
CA-DAG: Communication-Aware Directed Acyclic
Graphs for Modeling Cloud Computing Applications

Dzmitry Kliazovich
University of Luxembourg

6 rue Coudenhove Kalergi, Luxembourg
dzmitry.kliazovich@uni.lu

Pascal Bouvry
University of Luxembourg

6 rue Coudenhove Kalergi, Luxembourg
pascal.bouvry@uni.lu

Johnatan E. Pecero
University of Luxembourg

6 rue Coudenhove Kalergi, Luxembourg
johnatan.pecero@uni.lu

Samee U. Khan
North Dakota State University
Fargo, ND 58108-6050, USA

samee.khan@ndsu.edu

Andrei Tchernykh
CICESE Research Center
Ensenada, B.C. Mexico
chernykh@cicese.mx

Albert Y. Zomaya
University of Sydney

Sydney, NSW 2006, Australia
a.zomaya@usyd.edu.au

Abstract—The review of the requirements of different cloud
applications identified the need to consider communication
processes explicitly and equally to the computing tasks. Following
this observation, we propose a new communication-aware model
for cloud computing applications, called CA-DAG. This model is
based on Directed Acyclic Graphs (DAGs) that in addition to
computing vertices include separate vertices to represent
communications. Such a representation allows making separate
resource allocation decisions, assigning processors to handle
computing jobs and network resources for information
transmissions, such as application database requests.

Keywords—Cloud computing, communication awareness,
resource allocation, scheduling

I. INTRODUCTION

Cloud computing is an emerging paradigm for providing
services and solving large-scale problems in science,
engineering, and commerce. The initial challenges of cloud
computing – how to provide a service, how to manage multiple
virtual machines on different systems – have been resolved to
the first degree. Therefore, researchers can now address the
issues that will allow more efficient use of the resources. The
use of cloud resource management is far from ubiquitous. This
is due to the fact that scheduling and mapping decisions have
to take into account the myriad standards, procedures, and
devices in a highly dynamic environment. As a consequence,
resource management procedures must be able to adapt to
changes in state and data communication requirements to meet
their desired QoS constraints as traditional approaches to
resource optimization become insufficient.

The scheduling of jobs on multiprocessors is generally well
understood and has been studied for decades. Many research
results exist [2], [6]. Some of them provide theoretical insights
while others give hints for practical implementation. However,
the communication-aware scheduling problems that require an
availability of communication resources are rarely addressed.
The communication properties are either completely ignored or
highly generalized and weakly captured by current task models
and scheduling approaches. Unfortunately, it may result in
inefficient cloud infrastructure and communication media
utilization.

In the classical scheduling, the communication system
modeled either as homogeneous completely connected network
[1], which assumes constant communication delays, or
heterogeneous, where delays inside a cluster of processors are
smaller than that between clusters. Moreover, communication

delays can be completely neglected, for example, when a
predecessor task and a successor task are executed on the same
processor [2]. This is known as the locality assumption. The
essential property of such models is that task duplication can
avoid communication delays. In fact, there are only few
scheduling solutions available that take into account large
communication delays [3], [4]. The most widely used
approaches to balance communication delays and processing
times are task clustering, using critical path analysis or
decomposition of the precedence task graph [4].

Cloud applications and services can be represented with
workflows, defined as a composition of tasks with precedence
constraints, and modeled by DAGs. The vertices of a DAG
represent the amount of computing job that has to be processed
for successful execution of a task, while the edges define
precedence constraints. Such a workflow model works well for
HPC applications [5], but fails in the cloud where
communication processes often become a bottleneck. Several
researchers proposed to adapt the standard DAG model by
either allowing vertices to represent both computing and
communication requirements of a task [6] or by associating
edges with the communications performed by the tasks [7].
However, both models appeared to have shortcomings
analyzed in this paper. The first model fails to make distinction
between the computing and communication jobs of a task
preventing their proper scheduling on fundamentally different
resources: processors and communication network. The latter
approach representing communication work with edges does
not allow a single communication process precede two
computing tasks as a single edge cannot lead to two different
vertices in a DAG.

In this paper, we define the communication-aware model of
cloud applications, called CA-DAG. It allows making separate
resource allocation decisions, assigning processors to handle
computing jobs and network resources for information
transmissions, such as application database requests. It is based
on DAGs that in addition to computing vertices include
separate vertices to represent communications. The proposed
communication-aware model creates space for optimization of
many existing solutions to resource allocation as well as
developing completely new scheduling schemes of improved
efficiency.

The contribution synopsis of the paper is as follows.

2013 IEEE Sixth International Conference on Cloud Computing

978-0-7695-5028-2/13 $26.00 © 2013 IEEE

DOI 10.1109/CLOUD.2013.40

277

� Analysis of communication requirements of different
cloud applications and motivation of need for
communication awareness in resource allocation.

� Definition of new communication-aware model for
cloud applications.

� Definition of properties of communication tasks.

� Analysis of the impact of the proposed communication-
aware model onto existing resource allocation solutions

� Numerical comparison and validation of the proposed
model.

