy Rouse informed us that he expects that a statement similar temh@&dr.2 should hold
in non-squarefree level.
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Corollary 3.1.4. (a) In the set-up of Theorem 3.1.1 part (a) the &efprime :
weakly regular.

a .
WEI}B

(b) In the set-up of Theorem 3.1.1 part (b) or of Theorem 3.1.2 thézsetime : %({%)/2 e€l}is
regular.

Proof. This follows respectively from Corollary 2.2.4 and [7], Proposition 2.2. O

Remark 3.1.5. If f is a Hecke eigenform with real Fourier coefficients, a natural question to
study is the distribution of the signs of thg asn runs through the set of natural numbers. Foof
half-integral weight, this study is the content of the Bruinier-Kohnen camje¢see Section 4). Here
we include the easier case pfc Si(I'o(V)) of integral weight. We can combine the results of the
previous sections with those in this section in order to address this questifimeRhe setB-.o (resp.
P.o, P—o, Po) as the set of primes such thgf > 0 (resp.a, < 0, a, = 0, a, # 0).

(a) Assume that has CM. By Corollary 3.1.4, the sBt( is weakly regular of natural density equal
to 1/2, and the set®-, andP( are both weakly regular of density'4. Consider the character
X : N — {0, 1} defined as¢(n) = 1 if and only ifa,, # 0. We can apply Proposition 2.2.2 and
conclude thafn € N : a,, # 0} cannot have a positive Dedekind-Dirichlet density.

(b) Assume now that satisfies the assumptions of Theorem 3.1.2. Then by Corollary 3.1.4 the sets
P_y, P~o, andP.( are regular of natural density equal t@, 1/2, 1/2, respectively. Thus by
Proposition 2.5.2{n € N : a,, > 0} and{n € N : a,, < 0} have the same natural density, which
equalsl/2 of the natural density ofn € N : a,, # 0}.

We devote the rest of this section to explaining in detail how the equidistributitre walues of
the Hecke characters implies Theorem 3.1.1.

3.2 Hecke characters

We first set up some general notation that will below be specialised to imggjuadratic fields.
Let K be a number field of degreg and letOy the ring of integers ofK. As usual, we denote
g = r1 + 2r9, Wherer; is the number of real embeddings Bf, and2r, is the number of complex
embeddings. We will write the embeddingsmas. .., 7, : K — C, where the first; are the real
embeddings, and, is the complex conjugate of ., forallv € {ry,...,r1+r2}. For any fractional
ideala of K, we denote by, (a) the exponent o in the factorisation oft into prime ideals. Lef be
the group of fractional ideals df’, and let us fix an integral ideal (not necessarily a maximal ideal)
of the ring of integers of<.

Definition 3.2.1. Leta,b € K*. We say that = bmod™m if, for all p|m, vp(a — b) > vy(m).

Definition 3.2.2. LetI(m) := {a € I : (a,m) = 1}. Acharacter : I(m) — {z € C: |z| = 1} is
called aHecke charactenodm if there exists a set of pairs of real numbé(s,, v, ), v =1,..., 1+
ro}, satisfying:

14



e u, € Z; moreoveru, € {0,1} if v < ry.
o >, =0.

o Forall a € K* such thata = 1 mod*m, £((a)) = [["-" ( mv(a) )" I (@)

v=1 \Tn(a)]

The values of the Hecke characters are equidistributed on the unit ¢hrelprobability that they
lie on an arc is proportional to the length of the arc. This fact was alreadwyik to Hecke (cf. [6]).
The explicit version we state below are Theorem 1 and Proposition 4 pf Y6 use the standard
notationrm (z) = #{p prime ideal ofK : Normg (p) < x}.

Theorem 3.2.3.Let K be a number fieldn an integral ideal of and¢ : I(m) — {z € C : |z| =1}
a Hecke character of infinite order.

(a) There exists a constant > 0 (depending only or') such that, for alla, 5 € [—m, 7] with
B<a

#{p prime ideal ofO : (p,m) =1, Ng(p) < z,arg({(p)) € [B, )}

= %(a — B)mk (x) + O(z exp(—c11/log x)),

where the implicit constant depends only&n

(b) Assume in addition that the L-functions of all powerg sftisfy the Generalised Riemann Hy-
pothesis. Then forall > 0 and all«, 5 € [—7, 7] with § < «,

#{p prime ideal ofO : (p,m) =1, Ni(p) < z,arg({(p)) € [B, )}

= (o~ B)mx(e) + O(/*¥)

We may replace the intervgh, o) by [5, o], (3, «] or (8, «) in the statement of Theorem 3.2.3.

