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Abstract

Planning in partially-observable dynamical systems is a chal-
lenging problem, and recent developments in point-based
techniques such as Perseus significantly improve perfor-
mance as compared to exact techniques. In this paper, we
show how to apply these techniques to new models for non-
Markovian dynamical systems called Predictive State Rep-
resentations (PSRs) and Memory-PSRs (mPSRs). PSRs and
mPSRs are models of non-Markovian decision processes that
differ from latent-variable models (e.g. HMMs, POMDPs)
by representing state using only observable quantities. Fur-
ther, mPSRs explicitly represent certain structural properties
of the dynamical system that are also relevant to planning.
We show how planning techniques can be adapted to lever-
age this structure to improve performance both in terms of
execution time as well as quality of the resulting policy.

Introduction
Value-iteration algorithms for partially-observable dynam-
ical systems compute, or approximate, a value function
with respect to the state representation used. For instance,
in POMDPs, the value function will be over belief-states.
However, recent work (Littman, Sutton, & Singh, 2001;
Singh, James, & Rudary, 2004) has begun to question
whether other types of state representations would be ad-
vantageous in some situations. Two types of models that
have emerged are predictive state representations (PSRs)
(Littman, Sutton, & Singh, 2001), and memory-PSRs (mP-
SRs) (James, Singh, & Wolfe, 2005).

Memory-PSRs are of special interest, and use a memory
of the past as a part of their state representation. In this pa-
per, we extend the work in James & Singh (2005), and show
how memories can be incorporated into value-iteration algo-
rithms, including approximate point-based algorithms such
as PERSEUS (Spaan & Vlassis, 2005). We demonstrate how
the use of memories can make planning more efficient, and
present empirical results that support this.

Along the way, we demonstrate how to adapt point-based
value-iteration algorithms to PSRs. It turns out that point-
based value iteration for PSRs and for POMDPs are very
similar, with only minor changes needed. Planning in the
traditional sense (with an a priori known model) would not
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see much advantage in using PSRs over POMDPs (although
mPSRs would have advantages), but planning in somewhat
unknown environments would benefit from using PSRs, as it
has been demonstrated (Wolfe, James, & Singh, 2005) that
PSRs (and mPSRs) are potentially more easily learned than
POMDPs, so one could imagine interleaving model learning
with planning (as it was recently done in POMDPs (Shani,
Brafman, & Shimony, 2005)).

Although planning with PSRs may have advantages for
certain situations, the major contribution of this paper is to
demonstrate how the use of memory in point-based value
iteration algorithms can lead to significant benefits.

This paper will first briefly review relevant material, in-
cluding PERSEUS, PSRs, and mPSRs. Then the adaptation
of point-based value-iteration algorithms to PSRs and mP-
SRs is presented, followed by empirical results.

Background material

Before presenting the details of approximate planning with
PSRs and mPSRs, first some notation and related material
need be presented. Consider a discrete-time, finite-space dy-
namical system in which actions are chosen from a set A,
observations from a set O, rewards are assumed to take on
a finite number of values and are treated as an additional di-
mension of the observation. There is exactly one action and
one observation per time-step. There have been many al-
gorithms developed to calculate optimal action choice, with
respect to the long-term discounted reward, where γ is the
discount factor. For partially-observable dynamical systems,
the current state-of-the-art algorithms are point-based value
iteration algorithms, applied to models called partially ob-
servable Markov decision processes (POMDPs).

POMDPs are models of dynamical systems based on un-
derlying latent variables called nominal-states. In POMDPs,
the current state—called the belief-state—is represented as
a probability distribution over nominal-states. However, re-
cent developments in modeling of dynamical systems are
concerned with building models that are not dependent on
any latent variables. Examples of these new types of models
include observable operator models (OOMs) (Jaeger, 2000),
predictive state representations (PSRs) , memory-PSRs (mP-
SRs), and TD-networks (Sutton & Tanner, 2004). In this
paper, we will make use of PSRs and mPSRs.
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POMDPs
POMDPs are well-documented in the literature, so we omit
a full definition here in favor of a brief overview (see (Spaan
& Vlassis, 2005) among many others for a full definition).
POMDP models are defined in using probabilities of tran-
sitions between nominal-states (pr(s′|s, a)), probabilities of
observations given nominal-states (pr(o|s, a)), and expected
reward given nominal-states (expressed as a vector ra with
one entry per nominal-state), where s and s′ are nominal-
states.

