Disaggregation of bipolar-valued outranking relations and application to the inference of model parameters

Patrick Meyer

in collaboration with R. Bisdorff and J.-L. Marichal

University of Luxembourg

13 September 2007 EMPG 2007's decision science symposium

Some questions beforehand

What data is underlying a bipolar-valued outranking relation?

How do these data look like?

Can we help the decision maker to determine the parameters of the model?

13 September 2007

Disaggregation & inference

13 September 2007

Structure of the presentation

- Introduction
- Models for the bipolar-valued outranking relation
- Disaggregation of bipolar-valued outranking relation
- On the rank of a bipolar-valued outranking relation
- Illustrative examples
- Usefulness in MCDA: inference of model parameters

Introductive considerations

Disaggregation & inference 13 September 2007 Disaggregation & inference 13 September 2007 **ntroduction** Models Disaggregation Rank Illustration Inference Implementation **Introduction** Models Disaggregation Rank Illustration Inference Implementation

Recall a few facts . . .

- X is a finite set of n alternatives
- N is a finite set of p criteria
- $g_i(x)$ is the **performance** of alternative x on criterion i
- $w_i \in [0, 1]$, rational, is the **weight** associated with criterion i of N, s.t. $\sum_{i \in N} w_i = 1$
- q_i , p_i , wv_i and v_i are **thresholds** associated with each criterion i to model local or overall at least as good as preferences

Recall a few facts . . .

- $xSy \equiv "x \text{ outranks } y"$
- **Classically**: An outranking situation *xSy* between two alternatives *x* and *y* of *X* is assumed to hold if there is a **sufficient majority** of criteria which supports an "at least as good as" preferential statement and there is no criterion which raises a **veto** against it
- $\widetilde{S}(x,y) \in [-1,1]$ is the **credibility of the validation** of the statement xSy
- ullet \widetilde{S} is called the **bipolar-valued** outranking relation

Patrick N	Леуег (Uni.lu)	Disag	ggregation & ir	nference	13 Septen	nber 2007	5 / 38	Patrick N	Neyer (Uni.lu)	Disag	gregation & ir	nference	13 Septer	mber 2007 6 / 38
Introduction		Disaggregation						Introduction		Disaggregation				

Goal

Primary objective

Disaggregate the bipolar-valued outranking relation to determine how the underlying data looks like

In other words:

Given $\widetilde{S}(x,y) \ \forall x \neq y \in X$ and thresholds $q_i, p_i, wv_i, v_i \ \forall i \in N$, determine the **performances** of alternatives $g_i(x) \ \forall x \in X, \forall i \in N$, and the **weights** $w_i \ \forall i \in N$

3 different models:

- \mathcal{M}_1 : Model with a single preference threshold
- \mathcal{M}_2 : Model with two preference thresholds
- \mathcal{M}_3 : Model with two preference and two veto thresholds

Goal

Secondary objective

Infer model parameters based on a **priori** knowledge provided by the decision maker

In other words:

Given the performances $g_i(x) \ \forall x \in X \ \forall i \in N$ and some a priori info from the decision maker, determine the values of the thresholds and the weights

Usefulness in Multiple Criteria Decision Analysis (MCDA):

Help to elicit the decision maker's **preferences** via questions on his domain of expertise

Patrick Meyer (Uni.lu) Disaggregation & inference 13 September 2007 7 / 38 Patrick Meyer (Uni.lu) Disaggregation & inference 13 September 2007 8 / 38

troduction **Models** Disaggregation Rank Illustration Inference Implementation Introduction **Models** Disaggregation Rank Illustration Inference Implementation

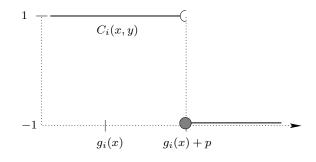
Different models for the outranking relation

\mathcal{M}_1 : Model with a single preference threshold

A local "at least as good as" situation between two alternatives x and y of X, for each criterion i of N is represented by the function $C_i: X \times X \to \{0,1\}$ defined by:

$$C_i(x,y) = \left\{ egin{array}{ll} 1 & ext{if} & g_i(y) < g_i(x) + p; \ -1 & ext{otherwise}, \end{array}
ight.$$

where $p \in]0,1[$ is a constant **preference threshold** associated with all the preference dimensions



Patrick Meyer (Uni.lu ntroduction Models

)isaggregation

tion & interence

Informace

Implementation

Introduction

Disaggregation F

Illustration

13 September 2007

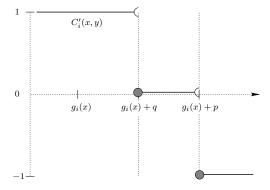
olementation

\mathcal{M}_2 : Model with two preference thresholds

A local "at least as good as" situation between two alternatives x and y of X, for each criterion i of N is represented by the function $C'_i: X \times X \to \{-1, 0, 1\}$ s.t.:

$$C_i'(x,y) = \left\{ egin{array}{ll} 1 & ext{if} & g_i(y) < g_i(x) + q; \ -1 & ext{if} & g_i(y) \geq g_i(x) + p; \ 0 & ext{otherwise}, \end{array}
ight.$$

where $q \in]0, p[$ is a constant **weak preference** threshold associated with all the preference dimensions.