Remark 3.2.4. It is straightforward to translate Theorem 3.2.3 into the following statement on the
distribution of the projections df(p) to the real axis: for all subintervalg C [—1, 1] (open, closed,
or half-open) one has

#{p prime ideal ofOx : (p,m) = 1, Nx(p) < z,Re(£(p)) € I}

- <71T/I\/11_7t2dt) Tk (z) + O(z exp(—c1/log z)).

Under the assumption of part (b) the error termgz'/2+<).

Assume now thafl = Q(+/d) is an imaginary quadratic field. In this cage= 2, »; = 0 and
ro = 1. Thus in this particular case, given an integral ideadf K as above, a Hecke character is a
charactet : I(m) — {z € C: |z| = 1} such that, for alb € K* such thatz = 1 mod*m, it holds
thaté((a)) = (;gg%)u for someu € Z, which we may assume positive by changing the choice of
the embedding by its conjugate, if necessary. The next result (cf. Theorem 4.8.219f attaches

CM modular forms to such characters:
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Theorem 3.2.5.Let K, m, &, u as above. Assume# 0. Then the expression
F(2) =" &(a)Ngq(a)/?q"sel® (3.9)
a

defines a modular fornfi € S,,+1(V, x), wherea runs through all integral ideals of” with (a, m) =
1, N = |d|Normg (m) and wherey is the Dirichlet character defined as

x(m) = <d> ¢((m))sgn(m)* for all m € Z. (3.10)

m

Conversely, any modular form with CM arises in this way from some Heclkeacier of an
imaginary quadratic field (cf. [16], Thm. 4.5).

3.3 Equidistribution of Fourier coefficients of CM modular forms

Assume now that we have a normalised eigenfgine S, (I'o(N)) such thatf has CM by the
imaginary quadratic field<. Let ¢ be the Hecke character that gives riseftas in Theorem 3.2/5.
Then the Fourier expansion @flooks like Equation (3.9). In particular, for all primgg N, we have

Y Ep)NK (1) T +EP2)Nc(pa) = if (p) = papa With py # po;
' 0 if (p)isinertink.

Sincef has trivial nebentypus, Equation (3.10) implies thdp)) = 1 whenevep splits in K. Thus
if (p) = p1p2, thené(py) and{(p2) are complex conjugates. Therefore

ap

2p-1/2 Re(£(p1))- (3.11)

We introduce the notation
T /Qsplit () := #{p rational prime: p < x and(p) splits in K/Q}

and similarlyr i /@ inert () @NAT g /@ ram (T)-

Lemma 3.3.1. We have that
#{p prime ideal ofO : Normy,o < z andp/(p N Z) is not split} = O(v/x)

and 7 () = 27k /g spiit () + O(V/1).

Proof. The number of elements in the set of the first claim is clearly at g#dstprime : p < /z} =
O(y/x). The second claim follows from the equality

TK (x) = 27TK/(@,split (l‘) + 7-‘-K/(@,inert(\/ﬂ?) + 7"-K/Q,ram(aj)

and the fact that only finitely many primes ramify 6/ Q. O
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Proof of Theorem 3.1.1We only prove part (a), since the arguments in part (b) are entirely gmao
Let I C [-1, 1] be a subinterval. We want to count how many primesitisfy tht';lt%)(,fbfpm/2 el. We
count the split and the inert primes separately and start with the inert ones:

. . . ) ap
#{p primeinertinK : p <z,p{N, 2172 el}
#{pprimeinertinK :p <z,pt N} if0e€l;
0 if0¢glI.

This implies

#{pprime inertinkK : p < x,p{N, ﬁ cl} = %50(1)7r(:r) + O(z exp(—cy/log z)),
(3.12)
where we have used thgt{p prime inertink : p < z,p { N} = in(z) + O(z exp(—cy/log 7))
for some constant > 0, which follows from part/(a) of Theorem 2.2.6. The split primes are teain
using Remark 3.2.4 and Lemma 3.3.1 as follows:

#{pprlmesplltan:pgx,pJ{N,Qprl)/z €I}

:%#{p prime of O : Normg o (p) < z,p/(p N Z) is split, Re(&(p)) € I}

:%#{p prime of Ok : Normg o (p) < z,Re({(p)) € I} + O(Vx)

