THE INDEX OF AN EISENSTEIN IDEAL AND MULTIPLICITY ONE

HWAJONG YOO

ABSTRACT. Mazur’s fundamental work on Eisenstein ideals for prime level has a variety of
arithmetic applications. In this article, we generalize some of his work to square-free level. More
specifically, we compute the index of an Eisenstein ideal and the dimension of the m-torsion
of the modular Jacobian variety, where m is an Eisenstein maximal ideal. In many cases, the
dimension of the m-torsion is 2, in other words, multiplicity one theorem holds.
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1. INTRODUCTION

In the early 20th century, Ramanujan found the following congruences
7(p) =1+4p""  (mod 691)

for any prime p # 691, where 7(p) is the p-th Fourier coefficient of the cusp form A(z) =
qI1,>,(1 — ¢")** of weight 12 and level 1. Many mathematicians further found congruences
between 7(p) and some arithmetic functions (such as oy(p) = 1 + p*) modulo small prime
powers. Serre and Swinnerton-Dyer [S73l], [Sw73]] recognized that these congruences between
Eisenstein series and cusp forms can be understood by making use of Galois representations
associated to A, and using this interpretation, they determined all possible congruences of 7(p).

In the case of weight 2, Mazur discussed Eisenstein ideals, which detect the congruences
between Eisenstein series and cusp forms. (An ideal of a Hecke ring is called Eisenstein if it
contains /,, — r — 1 for all but finitely many primes 7 not dividing the level.) For a prime [V, he
proved Ogg’s conjecture (Conjecture[I.2)) via a careful study of subgroups of the Jacobian variety
Jo(N) annihilated by the Eisenstein ideal. More precisely, in his paper [M77], he proved that
Ty/I ~ Z/nZ, where Ty is the Hecke ring of level N, I is the Eisenstein ideal of Ty, and n is
the numerator of 2. Moreover, for each prime ¢ | n, he further proved that dim Jo(N)[m] = 2,
where m is an Eisenstein maximal ideal generated by / and ¢, and

Jo(N)m] :={x € Joy(N)(Q) : Tz =0 forall T € m}.

Using this result he proved a classification theorem of the rational torsion subgroups of elliptic
curves over the rational number field.

After his work, the dimension of Jy(/N)[m] has been studied by several mathematicians for
the case that m is non-Eisenstein. Assume that m is a non-Eisenstein ideal of the Hecke ring T of
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level N. Then, by Boston-Lenstra-Ribet [BLROI], Jo(N)[m] ~ V®", where V is the underlying
irreducible module for the Galois representation py, : Gal(Q/Q) — GL(2, T/m) associated to
m. In most cases, for instance, when the characteristic of T /m is prime to 2N, the multiplicity
r is one. This result played an important role in the proof of Fermat’s Last Theorem by Wiles.
On the other hand, for an Eisenstein maximal ideal m, the dimension of Jy(/V)[m] has not been
discussed when the level /V is composite.

In this paper, we generalize some part of results of Mazur [M77] to square-free level. In §2,
we introduce some Eisenstein modules that are used later.

In §3, we compute the index of an Eisenstein ideal of square-free level. More precisely, let N
be a square-free integer and M > 1 be a divisor of N. Let

Iy =U,—1,U,—¢q, T, —r—1: forprimesp | M, ¢ | N/M, andr { N)

be an Eisenstein ideal of Ty. For a square-free integer N = [[p;, let o(N) = [[(p; — 1) and
(N) = [[(p; + 1). Then, we prove the following theorem.

Theorem 1.1. For a prime y 1 2N, we have
TN/IM ®Zy ~ Z/mZ® Zy,
where m is the numerator of w.

The author expects that this theorem will shed light on the generalized Ogg’s conjecture,
which is the following.

Conjecture 1.2 (Generalized Ogg’s conjecture). The rational torsion subgroup of Jo(N) is the
cuspidal group.

(About the definition of the cuspidal group, see §2.3])
For an Eisenstein maximal ideal m of level NV, we define

Swm := the set of primes at which J[m] is ramified,

Sy := the set of prime divisors of N,
s(m):=#{p|N :p =1 (modm)},
so(m):=#{p|N : U,= 1 (mod m)}, and

s(m if s(m) = sg(m

iy o {3 s(m) = so(m)
0 otherwise.

For a finite set .S of primes, we define
we(S):=#{peS : p==41(mod ¢)}.

In §4, we study the dimension of Jy(/V)[m] for an Eisenstein maximal ideal m of residue
characteristic £ { 6N. So, assume that £ { 6N

Theorem 1.3. Assume that w;(Sy) = 1. Then,
dim Jo(N)[m] = 2.
In other words, multiplicity one holds for an Eisenstein maximal ideal m.
We further prove a bound for dim Jy(N)[m] involves the two numbers wy(m) and w,(Sy,).
Theorem 1.4. We have
max{1l + wy(m), 2} < dim Jo(N)[m] < 1+ wo(m) + w,(Sn).
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Note that @y (Sm) < we(Sy) since S, C Sy U {¢}, so we can have an explicit bound of
the dimension without further information about ramification of J,(/N')[m]. Recently, Ribet and
the author proved that the above upper bound is optimal if wy(m) = 0. In other words, if
wp(m) = 0, then

dim Jo(N)[m] = 1 + @y(Sm)-

The author expects that the above upper bound is optimal unless wy(m) = 1.

Theorem can be applied to the study of the structure of Jy(/N)[m]. If multiplicity one
holds, it gives one of the models of the associated Galois representation p,, to m. Moreover,
Jo(N)[m] can only be ramified at ¢ and a prime divisor p of N such that p = +1 (mod /).
In the case when N is the product of two distinct primes p and ¢, we prove a more precise
result on dim Jy(N)[m]. This result also gives the description of the Galois module Jo(N)[m]
by computing its dimension as a vector space over T /m ~ ;.

1.1. Notation. Let X, (V) be the modular curve for I'y(N') and let .Jo(V) be the Jacobian vari-
ety of Xo(NN). By Igusa [Ig59]], Deligne-Rapaport [DR73]], Katz-Mazur [KM85]], and Raynaud
[Ra70], there exists the Néron model of Jy(V') over Z, we denote it by Jy(IV) z. We denote by
Jo(N) r, the special fiber of Jo(IV),z over IF,,. We denote by M(I'o(V)) (resp. Sz(I'g(IN))) the
space of modular (resp. cusp) forms of weight 2 and level T'y(V) over C.

From now on, we assume that ¢ is a prime larger than 3. And we assume that the level N is
square-free and prime to .

For a square-free number NV, we define

©(N) = H (p—1) and ¢(N):= H (p+1).

p|N primes p|N primes

For any group or module X, we denote by End(X) its endomorphism ring. We denote by
Z./VZ the constant group scheme of order /. We denote by 1, the multiplicative group scheme
of order ¢. For a finite set S of primes, we denote by Extg(ji,, Z/(Z) the group of extensions of
fte by Z/lZ, which are unramified outside S and are annihilated by /.

