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Abstract— A generalized H∞ observers design is proposed for
linear systems with unknown inputs. It generalizes the existing
results concerning the proportional observer (PO) design and
the proportional integral observer (PIO) design. The approach
is based on the solutions of the algebraic constraints obtained
from the unbiasedness conditions of the estimation error. The
observer design is obtained from the solutions of linear matrix
inequalities (LMIs). A numerical example is given to illustrate
our approach.

I. INTRODUCTION AND PROBLEM FORMULATION

The problem of estimating the state of a dynamical system
from outputs and inputs has received many attentions since
the first result obtained by Luenberger and Kalman for the
deterministic and stochastic systems appeared [1] and [2].
This is due to the fact that the state variables are often
not available or only a partial part of them are accessible.
The observer has many applications from the feedback
control to the fault detection and failure diagnosis. In the
last few decades, the observer design has been extended to
systems with unknown inputs (see [3], [4], [5] and references
therein). All these results use the proportional observer (PO).
Proportional integral observer (PIO) has been introduced by
duality to PI controller which is generally used to achieve
steady-state accuracy and is also useful for the control of
unknown systems. The PIO constitutes an extension of the
Luenberger observers (called also PO). The first result on the
PIO was presented by [11] for simple input simple output
systems (SISO), and extension to multivariable systems was
presented in [12] and [14]. In [7] the authors showed the
performances of the PIO, compared to PO, in presence of
disturbances and uncertainties. Recently many results on the
PIO for systems with unknown inputs were presented in [8]-
[10]. On the other hand a new structure of the observer,
called dynamic observer, was developed by [13] and [15].
It presented an alternative state estimation structure which
can be considered as more general than PO and PIO, these
latter two can be only considered as particular cases of this
structure. The idea of including additional dynamic in the
observer was presented in [16]. The structure of the proposed
dynamic observer presented in [13] is dual of the dynamic
feedback control structure.
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The present paper concerns a new form of a dynamic
observer, which is more general than those presented in [13]
and [15]. This observer is formed by a dynamical part and a
static part, and it is used to estimate the state of the system
in presence of unknown inputs and disturbances. It can be
shown that the existing dynamic observers, the PO and PIO
are only particular cases of the structure of our observer. A
numerical example is presented to illustrate our approach.

Consider the following linear system with unknown inputs

ẋ = Ax+Bw+Gd
y = Cx+Dw (1)

with the initial state x(0) = x0, where x ∈ Rn,y ∈ Rp,w ∈ Rq

and d ∈ Rm are the state vector, the measurement output,
the disturbance vector and the unknown input respectively.
Matrices A,B,G,C and D are known and of appropriate
dimensions.

We consider the generalized full-order linear time invariant
observer, called generalized observer (GO), of the form

ż = Nz+ Jy+Ev
v̇ = T z+My+Hv
x̂ = z+Fy

(2)

where z ∈ Rn,v ∈ Rt , x̂ ∈ Rn are the state vector of the
observer, an auxiliary state vector and the estimate of x
respectively. Matrices N,J,E,T,M,H and F are unknown
and of appropriate dimensions which can be determined such
that:
1.the estimation error e(t) = x̂(t)− x(t) and the auxiliary
vector v(t) converge to 0 for w(t) = 0;
2.for w(t) 6= 0 we must minimize the worst case estimation
error ‖e‖L2 for all bounded energy disturbances w(t), i.e
minimize

sup
w∈L2−{0}

‖e‖L2

‖w‖L2

II. H∞ OBSERVERS DESIGN

In this section we shall present the conditions of the
existence of the GO given by (2) for system(1). Then a
new method for the design of GO will be given from the
solution of the linear matrix inequality optimization problem.
From system (1) and observer (2) we can give the following
lemma:

Lemma 1 The dynamics of e(t) and v(t) are independent of
x(t), d(t) and ẇ(t) if the following conditions are satisfied
• FD = 0
• ΨG = 0
• MC−T Ψ = 0



• ΨA−NΨ+ JC = 0
where Ψ = FC− I.