The rest of the paper is structured as follows: Section II
gives motivation for communication awareness in task
scheduling reviewing different cloud applications and
analyzing existing models, Section III introduce the concept of
communication awareness and the CA-DAG model, Section IV
discusses the properties of communication vertices, Section V
presents performance comparison, while Section VI concludes
the paper with a summary and an outlook of future work on the
topic.

II. NEED FOR COMMUNICATION AWARENESS

Most of the cloud computing applications require the
availability of communication resources for their operations.
Table I presents the classification of cloud computing
applications according to the key factors determining their
performance, namely: (a) computing load, (b) communication
bandwidth requirement, (c) tolerance to high communication
delays, (d) degree of interactivity, and (e) storage usage. More
details on the cloud application requirements can be obtained
from [8]. All of the surveyed cloud applications impose
communication requirements in terms of the network
bandwidth, delay, or both. The only exception is HPC, which is
predominantly dependent on the computing power.
Applications, such as video streaming, cloud storage, and cloud
backup require high bandwidth to transfer large amounts of
data to or from the end users, while performing almost no
computations. Other applications, such as voice conferencing,
produce very light traffic load on the network, but require tight
delay constraints, as imposed by the audio codec, and limits of
human delay perception [9]. The cloud applications located in
the top half of the Table I, with cloud gaming and video
conferencing being the leaders, impose tight constraints on
both the network bandwidth and the delay.

The availability of the communication resources becomes
crucial and determines how cloud applications interact with the
end users. Indeed, most of the cloud applications process
requests from and deliver results to many parts of the Internet.
In addition to these external communications, cloud
applications interact among themselves producing internal to
the datacenter traffic, which may account for as much as 75%
of the total traffic [10].

Current models of cloud applications rely mostly on the
HPC concepts [5]. These models are based on DAGs that are
formed of the collection of vertices, each representing a
computing task, and directed edges, which show the relations
between the tasks. Such models perfectly fit to the
computationally intensive HPC applications, but fail for most
part of cloud applications, where communications must be
taken into account as well. Several researchers have realized
this shortcoming and proposed adapting the standard DAG
model by either allowing vertices to represent both computing

and communication requirements of a task (communication-
unaware model) or associating edges with the communications
performed tasks (edges-based model). Both approaches have
significant drawbacks that we detail below.

Communication-unaware model: Joining computing and
communication demands of a task together, and representing
them as a single vertex [6], as represented in Fig. 1 (a), makes
it almost impossible to schedule the task execution properly.
Let us consider a computing task that requires information
from a database as an input. The delay of sending and handling
a database query as well as receiving a reply can be
significantly beyond several milliseconds [11], which is
comparable with the time the search engines return results.
During this time the computing work, being scheduled for
execution, stays on hold waiting for input data. For the DAG
example presented in Fig. 1 (a), we could ask: How many
processors or cores should be used to schedule Tasks 2 and 3 in
parallel? It may be enough to allocate a single core and share it
in time, i.e., perform computing for the Task 2, while Task 3
waits for the input, and process Task 3, while Task 2 is sending
its output. However, to answer this question properly, a precise
knowledge of the communication patterns of both tasks should
be available. There is another shortcoming of the reviewed
model. Suppose Task 2 computes data, and (a) sends them to
the network for the database update (represented by a grey
segment of the vertex), and (b) feeds them as an input to the
Task 4. With such a DAG representation, Task 4 will need to
wait for the successful completion of the Task 2 including

1

2 3

4

1

3

Computing work of a task

Communication work of a task

Ordinary edge

Edge with task communications(a) (b)

2

4

Fig. 1. Modeling communications DAGs: (a) communication-unaware and
(b) edges-based model.

TABLE I
CLASSIFICATION OF CLOUD APPLICATIONS

Cloud application

Resource requirement

C
om

pu
tin

g

B
an

dw
id

th

Lo
w

co

m
m

un
ic

at
i

on
 d

el
ay

D
eg

re
e

of

in
te

ra
ct

iv
ity

St
or

ag
e

Cloud gaming H H H H L
Video conferencing H H H H L
Online office H M M H M
Collaborative editing M M H H M
CRM M M M H M
Remote desktop M M H H L
Cloud Synchronization M M M M H
Video streaming L H L L H
Cloud storage L H L L H
Cloud backup L H L L H
Voice conferencing L L H H L
Social networking M L M M M
HPC H L L L L

H: High, M: Medium and L: Low

278

database update. On the other hand, the Task 4 could be started
in parallel to the database update.

Summarizing, having a single vertex for representing both
computing and communication of a task makes it difficult to
properly schedule them: computing work at the servers and
communication work in the network. It would be logical to
separate these two fundamentally different activities and
schedule them separately for an efficient execution.

Edges-based model: Associating DAG edges with task
communications [7] is an attempt to treat communication and
computing works differently. In this model, the DAG is
defined as a directed acyclic graph G = (V, E, w, c), where
vertices V represent computing tasks, and a set of edges E
describes communications between tasks. w(n) is a
computation cost of a node n ∈ V, and c(e��) denotes the
communication cost of the link e�� ∈ E. Task scheduling
implies mapping tasks V on a set of processors specifying
starting time, and duration for each task.

