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ABSTRACT. Mazur’s fundamental work on Eisenstein ideals for prime level has a variety of
arithmetic applications. In this article, we generalize some of his work to square-free level. More
specifically, we compute the index of an Eisenstein ideal and the dimension of the m-torsion
of the modular Jacobian variety, where m is an Eisenstein maximal ideal. In many cases, the
dimension of the m-torsion is 2, in other words, multiplicity one theorem holds.
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1. INTRODUCTION

In the early 20th century, Ramanujan found the following congruences

τ(p) ≡ 1 + p11 (mod 691)

for any prime p 6= 691, where τ(p) is the p-th Fourier coefficient of the cusp form ∆(z) =
q
∏

n≥1(1 − qn)24 of weight 12 and level 1. Many mathematicians further found congruences
between τ(p) and some arithmetic functions (such as σk(p) = 1 + pk) modulo small prime
powers. Serre and Swinnerton-Dyer [S73], [Sw73] recognized that these congruences between
Eisenstein series and cusp forms can be understood by making use of Galois representations
associated to ∆, and using this interpretation, they determined all possible congruences of τ(p).

In the case of weight 2, Mazur discussed Eisenstein ideals, which detect the congruences
between Eisenstein series and cusp forms. (An ideal of a Hecke ring is called Eisenstein if it
contains Tr − r − 1 for all but finitely many primes r not dividing the level.) For a prime N , he
proved Ogg’s conjecture (Conjecture 1.2) via a careful study of subgroups of the Jacobian variety
J0(N) annihilated by the Eisenstein ideal. More precisely, in his paper [M77], he proved that
TN/I ' Z/nZ, where TN is the Hecke ring of level N , I is the Eisenstein ideal of TN , and n is
the numerator of N−1

12
. Moreover, for each prime ` | n, he further proved that dim J0(N)[m] = 2,

where m is an Eisenstein maximal ideal generated by I and `, and

J0(N)[m] := {x ∈ J0(N)(Q) : Tx = 0 for all T ∈ m}.
Using this result he proved a classification theorem of the rational torsion subgroups of elliptic
curves over the rational number field.

After his work, the dimension of J0(N)[m] has been studied by several mathematicians for
the case that m is non-Eisenstein. Assume that m is a non-Eisenstein ideal of the Hecke ring T of
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level N . Then, by Boston-Lenstra-Ribet [BLR91], J0(N)[m] ' V ⊕r, where V is the underlying
irreducible module for the Galois representation ρm : Gal(Q/Q) → GL(2,T/m) associated to
m. In most cases, for instance, when the characteristic of T/m is prime to 2N , the multiplicity
r is one. This result played an important role in the proof of Fermat’s Last Theorem by Wiles.
On the other hand, for an Eisenstein maximal ideal m, the dimension of J0(N)[m] has not been
discussed when the level N is composite.

In this paper, we generalize some part of results of Mazur [M77] to square-free level. In §2,
we introduce some Eisenstein modules that are used later.

In §3, we compute the index of an Eisenstein ideal of square-free level. More precisely, let N
be a square-free integer and M > 1 be a divisor of N . Let

IM := (Up − 1, Uq − q, Tr − r − 1 : for primes p |M, q | N/M, and r - N)

be an Eisenstein ideal of TN . For a square-free integer N =
∏
pi, let ϕ(N) =

∏
(pi − 1) and

ψ(N) =
∏

(pi + 1). Then, we prove the following theorem.

Theorem 1.1. For a prime y - 2N , we have

TN/IM ⊗ Zy ' Z/mZ⊗ Zy,

where m is the numerator of ϕ(N)ψ(N/M)
3

.

The author expects that this theorem will shed light on the generalized Ogg’s conjecture,
which is the following.

Conjecture 1.2 (Generalized Ogg’s conjecture). The rational torsion subgroup of J0(N) is the
cuspidal group.

(About the definition of the cuspidal group, see §2.3.)
For an Eisenstein maximal ideal m of level N , we define

Sm := the set of primes at which J [m] is ramified,

SN := the set of prime divisors of N,

s(m) := #{p | N : p ≡ 1 (mod m)},
s0(m) := #{p | N : Up ≡ 1 (mod m)}, and

$0(m) :=

{
s(m) if s(m) = s0(m)

0 otherwise.

For a finite set S of primes, we define

$`(S) := #{p ∈ S : p ≡ ±1 (mod `)}.

In §4, we study the dimension of J0(N)[m] for an Eisenstein maximal ideal m of residue
characteristic ` - 6N . So, assume that ` - 6N .

Theorem 1.3. Assume that $`(SN) = 1. Then,

dim J0(N)[m] = 2.

In other words, multiplicity one holds for an Eisenstein maximal ideal m.

We further prove a bound for dim J0(N)[m] involves the two numbers $0(m) and $`(Sm).

Theorem 1.4. We have

max{1 +$0(m), 2} ≤ dim J0(N)[m] ≤ 1 +$0(m) +$`(Sm).
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Note that $`(Sm) ≤ $`(SN) since Sm ⊆ SN ∪ {`}, so we can have an explicit bound of
the dimension without further information about ramification of J0(N)[m]. Recently, Ribet and
the author proved that the above upper bound is optimal if $0(m) = 0. In other words, if
$0(m) = 0, then

dim J0(N)[m] = 1 +$`(Sm).

The author expects that the above upper bound is optimal unless $0(m) = 1.
Theorem 1.3 can be applied to the study of the structure of J0(N)[m]. If multiplicity one

holds, it gives one of the models of the associated Galois representation ρm to m. Moreover,
J0(N)[m] can only be ramified at ` and a prime divisor p of N such that p ≡ ±1 (mod `).
In the case when N is the product of two distinct primes p and q, we prove a more precise
result on dim J0(N)[m]. This result also gives the description of the Galois module J0(N)[m]
by computing its dimension as a vector space over T/m ' F`.

1.1. Notation. Let X0(N) be the modular curve for Γ0(N) and let J0(N) be the Jacobian vari-
ety of X0(N). By Igusa [Ig59], Deligne-Rapaport [DR73], Katz-Mazur [KM85], and Raynaud
[Ra70], there exists the Néron model of J0(N) over Z, we denote it by J0(N)/Z. We denote by
J0(N)/Fp the special fiber of J0(N)/Z over Fp. We denote by M2(Γ0(N)) (resp. S2(Γ0(N))) the
space of modular (resp. cusp) forms of weight 2 and level Γ0(N) over C.

From now on, we assume that ` is a prime larger than 3. And we assume that the level N is
square-free and prime to `.

For a square-free number N , we define

ϕ(N) :=
∏

p|N primes

(p− 1) and ψ(N) :=
∏

p|N primes

(p+ 1).

For any group or module X , we denote by End(X) its endomorphism ring. We denote by
Z/`Z the constant group scheme of order `. We denote by µ` the multiplicative group scheme
of order `. For a finite set S of primes, we denote by ExtS(µ`,Z/`Z) the group of extensions of
µ` by Z/`Z, which are unramified outside S and are annihilated by `.