Proof: The estimation error e is given by

e = x̂− x
= z+F(Cx+Dw)− x
= z+Ψx+FDw

its dynamic is given by:

ė = ż+Ψẋ+FDẇ
= Nz+ J(Cx+Dw)+Ev

+Ψ(Ax+Bw+Gd)+FDẇ
= Ne+(ΨB+ JD−NFD)w+Ev

+(ΨA+ JC−NΨ)x+ΨGd +FDẇ

(3)

Also the dynamic of v(t) can be written as

v̇ = Te+Hv+(MC−T Ψ)x
+(MD−T FD)w (4)

Now, these dynamics are independent of x, d and ẇ if items
1)−4) of the lemma are satisfied, this proves the lemma.

If the 4 items of lemma 1 are satisfied, then equations (3)
and (4) become

u̇ = Qu+Sw (5)

where u=
(

e
v

)
, Q=

(
N E
T H

)
and S=

(
ΨB+ JD

MD

)
.

Now, we can give the following lemma which can be used
in the sequel of the paper (see reference [17]).

Lemma 2 Let matrices B∈ Rn×m , C∈ Rk×n and Q=QT ∈
Rn×n be given. Then the following statements are equivalent:
• There exists a matrix Y satisfying

BY C+(BY C)T +Q< 0 (6)

• The following two conditions holds

B⊥QB⊥T < 0 (7)

CT⊥QCT⊥T < 0 (8)

where B⊥ is the orthogonal complement of B. In this case,
all matrices Y are parameterized as follows

Y = B†
RKC†

L +Z−B†
RBRZCLC†

L (9)

where
K=−R−1BT

LS1CT
R
(
CRS1CT

R
)−1

+S1/2L
(
CRS1CT

R
)−1/2

S1 =
(
BLR−1BT

L −Q
)−1

> 0

S= R−1−R−1BT
L
(
S1−S1CT

R(CRS1CT
R)
−1CRS1

)
BLR−1

where matrices R and L are arbitrary and of appropriate
dimensions satisfying R = RT > 0 and ‖L‖ < 1. Matrices
BL, BR, CL and CR are any full rank matrices such that
B= BLBR and C= CLCR.

If the 4 items of lemma 1 are satisfied and by using (5)
we obtain.

u̇ = Qu+Sw
e = Lu (10)

where L =
[

In 0
]
. Then the problem of the observer

design is reduced to find matrices N, J, E, T , M, H and
F such that :
• Matrix Q is a stability matrix for w(t) = 0 ;
• for w(t) 6= 0,

sup
w∈L2−{0}

‖e‖L2

‖w‖L2

is minimized or equivalently ‖Twe‖∞ is minimized .
where Twe represents the transfer function from the dis-
turbance w to the estimation error e. The solution to this
problem can be obtained from the bounded real lemma (see
[17] ) and is given by the following lemma:

Lemma 3 System (10) is asymptotically stable for w = 0
and ‖Twe‖∞ < γ for w 6= 0, if and only if there exists a matrix
X > 0 such that the following LMI is satisfied[

XQ+QT X +LT L XS
ST X −γ2I

]
< 0 (11)

The problem formulated in this lemma is not easy to solve
by using the form (11) where the entries of matrices Q and
S are subjected to the constraints of lemma 1. The following
section will provide us with the parameterization of all these
entries.

A. Parameterization of the observer matrices

Before presenting the observer design method we shall
present the parameterization of the solutions to the 4 condi-
tions of lemma 1.