Acknowledgements. The author would like to thank his advisor Kenneth Ribet. This paper
would not exist if it were not for his inspired suggestions and his constant enthusiasm for the
work. The author would like to thank Chan-Ho Kim, Sara Arias-de-Reyna, Sug Woo Shin, and
Gabor Wiese for many suggestions toward the correction and improvement of this paper. The
author would also like to thank Samsung scholarship for supporting him during the course of
graduate research.

2. EISENSTEIN SERIES AND EISENSTEIN MODULES

2.1. Hecke operators. Throughout this section, we assume that p is a prime not dividing N
and ¢ is a prime divisor of N.

2.1.1. Degeneracy maps on modular curves. For a field K of characteristic not dividing Np,
the points of Xo(Np) over K are isomorphism classes of the triples (£, C, D), where E is a
(generalized) elliptic curve over K, C'is a cyclic subgroup of E of order IV, and D is a cyclic
subgroup of E of order p. Similarly, the points of X(/V) over K are isomorphism classes of
the pairs (£, C'). We can consider natural maps between modular curves

Xo(Np) —= Xo(N),
where o, (E,C, D) := (E,C) and 8,(E,C, D) := (E/D,C + D/D). In other words, the map
v, 1s “forgetting level p structure” and the map (3, is “dividing by level p structure”. As a map
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Xo(Np)(C) >~ h*/T'o(Np) = b*/To(N) ~ Xo(N)(C) on the complex points, «, (resp. ()
sends z to z (resp. to pz), where b is the complex upper half plane and h* = | JP'(Q).

2.1.2. Degeneracy maps on modular forms. The maps «, and 3, above induce maps a, and /3,
between cusp forms of weight two, respectively as follows.

S2(To(N)) - Sa(T'o(Np)),
where o5 (f(7)) = f(7) and 3;(f(7)) = pf(p7). Oniits Fourier expansions at ic0, a; (D a,2") =
> anx™and B3 (> ] apa™) = p ) a,xP". (Note that we use x-expansions instead of g-expansions
because we denote by ¢ a prime divisor of the level NV.) These maps can also be extended to
M5(Ty(NN)) via the same formula.

2.1.3. Hecke operators on modular curves and modular forms. The above degeneracy maps
induce maps between divisor groups of modular curves. More specifically, we have

*
ap 6%

Div(Xo(N)) —= Div(Xy(Np)) ﬂ:; Div(Xo(N)),

where

ay(E,C)= ) (BE.C.D), B,(E.C)= ) (E/D,C+D/D,E[p]/D),
DCEJp] DCE[p]
a,.(E,C, D)= (E,C), and B,.(E,C,D)=(E/D,C + D/D).

In the summation of the above formula, D runs through all cyclic subgroups of order p. We
define T}, acting on Div(X(N)) to be . 0 35 or 3, . o ;. In terms of divisors we have

T,(E,C)= Y (E/D,C+D/D),
DCE][p

where D runs through all cyclic subgroups of order p. This map induces an endomorphism of
the Jacobian .Jo(N'), which is also denoted by 7.

Since Sy(I'o(N)) can be identified with the cotangent space at 0 of Jo(IV), T}, acts on Sy (I'g(V)).
The above definition is compatible with the action of Hecke operators on modular forms M (I'g(N)),
which is (on their Fourier expansions at 700)

TP(Z apx") = Z Anpx™ +p Z an,x"™.

2.1.4. Atkin-Lehner operators and more on Hecke operators. Let g be a prime divisor of V.
Since N is square-free, ¢* does not divide N. Thus, M := N/q is prime to ¢q. We have an
endomorphism w, of X (V) such that

w,(E,C, D) = (E/D,C + D/D, Elg)/ D),

where FE' is a (generalized) elliptic curve, C' is a cyclic subgroup of E of order M, and D is
a cyclic subgroup of order ¢. It induces an Atkin-Lehner involution on Jy(/N), which is also
denoted by w,. There is also the Hecke operator 7}, in End(Div(X((V))), which acts by

T,(E,C,D) = Z (E/L,C+L/L,Elq]/L),
LCElq]

where L runs through all cyclic subgroups of £ of order ¢, which are different from D. This
operator also induces an endomorphism of Jy(V) (via Albanese functoriality), which is also
denoted by 7.
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Lemma 2.1. As endomorphisms of Jo(N), we have T, + w, = By o ag.s, where

Qq,* Bq

Proof. On Div(Xo(N)), ag.(E,C, D) = (E,C) and hence,
B;oag.(E,C,D)= > (E/L,C+L/L,Elq)/L),

LCE[q]

where L runs through all cyclic subgroups of E of order ¢. It is equal to (1, + w,)(E,C, D),
therefore they induce the same map on Jy(V). O

Remark 2.2. Note that a0 3, . = w,(B;00g.)w, and T; = w,T,w,, where T; is the transpose of
T,. If we use Picard functoriality of Jacobian varieties, the formula will be written as th +wy =
r © By« (cf. on pages 444-446 in [R90]). From now on, we will use the Picard functoriality.

2.1.5. Hecke algebras. We define Ty as a Z-subalgebra of End(Jy(/N)) generated by all T,,.
Note that T is finite over Z. Therefore all maximal ideals of Ty are of finite index. From now
on, we will denote by U, the Hecke operator 7}, for primes ¢ dividing the level V.

2.2. Eisenstein series of I'o(N). The space M(I'o(N)) of modular forms naturally decom-
poses into its subspace of cusp forms S5 (I'g(/V)) and the quotient space My (I'o(NV))/S2(Io(N)),
the Eisenstein space E5(I'o(N)). We can pick a natural basis of E2(I'g(/N)) that consists of
eigenfunctions for all Hecke operators. Since the number of cusps of Xo(N) is 2, where ¢ is the
number of distinct prime factors of N, the dimension of Fy(T'g(N)) is 2 — 1.

Definition 2.3. We define e to be the normalized Eisenstein series of weight two and level 1,

where o(n) = > dandx = €™,
d|n,d>0

Remark 2.4. Note that though e is an eigenfunction for all Hecke operators, e is not a classical
modular form. And e (mod ¢) is not a mod ¢ modular form of weight two (for a prime ¢ > 3),
which means that it cannot be expressed as a sum of mod ¢ modular forms of weight two of any
level prime to /. (In other words, the filtration of e is £ + 1, not 2.) About this fact, see [M77],
[S73], or [Sw73].

With the above function e, we can make Eisenstein series of weight two and level N by raising
the level.