Acknowledgements. The author would like to thank his advisor Kenneth Ribet. This paper
would not exist if it were not for his inspired suggestions and his constant enthusiasm for the
work. The author would like to thank Chan-Ho Kim, Sara Arias-de-Reyna, Sug Woo Shin, and
Gabor Wiese for many suggestions toward the correction and improvement of this paper. The
author would also like to thank Samsung scholarship for supporting him during the course of
graduate research.

2. EISENSTEIN SERIES AND EISENSTEIN MODULES

2.1. Hecke operators. Throughout this section, we assume that p is a prime not dividing N
and q is a prime divisor of N .

2.1.1. Degeneracy maps on modular curves. For a field K of characteristic not dividing Np,
the points of X0(Np) over K are isomorphism classes of the triples (E,C,D), where E is a
(generalized) elliptic curve over K, C is a cyclic subgroup of E of order N , and D is a cyclic
subgroup of E of order p. Similarly, the points of X0(N) over K are isomorphism classes of
the pairs (E,C). We can consider natural maps between modular curves

X0(Np)
αp //

βp

// X0(N),

where αp(E,C,D) := (E,C) and βp(E,C,D) := (E/D,C +D/D). In other words, the map
αp is “forgetting level p structure” and the map βp is “dividing by level p structure”. As a map
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X0(Np)(C) ' h∗/Γ0(Np) → h∗/Γ0(N) ' X0(N)(C) on the complex points, αp (resp. βp)
sends z to z (resp. to pz), where h is the complex upper half plane and h∗ = h

⋃
P1(Q).

2.1.2. Degeneracy maps on modular forms. The maps αp and βp above induce maps α∗p and β∗p
between cusp forms of weight two, respectively as follows.

S2(Γ0(N))
α∗
p //

β∗
p

// S2(Γ0(Np)),

where α∗p(f(τ)) = f(τ) and β∗p(f(τ)) = pf(pτ). On its Fourier expansions at i∞, α∗p(
∑
anx

n) =∑
anx

n and β∗p(
∑
anx

n) = p
∑
anx

pn. (Note that we use x-expansions instead of q-expansions
because we denote by q a prime divisor of the level N .) These maps can also be extended to
M2(Γ0(N)) via the same formula.

2.1.3. Hecke operators on modular curves and modular forms. The above degeneracy maps
induce maps between divisor groups of modular curves. More specifically, we have

Div(X0(N))
α∗
p //

β∗
p

// Div(X0(Np))
αp,∗ //

βp,∗
// Div(X0(N)),

where

α∗p(E,C) =
∑

D⊂E[p]

(E,C,D), β∗p(E,C) =
∑

D⊂E[p]

(E/D,C +D/D,E[p]/D),

αp,∗(E,C,D) = (E,C), and βp,∗(E,C,D) = (E/D,C +D/D).

In the summation of the above formula, D runs through all cyclic subgroups of order p. We
define Tp acting on Div(X0(N)) to be αp,∗ ◦ β∗p or βp,∗ ◦ α∗p. In terms of divisors we have

Tp(E,C) =
∑

D⊂E[p]

(E/D,C +D/D),

where D runs through all cyclic subgroups of order p. This map induces an endomorphism of
the Jacobian J0(N), which is also denoted by Tp.

Since S2(Γ0(N)) can be identified with the cotangent space at 0 of J0(N), Tp acts on S2(Γ0(N)).
The above definition is compatible with the action of Hecke operators on modular formsM2(Γ0(N)),
which is (on their Fourier expansions at i∞)

Tp(
∑

anx
n) :=

∑
anpx

n + p
∑

anx
np.

2.1.4. Atkin-Lehner operators and more on Hecke operators. Let q be a prime divisor of N .
Since N is square-free, q2 does not divide N . Thus, M := N/q is prime to q. We have an
endomorphism wq of X0(N) such that

wq(E,C,D) = (E/D,C +D/D,E[q]/D),

where E is a (generalized) elliptic curve, C is a cyclic subgroup of E of order M , and D is
a cyclic subgroup of order q. It induces an Atkin-Lehner involution on J0(N), which is also
denoted by wq. There is also the Hecke operator Tq in End(Div(X0(N))), which acts by

Tq(E,C,D) =
∑
L⊂E[q]

(E/L,C + L/L,E[q]/L),

where L runs through all cyclic subgroups of E of order q, which are different from D. This
operator also induces an endomorphism of J0(N) (via Albanese functoriality), which is also
denoted by Tq.
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Lemma 2.1. As endomorphisms of J0(N), we have Tq + wq = β∗q ◦ αq,∗, where

J0(N)
αq,∗ //

βq,∗
// J0(M)

β∗
q //

α∗
q

// J0(N).

Proof. On Div(X0(N)), αq,∗(E,C,D) = (E,C) and hence,

β∗q ◦ αq,∗(E,C,D) =
∑
L⊂E[q]

(E/L,C + L/L,E[q]/L),

where L runs through all cyclic subgroups of E of order q. It is equal to (Tq + wq)(E,C,D),
therefore they induce the same map on J0(N). �

Remark 2.2. Note that α∗q◦βq,∗ = wq(β
∗
q ◦αq,∗)wq and T tq = wqTqwq, where T tq is the transpose of

Tq. If we use Picard functoriality of Jacobian varieties, the formula will be written as T tq +wq =
α∗q ◦ βq,∗ (cf. on pages 444-446 in [R90]). From now on, we will use the Picard functoriality.

2.1.5. Hecke algebras. We define TN as a Z-subalgebra of End(J0(N)) generated by all Tn.
Note that TN is finite over Z. Therefore all maximal ideals of TN are of finite index. From now
on, we will denote by Uq the Hecke operator Tq for primes q dividing the level N .

2.2. Eisenstein series of Γ0(N). The space M2(Γ0(N)) of modular forms naturally decom-
poses into its subspace of cusp forms S2(Γ0(N)) and the quotient spaceM2(Γ0(N))/S2(Γ0(N)),
the Eisenstein space E2(Γ0(N)). We can pick a natural basis of E2(Γ0(N)) that consists of
eigenfunctions for all Hecke operators. Since the number of cusps of X0(N) is 2t, where t is the
number of distinct prime factors of N , the dimension of E2(Γ0(N)) is 2t − 1.

Definition 2.3. We define e to be the normalized Eisenstein series of weight two and level 1,

e(τ) := − 1

24
+
∞∑
n=1

σ(n)xn,

where σ(n) =
∑

d|n,d>0

d and x = e2πiτ .

Remark 2.4. Note that though e is an eigenfunction for all Hecke operators, e is not a classical
modular form. And e (mod `) is not a mod ` modular form of weight two (for a prime ` > 3),
which means that it cannot be expressed as a sum of mod ` modular forms of weight two of any
level prime to `. (In other words, the filtration of e is ` + 1, not 2.) About this fact, see [M77],
[S73], or [Sw73].

With the above function e, we can make Eisenstein series of weight two and levelN by raising
the level.

Definition 2.5. For any modular form g of level N and a prime p not dividing N ,

[p]+(g)(z) := (α∗p − β∗p)(g) = g(z)− pg(pz) and

[p]−(g)(z) := (α∗p − β∗p/p)(g) = g(z)− g(pz),

where α∗p and β∗p : M2(Γ0(N)) → M2(Γ0(Np)) are the two degeneracy maps in the previous
section.

