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Abstract—The review of the requirements of different cloud 
applications identified the need to consider communication 
processes explicitly and equally to the computing tasks. Following 
this observation, we propose a new communication-aware model 
for cloud computing applications, called CA-DAG. This model is 
based on Directed Acyclic Graphs (DAGs) that in addition to 
computing vertices include separate vertices to represent 
communications. Such a representation allows making separate 
resource allocation decisions, assigning processors to handle 
computing jobs and network resources for information 
transmissions, such as application database requests. 

Keywords—Cloud computing, communication awareness, 
resource allocation, scheduling 

I. INTRODUCTION

Cloud computing is an emerging paradigm for providing 
services and solving large-scale problems in science, 
engineering, and commerce. The initial challenges of cloud 
computing – how to provide a service, how to manage multiple 
virtual machines on different systems – have been resolved to 
the first degree. Therefore, researchers can now address the 
issues that will allow more efficient use of the resources. The 
use of cloud resource management is far from ubiquitous. This 
is due to the fact that scheduling and mapping decisions have 
to take into account the myriad standards, procedures, and 
devices in a highly dynamic environment. As a consequence, 
resource management procedures must be able to adapt to 
changes in state and data communication requirements to meet 
their desired QoS constraints as traditional approaches to 
resource optimization become insufficient. 

The scheduling of jobs on multiprocessors is generally well 
understood and has been studied for decades. Many research 
results exist [2], [6]. Some of them provide theoretical insights 
while others give hints for practical implementation. However, 
the communication-aware scheduling problems that require an
availability of communication resources are rarely addressed. 
The communication properties are either completely ignored or 
highly generalized and weakly captured by current task models 
and scheduling approaches. Unfortunately, it may result in 
inefficient cloud infrastructure and communication media 
utilization. 

In the classical scheduling, the communication system 
modeled either as homogeneous completely connected network 
[1], which assumes constant communication delays, or 
heterogeneous, where delays inside a cluster of processors are 
smaller than that between clusters. Moreover, communication 

delays can be completely neglected, for example, when a
predecessor task and a successor task are executed on the same 
processor [2]. This is known as the locality assumption. The 
essential property of such models is that task duplication can 
avoid communication delays. In fact, there are only few 
scheduling solutions available that take into account large 
communication delays [3], [4]. The most widely used 
approaches to balance communication delays and processing 
times are task clustering, using critical path analysis or 
decomposition of the precedence task graph [4]. 

Cloud applications and services can be represented with 
workflows, defined as a composition of tasks with precedence 
constraints, and modeled by DAGs. The vertices of a DAG 
represent the amount of computing job that has to be processed 
for successful execution of a task, while the edges define 
precedence constraints. Such a workflow model works well for 
HPC applications [5], but fails in the cloud where 
communication processes often become a bottleneck. Several 
researchers proposed to adapt the standard DAG model by 
either allowing vertices to represent both computing and 
communication requirements of a task [6] or by associating 
edges with the communications performed by the tasks [7]. 
However, both models appeared to have shortcomings 
analyzed in this paper. The first model fails to make distinction 
between the computing and communication jobs of a task 
preventing their proper scheduling on fundamentally different 
resources: processors and communication network. The latter 
approach representing communication work with edges does 
not allow a single communication process precede two 
computing tasks as a single edge cannot lead to two different 
vertices in a DAG. 

In this paper, we define the communication-aware model of 
cloud applications, called CA-DAG. It allows making separate 
resource allocation decisions, assigning processors to handle 
computing jobs and network resources for information 
transmissions, such as application database requests. It is based 
on DAGs that in addition to computing vertices include 
separate vertices to represent communications. The proposed 
communication-aware model creates space for optimization of 
many existing solutions to resource allocation as well as 
developing completely new scheduling schemes of improved 
efficiency. 

The contribution synopsis of the paper is as follows. 
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� Analysis of communication requirements of different 
cloud applications and motivation of need for 
communication awareness in resource allocation. 

� Definition of new communication-aware model for 
cloud applications. 

� Definition of properties of communication tasks. 

� Analysis of the impact of the proposed communication-
aware model onto existing resource allocation solutions 

� Numerical comparison and validation of the proposed 
model. 