The aforementioned representation of the communication
processes with DAG edges has one significant drawback. It
prevents two different computing tasks from using the same
data transfer to receive an input. Consider Tasks 2 and 3, in
Fig. 1 (b). Suppose the tasks require the same data object from
the database to start their execution. In practice, it can be done
with a single database query, which implies a single edge of the
graph. However, a single edge cannot lead to two different
vertices. As a result, either two different edges trigger two
different queries, or an empty vertex needs to be added as a
mean to branch a DAG edge.

Another shortcoming of this model is in the processing of
edge scheduling. To schedule communications, the DAG edges
E are mapped to the network links represented by the topology
graph of the network [7]. The topology graph is assumed to
contain accurate information on network nodes, connections
between them, and data transfer rates of all of the links. Even if

the connectivity information may be available for the network,
accurate knowledge of the available network capacity remains
mainly inaccessible [12]. This is due to the diverse nature of
the network traffic that is produced at different layers of the
protocol stack and mixed in the communication links and
network routers. Part of the network traffic is broadcasted and
not accounted for by the edge scheduling. For example, it is
common in Address Resolution Protocol (ARP) [13], which is
used to find the correspondence between IP and MAC address
every time a node communicates with a new destination, or in
Internet Control Message Protocol (ICMP) messages [14],
which are often generated by the routers in repose to routing
failures or congestion problems. As a consequence, knowing
capacities of the links helps to estimate the upper bound of the
achievable transmission rate, but what remains available to the
edge scheduler is commonly referred as available bandwidth.
Estimating the available bandwidth has been a hot research
topic for a number of years with many solutions proposed [12].
However, it is widely accepted to be difficult or even
impossible to accurately estimate it, partially due to the
requirement to use active probing of network links [15] and a
delay between the moment a probe senses network traffic and
the time the measurement becomes available when the probe is
returned.

III. COMMUNICATION-AWARE DAG MODEL

In this section, we propose new Communication-Aware
DAG (CA-DAG) model to overcome limitations of the
classical DAG representations, discussed in the previous
sections, for cloud computing applications.

Definition of CA-DAG model: The program is
represented by a directed acyclic graph � = (�, �, �,).
The set of vertices � = {�
, �
���} is composed of two
non-overlapping subsets �
 and �
���. The set �
��
represents computing tasks, and the set �
�����
represents communication tasks of the program.
A computing task
�

 ∈ �
 is described by a pair (�, �
)
with the number of instructions � (amount of work) that has
to be executed within a specific deadline �
. A
communication task
�

��� ∈ �
��� is described by
parameters (�, �
���), and defined as the amount of
information � in bits that has to be successfully transmitted
within a predefined deadline �
���. Positive weights
�(
�

) and 	(
�

���) represent the cost of computing at

the node
�

 ∈ �
, and cost of communication at the node

�

��� ∈ �
���, respectively.

The set of edges E consists of directed edges e��
representing dependence between node v� ∈ V, and node v� ∈
V, meaning that a task v� relies on the input from the task v�,
and v� cannot be started until this input is received. A particular
case is when the size of this input is zero. It helps to define the
execution order of tasks, which exchange no data.

The main difference between communication vertices
V���� and edges E is that V���� represents communication
tasks occurred in the network, making them a subject to
communication contention, significant delay, and link errors.
Edges E represent the results of exchange between tasks
considered to be executed on the same physical server. Such
communications often involve processor caches. They are fast
and the associated delay is multiple orders of magnitude lower
than the delay in a network and can be neglected.
Consequently, the edge set E corresponds to the dependences

2
Analyze user
social profile

5
Generate list of

email
messages

4
Request

Database

3
Retrieve

Personalized
Ad

7
Generate

HTML page

8
Send output

to user

Legend:

Computing task
Communication task

0
Receive User

Request

6
Group

conversations

1
Process User

Data

St
ep

 1

St
ep

 2

St
ep

 4

St
ep

 3

Fig. 2. Communications-aware DAG Model.

279

between computing and communication tasks defining the
order of their execution.

Representative example: Consider a typical cloud
computing application of webmail. On a highly abstract level
its operation can be represented with the following four steps:

� Step 1: Receive user request and process it.

� Step 2: Generate personalized advertisement.

� Step 3: Request list of email messages from database.

� Step 4: Generate HTML page and send it to the user.

Each of the aforementioned steps involves a
communication process, and can be represented by the
communication-aware DAG.

In Fig. 2, the DAG vertices related to the computing tasks
V� are represented by circles, while the communication related
vertices V���� are shown using square shapes. Task 0 is
associated with the arrival of user request and its delivery to
computing resources over the data center network. Task 1
processes the request, identifies a user, and prepares a database
query. Task 2 analyses user profile to determine traits for
targeted advertisement. During the execution of Task 3 the
requested personalized advertisement is obtained from the
database.

In Task 4, the database is queried for the list of user email
messages. When the reply is received, it is fed into Task 5 and
Task 6 running parallel. Task 5 prepares a list of email
messages, while Task 6 determines which messages can be
grouped into conversations.

Finally, Task 7 combines the outputs of Task 3, Task 5, and
Task 6, and generates a complete HTML page, which is sent to
the user in Task 8.