Proposition 2.6. Let g be an Eisenstein series of level N that is an eigenform for all Hecke
operators. Then, for a prime p not dividing N , [p]+(g) and [p]−(g) are Eisenstein series of level
Np such that the eigenvalues of Up are 1 and p, respectively. They are eigenforms for all Hecke
operators as well.
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Proof. On the p-old subvariety of J0(Np), Up and Tp satisfy the following equality (cf. “For-
mulaire” 4 in [R89])

Up

(
x
y

)
=

(
Tp p
−1 0

)(
x
y

)
.

The first (resp. second) row maps into J0(Np) by the map α∗p (resp. β∗p). Since on g, Tp acts by
p+ 1, Up acts by 1 on ( x

−x ) and by p on ( px−x ). Thus, the result follows. �

Remark 2.7. On the p-old subvariety of J0(Np), Up satisfies the quadratic equation

X2 − TpX + p = 0

by the Cayley-Hamilton theorem.

Definition 2.8. For 1 ≤ s ≤ t, let N =
t∏
i=1

pi and M =
s∏
j=1

pj . We define

EM,N := [pt]
− ◦ · · · ◦ [ps+1]

− ◦ [ps]
+ ◦ · · · ◦ [p1]

+(e).

For given N =
t∏
i=1

pi and each 1 ≤ s ≤ t, there are
(
t
s

)
different choices for M . Thus, the

number of all possible EM,N is 2t−1. Since they are all eigenforms for the Hecke operators and
their eigensystems are different, they form a basis of E2(Γ0(N)).

Remark 2.9. Note that E1,N is not a modular form of weight two because of the same reason
as the case of e = E1,1. When N = p, Ep,p = [p]+(e) is a unique eigenform (up to constant
multiple) of level p, which is − 1

24
e′, where e′ is the modular form on page 78 in [M77].

Later we will use these functions for computing the index of an Eisenstein ideal. For doing
it, we need an information about constant terms of Fourier expansions of an Eisenstein series at
various cusps, in particular, 0 or i∞. Recall Proposition 3.34 in [FJ95].

Proposition 2.10 (Faltings-Jordan). Suppose that N = pN ′ with (N ′, p) = 1. Let g be a
modular form of weight k and level N ′, so wpg has level N .

(1) The modular form (α(p) − wp)g has constant term α(p)(1 − pk−1)a0(g; c) at a p-
multiplicative cusp c, α(p)(1− 1/p)a0(g; c) at a p-etale cusp c.

(2) The modular form (β(p)pk−1 − wp)g has constant term 0 at a p-multiplicative cusp,
(pk−1β(p)− α(p)/p)a0(g; c) at a p-etale cusp c.

In our situation, α = β = 1 (the trivial character), k = 2, and wpg(z) = pg(pz) = β∗p(g)(z).
Using the above result, we compute constant term of EM,N of level N at the multiplicative cusp
i∞, and the etale cusp 0. First recall that Ep,p has constant term −1−p

24
at i∞ and −p−1

24p
at 0 (cf.

page 78 in [M77]).

Proposition 2.11. The constant term of EM,N at i∞ is either 0 if M 6= N or (−1)t+1 ϕ(N)
24

if
M = N . And its constant term at 0 is −ϕ(N)ψ(N/M)

24N(N/M)
.

Proof. Since [p]+(g)(z) = g(z) − pg(z) = (α(p) − wp)g, its constant term at i∞ (resp. at 0)
is (1− p)a0(g) (resp. 1

p
(p− 1)b0(g)), where a0(g) (resp. b0(g)) is the constant term of g at i∞

(resp. at 0). Moreover, because [p]−(g)(z) = g(z)− g(pz) = 1
p
(β(p)p−wp)g, its constant term

at i∞ (resp. at 0) is 0 (resp. 1
p2

(p− 1)(p+ 1)b0(g)). Thus, the result follows by induction. �
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2.3. The cuspidal group of J0(N). Let Pn be the cusp corresponding to ( 1
n ) as in [Og74]. (It

corresponds to 1
n

in P1(Q), so P1 = 0 and PN = i∞.) Then the cusps of X0(N) are those
of the form Pn for all possible positive divisors n of N . The cuspidal group of J0(N) is the
group generated by all these cusps. We introduce some special elements of the cuspidal group
of J0(N).

Definition 2.12. As in the previous section, let N =
t∏
i=1

pi and M =
s∏
j=1

pj for some 1 ≤ s ≤ t.

We define

CM,N :=
∑
n|M

(−1)ω(n)Pn = P1 − (
s∑
i=1

Ppi) + · · ·+ (−1)sPM ∈ J0(N),

where ω(n) is the number of distinct prime divisors of n. And we denote by 〈CM,N〉 the cyclic
subgroup of J0(N) generated by CM,N .

Proposition 2.13. On the group 〈CM,N〉, Upi acts by 1 for 1 ≤ i ≤ s and Upj acts by pj for
s < j ≤ t. For any prime r not dividing N , Tr acts by r+ 1 on 〈CM,N〉. The order of 〈CM,N〉 is
the numerator of ϕ(N)ψ(N/M)

3
up to powers of 2.

Proof. First, recall that for a prime divisor p of N , Up + wp acts on J0(N) by α∗p ◦ βp,∗, where
αp and βp are the two degeneracy maps

X0(N)
αp //

βp

// X0(N/p)

and wp is the Atkin-Lehner involution. (See Remark 2.2.) For some D | N with p - D,
αp,∗(PD) = αp,∗(PpD) = βp,∗(PD) = βp,∗(PpD) = PD. And α∗p(PD) = pPD + PpD, β∗p(PD) =
PD + pPpD. Moreover wp(PD) = PpD, wp(PpD) = PD. (cf. §5 in [R89].)

Let p = pi for some 1 ≤ i ≤ s. Then βp,∗(CM,N) = 0, hence (Up + wp)(CM,N) = α∗p ◦
βp,∗(CM,N) = 0. Since wp(CM,N) = −CM,N , Up(CM,N) = CM,N .

Let q = pj for some s < j ≤ t. Then

wq(CM,N) = Pq − (
s∑
i=1

Pqpi) + (
s∑
i<j

Pqpipj) + · · ·+ (−1)sPqM(=: C
(q)
M,N)

and βq,∗(CM,N) = CM,N/q. Thus,

(Uq + wq)(CM,N) = α∗q(CM,N/q) = qCM,N + C
(q)
M,N = qCM,N + wq(CM,N),

so Uq(CM,N) = qCM,N .
Next, let r - N be a prime. Then Tr = αr,∗ ◦ β∗r on J0(N), where αr and βr are the two

degeneracy maps

X0(Nr)
αr //

βr

// X0(N).

For any D | N , β∗r (PD) = PD + rPrD, so αr,∗ ◦ β∗r (PD) = (r + 1)PD. Thus, Tr(CM,N) =
(r + 1)CM,N .

Finally, we compute the order of CM,N up to powers of 2. If p = pi for some 1 ≤ i ≤ s, then

[p]+(CM/p,N/p) := (α∗p − β∗p)(CM/p,N/p) = (p− 1)CM,N .

If p = pj for some s < j ≤ t, then

[p]−(CM,N/p) := (pα∗p − β∗p)(CM,N/p) = (p2 − 1)CM,N .