= <71T /I ! dt) 7 (z) + O(x exp(—cy/log @)

(3.13)

1—¢2

_ (jr /I \/1%2@ Tk gspii (1) + O exp(—cy/log 7))

= (717 /I ﬂljc@ 7(2) + O(w exp(—cy/log 2)

for some constant > 0. The theorem follows by adding Equations (3.12) and (3.13). O

4  Application to the Bruinier-Kohnen Conjecture

4.1 Equidistribution of signs of half-integral weight modular forms - the prime case

In this section, we state an analog of the Bruinier-Kohnen sign equidistnibatiajecture for the
family {a(tp?)} wheret is a squarefree number such thét) # 0 andp runs through the primes for
a half-integral weight modular form whose Shimura lift is without CM or with CMe proof will be
carried out in Section 4.2. Furthermore we will give some properties oétbesfficient sets. Note
that the following theorem is an improvement of Theorems 4.1 and 4.2 of [7].

We start by summarising some known facts about half-integral weight mottutas and the
Shimura lift. Letk > 2. According to Shimura [21] and Niwa [14], if is a Hecke eigenform of
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weight & + 1/2 with Fourier expansiorf = > | a(n)q" € Sii1/2(N, x) then there is a corre-
sponding modular fornk; € Sa,(IN/2, x?) for fixedt > 1 squarefree such thatt) # 0, named the
Shimura lift of f with respect ta, such that th’,,.-Hecke eigenvalue ofi agrees with th&,,-Hecke
eigenvalue orf;. Fork = 1 suppose thaf is contained in the orthogonal complement with respect
to the Petersson scalar product of the subsgage o (N, x) generated by unary theta functions as
in [3]. The Fourier expansion df; is given byF;(z) = 3, -, At(n)q" where

tn?

Ay(n) = det,Nu)d’f‘la(dQ), (4.14)

wherex; y denotes the charactgy n(d) := x(d) (%:N%) Moreover, the Fourier coefficients
are multiplicative in the sense

a(tm?)a(tn?) = a(t)a(tm?n?) (4.15)

for (n,m) = 1. If F}; has CM, then lef: denoteucy, otherwise pup, = ugt. We assume through-
out thaty is trivial or quadratic and that has real coefficients. This implies tha} also has real
coefficients.

The following is our main theorem about the distribution of signs of the caefiisa (tp?), whenp
runs through the primes. In the statement we understand by an equality Dfrialilet characters the
equality of the underlying primitive characters (i.e. we allow them to diffemétieliy many primes).

Theorem 4.1.1. Assume the set-up above and define the set of primes
Psg := {p € P: a(tp?) > 0}
and similarlyP.o andP—, (depending orf andt).

(a) If F; has no complex multiplication then the sBts, and P have natural density/2 and the
setlP_y has natural density.

(b) (i) If F; has complex multiplication ang; y = 1 then the seP_, has natural density equal to
zero, and the set., andP.( have natural densities, respectivaly4 and3/4 if a(t) > 0
and, respectivelg/4 and1/4 if a(t) < 0.

(i) If F; has complex multiplication ang, y = ¢, whered is the quadratic Dirichlet character
corresponding to the imaginary quadratic field by whitthas CM, then the sét_, has
natural density equal to zero, and the sBts andP, have natural densities, respectively
3/4and1/4if a(t) > 0 and, respectively/4 and3/4 if a(t) < 0.

(i) If F; has complex multiplication ang; v ¢ {1,0} then the sef’_, has natural density
equal to zero, and the sels., and P, have the same natural density which is equal to
1/2.
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(c) If F; has no complex multiplication then we additionally assume that ther€'are0 anda > 0
such that for all subintervalf, b] C [—1, 1] one has

C
log(z)>

— i[a, b))

’#{p < z prime| a(t;;;% € [a,b]} _

m(z)

Then the setB~, P.g, andP—, are weakly regular sets of primes.

(d) Assume here that there afe > 0 and o > 0 such that for all subintervalg:, b] C [—1,1] one
has

#{p < @ prime| 24, € [a,b])

m(x)

(note that this condition is satisfied # /a(t) fulfills the assumptions of Theorem 3.1.2, see also
Remark 3.1.3). Then the s@s,, P, andP_, are regular sets of primes.