Comparison of models: Let us consider a scheduling of
tasks with communications on a set of identical computers to
optimize the total execution time (makespan). Computing
resources are represented by two processors of a data center p1
and p2. The communication resources are represented with
network links l1 and l2 interconnecting computing resources

and database DB. Now let us see how the described webmail
application can be represented by three types of DAGs:
communication-unaware (Fig. 1 (a)), edges-based
communication DAG (Fig. 1 (b)), and communication-aware
DAG (Fig. 2).

Fig. 3 shows several possible schedules using these
representations for variable number of processors and
communication links: (a) Communication-Aware DAG (CA-
DAG) model, (b) communication-unaware DAG model and
one processor, (c) communication-unaware DAG model and
two processor, (d) edges-based communication model and one
network link, and (e) edges-based communication model and
one network link.

Fig. 3 (a) shows a possible schedule for the CA-DAG.
Computing Tasks 1, 2, 5, 6, and 7 are scheduled on the
processor p1, while communication-related Tasks 0, 3, 4, and 8
are scheduled at the network link l1. Representing
communication tasks with their own distinct vertices allows us
to control an allocation and execution time at the network
resources in addition to the processor unit. The processor time
is not wasted by waiting for communications to complete. For
example, a data base query (Task 4) is executed simultaneously
with the analysis of a user profile (Task 2), while at the next
step, the list of email messages (Task 5) can be generated,
while database is being queried for a personalized
advertisement (Task 3). Such a scheduling flexibility is
unavailable when communication work is seen as a part of a
task description.

For the purpose of comparison, Fig. 3 (b) presents a
schedule for communication-unaware DAG, depicted in Fig. 1
(a). The inability to control allocation of network resources and
distinguish the size of task communications, results in a larger
makespan. The processor is often forced to wait for finishing
communications before it can start the computational portion of
the task. To match the makespan of the CA-DAG, an additional
processing unit would be required (see Fig. 3 (c)).

The DAGs that use edges to model communication
processes (Fig. 1 (b)) cannot model certain required
communication types. In our example, for instance, consider
using an edge for the representation of the database request

5
Generate list of

email
messages

4
Request

Database

3
Retrieve

Personalized
Ad

8
Send output

to user

0
Receive User

Request

Network Link
l1

Network Link
l1

Processor
p1

Processor
p1

4
Request

Database

3
Retrieve

Personalized
Ad

8
Send output

to user

0
Receive User

Request

Network Link
l1

Network Link
l1

Processor
p1

Processor
p1

3
Request

Database

4
Retrieve

Personalized
Ad

8
Send output

to user

0
Receive User

Request

Network Link
l1

Network Link
l1

Processor
p1

Processor
p1

Processor
p2

Processor
p2

1
Process

User Data

0
Receive User

Request

2
Analyze use

 social profile

3
Retrieve

Personalized
Ad

4
Request

Database

5
Generate list of

Email
messages

7
Generate

HTML page

8
Send output

to user

4
Request

Database

5
Generate list of

Email
messages

7
Generate

HTML page

8
Send output

to user

a)

b)

c)

1
Process User

Data

2
Analyze user
social profile

6
Group

conversations

7
Generate

HTML page

6
Group

conversations

5
Generate list of

email
messages

4
Request

Database

3
Retrieve

Personalized
Ad

8
Send output

to user

0
Receive User

Request

Network Link
l1

Network Link
l1

Processor
p1

Processor
p1

d)

1
Process User

Data

2
Analyze user
social profile

6
Group

conversations

7
Generate

HTML page

4
Request

Database

2
Analyze use

 social profile

3
Retrieve

Personalized
Ad

1
Process

User Data

0
Receive User

Request

6
Group

conversations

5
Generate list of

email
messages

4
Request

Database

3
Retrieve

Personalized
Ad

8
Send output

to user

0
Receive User

Request

Network Link
l1

Network Link
l1

Processor
p1

Processor
p1

1
Process User

Data

2
Analyze user
social profile

6
Group

conversations

7
Generate

HTML page

Network Link
l2

Network Link
l2

4
Request

Database

e)

Fig. 3. Schedules for a) communication-aware DAG (CA-DAG) model, b) communication-unaware DAG model and one processor, c) communication-unaware
DAG model and two processors, d) edges-based communication model and one network link, and e) edges-based communication model and two network links.

280

(Task 4). It will make it not possible to make a single edge lead
to two different computing tasks, Task 5 and Task 6, while
having an additional edge will unnecessarily duplicate the
communication effort. Fig. 3 (d) shows an example of edges-
based communication scheduling. It requires scheduling Task 4
for two edges leading from Task 1 to Tasks 5 and 6. Matching
the schedule of the CA-DAG model becomes possible only
when additional network link is available, such that both edges
can be scheduled in parallel.

IV. PROPERTIES OF COMMUNICATION VERTICES

In this section, we discuss and explain the properties
associated with the communication vertices in more details.

A. Task Parallelization
While it is often assumed that a single vertex v� represents

a piece of computing code that cannot be further parallelized,
the communication vertex v���� does not imply such an
assumption.