Now from conditions 1) and 2) of lemma 1 and by using
the definition of matrix Ψ we have the following equation

FF2 = F1 (12)

where F2 =
[
D CG

]
and F1 =

[
0 G

]
. The necessary and

sufficient condition for (12) to have a solution is that

rank
[

D CG
0 G

]
= rank

[
D CG

]
(13)

Remark 1 The condition (13) is dependent on the matrix
D, one can see that if D = 0, we obtain the following

condition rank
[

CG
G

]
= rank(CG), which is equivalent

to rank
[

I −C
0 I

][
CG
G

]
= rankG = rank(CG). This is

the condition generally used in the observers for systems
with unknown inputs as can be seen from reference [4].

In the sequel of this paper, we shall make the following
assumption:

Assumption 1 We assume that condition (13) is satisfied.



Under Assumption 1 a solution to (12) is given by

F = F1F+
2 (14)

where F+
2 is any generalized inverse matrix satisfying the

condition F2F+
2 F2 = F2.

Now from condition 3) of lemma 1 and by using the
definition of matrix Ψ we obtain

T =−ZC (15)

where Z = M−T F .
On the other hand from condition 4) we obtain

N = N1−KC (16)

where N1 = A−FCA = A−F1F+
2 CA and K = J−NF .

Using these values, matrices Q and S can be written as

Q =

[
N E
T H

]
=

[
N1−KC E
−ZC H

]
= Q1−Y Q2 (17)

and

S =

[
ΨB+ JD

MD

]
= S1−Y S2 (18)

where Q1 =

[
N1 0
0 0

]
, Y =

[
K E
Z H

]
, Q2 =

[
C 0
0 −I

]
, S1 =[

(FC− In)B
0

]
and S2 =

[
−D
0

]
.

B. Observer design

From the obtained results of section A and from the results
of lemma 2 we can give the observer design from the solution
of a linear matrix inequality formulation.

Now, define the following matrices B =

[
−I
0

]
and C =[

Q2 S2
]
, then we have the theorem as follows:

Theorem 1 Under assumption 1, system (10) is asymptoti-
cally stable for w = 0 and ‖Twe‖∞ < γ for w 6= 0, if and only
if there exists a matrix X > 0 such that the following LMI is
satisfied

CT⊥QCT⊥T < 0 (19)

In this case, all matrices Y are parametrized as follows

Y = X−1Y (20)

where
Y =−R−1BT

LS1CT
R
(
CRS1CT

R
)−1

+S1/2L
(
CRS1CT

R
)−1/2

S1 =
(
BLR−1BT

L −Q
)−1

> 0

S= R−1−R−1BT
L
(
S1−S1CT

R(CRS1CT
R)
−1CRS1

)
BLR−1

with Q =

[
XQ1 +QT

1 X +LT L XS1
ST

1 X −γ2I

]
, matrices R and L

are arbitrary and of appropriate dimensions satisfying R=
RT > 0 and ‖L‖< 1.

Proof: From lemma 3 the observer error (3) is asymp-
totically stable, for w(t) = 0, and the H∞-norm bound
‖Twe‖∞ < γ for w(t) 6= 0, if and only if there exists a positive
matrix X such that (11) is satisfied, by using (17) and (18)
we obtain the following LMI

Q+CY B+(CY B)T < 0 (21)

where Y = XY .
The solvability conditions of (21) are

B⊥QB⊥T < 0 (22)

CT⊥QCT⊥T < 0 (23)

[17]. Now we have B⊥ =
[
0 I

]
, than inequality (22) is

always satisfied and the solvability conditions reduce to (23)
which is exactly (19). On the other hand since C and B are
of full row and full column ranks respectively , equation (9)
of lemma 2 becomes Y = K. The rest of the proof stems
from lemma 2.

Remark 2 The generalized observer design can be also
directly obtained from lemma 3, in fact that inequality (11)
or inequality (21) can be rewritten as follows[

Π XS1−ΩS2
ST X−ST

2 ΩT −γ2I

]
< 0 (24)

where Π = XQ1 +QT
1 X −ΩQ2−QT

2 ΩT +LT L. In this case
the parameter matrix Y = X−1Ω.

