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Abstract

We consider the problem of cooperative multiagent plan-
ning under uncertainty, formalized as a decentralized par-
tially observable Markov decision process (Dec-POMDP).
Unfortunately, in these models optimal planning is provably
intractable. By communicating their local observations be-
fore they take actions, agents synchronize their knowledge of
the environment, and the planning problem reduces to a cen-
tralized POMDP. As such, relying on communication signif-
icantly reduces the complexity of planning. In the real world
however, such communication might fail temporarily. We
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way for the agents to coordinate their actions. In particular,
assuming instantaneous and cost-free communication effec-
tively reduces the problem to a centralized problem (Pyna-
dath and Tambe 2002), modeled as a partially observable
Markov decision process (POMDP).

This approach requires synchronization within every time
step: after reading their sensors, each agent broadcasts its
local observation to the team, and waits for incoming mes-
sages. Instantaneous communication does not exist, so this
synchronization step requires some time. Moreover, com-

munication can fail temporarily, in which case the agent
still has to select an action. However, many current ap-
proaches for planning for decentralized POMDPs (Dec-
POMDPs) with communication assume that communication
is instantaneous and without failure (Roth, Simmons, and
Veloso 2005; Becker, Lesser, and Zilberstein 2005; Roth,
Simmons, and Veloso 2007), and do not provide a mecha-
nism to deal with less-than-perfect communication. Other
approaches in literature examined MASs in which commu-
nication arrives with a delay of one time step (Schoute 1978;
) ) . . Grizzle, Hsu, and Marcus 1982), however, guaranteed com-
In this paper we consider planning for multiagent systems mynjcation is still assumed (but with a fixed delay). More-
(MASs), formalized in a decision-theoretic framework to  oyer, when communication is not delayed these methods are
tackle various forms of uncertainty a multiagent team can ot aple to exploit this. We address these shortcomings by
encounter. As in the single-agent case, two main sources of gypicitly reasoning about the probability of successful com-
uncertainty are each agent's imperfect sensors and the un-mypjcation (with variable delays) in the future. Our work
certain effects of its actions. Moreover, planning in MASs is provides a significant step towards more realistic communi-

significantly harder than for a single agent, since when con- cation models for planning in Dec-POMDPS with unreliable
sidering the plan for an agent, one also has to consider the ef- .o mmunication.

fects of the actions of other agents. Especially when agents
have to base their decisions on local observations (sensor
readings), each agent has a different view of the environ-
ment, making it hard to predict the actions of other agents.
Optimal planning in such partially observable and decentral-
ized scenarios is provably intractable, which limits the scal-
ability of optimal solutions to a very small number of agents
and a planning horizon of a few time steps.

Communication capabilities can mitigate these issues of
partial observability, as they allow agents to share informa-
tion such as sensor readings. In this way, communication of
the local observations makes each agent better informed re-
garding the state of the environment, as well as providing a

present a step towards more realistic communication models
for Dec-POMDPs by proposing a model that: (1) allows that
communication might be delayed by one or more time steps,
and (2) explicitly considers future probabilities of successful
communication. For our model, we discuss how to efficiently
compute an (approximate) value function and corresponding
policies, and we demonstrate our theoretical results with en-
couraging experiments.

Introduction

In previous work we have shown how Bayesian games can
be used to plan for a MAS in which communication arrives
with a delay of one time step (Oliehoek, Spaan, and Vlas-
sis 2007). To select an action at each stage in this 1-step
delayed (1TD) setting we proposed to use thg;®alue
function and we demonstrated how thiggQvalue function
can be computed efficiently. We extend upon this work by
considering the setting in which there is stochastically de-
layed communication (SDC). That is, when communication
will usually succeed within a stage, but might fail with some
probability. In particular we formalize (1) at what points in
time synchronization (i.e., communication) is expected to be
completed, (2) the probability with which this occurs, and
(3) what happens if synchronization does not finish within
the allotted wall-clock time frame. For this SDC setting
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we propose a planning method that is exact when the delay A tuple of policiest = (m,...,7m,,) is referred to as
of communication is at most one stage. We show that the a joint policy. In general, each individual deterministic
resulting value function can be compactly represented and (pure) policy ; is a mapping from histories of observa-
how it can be computed efficiently by transferring POMDP  tions to actionsr;((o},...,0t)) = a;. Here,(o},...,ol)
solution techniques. We apply our theoretical results by is the sequence of observations received by adgeup
demonstrating them in encouraging experiments, showing to time stept, which we refer to as thebservation his-
the potential benefit of the proposed model. tory 5f. We also use a different notion of history, namely
The rest of the paper is organized as follows. First we  the action-observation historg which consists of all ob-
introduce the general Dec-POMDP model without commu-  servations received and actions taken up to time step