Communication-related tasks significantly differ from the
computing tasks. Their most distinct property is the task
parallelization: each communication task v�

���� ∈ V���� can
be divided into n different independent communication tasks
v��

����, j = 1, … , n, with a size of communication task in bits
equals to φ(v�

����)/n.

All of the bits that are to be transferred are independent.
The bits can be transmitted on different paths of the network
and reassembled in the original sequence at the destination
node. As a result, each communication vertex v�

���� can be
split into a number of data flows scheduled, in parallel or
sequentially. Network paths used for their transmission can be
either completely different (include only the sender and the
receiver as the common nodes) or partially overlapped. The
number of the parallel flows depends on the number of network
paths available, the size of data, available effective bandwidth,
and an overhead of the protocol used for communication.

B. Multipath Routing
In a fully deterministic system, a schedule can be computed

by finding an association between the DAG representing cloud
applications and topology graph representing a data center
network, which includes network nodes, switches, and
communication links with their transmission rates. This
approach has a number of limitations. It assumes circuit
switching and static routing. The above mentioned mandates a
dedicated bandwidth along a predefined network path for the
whole duration of the communication. However, in real-life
systems, these assumptions do not hold. Nowadays, most of the
communication networks are packet-switched and packet
routing decisions are taken at every hop, independently.
Moreover, most of the data center network topologies,
including the most commonly used fat tree topology, introduce
multipath connections as a mean to provide resilience and load
balancing. The availability of multiple paths is essential to
benefit from the parallelization of communication tasks
discussed earlier in this section.

C. Task Completion Time
In computing, the task completion time corresponds to the

time a processing resource is released. In packet-switched
networks, multiple links are involved in the execution of a
communication task. They operate at various data rates and
sequentially process a packet transmission.

Fig. 4 illustrates the communication delays with various
network components. The information processing and
packetization delay d���� as well as the queuing delay d�����
occurred at the network node. The transmission delay d��
defines a time interval of network link occupancy. For a data
segment of the length S and link data rate r, the transmission
delay is defined as a ratio S/r. The propagation delay d����
corresponds to the time the signal travels from a sender to a
receiver. It is defined as a ratio between the link length l����
and propagation speed of the link medium c. Combining the
aforementioned delays together, we can compute task the
completion delay for the network path of N hops as follows:

�
1

().
N

i i i i
comm proc queue tx prop

i
d d d d d

�

� � � �� �� 	
��

The minimum communication delay will correspond to the
system with very fast processing (d���� → 0) and empty
buffers (d����� = 0), and will be expressed by ∑(d�� + d����).

D. Available bandwidth
Typically, communication resources are associated with the

residual capacity, which is the amount of the path capacity left
unoccupied by the traffic flowing along the path. However, in
practice, the residual capacity corresponds to the minimum
amount of bandwidth that a newly introduced flow can utilize.
The communication flows sharing the same path or a segment
of a path in the network compete for bandwidth resources.
Consequently, a newly introduced data flow, besides relying on
the residual capacity, may also grab a share of the bandwidth
currently used by the other flows.

The communication protocol and its performance are two
of the most important factors pertaining to the system
performance. An overwhelming majority of data transmissions
is performed using Transmission Control Protocol (TCP). It is
the only protocol in the standard TCP/IP protocol stack able to
guarantee both reliability and flow control. It uses a positive
feedback loop with the receiver. Based on the feedback
information, TCP triggers retransmissions for the packets,
which are lost due to congestion or link errors, and adjusts
sending rate. The sending rate is additively increased for every
feedback message received unless a packet loss is detected. In
the latter case, the TCP reduces its sending rate
multiplicatively, typically by a factor of 2.

Due to the uncertainty on the end-to-end network path and
operational TCP dynamics, accurate calculation of a node
sending rate becomes unrealistic making it difficult to predict
completion time of communication tasks [12]. However, for
the purpose of scheduling, it is important to estimate the
boundaries for this value.

A good estimate of the steady-state TCP performance can
be obtained as the following [16]:

n1 n2dproc

dtx dqueue dprop

Fig. 4. Communication delays.

281

� () ,MSSB p
RTT p

�
�

�� 	
��

where MSS is a maximum segment size typically selected to fit
maximum packet size, which will not trigger the fragmentation
at the network interface card, RTT is the round-trip time
between the sender and the receiver, and p is an error
probability, which includes both congestion- and link-related
packet losses. According to Eq. (2), for the RTT of 200 ms,
which is common in Internet, typical for Ethernet MSS of 1,500
bytes, and typical for wired links error rates in the order of 10",
the maximum achievable TCP sending rate is less than 200
Mbps. To estimate the protocol-related overhead, we may
consider an upper bound of the link capacity and use a more
precise model from [17]. For a typical per-server available
bandwidth of 300 Mbps and round-trip delay of 100 ms, the
transmission of 500 MB data fragment using TCP protocol will
take almost 15 seconds versus theoretical 13 seconds in case of
raw data transmission with no protocol used. In this example,
the overhead of TCP protocol is round 13%.