The rest of the paper is structured as follows: Section II 
gives motivation for communication awareness in task 
scheduling reviewing different cloud applications and 
analyzing existing models, Section III introduce the concept of 
communication awareness and the CA-DAG model, Section IV 
discusses the properties of communication vertices, Section V 
presents performance comparison, while Section VI concludes 
the paper with a summary and an outlook of future work on the 
topic. 

II. NEED FOR COMMUNICATION AWARENESS

Most of the cloud computing applications require the 
availability of communication resources for their operations. 
Table I presents the classification of cloud computing 
applications according to the key factors determining their 
performance, namely: (a) computing load, (b) communication 
bandwidth requirement, (c) tolerance to high communication 
delays, (d) degree of interactivity, and (e) storage usage. More 
details on the cloud application requirements can be obtained 
from [8]. All of the surveyed cloud applications impose 
communication requirements in terms of the network 
bandwidth, delay, or both. The only exception is HPC, which is 
predominantly dependent on the computing power. 
Applications, such as video streaming, cloud storage, and cloud 
backup require high bandwidth to transfer large amounts of 
data to or from the end users, while performing almost no 
computations. Other applications, such as voice conferencing, 
produce very light traffic load on the network, but require tight 
delay constraints, as imposed by the audio codec, and limits of 
human delay perception [9]. The cloud applications located in 
the top half of the Table I, with cloud gaming and video 
conferencing being the leaders, impose tight constraints on 
both the network bandwidth and the delay. 

The availability of the communication resources becomes 
crucial and determines how cloud applications interact with the 
end users. Indeed, most of the cloud applications process 
requests from and deliver results to many parts of the Internet. 
In addition to these external communications, cloud 
applications interact among themselves producing internal to 
the datacenter traffic, which may account for as much as 75% 
of the total traffic [10].

Current models of cloud applications rely mostly on the 
HPC concepts [5]. These models are based on DAGs that are 
formed of the collection of vertices, each representing a 
computing task, and directed edges, which show the relations 
between the tasks. Such models perfectly fit to the 
computationally intensive HPC applications, but fail for most 
part of cloud applications, where communications must be 
taken into account as well. Several researchers have realized 
this shortcoming and proposed adapting the standard DAG 
model by either allowing vertices to represent both computing 

and communication requirements of a task (communication-
unaware model) or associating edges with the communications 
performed tasks (edges-based model). Both approaches have 
significant drawbacks that we detail below. 

Communication-unaware model: Joining computing and 
communication demands of a task together, and representing 
them as a single vertex [6], as represented in Fig. 1 (a), makes 
it almost impossible to schedule the task execution properly. 
Let us consider a computing task that requires information 
from a database as an input. The delay of sending and handling 
a database query as well as receiving a reply can be 
significantly beyond several milliseconds [11], which is 
comparable with the time the search engines return results. 
During this time the computing work, being scheduled for 
execution, stays on hold waiting for input data. For the DAG 
example presented in Fig. 1 (a), we could ask: How many 
processors or cores should be used to schedule Tasks 2 and 3 in 
parallel? It may be enough to allocate a single core and share it 
in time, i.e., perform computing for the Task 2, while Task 3 
waits for the input, and process Task 3, while Task 2 is sending 
its output. However, to answer this question properly, a precise 
knowledge of the communication patterns of both tasks should 
be available. There is another shortcoming of the reviewed 
model. Suppose Task 2 computes data, and (a) sends them to 
the network for the database update (represented by a grey 
segment of the vertex), and (b) feeds them as an input to the 
Task 4. With such a DAG representation, Task 4 will need to 
wait for the successful completion of the Task 2 including 
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Fig. 1. Modeling communications DAGs: (a) communication-unaware and 
(b) edges-based model.
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Cloud gaming H H H H L
Video conferencing H H H H L
Online office H M M H M
Collaborative editing M M H H M
CRM M M M H M
Remote desktop M M H H L
Cloud Synchronization M M M M H
Video streaming L H L L H
Cloud storage L H L L H
Cloud backup L H L L H
Voice conferencing L L H H L
Social networking M L M M M
HPC H L L L L

H: High, M: Medium and L: Low
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database update. On the other hand, the Task 4 could be started 
in parallel to the database update. 