Let γ : J0(N/p)
2 → J0(N), where γ(x, y) = α∗p(x) + β∗p(y). Then, the kernel of γ is

the antidiagonal embedding of the Shimura subgroup of J0(N/p) by Ribet [R84]. Thus, the
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restriction of γ to the cuspidal group is injective up to 2-torsion points because the cuspidal
group is a constant group scheme and the Shimura subgroup is a multiplicative group scheme.
Hence, [p]+ and [p]− are both injective up to 2-torsion points. We prove the result on the order
of CM,N up to powers of 2 by induction on t, the number of prime divisors of N .

When t = 1, the order of Cp,p = P1 − Pp in J0(p) is equal to the numerator of p−1
12

. (cf. §11
of Chapter II in [M77]).

When t = 2, by Ogg [Og74], the orders of Cpq,pq is the numerator of (p−1)(q−1)
24

. By Chua
and Ling [CL97], the order of Cp,pq is the numerator of (p−1)(q2−1)

24
unless p ≡ 1 (mod 8) and

q = 2, and the order of Cp,2p is p−1
4

if p ≡ 1 (mod 8). Thus, the orders of Cpq,pq and Cp,pq are
the numerators of (p−1)(q−1)

3
and (p−1)(q2−1)

3
up to powers of 2, respectively.

Let N = pqr and consider the `-primary part of the cyclic group 〈Cpqr,pqr〉, say A`, for a
prime ` ≥ 3. For simplicity, we denote by num(n) the numerator of a rational number n. Since
(r− 1)Cpqr,pqr = [r]+(Cpq,pq), the order of A` divides num( (p−1)(q−1)(r−1)

3
). Hence, assume that

` | num( (p−1)(q−1)(r−1)
3

). If r 6≡ 1 (mod `), then the order of A` is equal to the `-primary part
of 〈Cpq,pq〉, so the result holds. Hence we assume that p ≡ q ≡ r ≡ 1 (mod `). Let `a (resp.
`b) be the power of ` exactly dividing num( (p−1)(q−1)

3
) (resp. r− 1). Then, since (r− 1)Cpqr,pqr

is of order num( (p−1)(q−1)
3

) up to powers of 2, 1
`
num( (p−1)(q−1)

3
)[(r − 1)Cpqr,pqr] 6= 0. In other

words, `a+b annihilates A` but `(a+b−1)A` 6= 0. Hence `a+b is the order of A` and it is the
power of ` exactly dividing num( (p−1)(q−1)(r−1)

3
). Hence, by considering all prime factors of

num( (p−1)(q−1)(r−1)
3

) except 2, we have the order of Cpqr,pqr is equal to num( (p−1)(q−1)(r−1)
3

) up
to powers of 2.

For the case Cpq,pqr, note that (r2− 1)Cpq,pqr = [r]−(Cpq,pq) and (p− 1)Cpq,pqr = [q]+(Cp,pr).
By the same method as above (by replacing r−1 andCpqr,pqr by r2−1 andCpq,pqr, respectively),
we have the desired result. The same method works for the case Cp,pqr.

The above method can be generalized to the case t > 3 and it works without further difficul-
ties. �

2.4. The Shimura subgroup of J0(N). The Shimura subgroup is the kernel of the map J0(N)→
J1(N), which is induced by the natural covering X1(N) → X0(N). Since the covering group
of X1(N) → X0(N) is (Z/NZ)×/{±1}, one of the maximal étale subcovering of X1(N) →
X0(N) is a quotient of (Z/NZ)×/{±1}, which is the Cartier dual of the Shimura subgroup.
When N is prime, Mazur discussed it on §11 of Chapter II in [M77]. (In general, see the paper
by Ling and Oesterlé [LO90].)

As before let N =
t∏
i=1

pi and ΣN be the Shimura subgroup of J0(N). By the Chinese re-

mainder theorem, (Z/NZ)∗ ' (Z/p1Z)∗ × · · · × (Z/ptZ)∗. Similarly, we can decompose the
Shimura subgroups as

ΣN ' Σp1 × · · · × Σpt .

Each Σpi corresponds to the subcovering X1(pi, N/pi) → X0(N) of X1(N) → X0(N), where
X1(A,B) is the modular curve for the group Γ1(A) ∩ Γ0(B). Note that Σpi is cyclic of order
pi − 1 up to products of powers of 2 and 3.

Proposition 2.14 (Ling-Oesterlé). On Σpi , Upi acts by 1, Upj acts by pj for j 6= i, and Tr acts
by r + 1 for primes r - N .

Proof. Ling and Oesterlé proved that Tp acts on Σ by p for primes p | N . (See Theorem 6 in
[LO90].) In our case, since Σpi has order dividing pi−1, the result follows from their work. �
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2.5. Component group of J0(N). The component group of J0(N) for square-free level N is
explained in the appendix of [M77]. Let N = pM , (p,M) = 1, and J := J0(N). Assume that
M is square-free. Then, by results of Deligne-Rapoport [DR73] and Raynaud [Ra70], JFp is
an extension of a finite group Φp(J), the component group of JFp , by a semiabelian variety J0,
the identity component of JFp . Moreover J0 is an extension of J0(M)/Fp × J0(M)/Fp by T , the
torus of JFp .

Proposition 2.15. The order of Φp(J) is equal to (p − 1)ψ(M) up to products of powers of 2
and 3, and Φp(J) = Φ⊕A, where Φ is generated by the image of Cp,M = P1−Pp and the order
of A divides some product of powers of 2 and 3. Moreover Frobp, the Frobenius endomorphism
in characteristic p, acts by −pwp on T , where wp is the Atkin-Lehner operator defined in §2.1.

Proof. This is the main result of the appendix in [M77] by Mazur and Rapoport. Since Pp and
PN lie in the same component of the Néron model of X0(pN) over Fp, the elements P1 − Pp
and P1 − PN generate the same group Φ in their paper (loc. cit.). �

Remark 2.16. Since the Hecke action on T factors through the p-new quotient of TN (Proposi-
tion 3.7 in [R90]), Up + wp annihilates T . Therefore Frobp acts by pUp on T .

Proposition 2.17. On Φ, Up acts by 1, Uq acts by q for q | M primes, and Tr acts by r + 1 for
r - N primes. Moreover for a prime ` > 3, Φp(J)[`], the `-torsion elements in Φp(J), is equal
to Φ[`], and Φ[`] ' Z/`Z as groups if ` | (p− 1)ψ(M).

Proof. Because the reduction map is Hecke equivariant, this is an easy consequence of Proposi-
tion 2.13 and Proposition 2.15. �

Remark 2.18. Since the order of Cp,M (resp. of Φ) is ϕ(N)ψ(M) (resp. (p − 1)ψ(M)) up to
products of powers of 2 and 3, the kernel of the map 〈Cp,M〉 � Φ is of order ϕ(N/p) up to
products of powers of 2 and 3. Therefore, if ` - ϕ(N/p) and ` > 3, the order ` subgroup of
〈Cp,M〉 maps isomorphically into Φ[`] = Φp(J)[`].

3. THE INDEX OF AN EISENSTEIN IDEAL

For an ideal of TN , we call it Eisenstein if it contains Tr − r − 1 for all but finitely many
primes r not dividing the level N .

