Towards a Robot Perception Specification Language

Nico Hochgeschwender, Sven Schneider, Holger Voos, and Gerhard K. Kraetzschmar

I. INTRODUCTION

Domestic service robots such as PR2 [1] and Care-O-bot
37 must be able to perform a wide range of different tasks
ranging from opening doors [1] and making pancakes [2]
to serving drinks [3]. A crucial precondition to achieve
such complex tasks is the ability to extract task knowledge
about the world from the data perceived through the robot’s
sensors. Examples are the localization of humans [4] for
navigation and interaction purposes, or the detection and
recognition of objects in grayscale images [5] for the sake
of manipulation by the robot. To perceive all the knowledge
needed to safely and robustly perform a task, robots are
equipped with a set of heterogenous sensors such as laser
range finders, ToF cameras, structured light cameras and
tactile sensors which provide different types of data such as
distance measurements, depth images, 3D point clouds, and
2D grayscale or color images. To structure all the required
processing steps on this data so called Robot Perception
Architectures (RPAs) are required (see also Figure [I). In
general, RPAs are composed of functional components pro-
cessing sensory input to output which is relevant for the task
in hand. Thereby, heterogenous algorithms such as filters
and feature detectors are integrated in components which are
then assembled to make up an RPA [6]. However, despite
recent algorithmic advancements in the field of vision and
perception, the development of RPAs, designed to extract
meaning out of the enormous amount of data, is still a
complex and challenging exercise. There is little consensus
on either how such an architecture is best designed for
any particular task or on how to organize and structure
robot perception architectures in general, so that they can
accommodate the requirements for a wide range of tasks.
In this paper we present our work in progress towards
a Robot Perception Specification Language (RPSL). RPSL
is a domain-specific language and its purpose is twofold.
First, to provide means to specify the expected result (task
knowledge) of a RPA in an explicit manner. Second, to
initiate the (re)-configuration process of an RPA based on the
provided specification. Here, we focus on the first objective
and discuss the core language concepts which have been
composed in RPSL.

Nico Hochgeschwender, Sven Schneider, and Gerhard
Kraetzschmar are with the Department of Computer Science,
Bonn-Rhein-Sieg University of Applied Sciences, Germany. Email:
forename.surname@h-brs.de Nico Hochgeschwender and
Holger Voos are with the Research Unit in Engineering Sciences, University
of Luxembourg, Luxembourg. Email: holger.voos@uni.lu

Ihttp://www.care-o-bot-research.org/

Sensors
Laser
Person
Range Poisson Neural Local [
Finder ROI Surface RANSAC Surface E
Euclidean

Reconst. cas Normals
Object
Webcam
Orea” o
Cluster Tree
Gaussian
Filter
Random
Forest Segment.
Classifier
Kinect SIFT CEZ"Q"QV o
3d Features r
Comtra Detection Pose

Fig. 1. Elements making up the design space of a robot perception
architecture: i) heterogenous sets of sensors (blue boxes), ii) computational
components (black boxes), and iii) task-relevant information and knowledge
(brown boxes). The path which is visualized in red shows an instance of
an existing RPA described in Hegger et al. [4]. RPSL is used to specify the
task knowledge visualized in brown boxes on the left hand side.

Robot Perception Architecture Results

606

II. PROBLEM STATEMENT AND MOTIVATION

Currently, robot perception architectures are developed by
domain experts during design time. The design is signif-
icantly influenced by many decisions, which often remain
implicit. These design decision concern the robot platform,
the fasks the robot should perform, and the environment in
which the robot operates. Some exemplary design decisions
include:

o The sensor configuration (e.g., resolution or data fre-
quency) of a particular sensor according to environment
and task specifications.

o The general composition of an RPA, including the se-
lection, configuration and organization of computational
components (implementing the core sensor processing
functionalities such as filters, classifiers, etc.) such that
task and environment requirements are met.

o The configuration of a specific composition of an RPA
for solving a particular task-relevant perception prob-
lem, e.g. determining the pose of a human. The pertains
to particular dynamic connection of RPA components.