Summarizing, having a single vertex for representing both 
computing and communication of a task makes it difficult to 
properly schedule them: computing work at the servers and 
communication work in the network. It would be logical to 
separate these two fundamentally different activities and 
schedule them separately for an efficient execution. 

Edges-based model: Associating DAG edges with task 
communications [7] is an attempt to treat communication and 
computing works differently. In this model, the DAG is 
defined as a directed acyclic graph G = (V, E, w, c), where 
vertices V represent computing tasks, and a set of edges E
describes communications between tasks. w(n) is a 
computation cost of a node n ∈ V, and c(e��) denotes the 
communication cost of the link e�� ∈ E. Task scheduling 
implies mapping tasks V on a set of processors specifying 
starting time, and duration for each task. 

The aforementioned representation of the communication 
processes with DAG edges has one significant drawback. It 
prevents two different computing tasks from using the same 
data transfer to receive an input. Consider Tasks 2 and 3, in 
Fig. 1 (b). Suppose the tasks require the same data object from 
the database to start their execution. In practice, it can be done 
with a single database query, which implies a single edge of the 
graph. However, a single edge cannot lead to two different 
vertices. As a result, either two different edges trigger two 
different queries, or an empty vertex needs to be added as a 
mean to branch a DAG edge. 

Another shortcoming of this model is in the processing of
edge scheduling. To schedule communications, the DAG edges 
E are mapped to the network links represented by the topology 
graph of the network [7]. The topology graph is assumed to 
contain accurate information on network nodes, connections 
between them, and data transfer rates of all of the links. Even if 

the connectivity information may be available for the network, 
accurate knowledge of the available network capacity remains 
mainly inaccessible [12]. This is due to the diverse nature of 
the network traffic that is produced at different layers of the 
protocol stack and mixed in the communication links and 
network routers. Part of the network traffic is broadcasted and 
not accounted for by the edge scheduling. For example, it is 
common in Address Resolution Protocol (ARP) [13], which is 
used to find the correspondence between IP and MAC address 
every time a node communicates with a new destination, or in 
Internet Control Message Protocol (ICMP) messages [14], 
which are often generated by the routers in repose to routing 
failures or congestion problems. As a consequence, knowing 
capacities of the links helps to estimate the upper bound of the 
achievable transmission rate, but what remains available to the 
edge scheduler is commonly referred as available bandwidth.
Estimating the available bandwidth has been a hot research 
topic for a number of years with many solutions proposed [12]. 
However, it is widely accepted to be difficult or even 
impossible to accurately estimate it, partially due to the 
requirement to use active probing of network links [15] and a
delay between the moment a probe senses network traffic and 
the time the measurement becomes available when the probe is 
returned. 

III. COMMUNICATION-AWARE DAG MODEL

In this section, we propose new Communication-Aware 
DAG (CA-DAG) model to overcome limitations of the 
classical DAG representations, discussed in the previous 
sections, for cloud computing applications. 

Definition of CA-DAG model: The program is 
represented by a directed acyclic graph � = (�, �, �, 	).
The set of vertices � = {�
, �
���} is composed of two 
non-overlapping subsets �
  and �
���. The set �
��
represents computing tasks, and the set �
�����
represents communication tasks of the program. 
A computing task 
�


 ∈ �
 is described by a pair (�, �
)
with the number of instructions � (amount of work) that has 
to be executed within a specific deadline �
. A 
communication task 
�


��� ∈ �
��� is described by 
parameters (�, �
���), and defined as the amount of 
information � in bits that has to be successfully transmitted 
within a predefined deadline �
���. Positive weights 
�(
�


) and 	(
�

���) represent the cost of computing at 

the node 
�

 ∈ �
, and cost of communication at the node 


�

��� ∈ �
���, respectively. 

The set of edges E consists of directed edges e��
representing dependence between node v� ∈ V, and node v� ∈
V, meaning that a task v� relies on the input from the task v�,
and v� cannot be started until this input is received. A particular 
case is when the size of this input is zero. It helps to define the 
execution order of tasks, which exchange no data. 