E. Uncertainty in Data Size
Communication actions performed by a task executed in

data center can be classified into unidirectional and
bidirectional. Unidirectional communications are typically
related to the task outputs to the user or another service in data
center. These communications have a well-defined size of the
information that needs to be transferred. Bidirectional
communications are related to the request-response actions
performed by the task, such as database queries. In this regard,
while the size of outgoing request is well-known, the amount
of information that will be received back is often unknown. For
example, in Fig. 2, in Task 4 the list of email messages is
received from the database. The list can be completely empty
or has a large size depending on the number of emails stored in
the user mailbox.

To cope with the uncertainty in data size of
communications, adaptive scheduling approaches must be
used. However, to make resource allocation efficient, it is
important to estimate task completion delays and usage of
network resources for such bidirectional communications. One
of the most promising approaches is to use the statistical data
mining approaches. Each node can include a software module,
based on the precedent experience to estimate a query
processing delay, the round-trip time to a database server, as
well as the size of the data output reducing uncertainly, and
assisting resource allocation.

V. PERFORMANCE COMPARISON

This section presents performance evaluation results that
confirm the benefits of the proposed CA-DAG model for
scheduling cloud computing applications. The CA-DAG model
is compared against communication-unaware and edge-based
models reviewed in Section II. For the purpose of comparisons,
we first generated the application workloads according to the
CA-DAG model. Thereafter, the obtained workloads were
converted according to the communication-unaware and edge-
based models and scheduled with the list scheduling algorithm.

A. System Architecture and Workload Generation
The target system architecture is composed of a set of

identical computing resources. The communication resources
are represented with a shared network link (bus network),
interconnecting computing resources, and a database. The

network topology allows only one node to communicate at a
time, while other nodes must detain their transmissions until
the link becomes free.

The Winkler graph generator [18] was used to produce the
workloads. The generator is based on random orders methods
making the generated graphs to be representative of
multidimensional orders. The two-dimensional orders graphs
were generated. To achieve the aforementioned, # points were
selected randomly in the [0;1] × [0;1] square. Each point
becomes a node and there is an edge between two points $ and
%. If % is greater than $, then in both directions. To generate a
large sets of graphs, the following two parameters were varied:
the number of nodes # and the number of communications.
The graphs had a size of 20, 30, 40, and 50 nodes. Moreover,
the obtained DAGs fell into two categories according to their
communication intensity: DAGs with occasional
communications and DAGs with frequent communications. To
model these categories, two probabilities representing the
amount of communication were used: 0.3 to represent
occasional communications and 0.7 for frequent
communications. Moreover, to rank communications the
Communication-to-Computation Ratio (CCR) was used. The
CCR measure indicates whether a DAG is communication
intensive, computation intensive or balanced. For a given
DAG, the CCR ratio is computed by the average
communication cost divided by the average computation cost
on a target system. A high value of CCR indicates that the
DAG is communication intensive. We used the following three
values of CCR: 0.1 for computationally intensive DAGs, where
communication is of low significance compared to the cost of
computations, 1 for the balanced DAGs, and 2 for
communication intensive DAGs where the significance of
communication processes is high. There are 30 graphs
generated for each combination input parameters, while the
total number of generated DAGs for each application model is
720.

B. Scheduling Algorithm
All of the evaluated DAG models were compared using an

offline (deterministic) scheduling algorithm with an
assumption of zero release times of DAGs and clairvoyant
execution and communication time. Many offline scheduling
algorithms exhibit good performance also in the online
scenario. From theory, it is known that the performance bounds
of the offline scheduling strategies can be approximated for the
online case [19]. As the aim of this section is to compare the
application models and not the scheduling algorithms, the same
heuristic is employed for each of the described model. For the
different models, list scheduling is employed. A list scheduling
algorithm is a two-phases scheduling algorithm that maintains
a list of all of the ready tasks of a given graph. A task is
considered ready to be scheduled when all of its predecessors
have been already scheduled. In the common variant of list
scheduling, the nodes are ordered according to a priority in the
first part of the algorithm. The task with the highest priority is
selected. Thereafter, in the second phase, a suitable processor
that minimizes a predefined cost function (in this case the
processor that allows the earliest finish time of a task) is
selected. A common priority is the task’s bottom level (blevel),
which is the length of the longest path leaving the task. The
%&'
'& of a task is bounded from above by the length of a
critical path. The %&'
'& of a current task is computed by
adding the computation cost along the longest path of the task
from the exit task (a task without successors) in the task graph

282

including the computation cost of the current task and
excluding the communication costs.

The %&'
'& of any task *� is recursively calculated as
follows:

� %&'
'&(*�) = -� + 3$456∈78

(59):%&'
'&;*<>?�� 	���

where -� denotes the execution time of task *� and @ABB(*�) is
the set of immediate successors of task *�.

We adapted the list of scheduling algorithm to consider
three different communication models. The algorithm
schedules computational tasks in computing resources and
communications in the network link. The list scheduling is
applied under the communication-aware (CA-DAG),
communication-unaware and edge-based models, denoted by
“CA-DAG”, “Comm-unaware DAG”, and “Edge-based DAG”
respectively. Using the same algorithm for each of the model
allows analyzing the impact of the model on the quality of the
produced schedules under no influence of different scheduling
techniques.