3.1. Square-free level. As before let N =
t∏
i=1

pi and M =
s∏
j=1

pj for some 1 ≤ s ≤ t. On the

p-old space of J0(N), Up satisfies the quadratic equation X2−TpX + p = 0. (See Remark 2.7.)
Hence, if p divides the level N , the eigenvalue of Up is 1 or p for (old) Eisenstein ideals. Let

IM := (Upi − 1, Upj − pj, Tr − r − 1 : 1 ≤ i ≤ s, s < j ≤ t, for all primes r - N)

be an Eisenstein ideal of TN . For simplicity, let T := TN .

Lemma 3.1. The quotient ring T/IM is isomorphic to Z/nZ for some integer n > 0.

Proof. The natural map Z → T/IM is surjective, since, modulo IM , the operators Tp are all
congruent to integers. Let F (z) :=

∑
n≥1(Tn (mod IM))xn, where x = e2πiz. We cannot have

T/IM = Z, for then F would be a Fourier expansion at i∞ of a cuspidal eigenform over C,
which contradicts the Ramanujan-Petersson bounds. Therefore T/IM ' Z/nZ for some integer
n > 0. �

We want to compute this n for understanding when the ideal m generated by ` and IM becomes
maximal. (If n and ` are relatively prime, m = T.) In §4, we handle the case when ` > 3 and
` - N . Thus, the following is enough for our application.
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Theorem 3.2. For a prime y - 2N ,

(T/IM)⊗Z Zy ' (Z/mZ)⊗Z Zy,

where m is the numerator of ϕ(N)ψ(N/M)
3

.

Proof. Let T/IM ' Z/nZ and y - 2N be a prime. Let n = ya × b and m = yc × d, where
(y, bd) = 1. Let J = (ya, IM). Then, T/J ' Z/yaZ and (T/IM) ⊗Z Zy ' (T/J) ⊗Z Zy '
Z/yaZ.

Since the cuspidal divisor CM,N has order m up to powers of 2 by Proposition 2.13, 〈CM,N〉
has an order yc subgroup, say D. Because IM annihilates CM,N by Proposition 2.13, it also kills
D. Thus, there is a natural surjection

T/IM ' Z/nZ � End(D) ' Z/ycZ.

Therefore yc | n = ya × b, so c ≤ a.
If a = 0, then there is nothing to prove. Assume that a > 0. We follow the argument in §5 of

Chapter II in [M77]. Let f(z) :=
∑
n≥1

(Tn (mod J))xn, where x = e2πiz. It is a cusp form over

the ring Z/yaZ. Note that 24f is a cusp form over Z/24yaZ. Let EM,N be an Eisenstein series
defined in §2.2. We divide into three cases.

(1) Case 1 : Assume that M = N . Since 24EN,N has an integral Fourier expansion at i∞,
24EN,N (mod 24ya) is a modular form over Z/24yaZ. Thus, ϕ(N) = 24(f − EN,N)
(mod 24ya) (up to sign) is a modular form over Z/24yaZ. Therefore 24ya | 2ϕ(N) (cf.
Proposition 5.12.(iii) of loc. cit.), so ya divides yc × d = m, the numerator of ϕ(N)

3
,

which implies a ≤ c. Thus, a = c and

(T/IM)⊗Z Zy ' (Z/mZ)⊗Z Zy.

(2) Case 2 : Assume that M 6= N and y > 3. Since g = (f − EM,N) (mod ya), which
is a modular form over Z/yaZ, has a Fourier expansion at i∞ equals to 0, it is 0 (on
the irreducible component of X0(N) that contains i∞) by the q-expansion principle.
Since N is invertible in Z/yaZ, we can consider a Fourier expansion at the cusp 0. On
the other hand, since f is a cusp form, its constant term at the cusp 0 is 0. Hence the
constant term of g at the cusp 0, which is ϕ(N)ψ(N/M)

24N(N/M)
by Proposition 2.11, is 0 modulo

ya. Thus, ya | m = yc × d, hence a ≤ c. So, a = c and

(T/IM)⊗Z Zy ' (Z/mZ)⊗Z Zy.

(3) Case 3 : Assume that M 6= N and y = 3. Since h = 24(f − EM,N) (mod 24 × 3a)
is a modular form over Z/(24× 3aZ), it is also a modular form over Z/3a+1Z. By the
same argument as above, the constant term of h at the cusp 0, which is ϕ(N)ψ(N/M)

N(N/M)
, is 0

modulo 3a+1. Hence, 3a+1 | ϕ(N)ψ(N/M). Therefore m = ϕ(N)ψ(N/M)
3

= 3c × d and
a ≤ c. So, a = c and

(T/IM)⊗Z Zy ' (Z/mZ)⊗Z Zy.

�

Remark 3.3. In the proof of the above theorem, we also prove that the y-primary subgroup
of 〈CM,N〉 is a free of rank one Ty/IM -module for an odd prime y not dividing N , where
Ty := T⊗ Zy.
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3.2. New Eisenstein ideals. Let N := pq. (Since we assume that N is square-free, p 6= q.)
On the new subspace of J0(N), Up acts by an involution. Thus, possible eigenvalues of Up are
either 1 or −1. Let

I := (Up − 1, Uq + 1, Tr − r − 1 : for all primes r - N)

be a (new) Eisenstein ideal of level N .
In this case, we can compute the index of I up to powers of 2. More specifically, let T/I '

Z/nZ for some n. For an odd prime y, let m = q + 1 if either y 6= 3, 3 | (p− 1), or 3 - (q + 1).
Otherwise, we set m = q+1

3
.

Theorem 3.4. Then,

(T/I)⊗Z Zy ' (Z/mZ)⊗Z Zy.

Proof. Let n = ya×b andm = yc×d, where (y, bd) = 1. Let J = (ya, I). Then T/J ' Z/yaZ.
We divide into five cases.

(1) Case 1 : Assume that y > 3 and y 6= q. Since the order of the cuspidal divisor (p −
1)(q−1)Cp,pq = (p−1)(q−1)(P1−Pp) in J0(pq) is the numerator of q+1

3
up to powers

of 2, 〈Cp,pq〉 contains a subgroup D of order yc and it is annihilated by I . Thus, there is
a natural surjection

T/I ' Z/nZ � End(D) ' Z/ycZ.

Therefore yc | n = ya × b, especially c ≤ a because (y, b) = 1. If a = 0, then there is
nothing to prove. Assume that a > 0. Let f(z) =

∑
n≥1

(Tn (mod J))xn, where x = e2πiz.