As long as task, environment, and platform specifications
remain as assumed during design time, the RPA will operate
properly. However, if an event concerning robot capabilities,
task requirements, or environment features occurs, systemat-
ically ensuring an appropriate reaction by the RPA is a great
challenge. Generally speaking, the vast majority of RPAs is
static and inflexible and it is not possible

« to reconfigure parameters of computational components
(e.g., the o value of a Gaussian filter) during run time,

o to execute complete processing chains in a demand-
driven manner,

« and to modify and reconfigure robot perception process-
ing chains during run time.


http://www.care-o-bot-research.org/

To provide RPAs with the ability to reconfigure their struc-
ture and behavior one needs to model the design decisions
mentioned above in an explicit and computable (during
runtime available) manner. First of all the desired task
knowledge needs to be specified. Depending on the func-
tional component (e.g., manipulation, grasping, or decision-
making) which requires the knowledge and the current task
at hand this knowledge differs substantially. For instance,
a decision-making component might be interested in the
existence of an object whereas a grasping and manipulation
component demands more sophisticated information such as
spatial dimensions and shapes of an object. In both cases
means to express the desired task knowledge are required.
To the best of our knowledge in robotics there is no language
available which allows us to encode such specifications. We
observed that very often ad-hoc solutions e.g., in the form
of message definitions (provided by the underlying robot
software framework) are used which lack expressiveness.

III. RPSL: ROBOT PERCEPTION SPECIFICATION
LANGUAGE

In the following we present the current status of RPSL.
We identify first language requirements and then describe
the different domain concepts which are part of the language.
Those concepts have been identified through a domain anal-
ysis of existing RPAs and their application context in real-
world scenarios.

A. Requirements and Assumptions

RPSL is aimed to be a specification language. Therefore,
the language is not executable. Interestingly, from a plan-
ning point of view the specifications are comparable with
goal specifications in the Planning Domain and Definition
Language (PDDL) [7]. Similarly to PDDL a specification
language for the perception domain should be independent of
the underlying RPA just as PDDL is independent of concrete
task planners. To be usable for a wide range of applications
and systems, RPSL should be independent of

« the type of sensor data processed by the RPA, and
« the type of functional components which are assembled
to make up an RPA.

To enable reuse and exchangeability of the domain concepts
realized in RPSL (e.g., through concrete language primitives
and abstraction) they should be orthogonal to each other as
far as possible. Further, we assume that an environment is not
actively observed (e.g., no active perception which involves
movements of the robot). However, many so called table top
situations in robotics are covered with our current status of
RPSL.

B. General Approach

Based on our domain analysis we derived several core
domain concepts described in the following. To model the
domains we apply a model-driven engineering approach
using the Eclipse Modeling Framework (EMF Here, each

Zhttp://www.eclipse.org/modeling/emf/

myConcepts: Namespace {
myBox: Concept ({

use_domain Size

p: Polytope {
Point (Size.Height, 20mm)
Point (Size.Height, 40mm)
Point (Size.Width, 20mm)
Point (Size.Width, 40mm)
Point (Size.Length, 100mm)

Fig. 2. Concept definition of a box.

domain is specified in the form of an Ecore model. Based
on the Ecore models we developed an external domain-
specific language (DSL) with XTexﬂ As RPSL is work in
progress we use the external DSL mainly to validate the
domain concepts with experts. The next sections describe
the domains and features that need to be captured by RPSL
in more detail.

C. Object Domain

As exemplified in Figure [I] and discussed in Section
there is a huge variability in the kind of task knowledge
potentially provided by RPAs. Ranging from diverse objects
such as persons and objects of daily use such as cups,
bottles, and door handles to the information about these
objects themself such as center of mass, poses, color and
shapes. Here, the challenge is to use a representation which
enables us to model the information about objects on various
levels of abstraction. In RPSL the object domain is based on
Conceptual Spaces (CS) which is a knowledge representation
mechanism introduced by Girdenfors [8]. A conceptual
space is composed of several (measurable) quality dimen-
sions. A concept in a conceptual space is a convex region
in that space. Points (also called knoxels) in a conceptual
space represent concrete instances (objects) of a concept.
To decide whether an instance belongs to one concept or
to another we can apply similarity measures such as Eu-
clidean distances. In Figure [2] an example is shown. Here, a
Concept called myBox is specified. The concept belongs to
the Namespace myConcepts which is simply a mechanism
to organize different concepts as known in general-purpose
programming languages such as Java or C++. The concept
myBox uses the Domain Size which is composed of three
quality dimensions, namely Height, Width, and Length. In
RPSL quality dimensions with different scales such as contin-
uous or ordinal scales are supported. A Polytope is further
used to model the “borders” of the concept myBox. For
instance, every box belonging to the concept myBox needs to
have a height between 20mm and 40mm. In contrast to the
Conceptual Space Markup Language (CSML) introduced by
Adams and Raubal [9] we use polytopes instead of a set of
inequalities to define the concept region as they are easier
to model. To enrich the concept myBox we simply refer to

Ihttp://www.eclipse.org/Xtext/


http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/Xtext/

myConcepts: Namespace {
myBox: Concept ({
use_domain Size
use_domain RGB
p: Polytope ({
/]
Point (RGB.Red, 0)
Point (RGB.Green, 0)
Point (RGB.Blue, 100)
Point (RGB.Blue, 130)