Definition 2.5. For any modular form g of level N and a prime p not dividing NV,
[Pl (9)(2) = (o}, — B;)(9) = 9(2) — pg(pz) and

1™ (9)(2) = (aj, = B, /P)(9) = 9(2) — 9(p2),
where a7 and 35 : My(I'o(N)) — My(I'o(Np)) are the two degeneracy maps in the previous
section.

Proposition 2.6. Let g be an Eisenstein series of level N that is an eigenform for all Hecke
operators. Then, for a prime p not dividing N, [p|*(g) and [p|~ (g) are Eisenstein series of level
Np such that the eigenvalues of U, are 1 and p, respectively. They are eigenforms for all Hecke
operators as well.
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Proof. On the p-old subvariety of Jy(Np), U, and T, satisfy the following equality (cf. “For-

mulaire” 4 in [R89])
x\ _ (T, p\ (=
5 ()= (59 6)

The first (resp. second) row maps into Jo(Np) by the map o (resp. 3;). Since on g, T}, acts by
p+ 1, U, acts by 1 on (%, ) and by p on ( *%,). Thus, the result follows. O

Remark 2.7. On the p-old subvariety of Jy(Np), U, satisfies the quadratic equation
X2—T,X +p=0

by the Cayley-Hamilton theorem.

t S
Definition 2.8. For 1 < s <t¢,let N = [[ p;and M = [] p,;. We define
. i

Eyn:=1[p] o 0psp1] o [ps]"o-0o[pi]T(e).

number of all possible F); y is 2° — 1. Since they are all eigenforms for the Hecke operators and
their eigensystems are different, they form a basis of F5(I'o(V)).

t
For given N = [ p; and each 1 < s < ¢, there are (i) different choices for M. Thus, the

Remark 2.9. Note that F; y is not a modular form of weight two because of the same reason
as the case of e = E; ;. When N = p, E,,, = [p]*(e) is a unique eigenform (up to constant
multiple) of level p, which is —2—146/ , where ¢’ is the modular form on page 78 in [M77].

Later we will use these functions for computing the index of an Eisenstein ideal. For doing
it, we need an information about constant terms of Fourier expansions of an Eisenstein series at
various cusps, in particular, O or 700. Recall Proposition 3.34 in [EJ95]].

Proposition 2.10 (Faltings-Jordan). Suppose that N = pN’ with (N',p) = 1. Let g be a
modular form of weight k and level N', so w,g has level N.

(1) The modular form (a(p) — w,)g has constant term a(p)(1 — p*')ae(g;c) at a p-
multiplicative cusp ¢, a(p)(1 — 1/p)ao(g; ¢) at a p-etale cusp c.
(2) The modular form (B(p)p*~' — wy,)g has constant term 0 at a p-multiplicative cusp,

(P"'B(p) — a(p)/p)ac(g; c) at a p-etale cusp c.

In our situation, o = 3 = 1 (the trivial character), k = 2, and w,g(2) = pg(pz) = B;(9)(2).

Using the above result, we compute constant term of £y,  of level /N at the multiplicative cusp
100, and the etale cusp 0. First recall that £, , has constant term —% at 700 and —% at 0 (cf.

page 78 in [M77]).
Proposition 2.11. The constant term of Ey y at 100 is either 0 if M # N or (—1)”1% if
N)$(N/M)

M = N. And its constant term at 0 is —“0§4N(N/M) .

Proof. Since [p]™(g)(z) = g(z) — pg(z) = (a(p) — w,)g, its constant term at ioo (resp. at 0)

is (1 — p)ap(g) (resp. %(p — 1)bo(g)), where ag(g) (resp. by(g)) is the constant term of g at ico
(resp. at 0). Moreover, because [p]~(g)(z) = g(z) — g(pz) = %(B(p)p — wy)g, its constant term

at i0o (resp. at 0) is 0 (resp. #(p — 1)(p + 1)by(g)). Thus, the result follows by induction. [
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2.3. The cuspidal group of Jy(N). Let P, be the cusp corresponding to (}) as in [Og74]. (It
corresponds to = in P*(Q), so P, = 0 and Py = ico.) Then the cusps of Xo(NV) are those
of the form P, for all possible positive divisors n of N. The cuspidal group of Jy(V) is the
group generated by all these cusps. We introduce some special elements of the cuspidal group
of Jo(N).

t s
Definition 2.12. As in the previous section, let N = [[ p; and M = [] p; for some 1 < s < .
i=1 j=1
We define

Cuy =Y (=1)*"P, =P —()_P,)+- -+ (=1)"Py € Jo(N),
n|M =1

where w(n) is the number of distinct prime divisors of n. And we denote by (Cj/ n) the cyclic

subgroup of Jy(N) generated by C/ x.

Proposition 2.13. On the group (Cy;n), Uy, acts by 1 for 1 < i < s and Uy, acts by p; for
s < j < t. For any prime r not dividing N, T, acts by r + 1 on (Cyr n). The order of (Cyrn) is

Y(N/M)

the numerator of 2(N) 3 up to powers of 2.

Proof. First, recall that for a prime divisor p of N, U, + w, acts on Jo(N) by a; o B, «, where
o, and f3, are the two degeneracy maps

and w, is the Atkin-Lehner involution. (See Remark 2.2]) For some D | N with p { D,
p«(Pp) = oy« (Pop) = Bp+(Pp) = Bp«(Pop) = Pp. And o (Pp) = pPp + Pyp, B,(Pp) =
Pp + pP,p. Moreover w,(Pp) = P,p, w,(P,p) = Pp. (cf. §5 in [R89].)

Let p = p; for some 1 < i < s. Then §,.(Cu,n) = 0, hence (U, + w,)(Cun) = a0

/pr*(CMvN) = 0. Since wp(C'M,N) = _CM,N’ Up(OMJV) = CM,N-
Let g = p; for some s < j < 't. Then

we(Cun) = Py — (Z Pop,) + (Z Pppip;) + -+ (=1)° Py (= C'](\Z?N)
=1 1<j

and Bq,* (CM,N) = GM,N/q- ThUS,

(Uy + we)(Crrw) = @ (Crrvsg) = 4Cun + Cify = aCun + we(Carn),s

SO Uq(CMJv) = qC’M,N.
Next, let 7 1 N be a prime. Then 7, = «,.. o 3} on Jy(N), where o, and 3, are the two
degeneracy maps

Xo(NT) == X,(N).

Forany D | N, B:(Pp) = Pp + rP.p, so o, o 35(Pp) = (r + 1)Pp. Thus, T,.(Cyn) =
(’I“ + 1)CM,N'
Finally, we compute the order of C'y; x up to powers of 2. If p = p; for some 1 < ¢ < s, then
[p]+<CM/p,N/p> = (Oé; - 5;)(CM/p,N/p) = (p - 1)CM,N-
If p = p; for some s < j < t, then

]~ (Cungp) = (pag, — B2)(Crangp) = (0° — 1)Chus.