nication. Then we describe three communication models,
namely instantaneous communication (0TD), communica-
tion with a one time step delay (1TD), and with a variable
stochastic delay (SDC). Next, we show how we can plan
in these models using value iteration. Finally, we perform

several experiments, we provide conclusions and we discuss

future work.

Dec-POMDPs without communication

First we will briefly review the Dec-POMDP model; for
a detailed introduction we refer to (Oliehoek, Spaan, and
Vlassis 2008). In this standard Dec-POMDP setting no com-
munication is possible, and optimal planning is provably in-
tractable (NEXP-complete (Bernstein et al. 2002)).

Definition 1 A decentralized partially observable Markov
decision process (Dec-POMDRJith m agents is defined as
atuple(S, A, T,R,0,0,b°), where:

e Sis afinite set of states.

o A = x;A; is the set ofoint actions, where4; is the set
of actions available to agent Every time step, one joint
actiona = (a1, ..., a,) is taken. Agents do not observe
each other’s actions.

e T:S8 x A — P(S) is the transition function, a mapping
from states and joint actions to probability distributions
over states, specifying(s'|s, a).

e R is the immediate reward function, which maps states
and joint actions to real numberg(s, a).

e O = x;0; is the set of joint observations, whett is a
finite set of observations available to agénEvery time
step one joint observatiom = (o1, ..., 0,,) IS received,
from which each agenitobserves its own componesit

e O is the observation function, which specifies the proba-
bility of joint observations given taken joint actions and
successor state®(ola, s').

e b0 € P(8) is the initial state distribution at= 0.

When there is only one agentin a Dec-POMDP, the model
reduces to a POMDP (Kaelbling, Littman, and Cassandra
1998). The planning problem is to compute a planpol
icy, for each agent that is optimal for a particular number
of time stepsh, also referred to as theorizonof the prob-
lem. We denote the interval of wall-clock time that passes
between two decision points ldy;, and assume it to be con-
stant without loss of generality. A common optimality cri-
terion is the expected cumulative (discounted) future reward

(Zt o 7'R(t)), whereR(t) denotes the reward at time
stept, and0 < v < 1 is a discount factor.

339

t = (a2 0}, al

a;,0;,a;,...,a; ~,0). We also consider corre-

spondingoint histories, respectively denoted@sandd’®.
Figure 1(a) demonstrates the no-communication setting

as modeled by a Dec-POMDRP. It illustrates that the agents

select actions based on their individual observations only.

t—1 t)

Instantaneous communication

A natural approach to tackle the problem of decentralized
observations is to allow the agents to communicate their ob-
servations. In the case of cost-free, instantaneous and noise-
less communication, sharing local observations at each time
step is optimal (Pynadath and Tambe 2002). Of course, true
instantaneous communication does not exist, but when com-
munication is guaranteed to be very fast, the assumption can
be applied as demonstrated in Figure 1(b). Once the pre-
vious actions are completed and the state transitions, to
the agents get their new observations. We assume this hap-
pens at (real-world, wall-clock) time!.! At that point each
agent broadcasts its individual observation, resulting in syn-
chronization at.. The specifics of how synchronization can
be achieved are beyond the scope of this paper, and we as-
sume the agents have synchronized clocks. For an in-depth
treatment of related common-knowledge issues, we refer to
(Halpern and Moses 1990). The agents will have to act at
time ¢, which means that synchronization must be guar-
anteed to be completed i’ = 7! — 7! time units. We
assume without loss of generality that the communication
periodsA. are of equal length for all stages and we drop the
t index.