PERSEUS: Randomized Point-based Value
Iteration
Approximate, point-based planning algorithms, such as
PERSEUS , for partially observable dynamical systems use
an approximation of the value function to plan with. These
algorithms rely on the fact that updating the value function
for one point will also improve the value-function approxi-
mation for nearby points. The basic idea is to calculate the
value function (and its gradient) only at a small number of
points, and the value function for the other points will be
“carried along” using this property. This results in an ap-
proximation of the value function using only a fraction of
the computational requirements.

The PERSEUS algorithm uses randomized selection of
points in the process of updating the value function. There
are two main sets of vectors used in the PERSEUS algo-
rithm: the set P of points, each of which is a belief-state vec-
tor; and the set Sn which represents the approximate value
function Vn at step n. The value function is a piecewise lin-
ear convex function over belief states, defined as the upper
surface of the vectors α ∈ Sn. Therefore, the value for belief
state b is given by

Vn(b) = max
α∈Sn

bT α (1)

To compute the value of an n + 1 step value function at a
point b, and given an n step value function, the so-called
backup operator is used.

backup(b) = argmax
a∈A

bT ra+ (2)

γ
∑

o

argmax
α∈Sn

bT
∑

s′

pr(o|s′, a)pr(s′|s, a)α(s′)

Note that there is some abuse of notation because argmax is
used to return the corresponding vectors, and so the backup
operator actually returns a vector α. For POMDPs, the basic
outline of PERSEUS is:

1. Randomly collect a set P of reachable points (reachable
when following a random policy from a starting belief b0),
each of which is a belief-state vector, set n = 0, and ini-
tialize S0 to contain a single α vector with minimal val-
ues.

2. Set Sn+1 = ∅, and initialize the temporary set P to P ,
where P is the set of non-improved points.

3. Sample a belief-state b uniformly at random from P , and
compute α = backup(b).

4. If bT α ≥ Vn(b) then add α to Sn+1, otherwise add α′ =
argmaxα′′∈Sn

bT α′′ to Sn+1.

5. Compute P = {b ∈ P : Vn+1(b) − ε < Vn(b)}. If B is
empty, set Sn = Sn+1 and go to step 2, otherwise go to
step 3.

The algorithm will stop according to some condition, typ-
ically either a condition on the value function or on the num-
ber of iterations. Approximate point-based value function
methods such as PERSEUS are currently the fastest plan-
ning algorithms for partially-observable dynamical systems.

Predictive-State Models
There has been recent interest in models of dynamical sys-
tems that do away with latent, unobservable variables, and
express the state of the dynamical system only in terms
of observable quantities. Two such models are predictive
state representations (PSRs) and memory-PSRs (mPSRs).
In PSRs, the state of the dynamical systems is expressed in
terms of possible future events, e.g. what is the probability
that this window will break if I throw this rock at it? A set of
such probabilities is referred to as predictive state. For many
classes of dynamical systems, including all POMDPs, it has
been shown that special sets of such future events, called the
set of core tests can fully represent the state, just as state rep-
resentations using latent-variables, such as POMDPs, can.

The major advantage of using only observable quantities
to represent state is that the model is then grounded in quan-
tities that can be measured and confirmed by observing the
dynamical system itself. Thus, tasks like learning of models
from observed data become much easier.

The idea behind memory-PSRs is a memory of past (ob-
servable) events can be used in conjunction with predictions
in the state representation. It has been shown that simple
types of memory, such as the most recent observation, may
be advantageously included in the state representation. The
resulting mPSR will contain both memories of the past as
well as predictions about the future in its state representa-
tion. Further, using memories can result in a more compact
model, and have advantages for planning algorithms. This
will be discussed in detail later in the paper.