It is a cusp form over the ring Z/yaZ. Consider 24(f −Ep,pq) (mod ya) = 24
∑
n≥1

anx
n,

whereEp,pq is the Eisenstein series in §2.2. Note that q is invertible in Z/yaZ and an = 0
for (n, q) = 1. Thus, by Mazur (Lemma 5.9 of Chapter II in [M77]), there is a modular
form g of level p over the ring Z/yaZ, such that g(xq) = 24[(f−Ep,pq) (mod ya)](x) =
24
∑
n≥1

anx
n. Computing its coefficient, we get g(x) = −24(q + 1)

∑
cnx

n, where cr =

r + 1, c1 = 1, cp = 1, and cq = q − 1. This is also an eigenform for the Hecke
operators Tr, r 6= q. Since Tp is generated by Tr for all primes r 6= q, it is genuinely
an eigenform for all Hecke operators. However, at level p, there is only one eigenform
h whose eigenvalue for Tr is r + 1 for every r 6= p up to constant multiple, and it
has an eigenvalue q + 1 for the operator Tq. Therefore if −24(q + 1) is not zero in
Z/yaZ, g = −24(q + 1)h and 24(q + 1)((q − 1) − (q + 1)) = 0 in Z/yaZ, which is a
contradiction because y > 2. Therefore ya | 24(q + 1) = yc × 24d, and hence, a ≤ c
because (y, 24d) = 1. So, a = c and

(T/I)⊗Z Zy ' (Z/mZ)⊗Z Zy

for primes y not dividing 6q.
(2) Case 2 : Assume that y = 3 6= q and 3 | (p− 1). Then we can find a subgroup of order

q + 1 in 〈(q − 1)Cp,q〉. So, by the same argument as above, we have c ≤ a. Assume
that a > 0. As before, f(z) =

∑
n≥1

(Tn (mod J))xn is a cusp form over the ring Z/3aZ.

Thus, 24f(z) can be regarded as a cusp form over the ring Z/(24× 3aZ), hence it is
a cusp form over the ring Z/3a+1Z. As above, 24(f − Ep,pq) (mod 3a+1) = 0 and
3a+1 | 24(q + 1) = 3c+1 × 8d. Therefore a ≤ c, so a = c and

(T/I)⊗Z Zy ' (Z/mZ)⊗Z Zy.
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(3) Case 3 : Assume that y = 3 6= q and 3 - (p − 1)(q + 1). Then, c = 0. Assume that
a > 0. Then, by the same argument as above, we have 3a+1 | 24(q + 1), which is a
contradiction. Therefore a = 0 and

(T/I)⊗Z Zy ' (Z/mZ)⊗Z Zy ' 0.

(4) Case 4 : Assume that y = 3 6= q, 3 - (p − 1) and 3 | (q + 1). Then we can find a
subgroup of order m = q+1

3
in 〈(p− 1)(q− 1)Cp,q〉. By the same argument as above, we

have c ≤ a. Assume that a > 0. As above, g = 24(f − Ep,pq) (mod 3a+1) = 0, so it
is zero on the irreducible component of X0(pq)/F3 containing i∞. Since q is invertible
in Z/3a+1Z, a q-etale cusp Pp lies in the same component as i∞. Hence, the constant
term of the Fourier expansion of g at Pp is 0 modulo 3a+1, which is − (p−1)(q2−1)

q2
. (The

computation follows from Proposition 2.10.) Hence, 3a+1 | (q + 1) = 3c+1 × d since
(3, q(p− 1)(q − 1)) = 1. Therefore a ≤ c, so a = c and

(T/I)⊗Z Zy ' (Z/mZ)⊗Z Zy.
(5) Case 5 : Assume that y = q > 2. Let m := (y, I) be an Eisenstein ideal of charac-

teristic y. Assume that m is maximal. If m is new, then the associated mod y Galois
representation ρm is isomorphic to 1 ⊕ χ, where χ is the mod y cyclotomic character.
(cf. Proposition 2.1 in [Y14].) By considering the image of a decomposition group of
Gal(Q/Q) at q, we have ρm(Frobq) ≡ 1 + q ≡ −(1 + q) (mod m), where Frobq is
an arithmetic Frobenius of Gal(Q/Q) at q. Therefore, q ≡ −1 (mod y), which is a
contradiction. Thus, m is old. Since there is no Eisenstein ideals of characteristic y at
level q, m is q-old and y divides the numerator of p−1

12
. Since on the q-old space, the

eigenvalue of Uq is either 1 or q and Uq ≡ −1 (mod m), q ≡ −1 (mod y), which is a
contradiction. Therefore m is not maximal. In other words,

(T/I)⊗Z Zy ' (Z/mZ)⊗Z Zy ' 0.

�

Remark 3.5. In the last part of proof, we cited the result in the paper [Y14]. Even though the
author presented only the case ` 6= q, the method can be generalized to the case ` = q. In fact,
Ribet presented a proof of the case when ` = q as well [R08]. In particular, he proved that
T` ≡ 1 (mod m) for an Eisenstein maximal ideal m of residue characteristic ` (Lemma 1.1 in
[R08]).

Remark 3.6. In the proof of the above theorem, we also prove that the y-primary subgroup of
〈(p− 1)(q − 1)Cp,pq〉 is a free of rank one Ty/I-module for primes y > 3.

By the same argument as above (in particular, the method used in the proof of Case 1), we
can prove the following.

Theorem 3.7. Let N = Mq, (M, q) = 1, and y - 6N . Let I = (Up − 1, Uq + 1, Tr − r −
1 : for all primes p |M, for all primes r - N). Then,

(T/I)⊗Z Zy ' (Z/(q + 1)Z)⊗Z Zy.

4. MULTIPLICITY ONE

4.1. Square-free level. As before let N =
t∏
i=1

pi and M =
s∏
j=1

pj for some 1 ≤ s ≤ t. Let

T := TN and J := J0(N). For an ideal I ⊆ T, we define the kernel of I for J as follows,

J [I] := {x ∈ J0(N)(Q) : Tx = 0 for all T ∈ I}.
Since T acts faithfully on J , J [m] 6= 0 for a maximal ideal m.
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As we explained in the introduction, for a non-Eisenstein maximal ideal m, there is a notion
of multiplicity. On the other hand, there is no natural one for an Eisenstein ideal m. Instead, we
define it as follows.

Definition 4.1. Multiplicity one holds for m if dimT/m J [m] = 2.

In contrast to the non-Eisenstein case, the multiplicity one question for an Eisenstein ideal
m has not been discussed much before. Mazur [M77] proved that when N is prime, J [m] '
Z/`Z⊕ µ` for an Eisenstein maximal ideal m of residue characteristic ` ≥ 3.

Assume that ` > 3 is a prime and (`,N) = 1. Let m := (`, IM), where

IM := (Upi − 1, Upj − pj, Tr − r − 1 : 1 ≤ i ≤ s, s < j ≤ t, for all primes r - N).

By the result of Theorem 3.2, m is maximal if and only if ` | ϕ(N)ψ(N/M). Thus, we assume
that ` | ϕ(N)ψ(N/M). If pj ≡ 1 (mod `) for some s < j ≤ t, then m = (`, IM×pj). Thus, we
further assume that pj 6≡ 1 (mod `) for all s < j ≤ t. So, we have s0(m) = s, 1 ≤ s0(m) ≤ t,
and 0 ≤ s(m) ≤ s0(m). (For the definition of notation, see the introduction.)

Let SN be the set of prime divisors of N and let Sm be the set of primes at which J [m] is
ramified. Then, Sm ⊆ SN ∪ {`} by Igusa and $`(Sm) ≤ $`(SN).

Theorem 4.2 (Multiplicity one). Assume one of the following.
(1) $`(SN) = 1.
(2) t = s+ 1 and ` - ϕ(N).

Then multiplicity one holds for m, i.e., J [m] is of dimension 2 over T/m.