In this OTD case the planning problem reduces to a cen-
tralized POMDP, as one can assume there is a centralized
agent, say a ‘puppeteer’, that receives joint observations
and takes joint actions in response. During execution all
agents will communicate their observations, look up the
optimal joint action for the resultingoint observation his-
tory, and execute their own action component. For such a
POMDP the (joint action-observation) history of the pro-
cess can be summarized by a probablllty distribution over

states called @int belief b. We will write b7 for the joint
belief as it would be computed by the puppeteer after action-

observation h|stor9t The joint belief,? " resultlng from

b0 by joint actiona and joint observatio can be calcu-
lated by Bayes’ rule:

(s') =

P(ola,s’)
P(o|t?*,a

bé‘t+1

ZP (s')s,a)b% " (s). (1)

Throughout the papet,indices refer to the discrete time steps
of the decision process, whitedenotes a point in wall-clock time.



(@) No communication.

Figure 1: lllustration of different communication models used in this paper. For two consecutive time steps, and two agents,
i andj, we show on what information each agent bases its action choice. In (a) we show the general Dec-POMDP setting

(b) Instantaneous communication (0TD).

(c) Delayed communication (1TD).

which lacks communication. In the OTD setting (b) agents can only decide on their actiati$ &ter receiving the local
observation of the other agents, shortly after synchronizatieh &inally, (c) shows the 1TD setting, in which agents act upon
receiving their local observation af (A. can be short), without waiting untiff. However, at-!*! they have received all local

observations from time, i.e., 71+ > 71

The optimal Q-value function for POMDPs is based on such
beliefs and satisfies the following Bellman equation:

et ,a) = R a)+ > Ploft?",a)

ocO

where R(bY",a) = 3. R(s,a)b? (s) is the expected im-
mediate reward.

Itis well known that the value function (2) is a piecewise-
linear and convex (PWLC) function over the joint belief
space (Kaelbling, Littman, and Cassandra 1998). This
means we can use sets of vectbisto represent the value
of a joint beliefb anda:

t(b,a) = max b- v’
Q(7 ) U;EV; a

®3)

where(-) denotes inner product. The fact that the POMDP
value function is PWLC allows for a compact representation
for optimal algorithms, as well as many opportunities for
fast approximate ones. Note that for the Dec-POMDP case,
i.e., without communication, no such convenient policy rep-
resentation exists.

Communication delayed by one time step

We now consider communication that is delayed by one time
step as illustrated in Figure 1(c). In this 1TD setting syn-
chronization will not be completed before the agents select
an action, i.e.r! < t!. Rather, synchronization must be
completed before the decision at the next stgge: 711,
i.e., synchronization is achieved withis, + A time units.
Note that, since the agents do not wait for communication
within a stage, they can act (almost) immediately when re-
ceiving their observation antl,. can be set to O (or be short).
When the agents communicate their individual observa-
tions and last taken action, then at every time steach
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agent knows the previous joint observation his@fy ' and
actiona’~!. However, each agerithas only observed its
individual last observation! and is uncertain regarding the

last joint observatiom’. For every(dt—1, a‘~1), this situa-
tion can be modeled usingBayesian gaméG) (Oliehoek,
Spaan, and Vlassis 2007), a strategic game with imper-
fect information and identical payoffs. In particular, the
private information of each agent (which definestitpe),
is its last local observation!. As such, the policies for
the BG map a single individual observation to an individ-
ual actiong; : O, — A;. A joint BG-policy is a tuple
B = (b1,...,0m). The probabilities of the joint observa-
tions in this BG are knownP(o) = P(of[t? " at~1).
When a payoff functior)(o, a) is available, the solution
of a BG with identical payoffs is given by the optimal joint
BG policy g*:

B* = argmax > P(0)Q(0, 3(0)),

ocO

(4)

where 3(o) = {(81(01),...,Bm(0om)) is the joint action
specified by for joint observation (typep. 5* is a Pareto-
optimal Bayesian Nash equilibrium (Oliehoek, Spaan, and
Vlassis 2008).

We have shown before that when considering the solu-
tions of all such BGs (for all stagesand allg*~1, at~1),
the optimal payoff functiorf) for the 1TD setting is recur-
sively defined and corresponds to thgQualue function
(Oliehoek, Spaan, and Vlassis 2007):

Qic(f',a) =
R(A*,a) + mﬁaxz P(ol6*,a)Qsc (0, B(0)), (5)
whereR(0%,a) = R(b?", a), as defined at (2).