C. Scheduling Criteria
The following criteria are used to evaluate the schedule

produced by the algorithm: approximation factor and schedule
efficiency. Let C�DF be the maximum completion time or
makespan of the schedule produced by the scheduling
algorithm under a given DAG application model. The
approximation factor [19] is defined as H = C�DF/C�DF

∗ , where
C�DF

∗ is the optimal makespan. As it is generally not possible to
determine the optimal makespan experimentally, we use the
lower bound CJ�DF

∗ of the optimal makespan C�DF
∗ instead

� C�DF
∗ ≥ CJ�DF

∗ = 3$4 Lmax(%&'
'&(*�)) ,
∑ (O9)9PQ..,W

�
X,�� 	���

where max(%&'
'&(*�)) represents the critical path of the
DAG without considering communication costs and m denotes
the number of computing resources. The efficiency of the
schedule � defined as eff(�) =

∑ (O9)9PQ..,W
YZ[\×�

 is the ratio of the
sequential execution time of the graph to the makespan of the
schedule by the number of computing resources. It measures
how well-utilized the computing resources are in scheduling of
a given application, compared to how much effort is wasted
during communication.

D. Results
To summarize, a large set of randomly generated DAGs is

scheduled by a list scheduling algorithm under the CA-DAG,
communication-unaware, and edge-based models onto two
configurations of a target system with four and eight
computing nodes arranged into bus network topology.

Approximation Factor: Fig. 5 and Fig. 6 show the
obtained results for the approximation factor for DAGs with
occasional and frequent communications respectively. The
benefits of the CA-DAG model can be observed in both
figures. For computation intensive DAGs (CCR=0.1) the
values of approximation factor are close for all the models.
With small CCR values the communication is less important
than computation, and the communication awareness of CA-
DAG does not lead to significant benefits over Comm-unaware
DAG and Edge-based DAG models. A small approximation
factor indicates that the results of a schedule for a given

communication DAG model are close to the lower bound. It
can be observed that the approximation factor degrades when
the amount of communications increases. However, for the
CA-DAG model the degradation of the approximation factor is

Fig. 5. Approximation factor for DAGs with occasional communications.

Fig. 6. Approximation factor for DAGs with frequent communications.

Fig. 7. Schedule efficiency for DAGs with occasional communications.

Fig. 8. Schedule efficiency for DAGs with frequent communications.

0.1 1 2
0

0.5

1

1.5

2

2.5

Communications-to-Computation Ratio (CCR)

A
pp

ro
xi

m
at

io
n

F
ac

to
r

CA-DAG
Comm-unaware DAG
Edge-based DAG

0.1 1 2
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Communication-to-Computation Ratio (CCR)

A
pp

ro
xi

m
at

io
n

F
ac

to
r

CA-DAG
Comm-unaware DAG
Edge-based DAG

0.1 1 2
0

10

20

30

40

50

Communication-to-Computation Ratio (CCR)

E
ffi

ci
en

cy
 (

%
)

CA-DAG
Comm-unaware DAG
Edge-based DAG

0.1 1 2
0

10

20

30

40

50

Communication-to-Computation Ratio (CCR)

E
ffi

ci
en

cy
 (

%
)

CA-DAG
Comm-unaware DAG
Edge-based DAG

283

smaller than in related models. The improvement of CA-DAG
model becomes significant for balanced (CCR=1) and
communication intensive (CCR=2) DAGs where
communication awareness can benefit from the increase
amount of transmissions.

Efficiency: Fig. 7 and Fig. 8 analyze the efficiency of the
schedule produced by different communication models. The
obtained efficiency confirms the results obtained with
approximation factor. Indeed, the communication-aware
schedules under the CA-DAG model achieve better efficiency
for all CCRs. This is especially evident for balanced and
communication intensive DAGs. Fig. 8 confirms that not only
the cost of the communications is important, but also their
amount.

In summary, CA-DAG significantly improves the
approximation factor and efficiency of the produced schedules.
However, we have only conducted experiments considering a
single shared network link. Therefore, the communications are
serialized. It would be interesting to consider more than one
link to parallelize communications. We have also considered
only one scheduling algorithm. The high importance of
communication under the CA-DAG model seems to demand
the development of more sophisticated algorithms in order to
exploit full potential of this new model.

VI. CONCLUSIONS

Cloud computing is an emerging paradigm where
traditional resource allocation approaches, inherited from
cluster computing and grid computing systems, fail to provide
efficient performance. The main reason is that most of cloud
applications require availability of communication resources
for information exchange between tasks, with databases, or end
users. Only few approaches take communication requirements
into consideration and often in a highly abstract manner.
Moreover, the execution environment of cloud applications is
not known at moment of their development — the number of
available machines, their location, their capabilities, the
network topology, and effective communication bandwidth
cannot be predicted in advance. The execution environment
will also differ for every next execution of a program or a
service. To deal with the dynamics, either software developers
must create adaptive programs explicitly or cloud software
environment, such as a runtime scheduling system, must adapt.

In this paper, we propose new model for cloud computing
applications, which overcomes shortcomings of existing
approaches using communication awareness. It is based on a
Directed Acyclic Graph (DAG), which along with computing
vertices has separate vertices to represent communications.
Such representation allows making separate resource allocation
decisions, assigning processors to handle computing jobs and
network resources for information transmissions. The proposed
communication-aware model creates space for optimization of
many existing solutions to resource allocation as well as
developing completely new scheduling schemes of improved
efficiency.