The main difference between communication vertices 
V���� and edges E is that V���� represents communication 
tasks occurred in the network, making them a subject to 
communication contention, significant delay, and link errors. 
Edges E represent the results of exchange between tasks 
considered to be executed on the same physical server. Such 
communications often involve processor caches. They are fast 
and the associated delay is multiple orders of magnitude lower 
than the delay in a network and can be neglected. 
Consequently, the edge set E corresponds to the dependences 
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between computing and communication tasks defining the 
order of their execution. 

Representative example: Consider a typical cloud 
computing application of webmail. On a highly abstract level 
its operation can be represented with the following four steps: 

� Step 1: Receive user request and process it. 

� Step 2: Generate personalized advertisement. 

� Step 3: Request list of email messages from database. 

� Step 4: Generate HTML page and send it to the user. 

Each of the aforementioned steps involves a 
communication process, and can be represented by the 
communication-aware DAG. 

In Fig. 2, the DAG vertices related to the computing tasks 
V� are represented by circles, while the communication related 
vertices V���� are shown using square shapes. Task 0 is 
associated with the arrival of user request and its delivery to 
computing resources over the data center network. Task 1 
processes the request, identifies a user, and prepares a database 
query. Task 2 analyses user profile to determine traits for 
targeted advertisement. During the execution of Task 3 the 
requested personalized advertisement is obtained from the 
database. 

In Task 4, the database is queried for the list of user email 
messages. When the reply is received, it is fed into Task 5 and 
Task 6 running parallel. Task 5 prepares a list of email
messages, while Task 6 determines which messages can be 
grouped into conversations. 

Finally, Task 7 combines the outputs of Task 3, Task 5, and 
Task 6, and generates a complete HTML page, which is sent to 
the user in Task 8. 

Comparison of models: Let us consider a scheduling of 
tasks with communications on a set of identical computers to 
optimize the total execution time (makespan). Computing 
resources are represented by two processors of a data center p1
and p2. The communication resources are represented with 
network links l1 and l2 interconnecting computing resources 

and database DB. Now let us see how the described webmail 
application can be represented by three types of DAGs: 
communication-unaware (Fig. 1 (a)), edges-based 
communication DAG (Fig. 1 (b)), and communication-aware 
DAG (Fig. 2). 

Fig. 3 shows several possible schedules using these 
representations for variable number of processors and 
communication links: (a) Communication-Aware DAG (CA-
DAG) model, (b) communication-unaware DAG model and 
one processor, (c) communication-unaware DAG model and 
two processor, (d) edges-based communication model and one 
network link, and (e) edges-based communication model and 
one network link. 

Fig. 3 (a) shows a possible schedule for the CA-DAG. 
Computing Tasks 1, 2, 5, 6, and 7 are scheduled on the 
processor p1, while communication-related Tasks 0, 3, 4, and 8 
are scheduled at the network link l1. Representing 
communication tasks with their own distinct vertices allows us 
to control an allocation and execution time at the network 
resources in addition to the processor unit. The processor time 
is not wasted by waiting for communications to complete. For 
example, a data base query (Task 4) is executed simultaneously 
with the analysis of a user profile (Task 2), while at the next 
step, the list of email messages (Task 5) can be generated, 
while database is being queried for a personalized 
advertisement (Task 3). Such a scheduling flexibility is 
unavailable when communication work is seen as a part of a 
task description. 

For the purpose of comparison, Fig. 3 (b) presents a 
schedule for communication-unaware DAG, depicted in Fig. 1 
(a). The inability to control allocation of network resources and 
distinguish the size of task communications, results in a larger 
makespan. The processor is often forced to wait for finishing 
communications before it can start the computational portion of 
the task. To match the makespan of the CA-DAG, an additional 
processing unit would be required (see Fig. 3 (c)). 