We now prove that we can write thg@value function as
a function over the joint belief space, and we prove that it is



PWLC over this space As such, we unify the mathematical
frameworks for both 0TD and 1TD communication.

Lemma 1 The Q-value function(5) is a function over the
joint belief space, i.e., we can re-write it as:

QBG(bgt, a) = ]‘—f(bgr y a)+
e > P(o"*1b7", 2)Qeo(b

ot+1

t4+1

,B(0"™)), (6)

whereb?" denotes the joint belief induced BY.
Sketch of proof  Converting a joint action-observation

history g to the corresponding joint beliéf * is a matter
of applying Bayes’ rule (1). What needs to be shown is that,

if two different joint action-observation historiéﬁv“, guo

correspond to the same joint belief, they also have the same

Qge-values: Vo Qpa(f™*,a) = Qag(A*,a). The proof

is inductive, with the base case given by the last time step
t = h — 1. In this case (5) reduces R(bgh_l,a). Clearly

Va Qec(0?,a) = Qas(A*?,a) holds in this case. Proof
thatV, Qec(F"?,a) = Qas(f'?, a) given that the property
holds fort 4 1 is given in (Oliehoek, Vlassis, and Spaan
2007). O

Theorem 1 The Qg-value function for a finite-horizon
Dec-POMDP with 1 time step delayed, free and noiseless
communication, as defined i®) is piecewise-linear and
convex over the joint belief space.

Sketch of proof  The proof is by induction. The base case
is the last time step = h — 1, and again, for this case (6)
tells us thaQee(b? ,a) = 3, R(s,a)b? (s). ClearlyQge

is trivially PWLC for the last time step. The induction step
proves that whe®gg is PWLC fort+1, it is also PWLC for

t. The full proof is listed in (Oliehoek, Vlassis, and Spaan
2007). O

These results are in accordance with the fact that a decen-

Stochastically delayed communication

The OTD and 1TD models described in the previous sec-
tions assume guarantees on communication delay. However,
in the real world, communication may temporarily fail, and
such guarantees are hard to come by. For instance, consider
a team of robots connected via a wireless network. Such
wireless links can be unreliable, requiring retransmissions of
packets and resulting in variable delays. This makes guaran-
teed synchronization within a particular time window hard
to achieve.

We propose an approach for MASs with stochastically
delayed communication (SDC): systems where communi-
cation will be available most of the time, i.e., where syn-
chronization succeeds within a stage with a particular prob-
ability. We start by formalizing the probability that com-
munication succeeds, and we assume that successful com-
munication results in synchronization. For the 0TD model,
the agents need to synchronize their observations within
A, time units and for the 1TD model withih,; + A., as
described before (see Figure 1). Suppose we have a cu-
mulative distribution function (cdf).(A) which provides
P(r. < 1, + A): the probability that communication suc-
ceeds withinA time units after the begin of the communica-
tion phase (5). This allows us to write

pOTD = fc(Ac) (7)

for the probability that communication is instantaneous;

plTD = fc(At + Ac) - fc(A() (8)

for the probability that communication is 1-step delayed;

pQTD = fc(2At + Ac) - fC(At + Ac) (9)

for the probability of two steps delay, and so on. The optimal
value function for such a setting would consider a weighted
sum of these different settings. Using simplified notation,
we have that the value of SDC can be expressed as

. . . * 0TD 1TD 2TD
tralized system under one step delayed communication (also Qsp=R+p “"Forp+p ~Fitp +p~ " Forp + ...,

“one step delay sharing patterns”) is separable (Varaiya and

(10)

Walrand 1978). Hsu and Marcus (1982) presented a, rather Where Firp is the expected future reward given that com-

involved, application of dynamic programming and mention
that the resulting value function (which is different from the

Qgc-value function), is PWLC. Our results here should be
taken as a reformulation of this dynamic program which can

munication will be delayed stages.

To evaluate (10) exactly is impractical, and whéronly
reaches 1 in the limit even impossible. Rather we propose to
approximate it. In particular we will assume (during the off-

be interpreted in the context of BGs, and show a clear anal- line planning phase) that the communication is at most 1TD.

ogy between the setting with 0TD communication and the
1TD communication setting.