The future work will be focused on developing novel
communication-aware resource allocation solutions based on
the proposed model, generalizing the proposed model to
capture dynamics of virtual machines, simulations using
GreenCloud simulator [20], and practical implementations.

ACKNOWLEDGMENTS

The authors would like to acknowledge the funding from
National Research Fund, Luxembourg in the framework of
ECO-CLOUD (C12/IS/3977641) and Green@Cloud
(INTER/CNRS/11/03) projects as well as Marie Curie Actions
of the European Commission (FP7-COFUND). Samee U.
Khan's work was partly supported by the Young International
Scientist Fellowship of the Chinese Academy of Sciences,
(Grant No. 2011Y2GA01).

REFERENCES

[1] C.H. Papadimitriou and M. Yannakakis. "Towards an architecture-
independent analysis of parallel algorithms," SIAM Journal on
Computing, 19(2):322-328, 1990.

[2] H. El-Rewini and T. G. Lewis. "Scheduling parallel program tasks onto
arbitrary target machines," Journal of Parallel and Distributed
Computing, 9(2):138-153, 1990.

[3] D. Kliazovich, P. Bouvry, and Samee U. Khan, "DENS: Data Center
Energy-Efficient Network-Aware Scheduling," Cluster Computing, vol.
16, no. 1, pp. 65 – 75, 2013.

[4] J. E. Pecero, D. Trystram, and A. Y. Zomaya: "A new genetic algorithm
for scheduling for large communication delays," Euro-Par 2009.

[5] M. AbdelBaky, M. Parashar, Hyunjoo Kim, K. E. Jordan, V. Sachdeva,
J. Sexton, H. Jamjoom, Zon-Yin Shae, G. Pencheva, R. Tavakoli and M.
F. Wheeler, "Enabling High-Performance Computing as a Service,"
Computer, vol.45, no.10, pp.72-80, Oct. 2012.

[6] G. U. Srikanth, A. P. Shanthi, V. U. Maheswari, and A. Siromoney, "A
Survey on Real Time Task Scheduling," European Journal of Scientific
Research, vol. 69, no. 1, pp. 33-41, 2012.

[7] O. Sinnen and L. A. Sousa, "Communication contention in task
scheduling," IEEE Transactions on Parallel and Distributed Systems,
vol. 16, no. 6, pp. 503- 515, June 2005.

[8] R. Schatz, M. Varela and C. Timmerer, "Challenges of QoE
management for cloud applications," IEEE Communications Magazine,
vol. 50, no. 4, pp, 28 - 36, April 2012.

[9] “White paper: The impact of latency on application performance,”
Nokia Siemens Networks, 2009.

[10] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken, "The
nature of data center traffic: measurements & analysis," ACM
SIGCOMM IMC, ACM, New York, NY, USA, 202-208, 2009.

[11] S. Browne, "Communication and synchronization issues in distributed
multimedia database systems," Advanced Database Systems, vol. 759,
pp 381-396, 1993.

[12] R. Prasad, C. Dovrolis, M. Murray and K. Claffy, "Bandwidth
estimation: metrics, measurement techniques, and tools," IEEE Network,
vol. 17, no. 6, pp. 27- 35, Nov.-Dec. 2003.

[13] D. C. Plummer, "An Ethernet Address Resolution Protocol - or -
Converting Network Protocol Addresses to 48.bit Ethernet Address for
Transmission on Ethernet Hardware," RFC 826, Internet Engineering
Task Force, 1982.

[14] J. Postel, "Internet Control Message Protocol," IETF, RFC 792, 1981.
[15] R. Kapoor, Ling-Jyh Chen, M. Y. Sanadidi, and M. Gerla, "Accuracy of

link capacity estimates using passive and active approaches with
CapProbe," Ninth International Symposium on Computers and
Communications, pp. 1085- 1090, 2004.

[16] M. Mathis, J. Semke, J. Mahdavi, and T. Ott, "The macroscopic
behavior of the TCP congestion avoidance algorithm," SIGCOMM
Comput. Commun. Rev. 27, vol. 3, pp. 67-82, 1997.

[17] J. Padhye, V. Firoiu, D. Towsley, and J. Krusoe, "Modeling TCP
throughput: A simple model and its empirical validation," ACM
SIGCOMM, pp. 303-314, 1998.

[18] Winkler, P., “Random orders”. Order 1, 317–331 (1985).
[19] A. Hirales Carbajal, A.Tchernykh, R. Yahyapour, T. Röblitz, J.

Ramírez-Alcaraz, J.-L González-García. "Multiple Workflow
Scheduling Strategies with User Run Time Estimates on a Grid," Journal
of Grid Computing, vol. 10, no. 2, pp. 325-346, 2012.

[20] D. Kliazovich, P. Bouvry, and S. U. Khan, "GreenCloud: A Packet-level
Simulator of Energy-aware Cloud Computing Data Centers," Journal of
Supercomputing, vol. 62, no. 3, pp. 1263-1283, 2012.

284