The DAGs that use edges to model communication 
processes (Fig. 1 (b)) cannot model certain required 
communication types. In our example, for instance, consider 
using an edge for the representation of the database request 
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(Task 4). It will make it not possible to make a single edge lead 
to two different computing tasks, Task 5 and Task 6, while 
having an additional edge will unnecessarily duplicate the 
communication effort. Fig. 3 (d) shows an example of edges-
based communication scheduling. It requires scheduling Task 4 
for two edges leading from Task 1 to Tasks 5 and 6. Matching 
the schedule of the CA-DAG model becomes possible only 
when additional network link is available, such that both edges 
can be scheduled in parallel. 

IV. PROPERTIES OF COMMUNICATION VERTICES

In this section, we discuss and explain the properties 
associated with the communication vertices in more details. 

A. Task Parallelization 
While it is often assumed that a single vertex v� represents 

a piece of computing code that cannot be further parallelized, 
the communication vertex v���� does not imply such an 
assumption.  

Communication-related tasks significantly differ from the 
computing tasks. Their most distinct property is the task 
parallelization: each communication task v�

���� ∈ V����  can 
be divided into n different independent communication tasks 
v��

����, j = 1, … , n, with a size of communication task in bits 
equals to φ(v�

����)/n. 

All of the bits that are to be transferred are independent. 
The bits can be transmitted on different paths of the network 
and reassembled in the original sequence at the destination 
node. As a result, each communication vertex v�

���� can be 
split into a number of data flows scheduled, in parallel or 
sequentially. Network paths used for their transmission can be 
either completely different (include only the sender and the 
receiver as the common nodes) or partially overlapped. The 
number of the parallel flows depends on the number of network 
paths available, the size of data, available effective bandwidth, 
and an overhead of the protocol used for communication. 

B. Multipath Routing 
In a fully deterministic system, a schedule can be computed 

by finding an association between the DAG representing cloud 
applications and topology graph representing a data center 
network, which includes network nodes, switches, and 
communication links with their transmission rates. This 
approach has a number of limitations. It assumes circuit 
switching and static routing. The above mentioned mandates a
dedicated bandwidth along a predefined network path for the 
whole duration of the communication. However, in real-life 
systems, these assumptions do not hold. Nowadays, most of the 
communication networks are packet-switched and packet 
routing decisions are taken at every hop, independently. 
Moreover, most of the data center network topologies, 
including the most commonly used fat tree topology, introduce 
multipath connections as a mean to provide resilience and load 
balancing. The availability of multiple paths is essential to
benefit from the parallelization of communication tasks 
discussed earlier in this section. 

C. Task Completion Time 
In computing, the task completion time corresponds to the 

time a processing resource is released. In packet-switched 
networks, multiple links are involved in the execution of a 
communication task. They operate at various data rates and 
sequentially process a packet transmission. 

Fig. 4 illustrates the communication delays with various 
network components. The information processing and 
packetization delay d���� as well as the queuing delay d�����
occurred at the network node. The transmission delay d��
defines a time interval of network link occupancy. For a data 
segment of the length S and link data rate r, the transmission 
delay is defined as a ratio S/r. The propagation delay d����
corresponds to the time the signal travels from a sender to a
receiver. It is defined as a ratio between the link length l����
and propagation speed of the link medium c. Combining the 
aforementioned delays together, we can compute task the 
completion delay for the network path of N hops as follows: 

�
1

( ).
N

i i i i
comm proc queue tx prop

i
d d d d d

�

� � � �� �� 	
��

The minimum communication delay will correspond to the 
system with very fast processing (d���� → 0) and empty 
buffers (d����� = 0), and will be expressed by ∑(d�� + d����). 

D. Available bandwidth 
Typically, communication resources are associated with the 

residual capacity, which is the amount of the path capacity left 
unoccupied by the traffic flowing along the path. However, in 
practice, the residual capacity corresponds to the minimum 
amount of bandwidth that a newly introduced flow can utilize.
The communication flows sharing the same path or a segment 
of a path in the network compete for bandwidth resources. 
Consequently, a newly introduced data flow, besides relying on 
the residual capacity, may also grab a share of the bandwidth 
currently used by the other flows. 