The implications of Theorem 1 are that, unlike the general
Dec-POMDP case, the value function for a Dec-POMDP
with 1TD communication can be compactly represented.
Also, itis possible to transfer POMDP solution methods that
exploit the PWLC property to the computation of thgQ
value function. Moreover, the identified analogy between
the OTD and the 1TD setting, allows us to blend them in the
same methodological framework, as shown next.

2These results were already mentioned in (Oliehoek, Spaan,
and Vlassis 2007), however, formal proofs were not presented.
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That is, we define the probability of delayed communication
as
pP = p!TD 4 p2TD | .. _q _ p0TD

and our approximate value function as
Qsplf",2) =
R(0%,a) + p"T° Forp (0°,2) + pP Firp(0,a), (12)
where
FOTD(gtaa) = Z P(0|5t7a) I;}%§é§o(5t+l7at+l)y

ocO
13)

(11)



Qo0+, (o)),
(14)

Firp(6t,a) = P(o|d?,
1rp (07, a) méiXZ (0|0", a)

ocO

correspond to the expected future reward for the case of 0TD

resp. 1TD communication at the next stage. Formally, our
assumption is that the probability of 1TD communication
is1— f.(A.). Note that such an approach is exact when
fe(Ay + A.) = 1 and may be an accurate approximation
when it is close to 1. When computing thp-value func-
tion we determine a joint actiom as well as a joint BG pol-
icy 3 for each belief. If in a stagesynchronization occurs
within A, the agents can compuieand usea. If not, they
choose their actions according to thef b*—!.

The PWLC property of the OTD and 1TD value functions

allows us to assert the PWLC-property f9gp.

Corollary 1 The value function for the stochastically de-
layed communication setti{@2) is a function over the joint
belief space, i.e., it can be written as

Q0 a)
R, a) + p°™ Fyrp (7', a) + pP Firp (b7, a).  (15)

Moreover, for a finite horizon, itis PWLC over this space of
joint beliefs.

Proof Proof that@so is a function over the belief space
is analogue to the proof of Lemma 1. PWLC is proven as
follows. Using simplified notation, we have

Qbp = R+ "™ Fipp, + p” Flp.
Using our knowledge of POMDPs, we know thB{,,

given by (13) is PWLC ifQ45" is PWLC. The PWLC prop-
erty of Qs also indicates thaFfTD given by (14) is PWLC

whenQ4h! is PWLC. A weighted sum of two PWLC func-
tions and adding a third (Wields a PWLC function. There-
fore QSD is PWLC when@4h! is. Once again the base
case is given by the last time step= h — 1, for which

Qso(b?" ", a) = R(,Y" ", a) is PWLC. O

We note that it is possible to make the probability of com-
munication state-dependent by using a ¢dfA;s). This
flexibility allows us to model scenarios in which communi-
cation links are strong in certain locations, for instance when
robots are close, and weaker in others. Let us wHi& for
the probability that there is 0TD communication in the next
stage. Then

OTD(S a) =

ZP (8']s,a) fo(Ag; 8'),
Zbe

The probability of one (or more) steps delayed commu-
nication in the next stage is given W(gt,a) =1-
p°TP (4, a), which can be directly substituted in (12). Also,
including a dependence @f TP on a particular stage is
trivial (in this finite-horizon setting).

P (16)

OTD OTD )

17
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Delays of more than one time step

The Qsp-value function is exact when the communication
delays are at most one time step. However, we would also
like to be able to act successfully in models with longer de-
lays, i.e., in which it may occur that the communication of

t — k,k > 1is not always received at stage If this hap-
pens, the agents should still select actions in some meaning-
ful way. Given the complexity of computing (10) for de-
lays> 1 (it grows doubly exponential ik (Ooi and Wornell
1996)), we propose an approximate on-line algorithm. In or-
der to take into account the probability of 0TD communica-
tion in the future, it uses th@sp-value function, which has
been computed off-line. The proposed open-loop method
ensures agents take coordinated decisions in situations with
delays longer than 1 one time step, however, other types of
approximations are possible as well.