Let v : Jo(N/p)> = Jo(N), where v(z,y) = a(x) + 0;(y). Then, the kernel of ~ is
the antidiagonal embedding of the Shimura subgroup of Jy(/N/p) by Ribet [R84]. Thus, the
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restriction of «y to the cuspidal group is injective up to 2-torsion points because the cuspidal
group is a constant group scheme and the Shimura subgroup is a multiplicative group scheme.
Hence, [p|™ and [p]~ are both injective up to 2-torsion points. We prove the result on the order
of Cys v up to powers of 2 by induction on ¢, the number of prime divisors of V.

When ¢ = 1, the order of C,, = P, — P, in Jy(p) is equal to the numerator of Z=L. (cf. §11
of Chapter II in [M77]).

When ¢t = 2, by Ogg [[Og74], the orders of C,, ,, is the numerator of (=01 By Chua

24
and Ling [CL97], the order of (), ,, is the numerator of % unless p = 1 (mod 8) and

q = 2, and the order of C,5, is 21 if p = 1 (mod 8). Thus, the orders of Cy, , and C), ,, are
(p—l)g(q—l) and (p—1)§q2—1)

the numerators of up to powers of 2, respectively.

Let N = pgr and consider the /-primary part of the cyclic group (Cpypgr)» sy A, for a
prime ¢ > 3. For simplicity, we denote by num(n) the numerator of a rational number n. Since
(r = 1)Cpgrpgr = [1]7 (Cgpq)» the order of A, divides num (L= DI=D) Hence, assume that

. num(%). If » # 1 (mod /), then the order of A, is equal to the ¢-primary part
of (Cpq.pq)» so the result holds. Hence we assume that p = ¢ = r = 1 (mod ¢). Let ¢ (resp.

®) be the power of / exactly dividing num(%) (resp. 7 — 1). Then, since (r — 1)Cpgr pgr

is of order num(%) up to powers of 2, %num((p_l)?)ﬁ)[(r — 1)Chgrpgr) # 0. In other

words, (" annihilates A, but ¢t*=1D A, £ 0. Hence ¢**® is the order of A, and it is the

power of ¢ exactly dividing num(%). Hence, by considering all prime factors of
num((pfl)(qgl)(rfl) ((pfl)(qgl)(Tfl)) up
to powers of 2.

For the case Cpy pgr, n0te that (12 — 1)Chypar = [7]7 (Cpgpg) and (p — 1)Chypar = [a]T(Cpprr).
By the same method as above (by replacing r — 1 and C,y,. g by 72 — 1 and C)yy g, TESpectively),
we have the desired result. The same method works for the case C), 4,

The above method can be generalized to the case ¢ > 3 and it works without further difficul-

ties. O

) except 2, we have the order of Cy, g 18 €qual to num

2.4. The Shimura subgroup of Jy(/N). The Shimura subgroup is the kernel of the map Jo(N) —
J1(N), which is induced by the natural covering X;(N) — Xy(N). Since the covering group
of Xi(N) — Xo(N)is (Z/NZ)* /{+£1}, one of the maximal étale subcovering of X;(N) —
Xo(N) is a quotient of (Z/NZ)* /{+£1}, which is the Cartier dual of the Shimura subgroup.
When N is prime, Mazur discussed it on §11 of Chapter II in [M77]]. (In general, see the paper
by Ling and Oesterlé [LO90].)

t

As before let N = [] p; and Xy be the Shimura subgroup of Jy(/N). By the Chinese re-

i=1
mainder theorem, (Z/NZ)* ~ (Z/pZ)* x --- x (Z/p,Z)*. Similarly, we can decompose the
Shimura subgroups as

YN Xy X X Xy,

Each X, corresponds to the subcovering X (p;, N/p;) — Xo(N) of X;(N) — X(NV), where
X;(A, B) is the modular curve for the group I'; (A) N I'y(B). Note that 3, is cyclic of order
p; — 1 up to products of powers of 2 and 3.

Proposition 2.14 (Ling-Oesterl€é). On X, U, acts by 1, U, acts by p; for j # i, and T} acts
by r + 1 for primes r { N.

Proof. Ling and Oesterlé proved that T}, acts on X by p for primes p | N. (See Theorem 6 in
[LO90].) In our case, since X, has order dividing p; — 1, the result follows from their work. [J
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2.5. Component group of Jy(N). The component group of Jy(V) for square-free level N is
explained in the appendix of [M77]. Let N = pM, (p, M) = 1, and J := Jy(IV). Assume that
M is square-free. Then, by results of Deligne-Rapoport [DR73] and Raynaud [Ra70], Jr, is
an extension of a finite group ®,(.J), the component group of Jg,, by a semiabelian variety .J°,
the identity component of Jy,. Moreover J° is an extension of Jo(M) g, X Jo(M) s, by T, the
torus of Jy,.

Proposition 2.15. The order of ,(.J) is equal to (p — 1)1 (M) up to products of powers of 2
and 3, and ®,(J) = & B A, where O is generated by the image of C,, \y = P, — P, and the order
of A divides some product of powers of 2 and 3. Moreover Frob,, the Frobenius endomorphism
in characteristic p, acts by —pw, on I', where wy, is the Atkin-Lehner operator defined in

Proof. This is the main result of the appendix in [M77] by Mazur and Rapoport. Since P, and
Py lie in the same component of the Néron model of X(pN) over F,, the elements P, — P,
and P, — Py generate the same group ® in their paper (loc. cit.). U

Remark 2.16. Since the Hecke action on 7' factors through the p-new quotient of T 5 (Proposi-
tion 3.7 in [R90]), U, + w,, annihilates T". Therefore Frob,, acts by pU, on T'.

Proposition 2.17. On ®, U, acts by 1, U, acts by q for q | M primes, and T, acts by r + 1 for

r{ N primes. Moreover for a prime { > 3, ®,(J)[{], the {-torsion elements in ®,(J), is equal
to @[], and @[] ~ Z/VZ as groups if | (p — 1)1p(M).

Proof. Because the reduction map is Hecke equivariant, this is an easy consequence of Proposi-
tion [2.13|and Proposition 2.1 UJ

Remark 2.18. Since the order of C,, s (resp. of ®) is @(N)y(M) (resp. (p — 1)y(M)) up to
products of powers of 2 and 3, the kernel of the map (C), /) — @ is of order p(NN/p) up to
products of powers of 2 and 3. Therefore, if ¢ { ¢(N/p) and ¢ > 3, the order ¢ subgroup of
(C).ar) maps isomorphically into ®[¢] = &, (.J)[/].