Proof. We follow Mazur’s idea in his paper [M77] to analyze J [m].
(1) Assume that $`(SN) = 1. We divide into three cases.

(a) Case 1 : Assume that s(m) = 0. Then, ΣN [m] = 0 but 〈CM,N〉[m] ' Z/`Z as
Galois modules because CM,N ∈ J(Q). Since the m-adic Tate module TamJ :=
lim
←n

J [mn] is of rank 2 over Tm := lim
←n

T/mn (Lemma 7.7 of Chapter II in [M77]),

the dimension of J [m] over T/m is at least 2. All Jordan-Hölder factors of J [m] are
either Z/`Z or µ` (cf. Proposition 14.1 of Chapter II in [M77]). Moreover, J [m] can
have at most one Z/`Z as its Jordan-Hölder factor by the q-expansion principle. (cf.
Corollary 14.8 of Chapter II in [M77], note that T` − 1 ∈ m, hence, it is ordinary.
See also Lemma 2.7 in [CS08].) Since 〈CM,N〉[m] ' Z/`Z, Z/`Z ⊆ J [m]. Thus,

0→ Z/`Z→ J [m]→ A→ 0,

where A is a multiplicative group such that all its Jordan-Hölder factors are µ`.
Since A is annihilated by Tr − r − 1 for all but finitely many primes r, by the
theorem of constancy (Lemma 3.5 of Chapter I in [M77]), A ' µ`

⊕r for some
r ≥ 1. Since the Shimura subgroup ΣN is a maximal multiplicative subgroup of
J by Vatsal (Theorem 1.1 in [Va05]) and ΣN [m] = 0, µ` * J [m]. Let S0 =
SN ∪ {`} and E := ExtS0(µ`,Z/`Z) be the group of extensions of µ` by Z/`Z that
are annihilated by ` and are unramified outside S0. By Brumer-Kramer (Proposition
4.2.1 in [BK14]), the dimension of E over F` is $`(S0) = $`(SN), which is 1 by
assumption. (It is generated by a non-trivial extension only ramified at a prime ` and
p such that p ≡ ±1 (mod `).) Assume that dim J [m] ≥ 3, then it has a submodule
V of dimension 3 that is a nontrivial extension of µ` ⊕ µ` by Z/`Z. Let α (resp. β)
be a natural inclusion of µ` into the first (resp. second) component of µ` ⊕ µ`,

0 // Z/`Z // V // µ` ⊕ µ` // 0

0 // Z/`Z // W //

α

OO

β

OO

µ` //

α

OO

β

OO

0.
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Then α∗V and β∗V are two elements in E, which is of dimension 1. Thus, there
are a, b ∈ F` such that aα∗V + bβ∗V = 0. Let γ = aα + bβ, then µ` ⊆ γ∗V ⊆ V ,
which is a contradiction. Therefore dim J [m] = 2.

(b) Case 2 : Assume that s(m) = 1 but s0(m) = s > 1. Then the same argument as
above holds since ΣN [m] = 0.

(c) Case 3 : Assume that s(m) = s0(m) = 1. Let p = p1 ≡ 1 (mod `). Note that
ΣN [m] ' µ`, hence, µ` ⊆ J [m] but µ` ⊕ µ` * J [m] from the assumption. Let
J [m] be an extension of µ`⊕r by Z/`Z for some r. Let Ip be an inertia subgroup
of Gal(Q/Q) at p. By a well known theorem of Serre-Tate [ST68], the kernel of
m in the mod p reduction of J may be identified with J [m]Ip , the group of Ip-
invariants. Since ` - ϕ(N/p) and the component group Φp of J/Fp is generated by
the image ofCp,N = P1−Pp up to 2-, 3-primary groups, 〈Cp,N〉[m] ' Z/`Z ⊆ J [m]
maps isomorphically into Φp[m]. (See Remark 2.18.) Thus, we can copy Mazur’s
argument on page 125-126 of [M77]. Thus, there is an exact sequence

0 // Z/`Z // J [m]Ip // (µ`
⊕r)Ip = µ`

⊕r // 0.

Therefore J [m] is unramified at p and p 6∈ Sm. Thus, $`(Sm) = 0. If dim J [m] ≥ 3,
then it contains a non-trivial extension of µ` by Z/`Z, which is annihilated by ` and
is unramified outside Sm. However, the dimension of ExtSm(µ`,Z/`Z) is$`(Sm) =
0, which is a contradiction. Hence dim J [m] = 2 and J [m] ' Z/`Z⊕ µ`.

(2) Let q = pt for simplifying notation. Since ` | ϕ(N)ψ(q), q ≡ −1 (mod `). As in §2.5,
let J0, Φq, and T denote the identity component, the component group, and the torus of
J/Fq , respectively. Then, by Proposition 2.17, Φq[m] = 0. Since on T [m], Frobq acts by
qUq ≡ 1 (mod `) and q ≡ −1 (mod `), T [m] cannot contain µ`. Thus, dimT [m] ≤ 1.
Since ` - ϕ(N), the index of the ideal IN/q = (Upi − 1, Tr − r − 1 : 1 ≤ i ≤
s, for all primes r - N/q) of TN/q is prime to `. Therefore J0(N/q)2[m] = 0, which
implies that J/Fq [m] ' J [m]Iq is at most of dimension 1 over T/m ' F`. Since J [m]
is an extension of µ`⊕r by Z/`Z for some r ≥ 1, J [m]Iq is at least of dimension r, i.e.,
J [m] is of dimension 2.

�

Remark 4.3. Because we assume that pj 6≡ 1 (mod `) for a prime s < j ≤ t, unramifiedness of
J [m] at p in the third case of the proof of (1) follows from the assumption s = 1 only.

By using a similar argument as above we can prove a bound of the dimension of J [m].

Theorem 4.4. We have

max{1 +$0(m), 2} ≤ dim J [m] ≤ 1 +$0(m) +$`(Sm).

Proof. If s(m) < s0(m), ΣN [m] = 0 by Proposition 2.14. Thus, µ` * J [m] but Z/`Z ⊆ J [m].
Let

0 // Z/`Z // J [m] // µ`
⊕r // 0

0 // Z/`Z // Wk
//

ik

OO

µ` //

ik

OO

0,

where Wk is the pullback of J [m] by the map ik : µ` → µ`
⊕r, which is an embedding into

the k-th component for 1 ≤ k ≤ r. Then Wk is an extension in E = ExtSm(µ`,Z/`Z). If
r > $`(Sm) = dimE, the extensions Wk for all 1 ≤ k ≤ r are linearly dependent over F`.
Thus, J [m] contains µ`, which is a contradiction. Therefore dim J [m] = 1 + r ≤ 1 +$`(Sm).
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If s(m) = s0(m) = s, then $0(m) = s and

ΣN [m] '
s⊕
i=1

Σpi [m] ' µ`
⊕s

by Proposition 2.14. Thus, dim J [m] ≥ 1 + $0(m). Let J [m] = µ`
⊕s ⊕ K. Then µ` * K,

Z/`Z ⊆ K, and K is an extension of µ`⊕r by Z/`Z. By the same argument as above, if
dimK > 1 + $`(Sm) then K contains µ`, which is a contradiction. Therefore dim J [m] =
s+ dimK ≤ s+ 1 +$`(Sm). �

4.2. More on level pq. Let N = pq, p = p1 and q = p2. (Hence t = 2.) Then s = 1 or s = 2.
Let SN := {p, q}, T := Tpq and J := J0(pq).