The main idea is that even when communication is failing,
the agents know at what- & they have synchronized for the
last time, i.e., all knowd'~*. Basing decisions exclusively
on information that is common knowledge ensures that the
agents will continue to act in a coordinated manner. We pro-
pose to use an algorithm similar to Dec-COMM (Roth, Sim-
mons, and Veloso 2005), in which each agent models the dis-
tribution P(61—k+1|gt—* at=k+1) 1 < | < k overpossible
g at subsequent time steps. To ensure that the joint actions
taken at intermediate time stefis(until communication is
restored) will be known, the agents base their decisions only
on information that is common knowledge such as the prob-

ability that ad*" has been realized, denotedsy* ). Each
agent computes

arg max Z (0

24

Q%0 (18)

" a),

and executes its component actign When communication
is restored, the agents fully synchronize their knowledge by
sending all local observations since k.

Finite-horizon value iteration

So far we have discussed the existence of value functions
corresponding to different communication models and we
have shown some of their properties. Next we detail how
a value-iteration algorithm for finite-horizon problem set-
tings can be defined for all these PWLC value functions.
Analogous to the POMDP case (Kaelbling, Littman, and
Cassandra 1998), we will define how to computg;Q
from QLL', and QY from QLE', by computing new sets

of vectorsV! from those representing the next stage Q-
function V,fjl. This operation is called the backup oper-
ator H and can be performed in roughly two ways. The
first way is to exhaustively generate alll| x [Vi+1|(O!
possible vectors and use thoselds The second one is

to compute a set of joint beliefs for stagegenerating a
vector for each of them, resulting imt. We will focus

on the latter method as it is used by recent approximate
POMDP solvers (e.g., (Pineau, Gordon, and Thrun 2003;
Spaan and Vlassis 2005)).



The basis of the new vectors is formed by ‘back-
projected’ vectorg,, from the next time step. For a par-
ticulara, o andv € V. they are defined as

Z P(ola, s" ™) P(s' st a)u(stT).

stttesS

8ao(s

(19)
We denote the set af,, for a particulara, o (but differ-
ent next-stage vectorg, ') by Gao. In the POMDP case,
we can define the (finite-horizon and thus not discounted)
backupH?, for a particular joint actiora and for the joint
beliefb of staget as

HE, QR =ra + £5, (20)

with r, is an|S|-dimensional vectory,(s) = R(s,a) and
fF, a vector that expresses the expected future reward

ab - Z arg max b- &ao) (2 1)

° gacE€Gao
whereg,,, is the set of gamma vectors constructed from the
setsv,fjl,va/ that represent the next-stage value function
Q5 (Kaelbling, Littman, and Cassandra 1998).

The Qg backup operator uses the same back-projected
vectors, but instead of maximizing over all, it only maxi-
mizes over those whose next time-step joint actibis con-
sistent with a particular joint BG-policy (Oliehoek, Spaan,
and Vlassis 2008). This set is defined as

"UtTI
%w@£|ﬁ4 VEF A B(o) = }.@a

The Qg-backupHE,

BG-policies:
HEth;Gl =

is completed by maximizing over the

ra +f5, (23)

with
2 — max Z argmax b - gao-
B > 8acEGaop

(24)

At this point, we can introduce the backup operattj®

for the@SD-value function. It can be seen as a weighted sum
of the POMDP and g} backup operators and is defined as

HPQsH! = ra+ o™ 1, + 0I5, (25)
wherep™™ is a vector defined agl™P(s) = p°TP(s,a)
and similar forp?. Note that in this equation the sets
Gao: Gaop Used by respectivel§’, b ffb are computed from

t“ and therefore different from those in the pure 1TD,
27D settings. Also, whelvs,a p°TP(s,a) = 1, HSP re-
duces toHY,, while if Vs, a pOTD(S, a) = 0, Hgf reduces
to HE. The off-line computational effort off3 is similar
to that of .QSG, as computing th€,.s sets (22) is the main
computational burden.