3. THE INDEX OF AN EISENSTEIN IDEAL

For an ideal of Ty, we call it Eisenstein if it contains 7T, — » — 1 for all but finitely many
primes 7 not dividing the level V.

t s
3.1. Square-free level. As before let N = [[ p; and M = [] p; for some 1 < s < ¢. On the
i=1 j=1

p-old space of Jo(N), U, satisfies the quadratic equation X2 — T, X + p = 0. (See Remark )
Hence, if p divides the level IV, the eigenvalue of U, is 1 or p for (old) Eisenstein ideals. Let

Ing = Uy, =1, Uy, —pj, T, =7 —1 : 1<i<s, s <j<t, forall primesr{N)
be an Eisenstein ideal of T . For simplicity, let T := Ty.
Lemma 3.1. The quotient ring T /1y is isomorphic to Z./nZ for some integer n > 0.

Proof. The natural map Z — T/I,, is surjective, since, modulo 7, the operators 7}, are all
congruent to integers. Let F'(z) := Y. . (T, (mod I)/))z"™, where z = e*™*. We cannot have
T/Iy = Z, for then F would be a Fourier expansion at ico of a cuspidal eigenform over C,
which contradicts the Ramanujan-Petersson bounds. Therefore T /Iy, ~ Z/nZ for some integer
n > 0. U

We want to compute this n for understanding when the ideal m generated by ¢ and /,; becomes
maximal. (If n and ¢ are relatively prime, m = T.) In we handle the case when ¢ > 3 and
¢4 N. Thus, the following is enough for our application.
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Theorem 3.2. For a prime y 1 2N,
(T/IM) Kz Zy ~ (Z/mZ) Kz, Zy,

where m is the numerator of w.
Proof. Let T/Iy; ~ Z/nZ and y 1 2N be a prime. Let n = y® X b and m = y° X d, where
(y,bd) = 1. Let J = (y*, Ipr). Then, T/J ~ Z/y*Z and (T/Iy) ®z Zy ~ (T/J) @z Z, ~
Z7]y“Z.

Since the cuspidal divisor C; x has order m up to powers of 2 by Proposition 2.13, (Csn)
has an order y© subgroup, say D. Because I annihilates C;,y by Proposition[2.13] it also kills
D. Thus, there is a natural surjection

T/Ip ~ Z/nZ — End(D) ~ Z/y°Z.

Therefore y° | n = y* x b,so ¢ < a.
If @ = 0, then there is nothing to prove. Assume that a > 0. We follow the argument in §5 of
Chapter Il in [M77]]. Let f(z2) := > (T,, (mod J))z", where x = €*™*. It is a cusp form over

n>1
the ring Z/yZ. Note that 24 f is a cusp form over Z/24y°Z. Let E); v be an Eisenstein series
defined in We divide into three cases.

(1) Case 1 : Assume that M = N. Since 24E/y x has an integral Fourier expansion at ¢o0,
24Ey y (mod 24y?) is a modular form over Z/24y*Z. Thus, p(N) = 24(f — Exn)
(mod 24y) (up to sign) is a modular form over Z/24y*Z. Therefore 24y* | 2¢(N) (cf.
Proposition 5.12.(iii) of loc. cit.), so y® divides y¢ X d = m, the numerator of @,
which implies a < c. Thus, @ = c and

(T/In) ®z Zy ~ (Z)MmZ) @z Z,.

(2) Case 2 : Assume that M # N and y > 3. Since g = (f — Eyn) (mod y*), which
is a modular form over Z/y®Z, has a Fourier expansion at ico equals to 0, it is 0 (on
the irreducible component of X,(/N) that contains ico0) by the g-expansion principle.
Since N is invertible in Z/y®Z, we can consider a Fourier expansion at the cusp 0. On
the other hand, since f is a cusp form, its constant term at the cusp 0 is 0. Hence the
constant term of g at the cusp 0, which is % by Proposition [2.11} is 0 modulo

y®. Thus, y* | m = y° x d, hence a < ¢. So, a = c and

(3) Case 3 : Assume that M # N and y = 3. Since h = 24(f — Epn) (mod 24 x 3%)

is a modular form over Z/(24 x 3%Z), it is also a modular form over Z/3°*1Z. By the

same argument as above, the constant term of h at the cusp 0, which is %, is 0

modulo 3. Hence, 3*™! | (N )y(N/M). Therefore m = w = 3¢ x d and
a <c. So,a = cand

UJ

Remark 3.3. In the proof of the above theorem, we also prove that the y-primary subgroup
of (Cy,n) is a free of rank one T,/I)-module for an odd prime y not dividing /N, where
T, :=T® Z,.
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3.2. New Eisenstein ideals. Let N := pg. (Since we assume that /N is square-free, p # q.)
On the new subspace of Jy(V), U, acts by an involution. Thus, possible eigenvalues of U, are
either 1 or —1. Let

I'=U,—1,U;+1, T, —r—1 : forall primes 7 { N)

be a (new) Eisenstein ideal of level V.

In this case, we can compute the index of I up to powers of 2. More specifically, let T /I ~
Z./nZ for some n. For an odd prime y, let m = ¢ + 1 ifeithery # 3,3 | (p — 1), 0r 31 (¢ + 1).
Otherwise, we set m = %1.

Theorem 3.4. Then,
(T/I) ®z Zyy ~ (Z/MZL) @z L.

Proof. Letn = y*xband m = y°xd, where (y,bd) = 1. Let J = (y*,I). ThenT/J ~ Z/y"Z.
We divide into five cases.

(1) Case 1 : Assume that y > 3 and y # ¢. Since the order of the cuspidal divisor (p —
D(g—1)Cppg = (p—1)(¢—1)(P — P,) in Jy(pq) is the numerator of % up to powers
of 2, (C,,,4) contains a subgroup D of order y¢ and it is annihilated by /. Thus, there is
a natural surjection

T/I ~7Z/nZ — End(D) ~ Z/yZ.

Therefore 3¢ | n = y* x b, especially ¢ < a because (y,b) = 1. If a = 0, then there is
nothing to prove. Assume thata > 0. Let f(2) = > (7, (mod J))z", where z = e*™*=.

n>1

It is a cusp form over the ring Z/y*Z. Consider 24(f — E, ,,) (mod y*) =24 3" a,a™,

n>1
where F, ,,, is the Eisenstein series in Note that ¢ is invertible in Z/y*Z and a,, = 0
for (n,q) = 1. Thus, by Mazur (Lemma 5.9 of Chapter II in [M77]]), there is a modular
form g of level p over the ring Z/y"Z, such that g(2?) = 24[(f — E, ;) (mod y*)](z) =
24 > a,x™. Computing its coefficient, we get g(z) = —24(q + 1) >_ ¢,a™, where ¢, =
n>1

r+1,¢ =1,¢ = 1,and ¢, = ¢ — 1. This is also an eigenform for the Hecke
operators T,, r # ¢. Since T, is generated by 7, for all primes r # ¢, it is genuinely
an eigenform for all Hecke operators. However, at level p, there is only one eigenform
h whose eigenvalue for 7). is » + 1 for every » # p up to constant multiple, and it
has an eigenvalue ¢ + 1 for the operator 7,. Therefore if —24(¢ + 1) is not zero in
Z]yZ, g = —24(q+ 1)hand 24(¢ + 1)((¢ — 1) — (¢ + 1)) = 0in Z/y"Z, which is a
contradiction because y > 2. Therefore y* | 24(q + 1) = y° x 24d, and hence, a < ¢
because (y,24d) = 1. So, a = c and

(T/1) ®z Ly = (Z]MZL) @z L,

for primes y not dividing 6q.