Example 4.1.2.Consider the elliptic curve defined by the equation

y2 =z — .
This elliptic curve has conduct®2 and has CM byZ[i]. LetF' = >~ | A(n)¢" € S2(32) be the
associated cuspidal eigenform. We have that, fopall —1 (mod 4), A(p) = 0, thatis, F has CM
by Q(i). In [22], Tunnell has shown that there exist modular forfpse S3/5(128) (trivial character)
and f € S3/5(128, x2), Wherey; = (2), such that their Shimura lifts with= 1 coincide withF".

e For fi, we havey 128(p) = (%“*), which coincides with the character by whiéhhas CM.
Thus,P~ has natural densitg/4 andP( has natural density /4.

e For fo, we havexq 12s(p) = (‘72) which is different from the trivial character and the char-
acter by whichF" has CM. In this case the densitiesiof, and P coincide and they are equal
to 1/2.

Remark 4.1.3. (a) For fixed squarefreesuch thatu(t) # 0 we use the notation:

a(tp) Ai(p)

Alp) i = ————2— R\
(n) a(t)2pk—1/2 a(t)2pk—1/2

andB(p) :=
Note that Equatiorf4.14)implies
A(p) = B(p) — W- (4.16)

The main point in our approach is that we view the sequetigg as a ‘perturbed’ version of the
sequence3(p).
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(b) We remark that ‘small’ perturbations preserve the property ofgusace to be equidistributed.
More precisely, lej. be a nonnegative regular normed Borel measuré-eh, 1] and (z,,)nen <
[—1, 1] be au-equidistributed sequence. Let,).en C [—1, 1] be a sequence such that

lim |z, —yn,| =0.
n—oo

Then alsqy,, )nen IS p-equidistributed.

This follows from a straight forward calculation using the definitionwegquidistribution and the
compactness df-1, 1].

(c) Returning to our set-up of modular forms, we first remark that theSsaf primesp such that
“,Z )1/2 ¢ [—1,1] has natural density (this is an easy consequence of Thearem 4.2.1 below).

Part (b) above together with Equatiqd.16)thus implies that the eIemen(W) Ps
pe

are p-equidistributed.

We stress that equidistribution (3% is not enough to imply equidistribution of signs if
the measure has points of positive mass (likg;). See for instance Example 4.1.2. This is the
reason why we are not only interested in equidistribution in the sense okfirétin, but, are

studying the limitdimy_. w for all intervals I, even those having a boundary of

positive measure.

4.2 Densities of perturbed sequences

In this section we provide a treatment of an abstract setting modeled on thierrddatween coef-
ficients of half-integral and integral weight modular forms under the Stanifir(see, in particular,
Remark 4.1.3), and we will use it to prove Theorem 4.1.1.

Theorem 4.2.1.Let x be a Dirichlet character of order dividing. LetB : P — R be a map and
defineA : P — R by the formulad(p) := B(p)—g(—\% forsome) # y € R. LetD = {z1,...,z,} C
[—1,1]. ForanyI C [—1, 1] define

Sr:={peP:B(p)el}andT;:={peP: A(p) € I,B(p) ¢ D}.

Letf : ( 1,1) — R>¢ be an integrable function and, . ..,w, > 0. Define a measure or-1, 1]
by (I fI t)dt + > widy, (I), whered,, is the Dirac measure at the point, for any Borel
measurable subsdt C [—1,1]. Assume that([—1,1]) = 1 and that for all intervals/ C [—1,1]

(open, closed or half-open) the s&t has natural density: (7).

(@) Then for any interval C [—1,1] (open, closed or half-open), the sEf has natural density

[; f(t)dt
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(b) Assume that there are < N>1 and M > 0 such that for alle > 0 small enough the integrals
\fl  f@)dt| and] [T ¢ £(t)dt| are bounded above hyl¢!/™. Assume moreover that there is
afunctionE(z) tending to() asx — oo such that for all intervald C [—1, 1]

U )| < Bl

Then for any interval C [—1, 1] (open, closed or half-open), thereGs> 0 such that for all big

enoughe
ﬂ'TI/ (.’IJ /
f(t)dt

m(x)

¢ ( () + 1/(21m+2>>

Proof. For any intervall C [—1, 1] define
Si(z) :=={peP: B(p) € I, B(p) ¢ D} = Sn\p.