The communication protocol and its performance are two 
of the most important factors pertaining to the system 
performance. An overwhelming majority of data transmissions 
is performed using Transmission Control Protocol (TCP). It is 
the only protocol in the standard TCP/IP protocol stack able to 
guarantee both reliability and flow control. It uses a positive 
feedback loop with the receiver. Based on the feedback 
information, TCP triggers retransmissions for the packets, 
which are lost due to congestion or link errors, and adjusts 
sending rate. The sending rate is additively increased for every 
feedback message received unless a packet loss is detected. In 
the latter case, the TCP reduces its sending rate 
multiplicatively, typically by a factor of 2. 

Due to the uncertainty on the end-to-end network path and 
operational TCP dynamics, accurate calculation of a node 
sending rate becomes unrealistic making it difficult to predict 
completion time of communication tasks [12]. However, for 
the purpose of scheduling, it is important to estimate the 
boundaries for this value. 

A good estimate of the steady-state TCP performance can 
be obtained as the following [16]:

n1 n2dproc

dtx dqueue dprop

Fig. 4. Communication delays.
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� ( ) ,MSSB p
RTT p

�
�

�� 	
��

where MSS is a maximum segment size typically selected to fit 
maximum packet size, which will not trigger the fragmentation 
at the network interface card, RTT is the round-trip time 
between the sender and the receiver, and p is an error 
probability, which includes both congestion- and link-related 
packet losses. According to Eq. (2), for the RTT of 200 ms, 
which is common in Internet, typical for Ethernet MSS of 1,500 
bytes, and typical for wired links error rates in the order of 10",
the maximum achievable TCP sending rate is less than 200 
Mbps. To estimate the protocol-related overhead, we may 
consider an upper bound of the link capacity and use a more 
precise model from [17]. For a typical per-server available 
bandwidth of 300 Mbps and round-trip delay of 100 ms, the 
transmission of 500 MB data fragment using TCP protocol will 
take almost 15 seconds versus theoretical 13 seconds in case of 
raw data transmission with no protocol used. In this example, 
the overhead of TCP protocol is round 13%. 

E. Uncertainty in Data Size 
Communication actions performed by a task executed in 

data center can be classified into unidirectional and 
bidirectional. Unidirectional communications are typically 
related to the task outputs to the user or another service in data 
center. These communications have a well-defined size of the 
information that needs to be transferred. Bidirectional 
communications are related to the request-response actions 
performed by the task, such as database queries. In this regard, 
while the size of outgoing request is well-known, the amount 
of information that will be received back is often unknown. For 
example, in Fig. 2, in Task 4 the list of email messages is 
received from the database. The list can be completely empty 
or has a large size depending on the number of emails stored in 
the user mailbox. 

To cope with the uncertainty in data size of 
communications, adaptive scheduling approaches must be 
used. However, to make resource allocation efficient, it is 
important to estimate task completion delays and usage of 
network resources for such bidirectional communications. One 
of the most promising approaches is to use the statistical data 
mining approaches. Each node can include a software module, 
based on the precedent experience to estimate a query 
processing delay, the round-trip time to a database server, as 
well as the size of the data output reducing uncertainly, and 
assisting resource allocation. 

V. PERFORMANCE COMPARISON

This section presents performance evaluation results that 
confirm the benefits of the proposed CA-DAG model for 
scheduling cloud computing applications. The CA-DAG model 
is compared against communication-unaware and edge-based 
models reviewed in Section II. For the purpose of comparisons,
we first generated the application workloads according to the 
CA-DAG model. Thereafter, the obtained workloads were 
converted according to the communication-unaware and edge-
based models and scheduled with the list scheduling algorithm. 

A. System Architecture and Workload Generation 
The target system architecture is composed of a set of 

identical computing resources. The communication resources 
are represented with a shared network link (bus network),
interconnecting computing resources, and a database. The 

network topology allows only one node to communicate at a 
time, while other nodes must detain their transmissions until 
the link becomes free. 