(2) Case 2 : Assume that y = 3 # g and 3 | (p — 1). Then we can find a subgroup of order
g+ 1lin ((¢ — 1)C,,). So, by the same argument as above, we have ¢ < a. Assume
that @ > 0. As before, f(z) = > (7, (mod J))x™ is a cusp form over the ring Z/3°Z.

n>1
Thus, 24f(z) can be regarded as a cusp form over the ring Z/(24 x 3°Z), hence it is
a cusp form over the ring Z/3“"'Z. As above, 24(f — E,,,) (mod 3°*') = 0 and

39T | 24(q + 1) = 3! x 8d. Therefore a < ¢, so a = c and
(T/I) ®7 Z, ~ (Z/mZ) @3 L.
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(3) Case 3 : Assume thaty = 3 # g and 3 { (p — 1)(¢ + 1). Then, ¢ = 0. Assume that
a > 0. Then, by the same argument as above, we have 3! | 24(q + 1), which is a
contradiction. Therefore a = 0 and

(T/I) ®z Zy ~ (Z/mZ) @z Z, ~ 0.

(4) Case 4 : Assume thaty = 3 # ¢, 34 (p— 1) and 3 | (¢ + 1). Then we can find a
subgroup of order m = %% in ((p — 1)(¢ — 1)C,y,,). By the same argument as above, we
have ¢ < a. Assume that a > 0. As above, g = 24(f — E,,,) (mod 3T') = 0, so it
is zero on the irreducible component of X(pq),r, containing ico. Since ¢ is invertible

in Z/3°1Z, a g-etale cusp P, lies in the same component as ico. Hence, the constant
2
term of the Fourier expansion of g at P, is 0 modulo 39+l which is —(p_l)q(—;’_l). (The

computation follows from Proposition [2.10,) Hence, 3°™! | (¢ + 1) = 3“™! x d since
(3,q(p—1)(¢ — 1)) = 1. Therefore a < ¢, so a = ¢ and

(T/I) ®z Z, ~ (Z/mZ) @z T,

(5) Case 5 : Assume that y = ¢ > 2. Let m := (y, I) be an Eisenstein ideal of charac-
teristic y. Assume that m is maximal. If m is new, then the associated mod y Galois
representation py, is isomorphic to 1 & y, where x is the mod y cyclotomic character.
(cf. Proposition 2.1 in [Y14].) By considering the image of a decomposition group of
Gal(Q/Q) at g, we have py(Frob,) = 1+ ¢ = —(1 + ¢) (mod m), where Frob, is
an arithmetic Frobenius of Gal(Q/Q) at q. Therefore, ¢ = —1 (mod y), which is a
contradiction. Thus, m is old. Since there is no Eisenstein ideals of characteristic y at
level ¢, m is ¢g-old and y divides the numerator of 1’1;21. Since on the g-old space, the
eigenvalue of U, is either 1 or g and U, = —1 (mod m), ¢ = —1 (mod y), whichis a
contradiction. Therefore m is not maximal. In other words,

(T/I) ®z Zy ~ (Z/MZ) @z L, ~ 0.
OJ

Remark 3.5. In the last part of proof, we cited the result in the paper [Y14]]. Even though the
author presented only the case ¢ # ¢, the method can be generalized to the case ¢ = ¢. In fact,
Ribet presented a proof of the case when ¢ = ¢ as well [RO8]. In particular, he proved that
T, = 1 (mod m) for an Eisenstein maximal ideal m of residue characteristic ¢/ (Lemma 1.1 in
[RO8]).

Remark 3.6. In the proof of the above theorem, we also prove that the y-primary subgroup of
((p —1)(q¢ — 1)C, ) is a free of rank one T, /I-module for primes y > 3.

By the same argument as above (in particular, the method used in the proof of Case 1), we
can prove the following.

Theorem 3.7. Let N = Mg, (M,q) = 1, andy { 6N. Let I = (U, — 1, U, + 1, T, —r —
1 : forall primes p | M, for all primes r + N). Then,

(T/I) @z Zy ~ (Z/(q+ 1)Z) @z Z,.
4. MULTIPLICITY ONE

t
4.1. Square-free level. As before let N = [[p; and M = [] p; for some 1 < s < ¢. Let
i=1 j=1
T :=Ty and J := Jo(NV). For an ideal I C T, we define the kernel of I for J as follows,

JI:={x € Jh(N)(Q):Tx=0forall T € I}.

Since T acts faithfully on .J, J[m] # 0 for a maximal ideal m.

S
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As we explained in the introduction, for a non-Eisenstein maximal ideal m, there is a notion
of multiplicity. On the other hand, there is no natural one for an Eisenstein ideal m. Instead, we
define it as follows.

Definition 4.1. Multiplicity one holds for m if dimy/y, J[m] = 2.

In contrast to the non-Eisenstein case, the multiplicity one question for an Eisenstein ideal
m has not been discussed much before. Mazur [M77] proved that when N is prime, J[m] ~
ZJVZ & p, for an Eisenstein maximal ideal m of residue characteristic ¢ > 3.

Assume that ¢/ > 3 is a prime and (¢, N) = 1. Let m := (¢, I);), where

I = Uy, =1, Uy, —pj, T, =7 —1 : 1<i<s, s <j<t, forall primesr{ N).

By the result of Theorem [3.2] m is maximal if and only if £ | ¢(N)y(N/M). Thus, we assume
that £ | o(N)Y(N/M). If p; = 1 (mod £) for some s < j < ¢, thenm = (¢, Iy;p,). Thus, we
further assume that p; # 1 (mod /) forall s < j < ¢. So, we have sp(m) = s, 1 < sp(m) < ¢,
and 0 < s(m) < sg(m). (For the definition of notation, see the introduction.)

Let Sy be the set of prime divisors of N and let Sy, be the set of primes at which J[m] is
ramified. Then, S, C Sy U {¢} by Igusa and @y (Sm) < w,(Sy).

Theorem 4.2 (Multiplicity one). Assume one of the following.
(2)t=s+1andl{p(N).
Then multiplicity one holds for w, i.e., J|m| is of dimension 2 over T /m.

Proof. We follow Mazur’s idea in his paper [M77] to analyze J[m].