PSRs Consider a discrete-time dynamical system as de-
fined above. At time s, the history hs is the sequence
a1o1...asos. For any history h, the dynamical system defines
the probability pr(o|ha) of seeing observation o given that
action a is taken. This is the prediction p(t|h) = pr(o|ha)
of the one-step test t1 = ao at history h.

More generally, a test t = a1o1, ...akok is a sequence of
alternating actions (ai ∈ A) and observations (oj ∈ O),
and the prediction of a test t at history h is p(t|h) =
pr(o1, ...ok|ha1, ...ak), i.e., the conditional probability that
the observation sequence occurs, given that the action se-
quence is taken after history h 1.

1It has been recently pointed out that this definition relies on
the fact that the action sequence is “blind” or open-loop, or equiva-
lently, that the random variables ai do not correspond to the actions
that are actually taken, but instead correspond to the actions that are
designated to be taken if the test were to be executed.
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Figure 1: A depiction of memories and the deterministic transi-
tions between them based on actions and observations. In this case,
the memories are based on the most recent observation and actions
are irrelevant: µ1 corresponds to observations o1 and o3, and µ2

corresponds to observation o2.

A basic part of a PSR model is the set of core tests Q,
the predictions of which are maintained in the size (|Q|×1)
prediction vector p(Q|h), which is the PSR’s state repre-
sentation. The minimum number n of core tests required to
maintain a sufficient statistic of state is called the dimension
of the dynamical system, and for this paper we choose Q so
that |Q| = n.

The prediction vector can be used to calculate the predic-
tions of any other tests, and can be kept updated as actions
are taken and observations occur. A PSR model defines a
set of model parameters that perform both these tasks. The
model parameters consist of a set of (n × n) matrices Mao,
and (n × 1) vectors mao, for all a, o. To predict the test
t = a1o1, ...akok at history h, the computation is

p(t|h) = p(Q|h)T Ma1o1 ...Mak−1ok−1makok
(3)

and to update state from history h as action a is taken and o
is observed, the new prediction vector is

p(Q|hao) =
p(Q|h)T Mao

p(Q|h)T mao
(4)

The immediate expected reward for action a at any history
h, denoted R(h, a), is computed as

R(h, a) =
∑

r

r · pr(r|h, a)

=
∑

r

r
∑

o∈Or

p(Q|h)T mao

= p(Q|h)T
∑

r

∑

o∈Or

r · mao. (5)

where Or is the set of observations in which the reward com-
ponent takes on value r. Thus, we can define a (n×1) vector
ra as

ra =
∑

r

∑

o∈Or

r · mao (6)

such that R(h, a) = p(Q|h)T ra. The set of vectors ra for all
a ∈ A are used as a part of the PSR model when planning.

mPSRs Memories, in this context, are typically thought
of as some portion of the observable past, and a memory-
PSR defines state to be a pair containing the memory and
a prediction vector. A simple, and often useful, example
is memory containing the most recent observation. As new
observations occur, the memory portion of state is updated
along with the prediction vector. In many dynamical sys-
tems, adding memory to state will make the overall state rep-
resentation smaller, and can also result in a smaller model of
the dynamical system, i.e. the mPSR model has fewer model
parameters than the PSR model. Intuitively, the memory
contains additional information about the state, so that fewer
predictions are needed, reducing the overall model size.

We will define memories to be more general than just a
most-recent subsequence, but in practice it turns out that us-
ing a most-recent subsequence of history is both conceptu-
ally simple and gives good results. This is due to the fact
that the most recent actions and observations often give the
most information about the current state. We now turn to the
definition of mPSRs.

Let µ1 . . . µm represent the m distinct memories. Each
memory will have an associated set of µ-core tests
Qµ1 . . . Qµm respectively. Let the memory at history h be
denoted µ(h). Then the mPSR state at history h is the pair
[µ(h), p(Qµ(h)|h)]. The number of µ-core tests may be dif-
ferent for each memory, and can never be larger—but can
be much smaller—than the number of PSR core tests for
the same system. Another relation is that the sum of µ-core
tests for all memories must be ≥ than the number of PSR
core tests.