The Winkler graph generator [18] was used to produce the 
workloads. The generator is based on random orders methods 
making the generated graphs to be representative of 
multidimensional orders. The two-dimensional orders graphs 
were generated. To achieve the aforementioned, # points were 
selected randomly in the [0;1] × [0;1] square. Each point 
becomes a node and there is an edge between two points $ and 
%. If % is greater than $, then in both directions. To generate a
large sets of graphs, the following two parameters were varied:
the number of nodes # and the number of communications. 
The graphs had a size of 20, 30, 40, and 50 nodes. Moreover,
the obtained DAGs fell into two categories according to their 
communication intensity: DAGs with occasional 
communications and DAGs with frequent communications. To 
model these categories, two probabilities representing the 
amount of communication were used: 0.3 to represent 
occasional communications and 0.7 for frequent 
communications. Moreover, to rank communications the 
Communication-to-Computation Ratio (CCR) was used. The 
CCR measure indicates whether a DAG is communication 
intensive, computation intensive or balanced. For a given 
DAG, the CCR ratio is computed by the average 
communication cost divided by the average computation cost 
on a target system. A high value of CCR indicates that the 
DAG is communication intensive. We used the following three 
values of CCR: 0.1 for computationally intensive DAGs, where 
communication is of low significance compared to the cost of 
computations, 1 for the balanced DAGs, and 2 for 
communication intensive DAGs where the significance of 
communication processes is high. There are 30 graphs 
generated for each combination input parameters, while the 
total number of generated DAGs for each application model is 
720. 

B. Scheduling Algorithm 
All of the evaluated DAG models were compared using an 

offline (deterministic) scheduling algorithm with an 
assumption of zero release times of DAGs and clairvoyant 
execution and communication time. Many offline scheduling 
algorithms exhibit good performance also in the online 
scenario. From theory, it is known that the performance bounds 
of the offline scheduling strategies can be approximated for the 
online case [19]. As the aim of this section is to compare the 
application models and not the scheduling algorithms, the same 
heuristic is employed for each of the described model. For the 
different models, list scheduling is employed. A list scheduling 
algorithm is a two-phases scheduling algorithm that maintains 
a list of all of the ready tasks of a given graph. A task is 
considered ready to be scheduled when all of its predecessors 
have been already scheduled. In the common variant of list 
scheduling, the nodes are ordered according to a priority in the 
first part of the algorithm. The task with the highest priority is 
selected. Thereafter, in the second phase, a suitable processor 
that minimizes a predefined cost function (in this case the 
processor that allows the earliest finish time of a task) is 
selected. A common priority is the task’s bottom level (blevel),
which is the length of the longest path leaving the task. The 
%&'
'& of a task is bounded from above by the length of a 
critical path. The %&'
'& of a current task is computed by 
adding the computation cost along the longest path of the task 
from the exit task (a task without successors) in the task graph 
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including the computation cost of the current task and 
excluding the communication costs. 

The %&'
'& of any task *� is recursively calculated as 
follows: 

� %&'
'&(*�) = -� + 3$456∈78

(59):%&'
'&;*<>?�� 	���

where -� denotes the execution time of task *� and @ABB(*�) is 
the set of immediate successors of task *�.

We adapted the list of scheduling algorithm to consider 
three different communication models. The algorithm 
schedules computational tasks in computing resources and 
communications in the network link. The list scheduling is 
applied under the communication-aware (CA-DAG),
communication-unaware and edge-based models, denoted by 
“CA-DAG”, “Comm-unaware DAG”, and “Edge-based DAG” 
respectively. Using the same algorithm for each of the model 
allows analyzing the impact of the model on the quality of the 
produced schedules under no influence of different scheduling 
techniques. 

C. Scheduling Criteria 
The following criteria are used to evaluate the schedule 

produced by the algorithm: approximation factor and schedule 
efficiency. Let C�DF be the maximum completion time or 
makespan of the schedule produced by the scheduling 
algorithm under a given DAG application model. The 
approximation factor [19] is defined as H = C�DF/C�DF

∗ , where 
C�DF

∗  is the optimal makespan. As it is generally not possible to 
determine the optimal makespan experimentally, we use the 
lower bound CJ�DF

∗  of the optimal makespan C�DF
∗  instead  

� C�DF
∗ ≥ CJ�DF

∗ = 3$4 Lmax(%&'
'&(*�)) ,  
∑ (O9)9PQ..,W

�
X,�� 	���

where max(%&'
'&(*�))  represents the critical path of the 
DAG without considering communication costs and m denotes 
the number of computing resources. The efficiency of the
schedule � defined as eff(�) =  

∑ (O9)9PQ..,W
YZ[\×�

 is the ratio of the 
sequential execution time of the graph to the makespan of the 
schedule by the number of computing resources. It measures 
how well-utilized the computing resources are in scheduling of 
a given application, compared to how much effort is wasted 
during communication. 