\. J

Fig. 3. Concept definition of a box with color information.

r \
use Namespace myConcepts

darkBlueBox: Prototype {
use_concept myConcepts.myBox
v: Values {
/]
Point (myBox.RGB.Blue, 139)
}
}

Fig. 4. Prototype definition of a dark blue box.

another domain. For instance, in Figure [3] the concept myBox
is enriched with color information using the RGB color
coding which includes three quality dimensions, namely,
Red, Green, and Blue. This approach allows us to model
very expressive concepts as we can reuse existing domains
and corresponding quality dimensions. Once concepts are
defined we can model concrete instances or speaking in the
conceptual space terminology: “prototypes”. In Figure [] a
Prototype darkBlueBox is modeled. Instead of defining
ranges as in the concept definition, prototypes have single
values per quality dimension.

D. Spatial Domain

Very often it makes sense to specify the required object
information with respect to the spatial surrounding. Assum-
ing an egocentric view of the robot one could model for
instance objects through spatial operators such as “behind”,
“next to”, and “right of”. In particular, for manipulation tasks
it is crucial to have information not only about the object to
manipulate, but also about their spatial surrounding in order
to plan motions and to check for collisions. Currently, we
investigate which spatial model we want to include in RPSL
such as the region connection calculus (RCC) [10].

E. Timing Domain

With the timing domain we intend to enrich specifications
about the “when”. More precisely, in many situations it
is important to retrieve information about objects within a
certain time frame e.g., to avoid a stucking robot behavior.
We use the notion of a deadline to encode a particular
point in time by which the specified information should be
available. For instance, specification s5 shown in Figure |§] is

enriched with a Deadline of 3s. Here, Deadline can
be parameterized with the value and an time unit. From
an implementation point of view once the specification is
received by the RPA it will obtain a time stamp which
will be used to cope with the deadline. This imposes a
certain protocol between the component which emits the
specification and the RPA which will not be discussed here.
In future we intend to extend the timing domain with policies
allowing to model strategies with missed deadlines (e.g.,
“when deadline X is missed try to retrieve information Y
or repeat it once”).

F. Dependencies

Another feature in RPSL is to model dependencies among
specifications. That is some information is required before
some other information is available. In Figure [3] specification
s4 is composed of two specifications which have a depen-
dency. First, the amount of the darkBlueBox is retrieved and
then the Pose of the darkBlueBox is retrieved. To model
these situations the dependency meta-model is based on the
concept of a directed acyclic graph (DAG). Interestingly, in
the past we used the same dependency meta-model to model
the sequence of component deployment [11] and robot action
plots [12].

G. Composition Domain

The composition domain composes the previous domains
in order to model a valid and complete specification. Some
concepts such as timing and dependencies are optional
whereas the object domain is mandatory. In Figure [5] some
examples are shown. First, the Namespace myConcepts is
used. Further, in the first specification one is interested in the
amount of objects (visible in the current scene) belonging
to the concept myBox with certain properties concerning
length and width. Here, Amount itself is a concept with
one quality dimension, namely an ordinal integer scale. As
seen in the example the syntax is inspired by SQL with
the difference that the data model is based on Conceptual
Spaces. Similarly to SQL we support logical operators such
as AND and OR as well as relational operators such as
==, > and <= known from general-purpose programming
languages. In the second specification s2 the previously
modeled prototype darkBlueBox is used. After the where
statement a condition is modeled. Here, the condition is
that only objects which look exactly like the darkBlueBox
(similarity measured with Euclidean distance) are counted.
The idea is that with the Similarity operator several
similarity measures are supported and that we can balance
the expected result according to the features provided by
the measure. In future we intend to support also weighting
factors which can be applied to increase or decrease the
importance of quality dimensions for the similarity measure.

IV. CONCLUSION

We presented the work in progress of using domain-
specific languages for specifying robot perception archi-
tectures. Assessing the DSLRob workshop series showed



use Namespace myConcepts

sl: Specification ({
d: Data {

s2: Specification ({
d: Data {

s3: Specification ({
d: Data {

s4: Specification ({
dg: DependencyGraph {
s2 before s3
}
}

s5: Specification ({
d: Data {

}
}

}

get Amount from myBox where myBox.Size.Width <= 20mm and myBox.Size.Length > 100mm

get Amount from darkBlueBox where Similarity (EuclideanDistance) ==

get Pose from darkBlueBox where Similarity(EuclideanDistance) == 0

get Amount from darkBlueBox where Similarity (EuclideanDistance) == 0 ensure Deadline (3s)

Fig. 5.

that RPSL is the first attempt to use DSLs in the sub-
domain of robot perception. Even though, RPSL is work in
progress it helped already to identify and break down the
crucial domains which are involved in specifying the result
of RPAs. To achieve the second objective of our language,
namely the initialization of a (re)-configuration based on the
specification we are currently implementing a use case which
is based on simple table top scene.