For each memory, µi, there is an associated set of update
matrices Mµi

ao and vectors mµi
ao for all a, o. This part of the

mPSR definition imposes the first limitation on memories,
which is that, given a memory µ, action a, and observa-
tion o, the next memory is fully determined. This is cap-
tured by the deterministic next-memory function: µ(hao) =
N(µ(h), a, o). An alternative view of memories is as a di-
rected graph (see Figure 1), with nodes corresponding to
memories, and edges defining the transitions between mem-
ories, labeled with action/observation pairs. We will discuss
the relation between memories and the state space in detail
in the next section.

The update parameters M
µ(h)
ao transform the current pre-

diction vector that contains predictions for µ-core tests
Qµ(h) in history h to the prediction vector for µ-core tests
Qµ(hao) in history hao. The prediction vector update for
mPSRs, upon taking action a in history h and observing o is

p(Qµj |hao) =
p(aoQµj |h)

p(ao|h)
=

p(Qµi |h)T Mµi
ao

p(Qµi |h)T mµi
ao

(7)

where µ(h) = µi and µ(hao) = µj . The matrix Mµi
ao is of

size (|Qµi |×|Qµj |) and the vector mµi
ao is of size (|Qµi |×1).

We note here that a vector equivalent to the PSR immediate
reward vector (Equation 6) is defined for mPSRs, and is de-
pendent on both the memory µ and action a as follows

rµ,a =
∑

r

∑

o∈Or

r · mµ
ao. (8)
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Table 1: POMDP, PSR, and mPSR statistics for dynamical systems. Shown are the number of POMDP nominal-states, PSR core tests, mPSR
µ-core tests for each memory (the number of memories is the number of values), and the size of the PSR and mPSR models in terms of the
number of parameters required to specify the model.

System POMDP PSR mPSR PSR mPSR
nominal-states tests tests size size

Cheese 11 11 1,1,1,1,2,2,3 3696 792
Network 7 7 4, 6 2912 3160
Shuttle 8 7 1,1,2,2,4 1344 780
4x3 11 11 1,1,1,1,3,4 7392 1892
4x4 16 16 1, 15 2176 1152
Tiger-grid 33 33 1, 32 185130 174570

There is one special form that a memory may take on, and
that is when the memory itself serves as state, or equivalently
(James, Singh, & Wolfe, 2005), when the memory has only
one corresponding µ-core test. These memories are called
landmark memories, or simply landmarks. The presence of
landmarks in a model of a dynamical system can be used
advantageously by planning algorithms, as will be discussed
in the section on memories and planning.

For this research, the mPSRs used a refined version of the
most-recent observation as memories. The refinement was
to combine most-recent observations that satisfy both

• have the same sets of µ-core tests, and

• have the same transitions to next memories, for all a, o.

For example, the graph in Figure 1 has two memories, µ1

corresponds to the situations where the most recent observa-
tion is o1 or o3, and µ2 corresponds to the situation where
the most recent observation is o2.

Memories and State Space
In PSRs, the set of all possible prediction vectors defines
the state space for the dynamical system (as does the set of
all possible POMDP belief-states), but for mPSRs, the state
space is defined by both the possible memories and predic-
tion vectors for each of those memories. The µ-core tests for
a given memory are a subset of the PSR core tests, and so the
possible states corresponding to that memory are subspaces
of the entire state space.

Memories do not necessarily partition the state space into
disjoint spaces, because different memories may contain the
same µ-core test, or even all of the same µ-core tests. How-
ever, as noted above, it is generally better to choose memo-
ries to overlap as little as possible, and the mPSR algorithm
above attempts to do this. This fact will be leveraged during
the planning algorithm, where this division of the state space
will give computational and space advantages.