Experiments

In previous work we have provided experimental results on
comparing the POMDP and gQ value functions, in the
1TD context (Oliehoek, Spaan, and Vlassis 2007), as well
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Figure 2: The “Meet in corner” test domain: (a) shows the
map of the large variation, and (b) the small version. In (c)
we compare different®T™ in the large version. We show
the empirically determined valud/(5°), y-axis) of three
policies computed for a particulaf™™, evaluated using a
varying range of actual®™™ values (z-axis).

as when used as heuristics for non-communicative Dec-
POMDP solving (Oliehoek, Spaan, and Vlassis 2008). Here,

we demonstrate how th@sp-value function can be applied

in SDC scenarios. As the scenarios we target are too large to
be solved optimally, we applied an approximate point-based
technique, based on (Pineau, Gordon, and Thrun 2003;
Spaan and Vlassis 2005). The main idea here is to main-
tain a PWLC approximate value function, computed on a
sampled set of beliefs. All reported sampled control quality
values were averaged over000 independent runs.

Problem domains

We use a number of two-agent domains, of which Dec-Tiger
and GridSmall are standard test problems (details provided
by Oliehoek, Spaan, and Vlassis (2008), for instance). One-
Door is a noisy version of the OneDoor environment intro-
duced by Oliehoek, Spaan, and Vlassis (2007). “Meet in
corner” is a problem in which two robots have to reach a
particular corner of their maze, denoted by G in Figures 2(a)
and 2(b), after starting in S. They can move clockwise (CW)
or counter-clockwise (CCW) with the intended eff&6th

of the time, or declare goal when both have reached G, in
which case they receive a reward of 10 (and are transported
to an absorbing state). Declaring goal at another location or
not coordinated is penalized with reward for each agent.
When at the goal, agents observe the goal with 1, in all
other states they receive the same non-goal observation.

Delays of up to one time step

In this section we consider settings in which synchronization
will be achieved with either OTD or 1TD, i.e., the setting in
which our approximation (12) is exact. First we perform
tests when®TP (s, a) (and hence? (s, a)) is uniform, i.e.,
the probability that synchronization does not occur within
A, time units is equaY's, a. Figure 3 shows th@sp-value

for the initial belieft? for a range of values gf’™, and

h = 20. We see that the value increases monotonically with
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Figure 3: TheQsp-value V (1°) (y-axis) for the initial be-
lief °, computed forh = 20 and varyingp®™P (z-axis),
ranging from 0 to 1 in increments 6f1.

an increasing®™™. This is expected: when communication
is more likely to complete within\. time units, the agents
can expect to take more informed decisions. Also this figure
clearly illustrates that the effect of communication delays is
very much problem dependent. The relative impact in the
Dec-Tiger and “Meet in corner” problem is much larger.
Figure 2(c) shows the performance of a joint policy com-
puted for a particular value of°T™ in the large “Meet in
corner” environment in which the actual value @fT™ is
different. We computed)sp-value functions fop?™ = 0,
0.5 and1, and tested them by simulating trajectories in the
same environment, but where the valug®f® ranged from
0 to 1. It demonstrates how the control quality of a pol-
icy that assumes perfect communication,ofm—; () can
deteriorate severely when in fact synchronization is never
achieved withinA . time units (atp®™® = 0 on thez-axis).
This highlights the risk of assuming perfect communication,
largely ignored in relevant literature, as discussed in the in-
troduction. On the other hand, the poligyoro_( 5 (Which
assumeg’™ = 0.5 at computation time) performs well at
run time for all values op°TP tested.

We also empirically verified that th@sp-value function
considers potential future communication capabilities. In a
small “Meet in corner” variation (h= 10), we penalized
move actions in the locations labeled CW in Figure 2(b)
with reward—0.1, and the CCW ones with-0.15. Hence,
the CW route is cheaper, and policies computed for uniform
p"TP = 1 and 0 take that route, resulting in valuessdf3
resp.2.61 (actual sampled control performance). However,
when we use a non-uniform communication model, setting
p"TP(s,a) = 0,Va, Vs € CW and to 1 everywhere else, the

Q@sp policy takes the CCW route obtaining a expected re-
ward of5.22. The proposed model hence successfully trades
off the heavier move penalty with more accurate information
resulting from 0TD communication.