By assumption the sef; has natural densnyI t)dt. Let a be the start point andthe end point
of I. Lete > 0 be small enough. For gt > y2€2 one ha#m‘ < e. One observes the inequalities

() =71/ (ye)?) oy (@) me (@) + 7L (ye)?)
< : < AR . (417)

m(x) ¢ ()

(@) From Equation (4.17) we obtain the inequalities

T Qr
S[a«&»e,bfe]

F(t)dt < liminf —= — andlimsup —=2—~ <
a+te T—00 ﬂ'(l') T—00 7T(CL') max{—1,a—e}

b—e T (:L‘) T (:L‘) min{1,b+¢€}
/ F(t)dt.

Letting e tend to0 we obtain

. 7TT[/a b] (x) b . . TFT[IG, b] (l‘)
limsup —=— < / f(t)dt <liminf 7)

T—00 W(.T) T—00 T (x ’

implying the result.
(b) Equation|(4.17) yields

[T rwa [ @ o nm - TG T o [ s

m(x) m(x)
a min{1,b+e€} W(l/(ye)z)
< / f(t)dt + /b f)dt+ (n+1)E(x) + Wa

max{—1,a—e¢}

which is valid for all (small enough) > 0 and all (big enoughj.. Using the assumptions we obtain

M m(1/ve)?)
m(z / J()dt m(x)

We may (and do) assume thatz) > W for large enoughr. Lete := E(z)™. One finds

< 2Me/™ 4 + (n+1)E(x).

m(1/(ye)*) _ m(1/(y*E(z)*™)) log(x)
~() ~(a) V- B@P Tog(1) (PE@P™) = = C P
for z big enough and suitablé > 0. Thus we obtain the claimed inequality. O
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Remark 4.2.2. For the applications below we remark that forC [—1, 1] we have

{peP:A(p) eI} =Tiu| {p € P: B(p) = i, A(p) € I}
=1

:TI’I_IIi|({pEP:B(p):xi}ﬂ{peP:xi—wEI}).

=1 y\/ﬁ
Note that we have
finite set ifz; &1,
{pGP:wi—MEII Z§Zo
Yv/P P\ finite set  ifx; € I,

wherel denotes the closure anidthe interior of I. If I = [z;, b] with b > x;, then moreover

X(p) Yoy e
ePiz;—=—=¢cl}={pelP: = —=1}\ finite set
{r Yy b=A{p x(p) |y|}\
and analogously fof = [a, z;] witha < z;,
X(p) Yoo
eEP:x;—=—=€l}t={pelP: = 21\ finite set
{r yyb b=A{p x(p) |y‘}\

The same formulas hold if the intervals are open or half-open. In partictdamany intervall, the

set{pe P:x; — Z(—\f’% € I'} has a density, which is one 0f 3, 1.

Proof of Theorem 4.1.1We use the notation introduced in Remark 4.113 (a).

(8 See[7], Theorem 4.1.

(b) Assume thaf; has complex multiplication. Pub = {0}, f = 2i L_ T = (0,1] and
J =[-1,0). Take

Si(x):=={peP:B(p) €I}, Tj:={peP:Alp) €l Blp)+0}
and similarly
Sy(x):={peP:B(p)eJ}, T;={peP:Ap) € J,B(p) +#0}.

The setsS; andS; have natural densities, respectivelyas (1) anducas(J) by Theorem 3.1.1,
so that we can apply Theorem 4.2.1. For simplicity we assufe > 0. The arguments in
the other case(t) < 0 are exactly the same. We haye € P : A(p) > 0} = P-y. By
Remark 4.2.2, we conclude that

]P>>0:T;u<{peP;B(p):0}m{peP:We[}) (4.18)
P<0:T},u<{peP;B(p):0}n{peP;Wej}) (4.19)
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In order to computel(P~), we compute the sum af(7;) and the density of the intersection,
and similarly ford(P). We haved(T}) = p(I) = 1 andd(T}) = p(J) = 3 by Theo-
rem4.2.1.

(bi) Assume thaj, x = 1 (recall that by an equality of Dirichlet characters we understand that
the underlying primitive characters agree). In this case, since the ictiersen Equation
(4.18) is finite and therefore has denditywe conclude that the s&t.( has densityl /4.
Similarly, the intersection in Equation (4.19) has dendif®, thereforeP., has den-
sity 3/4. It is clear that the sét_, has natural density equal to zero.

bii) We will do the same computation as above. Note that in this case we have

{peP:B(p)=0t={peP:i(p)=-1}

up to finitely many primes. These sets have natural dengity Suppose thay; y = 6.
Then the density of the intersection in Equation (4.18) /8 by Remark 4.2.2. So we
conclude thaP-( has natural density/4. Similarly, from Equation (4.19) we obtain that
P-o has natural density/4.