Planning with PSRs
The adaptation of point-based methods to PSRs is straight-
forward. The value function Vn has been shown (James,
Singh, & Littman, 2004) to remain a piecewise linear func-
tion, but over prediction vectors instead of belief-states. The
set P of points is composed of prediction vectors, and so the

upper surface of Vn at prediction vector p(Q|h) for history
h is given by

Vn(p(Q|h)) = max
α∈Sn

p(Q|h)T α (9)

which uses Equations 6, 3, 4, and 9 to calculate the value

Vn(p(Q|h)) = (10)

= max
a

(
R(h, a) +

γ
∑

o∈O
pr(o|a, h) max

α∈Sn

p(Q|hao)T α
)

= max
a

(
p(Q|h)T ra +

γ
∑

o∈O
p(Q|h)T mao max

α∈Sn

p(Q|h)T Mao

p(Q|h)T mao
α

)

= max
a

(
p(Q|h)T ra +

γ
∑

o∈O
max
α∈Sn

p(Q|h)T Maoα
)

and so the backup operator returns the vector α that maxi-
mizes the reward for step n+1 for prediction vector p(Q|h),
and is given by

backup(p(Q|h)) = argmax
a

(
p(Q|h)T ra+ (11)

γ
∑

o∈O
argmax

α∈Sn

p(Q|h)T Maoα
)

So α′ = ra + γ
∑

o∈O Maoα for appropriate ra and α.
Given this backup operator, and using prediction vectors
for points, the PERSEUS algorithm may then be applied,
as well as other point-based value iteration algorithms.

Planning with mPSRs
To take advantage of memories in point-based planning,
PSR-PERSEUS was modified for mPSRs to keep a sepa-
rate set Sµ

n of α vectors for each memory µ, as well as sep-
arate set Pµ of points. Sµ

n defines the value function for
memory µ’s subspace at step n. This (possibly overlapping)
partitioning of both the state space and of the value function
have potential advantages for planning, and has been shown
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Figure 2: Plots of average reward and time used (y-axis and y2-axis) vs. the number of points used for planning (x-axis) for the mPSR-
PERSEUS and PSR-PERSEUS planning algorithms. See text for experimental setup and details.

(James & Singh, 2005) to retain an exact representation of
the value function (for the exact value-iteration case).

Each of the memories corresponds to a lower-dimensional
state subspace, which can more easily be covered with a
given number of points. Further, because each of these
subspaces is of lower dimension, the vectors in Sµ

n are of
smaller size, and can be stored and computed more quickly
and efficiently. Finally, because the value function for a
given memory is specific only to the relevant portion of the
state space, it will require fewer vectors to represent (as the
corresponding policy is expected to be less complex). This
reduces the number of vectors needed for comparison when
choosing a maximal vector, and so reduces the amount of
computation required.

However, it is not guaranteed that these factors will al-
ways result in better performing algorithms. There can be
overlap in the portions of the state space that is covered, re-
sulting in redundant computation of the value function. This
is often due to poor selection of memories, and it is possi-
ble that a given dynamical system will not have a memory
structure that results in good splitting of the state space.

Memories and Planning

Given separate sets Sµ
n and Pµ for each memory, the backup

operator will be modified, which gives insights into some of
the advantages of using memories. The backup is defined
for memory/prediction vector pairs, and so, for each possi-
ble outcome (observation) following the initial action, the
next memory is defined by N(µ, a, o) = µ′. Because the
maximization is with respect to memory µ′, only the vectors
in the set Sµ′

n need be considered. This may be result in a
significant speedup, because Sµ′

n may be much smaller than
Sn for the non-memory case. The mPSR backup for a given
memory µ and prediction vector p(Qµ|h) corresponding to

history h is

backup(µ, p(Qµ|h)) = argmax
a

(
p(Qµ|h)T rµ,a+ (12)

γ
∑

o∈O
argmax

α∈S
N(µ,a,o)
n

p(Qµ|h)T Mµ
aoα

)

where the resulting vector αµ
n+1 = backup(µ, p(Qµ|h)) ap-

proximately maximizes the reward at time n+1 for memory
µ and prediction vector p(Qµ|h). The only other adaptation
to the planning algorithm is that updates must be performed
on Sµ

n for all memories in each iteration (in parallel or in a
Gauss-Seidel fashion).

For some dynamical systems, there exist landmark mem-
ories which require only a single core test, the prediction
of which always (James & Singh, 2005) takes on the same
value whenever that memory is encountered, and so requires
only a single vector α to represent its value function. This is
advantageous in planning because a single point can be as-
signed to this memory, and so there is no need to maximize
over α when this memory is encountered.