(1) Assume that w,(Sy) = 1. We divide into three cases.
(a) Case 1 : Assume that s(m) = 0. Then, ¥y[m] = 0 but (Cy n)[m]| ~ Z/(Z as
Galois modules because Cy; v € J(Q). Since the m-adic Tate module Ta,,.J :=
hgg J[m™] is of rank 2 over Ty, := lgg T/m"™ (Lemma 7.7 of Chapter II in [M77]),

the dimension of J[m] over T/m is at least 2. All Jordan-Holder factors of .J[m| are
either Z/0Z or p, (cf. Proposition 14.1 of Chapter I in [M77]). Moreover, J[m] can
have at most one Z/(Z as its Jordan-Holder factor by the g-expansion principle. (cf.
Corollary 14.8 of Chapter II in [M77], note that 7, — 1 € m, hence, it is ordinary.
See also Lemma 2.7 in [CS08]].) Since (Ci n)[m] >~ Z/(Z, Z/(Z C J[m]. Thus,

0— Z/NZ — Jm| - A — 0,

where A is a multiplicative group such that all its Jordan-Holder factors are ju,.
Since A is annihilated by 7, — » — 1 for all but finitely many primes r, by the
theorem of constancy (Lemma 3.5 of Chapter I in [M77]), A ~ p,%" for some
r > 1. Since the Shimura subgroup > is a maximal multiplicative subgroup of
J by Vatsal (Theorem 1.1 in [Va03]) and Xy[m] = 0, gy € J[m]. Let Sp =
Sy U{l} and E := Extg, (e, Z/¢Z) be the group of extensions of j, by Z /(7 that
are annihilated by ¢ and are unramified outside .S;. By Brumer-Kramer (Proposition
4.2.1 in [BK14]), the dimension of E over F, is w(Sy) = w(Sn), which is 1 by
assumption. (Itis generated by a non-trivial extension only ramified at a prime ¢ and
p such that p = +1 (mod ¢).) Assume that dim J[m] > 3, then it has a submodule
V' of dimension 3 that is a nontrivial extension of i, ® p, by Z /(7. Let « (resp. [3)
be a natural inclusion of j, into the first (resp. second) component of 1y & iy,

0—>Z/NT ——V — 1y & jg — 0

T

0—>Z /(7. W e 0.
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Then o*V and S*V are two elements in £/, which is of dimension 1. Thus, there
are a, b € Fy such that aa™V + b5*V = 0. Let v = aa + bf3, then uy C ~*V C V,
which is a contradiction. Therefore dim J[m] = 2.

(b) Case 2 : Assume that s(m) = 1 but sop(m) = s > 1. Then the same argument as
above holds since ¥y [m| = 0.

(c) Case 3 : Assume that s(m) = so(m) = 1. Let p = p; = 1 (mod ¢). Note that
Yn[m] >~ u, hence, pp C J[m] but pp @ e ¢ J[m] from the assumption. Let
J[m] be an extension of 1,*" by Z/{Z for some r. Let I, be an inertia subgroup
of Gal(Q/Q) at p. By a well known theorem of Serre-Tate [ST68], the kernel of
m in the mod p reduction of J may be identified with J[m|’, the group of I,-
invariants. Since ¢ { ¢(N/p) and the component group ®,, of J/p, is generated by
the image of C,, y = P, — P, up to 2-, 3-primary groups, (C}, y)[m] >~ Z/{Z C J[m|
maps isomorphically into ®,[m]. (See Remark [2.18]) Thus, we can copy Mazur’s
argument on page 125-126 of [M77]]. Thus, there is an exact sequence

0 — Z/Z — J[m]l —— (11 )" = 11" —— 0,

Therefore .J|m] is unramified at p and p & Sy,. Thus, @y (Sy,) = 0. If dim J[m] > 3,
then it contains a non-trivial extension of 1, by Z/¢Z, which is annihilated by ¢ and
is unramified outside S,,,. However, the dimension of Extg,_ (1, Z/{Z) is w(Sw) =
0, which is a contradiction. Hence dim J[m| = 2 and J[m] ~ Z/l(Z & p,.

(2) Let ¢ = p, for simplifying notation. Since ¢ | ©(N)1(q), ¢ = —1 (mod ¢). As in §2.5,
let J%, ®,, and T' denote the identity component, the component group, and the torus of
J ), respectively. Then, by Proposition 2.17, ®,[m] = 0. Since on 7'[m], Frob, acts by
qU, =1 (mod ¢) and ¢ = —1 (mod ¢), T'|m] cannot contain z,. Thus, dim 7T’[m| < 1.
Since ¢ 1 ¢(N), the index of the ideal I/, = (Up, — 1, T, —r —1 : 1 < i <
s, for all primes r { N/q) of Ty, is prime to ¢. Therefore Jo(N/q)*[m| = 0, which
implies that Jr, [m] ~ J[m]’e is at most of dimension 1 over T/m ~ F,. Since J[m]
is an extension of j1,*" by Z/{Z for some r > 1, J[m]'« is at least of dimension r, i.e.,
J[m] is of dimension 2.

O

Remark 4.3. Because we assume that p; # 1 (mod ¢) for a prime s < j < ¢, unramifiedness of
J[m] at p in the third case of the proof of (1) follows from the assumption s = 1 only.

By using a similar argument as above we can prove a bound of the dimension of .J|m]|.
Theorem 4.4. We have
max{1 + wo(m),2} < dim J[m] < 1+ wo(m) + we(Sm).

Proof. If s(m) < so(m), ¥x[m] = 0 by Proposition Thus, p, € Jm] but Z/(Z C J[m].
Let

0 —— Z/Z — J[m] — 11" — 0

k)

0 YA/ W, 1y 0,

where W), is the pullback of J[m] by the map iy : puy — 1,®", which is an embedding into
the k-th component for 1 < k < r. Then W}, is an extension in £ = Extg, (s, Z/(Z). If
r > wy(Sy) = dim E, the extensions Wy, for all 1 < k& < r are linearly dependent over F,.
Thus, J[m| contains /i, which is a contradiction. Therefore dim J[m] = 14 r < 1 4 wy(Sn).
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If s(m) = so(m) = s, then wy(m) = s and
Sylm] ~ @) T, fm] ~ 1"
i=1

by Proposition Thus, dim J[m] > 1 + wy(m). Let J[m] = 11, & K. Then py ¢ K,
Z/Z C K, and K is an extension of p,%" by Z/¢Z. By the same argument as above, if
dim K > 1 + @y(Sw) then K contains sy, which is a contradiction. Therefore dim .J[m| =
s+dimK < s+ 1+ wi(Sn). O

4.2. More on level pq. Let N = pg, p = p; and ¢ = ps. (Hencet = 2.) Thens = 1or s = 2.
Let Sy == {p, ¢}, T := T,, and J := Jy(pq).