(biii) Suppose thak: y # 1,d. By Chebotarev’s theorem, the intersections in Equations (4.18)
and (4.19) have natural density4. So we conclude that the séits, andPP(, have the
same natural density, which is equallt®.

(c) By assumption in the non-CM case and by Theorem 3.1.1 in the CM casbave for all
intervalsI C [—1,1]

s, () _ | < C
() = log(a)®”

For the CM-case we neef]!lf6 f(t)dt = fllfe ﬁdt < /¢, as a simple calculation shows.

The corresponding check in the non-CM case is trivial since the densityibn of the measure

is continuous or—1, 1]. Thus, in both cases Theorem 4.2.1 (b) yields

WT;(fU)
er —/If(t)dt

for someC > 0, wheref is the density function in the CM or non-CM case. Corollary 2.2.4
shows thafl’; is weakly regular.

c
log(z)

<

SinceP—y = T; for I = [0,0] = {0}, P>o = T[’O ) andPo = T(’0 ) in the non-CM case, it
follows that the set®_,, P~ andP-( are weakly regular set of primes. By a similar argument,
it is easily seen that the the séts, andP( are weakly regular sets of primes.

Let us consider the CM case. ThEn, is a weakly regular set of primes, sin@% 0] is. We
have to show that the intersections in Equations (4.18)/and|(4.19) aréwegllar sets, since
finite disjoint unions of weakly regular sets are weakly regular.
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So, assume thag; v = 1. In this case the intersection in Equation (4.18) is finite and therefore
weakly regular of densit. Since the sefp € P : B(p) = 0} is weakly regular of density
1/2 by Proposition 2.2]7 anflp € P : *"2*’7\1/%@ € [-1,0)} is P (except for a finite set), we
conclude that the intersection in Equation (4.19) is weakly regular of dehsity

For the case; y = 4, the intersection in Equation (4.18){p € P : B(p) = 0} up to finitely
many primes, hence weakly regular of dendif2 by Proposition 2.2.7. The intersection in
Equation(4.19) is finite and hence also weakly regular.

In the last casg; v # 1,6, the intersections in Equations (4.18) and (4.19) are weakly regular
of density1/4 by Proposition 2.2.7.

(d) Similar arguments as in part (c) prove the assertions, using Propoifiaof [7] instead of
Corollary 2.2.4 and replacing weak regularity by regularity throughout.

O

4.3 Equidistribution of signs of half-integral weight modular forms - the general case

We now apply the results from Section 2 and Theorem 4.1.1 to obtain an eghidisn statement
for the signs ofi(tn?) for n € N, as well as many subsets §f

In order to give a uniform description of the results, fett N — {0,1} be a multiplicative
arithmetic function such that(p) = 1 for all primesp € P. Then define&N, = {n € N : x(n) = 1}.
For example, fok € N U {oo} one can take, such that

N 1 ifn <k,
xXk(p") = ,
0 otherwise.
ThenN,, := N,, is the set of k£ + 1)-free integers it € N andN,, = N.
Corollary 4.3.1. Lety as above. Assume the setting of part (c) of Theorem|4.1.1. Then the sets

{n € N|n €N, anda(tn?®) > 0} and{n € N | n € N, anda(tn?) < 0}

have equal positive Dedekind-Dirichlet densities, that is, both are plciwlf of the density of the
set
{n € N|n €N, anda(tn?) # 0}.

Proof. Note that without loss of generality we can assury > 0. Define the arithmetic function
¥ :N— {-1,0,1} as follows:



Equation|(4.15) implies that is a multiplicative function. Note tha-o = {p € P : ¢(p) = 1},
Poo={peP:y(p) = —1},andP—y = {p € P: ¢)(p) = 0}. Theorem 4.1.1 shows that these sets
are weakly regular and allows us to conclude due to Proposition 2.3.1. O

Corollary 4.3.2. Lety as above. Assume the setting of parit (d) of Theorem 4.1.1. Then the sets
{n € N|n €N, anda(tn?®) > 0} and{n € N | n € N, anda(tn?) < 0}
have equal positive natural densities, that is, both are precisely haliecdénsity of the set
{n € N|n €N, anda(tn?) # 0}.

Proof. The proof proceeds precisely as that of Corollary 4.3.1, except thtaeiend we appeal to
Proposition 2.5.2. O
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