Longer delays

Next, we tested our approach for settings in which delays
of more than one time step occur. In particular, in Table 1
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a b c d e f
p’™P 108 08 06 06 06 06
p'TP 102 01 04 03 02 02
p2TP 0.1 0.1 0.2 0.1
p3TD 0.1

Table 1: Six communication models, “a” through “f”, de-
fined by the probability communication will succeed within
a certain number of time steps (uniform for all states and
joint actions). Empty entries indicate the probability is zero.

e

comm model

Figure 4: Sampled control performantét?) for the large
“Meet in corner” domain, for the communication models de-
tailed in Table 1. Black bars show the proposed method, and
white bars the baseline algorithm.

we defined a set of communication models, ordered roughly
by decreasing quality. For instance, we would expect model
“f” to have the worst performance, as there is a higher prob-
ability of longer delays. Note that communication models
with the samep°TP use the samésp-value function, as it
approximateg' TP, p?TP p3TD asi — pOTP,

We compared algorithm (18), which keeps track of all
possible joint beliefs and uses th@sp-value function,
with the performance of a baseline algorithm. This base-
line is identical to (18), except that it uses the POMDP
(OTD) value function, and already needs to consider
P(ft=F+H|gt=k at=k+l) when! = 1, while the proposed
algorithm uses thé)sp-value function for a delay of 1 time
step (and when there is no delay). Figure 4 shows that algo-
rithm (18) consistently outperforms the baseline algorithm,
as it takes into account the probability'® of instantaneous
communication in the future. As expected, the control qual-
ity goes down as communication becomes worse, i.e., as
longer delays are more likely.

Conclusions

In this paper we presented an overview of different com-
munication assumptions that are often made in decision-
theoretic multiagent planning. In particular we discussed the
assumption of instantaneous communication (0TD) (Roth,
Simmons, and Veloso 2005; Becker, Lesser, and Zilber-
stein 2005; Roth, Simmons, and Veloso 2007), as well
as one-step delayed communication (1TD) (Schoute 1978;
Grizzle, Hsu, and Marcus 1982; Oliehoek, Spaan, and Vlas-
sis 2007). Such models assume that communication is guar-
anteed to complete within 0 or 1 time steps. However, in the
real world such guarantees may be hard to enforce. We in-



troduced a model for stochastically delayed communication
(SDC) which more realistically models unreliable communi-
cation for such Dec-POMDP settings. The model can handle

Proc. of Intelligent Agent Technology.

Bernstein, D. S.; Givan, R.; Immerman, N.; and Zilber-
stein, S. 2002. The complexity of decentralized control

variable delays, and the delays can be dependent on the state of Markov decision processeblathematics of Operations

(e.g., agents that are physically close might have stronger
communication links). Because computing optimal solu-
tions is impractical, we proposed an approximation for this
SDC setting and demonstrated how this approximation can
be computed efficiently. Finally, we performed experiments
that indicate that a joint policy constructed with an overly
positive assumption on communication may result in a se-
vere drop in value. We also empirically demonstrated that,
in settings where 0TD communication is beneficial, the joint
policy computed by our methods specifies actions that are
likely to lead to OTD communication in the future. Finally,

we demonstrated also that delays of more than one time step

can be tackled successfully, outperforming a POMDP-based
baseline.

There are quite a number of directions for future research
of which we mention a few here. In settings where com-
munication delays are typically longer than one stage, the
proposed approximation can be crude due to its open-loop

nature. For such settings alternative methods should be de-

veloped that do take into accouRtTp, k > 2. However,
sincek-steps delay problem with > 2 are not separable
(Varaiya and Walrand 1978), the proposed value-iteration
method will not transfer directly to such settings. Another
direction is to extend this work to the infinite-horizon SDC
setting. As the infinite-horizon g-value function can be
approximated with arbitrary accuracy using a PWLC func-
tion (Oliehoek, Vlassis, and Spaan 2007), we should be able
to naturally extend our results for the SDC setting to the in-
finite horizon.

Our framework depends on the ability of the agents to
synchronize, i.e., to establish common knowledge regarding
the individual observation histories. In some settings where
not only delayed, but also noisy communication is consid-
ered, this may be non-trivial. It may be possible to aug-
ment our model to explicitly incorporate the probabilities of
transmitting error-free messages. Finally, in our work we
have assumed that a model of communication is available.

However, in some cases it may be hard to obtain an accurate

estimation of communication probabilities a priori. It would
be interesting to consider methods that allow the communi-
cation model to be learned on-line.
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