4.2.1. Case s = 1. Since s = 1, assume that q 6≡ 1 (mod `) and ` | (p − 1)(q2 − 1). Let
m := (`, Up − 1, Uq − q, Tr − r − 1 | for all primes r - pq).

Theorem 4.5. Then,

(1) In all cases below, J [m] is unramified at p.
(2) If p 6≡ 1 (mod `), dim J [m] = 2.
(3) If p ≡ 1 (mod `) and q 6≡ −1 (mod `), dim J [m] = 2.
(4) Assume that p ≡ 1 (mod `) and q ≡ −1 (mod `).

(a) If J [m] is unramified at q, then dim J [m] = 2.
(b) If J [m] is ramified at q, then dim J [m] = 3.

Proof. (1) This follows from Remark 4.3.
(2) If p 6≡ 1 (mod `), since ` | (p − 1)(q2 − 1), q ≡ −1 (mod `). This holds by Theorem

4.2(2) since ` - ϕ(pq).
(3) Assume that p ≡ 1 (mod `) and q 6≡ −1 (mod `). Therefore this is true by Theorem

4.2(1) since $`(SN) = 1.
(4) Since p ≡ 1 (mod `), Σpq[m] = Σp[m] ' µ`. Thus, J [m] contains µ` but µ`⊕µ` * J [m].

(a) Since J [m] is unramified at both p and q, it is unramified everywhere, in other words,
it is a direct sum of Z/`Z and µ`⊕r. Hence dim J [m] = 2.

(b) In this case, s(m) = 1 = s0(m) = $0(m) and $`(Sm) ≤ 1 since J [m] is unram-
ified at p. By Theorem 4.4, dim J [m] ≤ 3. We know that J [m] contains Z/`Z
and µ` from the cuspidal group and the Shimura subgroup, respectively. Hence,
dim J [m]Iq ≥ 2. Since J [m] is ramified at q, dim J [m] = 3.

�

Remark 4.6. Let q ≡ −1 (mod `). Note that J [m] does not depend on p if p 6≡ 1 (mod `). It is
a (unique) non-trivial extension of µ` by Z/`Z, which is annihilated by ` and is ramified only at
q (and `).

Example 4.7. In the case (4), we can compute the dimension of J [m] using SAGE [SAGE].
Up to 100, dim J [m] = 3 only when (p, q) = (41, 19), (61, 79) for ` = 5 and (p, q) =
(29, 97), (43, 13), (43, 41) for ` = 7. Thus, we know that J [m] is ramified at q in each of
those cases.

Remark 4.8. The structure of J0(43 × 13)[m] for an Eisenstein m of residue characteristic 7 is
studied by Calegari and Stein [CS08]. We proved their result about its ramification (at 13) from
the dimension computation. By Theorem 4.5(1), we know that it is unramified at 43.
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4.2.2. Case s = 2. Let m := (`, Up − 1, Uq − 1, Tr − r− 1 : for all primes r - pq). Since m
is maximal if and only if ` | (p− 1)(q − 1), assume that p ≡ 1 (mod `).

Theorem 4.9. Then,
(1) If q 6≡ ±1 (mod `), dim J [m] = 2 and J [m] is ramified at p.
(2) Assume that q ≡ −1 (mod `). Then J [m] is ramified at p.

(a) If J [m] is unramified at q, then dim J [m] = 2.
(b) If J [m] is ramified at q, then dim J [m] = 3.

(3) If q ≡ 1 (mod `), then dim J [m] is either 4 or 5.

Proof. Since p ≡ 1 (mod `), there is the Eisenstein maximal ideal mp of level p of residue
characteristic ` and J0(p)[mp] ' Z/`Z⊕ µ` by Mazur (Corollary 16.3 of Chapter II in [M77]).

(1) If q 6≡ ±1 (mod `), by Theorem 4.2(1), dim J [m] = 2.
(2) Assume that q ≡ −1 (mod `). Then Σpq[m] = 0, in other words, µ` * J [m].

(a) Assume that J [m] is unramified at q. In this case, s(m) = 1 < s0(m) = 2 and
$`(Sm) ≤ 1. Therefore dim J [m] = 2 by Theorem 4.4 and J [m] is ramified at p
(and `).

(b) Assume that J [m] is ramified at q. Let T , J0 be the torus, the identity component of
J/Fq , respectively. Then is an exact sequence

0 // T // J0
π

// J0(p)× J0(p) // 0

A := J0(p)× J0(p)

α/Fq

OO

g

55

and g = π ◦ α/Fq is ( 1 Ver
Ver 1 ) , where Ver is the Verschiebung morphism in char-

acteristic q (Lemma 1.1 in [R90a]). Since J0(p)[mp] ' Z/`Z ⊕ µ` and A[m] =
{(x,−x) : x ∈ J0(p)[mp]}, by g, {(x,−x) : x ∈ Z/`Z} maps injectively to
J0(p)

2[m]. (And {(x,−x) : x ∈ µ`} maps 0 by α/Fq .) Thus, the image of π is
at least 1-dimensional. Since J [m] is ramified at q, m is q-new, hence, T [m] 6= 0
since Tq-new, the q-new quotient of T, acts faithfully on T . Therefore dim J [m]Iq is
at least 2-dimensional. Since the dimension of J [m] is at most 3 by Theorem 4.4,
it is 3. Moreover if it is unramified at p, then $`(Sm) ≤ 1 and $0(m) = 0. So,
by Theorem 4.4, dim J [m] = 2, which is a contradiction. Therefore J [m] is also
ramified at p.

(3) Assume that q ≡ 1 (mod `). Then Σpq[m] ' Σp[m] ⊕ Σq[m] ' µ` ⊕ µ` ⊆ J [m]. By
the result of Ribet [Y14], m is new. Thus, Jnew[m] is non-trivial, where Jnew is the new
subvariety of J . By the same argument about the Tate module of J , we can prove that
Jnew[m] is at least of dimension 2. Since Up+wp acts by 2 on Σq[m], it is an isomorphism
because ` is odd. Moreover, since Up+wp and Uq+wq annihilate Jnew, Σq[m]∩Jnew = 0.
Similarly, we have Σp[m] ∩ Jnew = 0. Thus, dim J [m] ≥ 2 + 2 = 4. By Theorem 4.4,
the result follows.

�

Corollary 4.10. If q ≡ −1 (mod `) but q is not an `-th power modulo p, then dim J [m] = 2.

Proof. By Ribet [Y14], if q is not an `-th power module p, then m is not new. Since q ≡
−1 (mod `), there is no Eisenstein maximal ideal of level q, hence m is q-old, in other words,
J [m] is unramified at q. Thus, this follows from the case (2)(a) of Theorem 4.9. �

Example 4.11. In the case (2)(resp. (3)) of Theorem 4.9, the computation with SAGE [SAGE]
suggests that dim J [m] = 2 (resp. dim J [m] = 5).

Remark 4.12. The above examinations are now proved by Ribet and the author [RY14].
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