D. Results 
To summarize, a large set of randomly generated DAGs is 

scheduled by a list scheduling algorithm under the CA-DAG, 
communication-unaware, and edge-based models onto two 
configurations of a target system with four and eight 
computing nodes arranged into bus network topology. 

Approximation Factor: Fig. 5 and Fig. 6 show the 
obtained results for the approximation factor for DAGs with 
occasional and frequent communications respectively. The 
benefits of the CA-DAG model can be observed in both 
figures. For computation intensive DAGs (CCR=0.1) the 
values of approximation factor are close for all the models. 
With small CCR values the communication is less important 
than computation, and the communication awareness of CA-
DAG does not lead to significant benefits over Comm-unaware 
DAG and Edge-based DAG models. A small approximation 
factor indicates that the results of a schedule for a given 

communication DAG model are close to the lower bound. It 
can be observed that the approximation factor degrades when 
the amount of communications increases. However, for the 
CA-DAG model the degradation of the approximation factor is 

Fig. 5. Approximation factor for DAGs with occasional communications.

Fig. 6. Approximation factor for DAGs with frequent communications.

Fig. 7. Schedule efficiency for DAGs with occasional communications.

Fig. 8. Schedule efficiency for DAGs with frequent communications.
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smaller than in related models. The improvement of CA-DAG
model becomes significant for balanced (CCR=1) and 
communication intensive (CCR=2) DAGs where 
communication awareness can benefit from the increase 
amount of transmissions. 

Efficiency: Fig. 7 and Fig. 8 analyze the efficiency of the 
schedule produced by different communication models. The 
obtained efficiency confirms the results obtained with 
approximation factor. Indeed, the communication-aware 
schedules under the CA-DAG model achieve better efficiency 
for all CCRs. This is especially evident for balanced and 
communication intensive DAGs. Fig. 8 confirms that not only 
the cost of the communications is important, but also their 
amount. 

In summary, CA-DAG significantly improves the 
approximation factor and efficiency of the produced schedules. 
However, we have only conducted experiments considering a
single shared network link. Therefore, the communications are 
serialized. It would be interesting to consider more than one 
link to parallelize communications. We have also considered 
only one scheduling algorithm. The high importance of 
communication under the CA-DAG model seems to demand 
the development of more sophisticated algorithms in order to 
exploit full potential of this new model. 

VI. CONCLUSIONS

Cloud computing is an emerging paradigm where 
traditional resource allocation approaches, inherited from 
cluster computing and grid computing systems, fail to provide 
efficient performance. The main reason is that most of cloud 
applications require availability of communication resources 
for information exchange between tasks, with databases, or end 
users. Only few approaches take communication requirements 
into consideration and often in a highly abstract manner. 
Moreover, the execution environment of cloud applications is 
not known at moment of their development — the number of 
available machines, their location, their capabilities, the 
network topology, and effective communication bandwidth 
cannot be predicted in advance. The execution environment 
will also differ for every next execution of a program or a 
service. To deal with the dynamics, either software developers 
must create adaptive programs explicitly or cloud software 
environment, such as a runtime scheduling system, must adapt. 

In this paper, we propose new model for cloud computing 
applications, which overcomes shortcomings of existing 
approaches using communication awareness. It is based on a 
Directed Acyclic Graph (DAG), which along with computing 
vertices has separate vertices to represent communications. 
Such representation allows making separate resource allocation 
decisions, assigning processors to handle computing jobs and 
network resources for information transmissions. The proposed 
communication-aware model creates space for optimization of 
many existing solutions to resource allocation as well as 
developing completely new scheduling schemes of improved 
efficiency. 

The future work will be focused on developing novel 
communication-aware resource allocation solutions based on 
the proposed model, generalizing the proposed model to 
capture dynamics of virtual machines, simulations using 
GreenCloud simulator [20], and practical implementations. 
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