ACKNOWLEDGEMENT

Nico Hochgeschwender received a PhD scholarship from the
Graduate Institute of the Bonn-Rhein-Sieg University of Applied
Sciences which is gratefully acknowledged. Furthermore, the au-
thors gratefully acknowledge the on-going support of the Bonn-
Aachen International Center for Information Technology.

REFERENCES

[1] W. Meeussen, M. Wise, S. Glaser, S. Chitta, C. McGann, P. Mihelich,
E. Marder-Eppstein, M. Muja, V. Eruhimov, T. Foote, J. Hsu, R. B.
Rusu, B. Marthi, G. Bradski, K. Konolige, B. P. Gerkey, and E. Berger,
“Autonomous door opening and plugging in with a personal robot,”
in Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), 2010.

[2] M. Beetz, U. Klank, I. Kresse, A. Maldonado, L. Mdssenlechner,
D. Pangercic, T. Riihr, and M. Tenorth, “Robotic roommates making
pancakes,” in Proceedings of the IEEE-RAS International Conference
on Humanoid Robots, 2011.

[3] T. Breuer, G. Giorgana Macedo, R. Hartanto, N. Hochgeschwender,
D. Holz, F. Hegger, Z. Jin, C. Mueller, J. Paulus, M. Reckhaus,
J. Alvarez Ruiz, P. Ploeger, and G. Kraetzschmar, “Johnny: An
autonomous service robot for domestic environments,” Journal of
Intelligent and Robotic Systems, Special Issue on Domestic Service
Robots in the Real World.

Some example specifications.

[4] P. G. P. Frederik Hegger, Nico Hochgeschwender and G. K. Kraet-
zschmar, “People Detection in 3d Point Clouds using Local Surface
Normals,” in Proceedings of the 16th RoboCup International Sympo-
sium, ser. Lecture Notes in Computer Science. Mexico City, Mexico:
Springer, June 2012, to appear.

[5] T. Asfour, T. Azad, N. Vahrenkamp, K. Regenstein, A. Bierbaum,
K. Welke, J. Schrder, and R. Dillmann, “Toward humanoid manip-
ulation in human-centred environments,” Robotics and Autonomous
Systems, vol. 56, pp. 54-65, 2008.

[6] G. Biggs, N. Ando, and T. Kotoku, “Rapid data processing pipeline
development using openrtm-aist,” in System Integration (SII), 2011
IEEE/SICE International Symposium on, 2011, pp. 312-317.

[71 D. Mcdermott, M. Ghallab, A. Howe, C. Knoblock, A. Ram,
M. Veloso, D. Weld, and D. Wilkins, “Pddl - the planning domain
definition language,” Yale Center for Computational Vision and Con-
trol,, Tech. Rep. TR-98-003, 1998.

[8] P. Girdenfors, Conceptual spaces - the geometry of thought.
Press, 2000.

[9] B. Adams and M. Raubal, “Conceptual space markup language (csml):
Towards the cognitive semantic web.” in ICSC. IEEE Computer
Society, 2009, pp. 253-260.

[10] D. A. Randell, Z. Cui, and A. Cohn, “A Spatial Logic Based on
Regions and Connection,” in KR’92. Principles of Knowledge Rep-
resentation and Reasoning: Proceedings of the Third International
Conference, B. Nebel, C. Rich, and W. Swartout, Eds. San Mateo,
California: Morgan Kaufmann, 1992, pp. 165-176.

[11] N. Hochgeschwender, L. Gherardi, A. Shakhimardanov, G. Kraet-
zschmar, D. Brugali, and H. Bruyninckx, “A model-based approach
to software deployment in robotics,” in Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).,
2013.

[12] M. Reckhaus, N. Hochgeschwender, P.-G. Ploger, and G. K. Kraet-
zschmar, “A platform-independent programming environment for robot
control,” in Proceedings of the 1st International Workshop on Domain-
Specific Languages and Models for Robotic Systems (DSLRob) held
at the IEEE/RSJ International Conference on Intelligent Robots and
Systems, 2010.

MIT



	Introduction
	Problem Statement and Motivation
	RPSL: Robot Perception Specification Language
	Requirements and Assumptions
	General Approach
	Object Domain
	Spatial Domain
	Timing Domain
	Dependencies
	Composition Domain

	Conclusion
	References