4.2.1. Case s = 1. Since s = 1, assume that ¢ # 1 (mod ¢) and ¢ | (p — 1)(¢*> — 1). Let
m:=(, U,—1, U,—¢q, T, —r —1| forall primes r { pq).

Theorem 4.5. Then,

(1) In all cases below, J[m] is unramified at p.
(2) If p # 1 (mod ¢), dim J[m] = 2.
3) Ifp=1 (mod ¢) and ¢ # —1 (mod ¢), dim J[m| = 2.
(4) Assume thatp =1 (mod () and ¢ = —1 (mod /).
(a) If J[m] is unramified at q, then dim J[m] = 2.
(b) If J[m] is ramified at q, then dim J[m] = 3.

Proof. (1) This follows from Remark[4.3]
(2) If p £ 1 (mod ¢), since £ | (p — 1)(¢> — 1), ¢ = —1 (mod /). This holds by Theorem
K.2(2) since £ 1 ©(pg).
(3) Assume that p = 1 (mod /) and ¢ Z —1 (mod ¢). Therefore this is true by Theorem
B.2(1) since @, (Sy) = 1.
(4) Sincep =1 (mod ¢), ¥,y [m] = X, [m] ~ p,. Thus, J[m] contains z1, but pe@® g, € J[m].

(a) Since J[m] is unramified at both p and ¢, it is unramified everywhere, in other words,
it is a direct sum of Z/¢Z and p,*". Hence dim J[m] = 2.

(b) In this case, s(m) = 1 = so(m) = wo(m) and @w(Sy) < 1 since J[m] is unram-
ified at p. By Theorem dim J[m] < 3. We know that J|m| contains Z/(Z
and p, from the cuspidal group and the Shimura subgroup, respectively. Hence,
dim J[m]’s > 2. Since J[m] is ramified at ¢, dim .J[m] = 3.

0

Remark 4.6. Let ¢ = —1 (mod /). Note that J[m] does not depend on p if p #Z 1 (mod ¢). It is
a (unique) non-trivial extension of j, by Z/¢Z, which is annihilated by ¢ and is ramified only at
q (and /).

Example 4.7. In the case (4), we can compute the dimension of J[m| using SAGE [SAGE].
Up to 100, dim J[m] = 3 only when (p,q) = (41,19), (61,79) for £ = 5 and (p,q) =
(29,97), (43,13), (43,41) for ¢ = 7. Thus, we know that J[m] is ramified at ¢ in each of
those cases.

Remark 4.8. The structure of .Jy(43 x 13)[m] for an Eisenstein m of residue characteristic 7 is
studied by Calegari and Stein [[CSO8]]. We proved their result about its ramification (at 13) from
the dimension computation. By Theorem@l), we know that it is unramified at 43.



16 HWAJONG YOO

422. Cases=2. Letm:= (¢, U,—1, U,—1, T, —r—1 : forall primes r { pqg). Since m
is maximal if and only if ¢ | (p — 1)(¢ — 1), assume that p = 1 (mod /).

Theorem 4.9. Then,
(1) If ¢ # £1 (mod ¢), dim J[m] = 2 and J[m] is ramified at p.
(2) Assume that ¢ = —1 (mod ¢). Then J|m| is ramified at p.
(a) If J[m] is unramified at q, then dim J[m] = 2.
(b) If J[m] is ramified at q, then dim J[m] = 3.
(3) If ¢ = 1 (mod ?), then dim J[m] is either 4 or 5.

Proof. Since p = 1 (mod /), there is the Eisenstein maximal ideal m, of level p of residue
characteristic ¢ and Jy(p)[m,| ~ Z/{Z & 1, by Mazur (Corollary 16.3 of Chapter II in [M77]]).
(1) If ¢ # £1 (mod ¢), by Theorem@.2(1), dim J[m] = 2.
(2) Assume that ¢ = —1 (mod ¢). Then X,,[m] = 0, in other words, p; € J[m].
(a) Assume that J[m] is unramified at ¢. In this case, s(m) = 1 < so(m) = 2 and
@¢(Sw) < 1. Therefore dim J[m| = 2 by Theorem 4.4 and J[m] is ramified at p
(and 0).
(b) Assume that J[m] is ramified at q. Let T', .J O be the torus, the identity component of
Jr,, respectively. Then is an exact sequence
0 T JO Jo(p) X Jo(p) —=0

™

A = Jy(p) x Jo(p)

and g = mo ayp, is (1, V¥") , where Ver is the Verschiebung morphism in char-
acteristic ¢ (Lemma 1.1 in [R90a]). Since Jy(p)[m,] ~ Z/{Z & p, and Ajm] =
{(x,—z) : x € Jo(p)[my]}, by g, {(z,—x) : x € Z/{Z} maps injectively to
Jo(p)?[m]. (And {(z,—x) : = € p} maps 0 by ar,.) Thus, the image of 7 is
at least 1-dimensional. Since J[m] is ramified at ¢, m is ¢g-new, hence, T'[m] # 0
since T9"°", the g-new quotient of T, acts faithfully on 7. Therefore dim J[m]% is
at least 2-dimensional. Since the dimension of .J[m] is at most 3 by Theorem
it is 3. Moreover if it is unramified at p, then w,(S,) < 1 and wy(m) = 0. So,
by Theorem dim J[m] = 2, which is a contradiction. Therefore .J[m] is also
ramified at p.

(3) Assume that ¢ = 1 (mod ¢). Then £,,[m] >~ ¥,[m] & X,[m] =~ p, & p, C J[m]. By
the result of Ribet [Y14], m is new. Thus, Jyey[m] is non-trivial, where J,e,, is the new
subvariety of .J. By the same argument about the Tate module of .J, we can prove that
Jnew|m] is at least of dimension 2. Since U,+w,, acts by 2 on X,[m], it is an isomorphism
because ¢ is odd. Moreover, since U,+w, and U,+w, annihilate J,ey, X,[m]NJpew = 0.
Similarly, we have ¥,[m] N Jye = 0. Thus, dim J[m] > 2 + 2 = 4. By Theorem [4.4]
the result follows.

([l
Corollary 4.10. If g = —1 (mod ¢) but q is not an (-th power modulo p, then dim J[m| = 2.

Proof. By Ribet [Y14], if ¢ is not an /-th power module p, then m is not new. Since ¢ =
—1 (mod /), there is no Eisenstein maximal ideal of level g, hence m is g-old, in other words,
J[m] is unramified at . Thus, this follows from the case (2)(a) of Theorem 4.9

Example 4.11. In the case (2)(resp. (3)) of Theorem the computation with SAGE [SAGE]
suggests that dim J[m] = 2 (resp. dim J[m| = 5).

O

Remark 4.12. The above examinations are now proved by Ribet and the author [RY 14]].
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