This formulation is simple and easy to solve, however it
does not give the general solution to this design compared to
that given in theorem 1. In fact, one can obtain the evident
solution corresponding to the PO which leads to matrices
E = 0, T = 0 and H a stability matrix.

Design algorithm summary
The results of section 2 can be summarized in the follow-

ing design algorithm:

• step 1: Check the condition (13), then compute matrices
N1,S1,S2,Q1 and Q2;

• step 2: Calculate C and solve the LMI (19) to find
matrix X, then find matrix Y of theorem 1 by choosing
matrices R=RT > 0 and ‖L‖< 1 satisfying the condi-
tions given in theorem 1, and compute matrix Y given
by (20);

• step 3: From the obtained values of step 2 compute the
different matrices of the observers, N given by (16),
T given by (15) and matrices J and M given by J =
K +NF and M = Z +T F .



III. NUMERICAL EXAMPLE

To illustrate our approach, let us consider a linear system
with unknown input in the form of (1) where matrices

A =

 −1+∆ 0 0
0 −10+∆ 0
0 0 −1+∆

 , B =

 1
2
3

 ,

G =

 1
0
0

 , C =

[
1 0 0
0 0 1

]
and D =

[
1
1

]
.

where ∆ = 0.1sin t is an uncertainty. The initial conditions
are x1(0) = 10,x2(0) = 5,x3(0) = 1.

By applying our approach to design a generalized observer
for this system we obtain the following matrices: X =

0.6440 −0.0082 −0.5018 0 0 0
−0.0082 0.1100 −0.0082 0 0 0
−0.5018 −0.0082 0.6440 0 0 0

0 0 0 1.1458 0 0
0 0 0 0 1.1458 0
0 0 0 0 0 1.1458

,

Y =


13.7141 −4.7127 −0.2005 −0.2005 −0.2005
3.5385 3.5326 −0.3529 −0.3529 −0.3529
−3.7411 12.7424 −0.2005 −0.2005 −0.2005
0.8643 0.8638 −17.5861 −0.1309 −0.1309
0.8643 0.8638 −0.1309 −17.5861 −0.1309
0.8643 0.8638 −0.1309 −0.1309 −17.5861

,

Z =

0.8643 0.8638
0.8643 0.8638
0.8643 0.8638

, R =
0.0500 0 0 0 0 0

0 0.0500 0 0 0 0
0 0 0.0500 0 0 0
0 0 0 0.0500 0 0
0 0 0 0 0.0500 0
0 0 0 0 0 0.0500

 and

L =


0.1500 0.1500 0.1500 0.1500 0.1500
0.1500 0.1500 0.1500 0.1500 0.1500
0.1500 0.1500 0.1500 0.1500 0.1500
0.1500 0.1500 0.1500 0.1500 0.1500
0.1500 0.1500 0.1500 0.1500 0.1500
0.1500 0.1500 0.1500 0.1500 0.1500

. By using

the Yalmip toolbox of Matlab, we find the optimal γ = 1
and the corresponding generalized observer is then given by

ż =

−13.7141 0 3.7127
−3.5385 −10.0000 −3.5326
3.7411 0 −13.7424

z +

−0.0000 9.0013
−0.0000 7.0711
0.0000 9.0013

y+

−0.2005 −0.2005 −0.2005
−0.3529 −0.3529 −0.3529
−0.2005 −0.2005 −0.2005

v

v̇ =

−0.8643 0 −0.8638
−0.8643 0 −0.8638
−0.8643 0 −0.8638

z+

−0.0000 1.7281
−0.0000 1.7281
−0.0000 1.7281

y+

−17.5861 −0.1309 −0.1309
−0.1309 −17.5861 −0.1309
−0.1309 −0.1309 −17.5861

v

x̂ = z+

1 −1
0 0
0 0

y

In order to compare our results with those obtained by
PO, we also design a H∞ PO with the same γ = 1 and we
obtain the following observer:

ż =

−1.11 0 0.11
0 −10 0

0.11 0 −1.11

z +(1.0e−04)∗

0 −0.3387
0 0
0 −.3387

y

x̂ = z+

1 −1
0 0
0 0

y

Simulation results are presented in figures Fig.1- Fig.7.
The performances of GO and PO are compared. Fig.1, Fig.3
and Fig.5 present the original states x1, x2 and x3 and
their estimations by using our GO and by using the PO,
respectively. Fig.2, Fig.4 and Fig.6 present the estimation
errors e (e = x̂1− x1) obtained by the GO and by the PO,
respectively. Fig.7 presents the unknown input and distur-
bance. It can be seen from these results that the GO presents
the better performances in presence of disturbance. These
simulation results prove the effectiveness of our proposed
design approach.

IV. CONCLUSION

In this paper we have presented a novel H∞ dynamic
observers design for systems with unknown inputs. This
design has been obtained from the parameterization of the
solutions of the LMI. The presented observer GO constitutes
a generalization of the existing static and dynamic observers.
Contrary to the existing results for the observers design in
presence of unknown inputs, the GO can be used in presence
of disturbance. A numerical example has been presented and
shows the better performances of the GO compared to the
Luenberger observer (called also PO) .
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[7] D.Söffker, T.Yu and P. C. Müller. State Estimation of Dynamical
Systems with Nonliearities by using Proportional-Integral Observer.
Int. J. Systems Science, vol. 26, no. 9, pp 1571-158, 1995.

[8] Krishna K. Busawon and Pousga Kabore. Disturbance Attenuation
using Proportional Integral Observers. Int. J. Control, vol. 74, no. 6,
pp 618-627, 2001.

[9] Z. Gao, T. Breikin and H.Wang. Discrete-time Proportional and
Integral Observer and observer-based Controller for systems with both
Unknown Input and Output Disturbances. Optimal Control Applica-
tions and methods, vol. 29, pp 171-189, 2008.

[10] H.S.Kim, T.K. Yeu and S. Kawaji. Fault Detection in Linear Descriptor
Systems via Unknown Input PI Observer. Transtions on Control,
Automation and Systems Engineering, vol. 3, no. 2, pp 77-82, 2001.



[11] B. Wojciechowski. Analysis and synthesis of proportional-integral
observers for single-input-single-output time-invariant continuous sys-
tems. Ph.D. dissertation, Gliwice, Poland, 1978.

[12] S.Beale and B.Shafai. Robust control systems design with proportional
integral observer. Int. J. Control, vol. 50, pp 97-111, 1989.

[13] J.K Park, D.R. Shin and T.M.Chung. Dynamic observers for linear
time-invariant systems. Automatica, vol. 38, pp 1083-1087, 2002.

[14] T.Kaczorek. Proportional-integral observers for linear multivariable
time-varying systems. Regelungstechnik, vol 27, pp 359-562, 1979.

[15] H.J. Marquez. A frequency domain approach to state estimation.
Journal of the Franklin Institute, vol. 340, pp 147-157, 2003.

[16] G.C. Goodwin and R.H. Middleton. The class of all stable unbiased
state estimators. Systems and Control Letters, vol. 13, pp 161-163,
1989.

[17] R.Skelton, T.Iwasaki and K.Grigoriadis. Unified Algebraic Approach
to Linear Control Design. Taylor and Francis, London, 1998.

0 50 100 150 200 250 300 350 400 450 500
−8

−6

−4

−2

0

2

4

6

8

time

X
1

 

 

X1

X1GO

X1PO

Fig. 1. original state x1 and its estimate
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Fig. 2. estimation error e1 of GO and PO
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Fig. 3. original state x2 and its estimate
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Fig. 4. estimation error e2 of GO and PO
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Fig. 5. original state x3 and its estimate
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Fig. 6. estimation error e3 of GO and PO
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