To give some intuition of this, a dynamical system with
all landmark memories is just an MDP, and so only a single
point (value) is required for each memory (the memory is
state for landmarks). In this case, many planning algorithms
when applied to such mPSRs will simply become value iter-
ation on the MDP.

Results
To evaluate the performance difference made by using mem-
ories in planning, we conducted experiments on six com-
monly used dynamical systems, statistics about which are
found in Table 1. System definitions in POMDP format can
be found at (Cassandra, 1999). PSR models of these systems
were constructed according to the algorithm in Littman, Sut-
ton, & Singh (2001), and mPSR models of this system were
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constructed using the most recent observation as memory
and then combining memories as discussed at the end of the
mPSR section of this paper.

For each dynamical system, POMDP-PERSEUS, PSR-
PERSEUS, and mPSR-PERSEUS were run with different
quantities of points specified, starting with the number of
memories. For mPSR-PERSEUS, the points were dis-
tributed among the various memories in proportion to the
dimension of the associated state space (i.e. the number
of associated core tests), while using the fact that land-
mark memories only need a single point. To select points
for each memory, the PBVI approach (Pineau, Gordon, &
Thrun, 2003) was used: simulating the dynamical system
and choosing encountered points that are sufficiently far
away from already selected points. For these experiments,
the points were required to be only 10−4 from all other
points, for at least one dimension.

For each quantity of points, the algorithms were run 20
times, and for each run, the time spent on the planning al-
gorithm and the performance of the resulting policy were
recorded and averaged. The planning algorithm was run for
500 steps in all cases, and the performance was calculated
as the average reward per time step over 100, 000 steps fol-
lowing the resulting optimal policy, while starting from the
same state as in training.

The graphs in Figure 2 each show both the average re-
ward (thick lines, solid for mPSR and dashed for PSRs), as
well as the time used (thin lines with + for mPSRs, and ×
for PSRs). The average reward performance of POMDP-
PERSEUS was very similar to that of PSR-PERSEUS, with
normalized (by the range of average rewards) RMSD greater
than 0.1 on only two systems: Cheese-Maze and Tiger-Grid.
Further, for those two systems, the mPSR-PERSEUS perfor-
mance was significantly (notice the small scale of average
rewards for these systems) better than POMDP-PERSEUS
by an average (across all quantities of points) of 0.032 on
Cheese-Maze and by an average of 0.27 on Tiger-Grid. The
time used by POMDP-PERSEUS was also comparable or
slower than PSR-PERSEUS. For clarity of presentation, we
omit POMDP-PERSEUS from the graphs.

In four of the six systems, mPSR-PERSEUS significantly
outperformed PSR-PERSEUS and POMDP-PERSEUS in
terms of average reward, and for the other two systems
mPSR-PERSEUS performed approximately the same or
only slightly better2. In terms of timing, on five of the six
systems, mPSR-PERSEUS outperformed PSR-PERSEUS
and POMDP-PERSEUS, but was outperformed on the sixth
(Network). Most significantly, on the largest system (Tiger-
Grid), mPSR-PERSEUS significantly outperformed PSR-
PERSEUS and POMDP-PERSEUS in terms of both average
reward for all numbers of points, and time used to plan (no-
tice the upward trending time line for PSR-PERSEUS, while
the time used for mPSR-PERSEUS remains relatively flat).

2In the results shown for Tiger-Grid, not enough points were
used to have either algorithm perform to near-optimal, but the re-
sults do demonstrate how mPSR-PERSEUS has significant advan-
tages with relatively few points

Concluding remarks
The use of memories in planning had previously been shown
to have benefits for exact value-iteration, and this paper
demonstrates that similar benefits exist for approximate,
point-based methods. The benefits have been demonstrated
empirically, and the reasons behind them have been explored
theoretically. Of course, the amount of benefit depends on
the relation between memories and the state space. Selec-
tion of proper memories is therefore crucial, and an inter-
esting research topic. Further work should investigate how
memories can be used in the selection of the initial-state for
point-based value-iteration, similar to the investigation of
how PSRs can be used in Izadi, Rajwade, & Precup (2005).
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