\mathcal{M}_1 & \mathcal{M}_2

Bipolar-valued outranking relation

Models

$$\widetilde{S}'(x,y) = \sum_{i \in N} w_i C'_i(x,y) \quad \forall x \neq y \in X$$

Recall:

 $\widetilde{S}'(x,y) \in [-1,1]$ represents the credibility of the validation of the outranking situation xSy

Meaning of \widetilde{S}' :

- $\widetilde{S}(x,y) = +1$ means that statement xSy is clearly validated.
- $\widetilde{S}(x,y) = -1$ means that statement xSy is clearly not validated.
- $\widetilde{S}(x,y) > 0$ means that statement xSy is more validated than not validated.
- $\widetilde{S}(x,y) < 0$ means that statement xSy is more not validated than validated.
- $\widetilde{S}(x,y) = 0$ means that statement xSy is indeterminate.

rick Meyer (Uni.lu) Disaggregation & inference 13 September 2007 11 / 38 Patrick Meyer (Uni.lu) Disaggregation & inference 13 September 2007 12 / 38

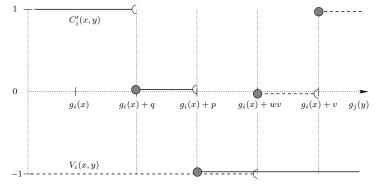
oduction **Models** Disaggregation Rank Illustration Inference Implementation Introduction **Models** Disaggregation Rank Illustration Inference Implementatio

\mathcal{M}_3 : Model with two preference and two veto thresholds

A *local veto* situation for each criterion i of N is characterised by a veto function $V_i: X \times X \to \{-1,0,1\}$ s.t.:

$$V_i(x,y) = \left\{ egin{array}{ll} 1 & ext{if} & g_i(y) \geq g_i(x) + v \,; \ -1 & ext{if} & g_i(y) < g_i(x) + wv \,; \ 0 & ext{otherwise} \,, \end{array}
ight.$$

where $wv \in]p,1[$ (resp. $v \in]wv,1[$) is a constant **weak veto threshold** (resp. **veto threshold**) associated with all the preference dimensions



Patrick Meyer (Uni.lu) Disaggregation & inference 13 September 2007 13 / 38 Patrick Meyer (Uni.lu) Disaggregation & inference 13 September 2007 14 / 3

Introduction Models Disaggregation Rank Illustration Inference Implementation Introduction Models Disaggregation Rank Illustration Inference Implementation

Disaggregation of the outranking relation

\mathcal{M}_3

Bipolar-valued outranking relation

$$\widetilde{S}''(x,y) = \min \left\{ \sum_{i \in N} w_i C_i'(x,y), -V_1(x,y), \dots, -V_n(x,y) \right\}.$$

Note:

The min operator transsates the **conjunction** between the overall concordance and the negated local veto indexes for each criterion

How?

Objective

Disaggregate the bipolar-valued outranking relation to determine how the underlying data looks like

How?

By mathematical programming!

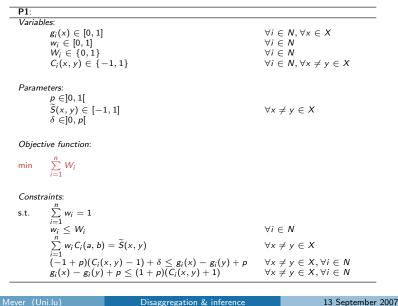
 \Rightarrow Given \widetilde{S} , determine $g_i(x)$ ($\forall i \in N, \forall x \in X$) and w_i ($\forall i \in N$)

Patrick Meyer (Uni.lu) Disaggregation & inference 13 September 2007 15 / 38 Patrick Meyer (Uni.lu) Disaggregation & inference 13 September 2007 16 / 38

roduction Models **Disaggregation** Rank Illustration Inference Implementation Introduction Models **Disaggregation** Rank Illustration Inference Implementati

Disaggregation of \mathcal{M}_1 by mathematical programming

Minimise the number of active criteria



Disaggregation of \mathcal{M}_1 by mathematical programming

Minimise the number of active criteria

If no solution exists:

- The selected maximal number *n* of criteria is too small
- The model with a constant preference threshold (\mathcal{M}_1) is **too poor** to represent the given \widetilde{S}
- p is chosen **inappropriately** and does not allow the $g_i(x)$ to take enough distinct values in [0,1]
- . . .

Patrick Meyer (Uni.lu Introduction Models

Disaggregation

- ---66 n

Disaggregation of \mathcal{M}_1 by mathematical programming

Rank

Illustratio

15 5

nference

Implementat

Introduction

odels

Disaggregation

ank Illustra

13 September 2007

7 18 / 38

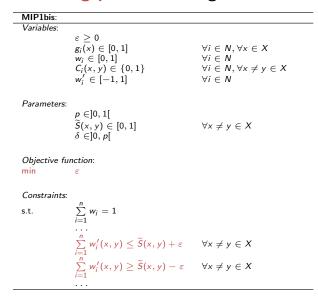
Minimise the number of active criteria

OK, but what if there are some slight errors in the given \widetilde{S} ?

Disaggregation of \mathcal{M}_1 by mathematical programming

Minimise the maximal gap between the given and the calculated \widetilde{S}

Disaggregation & inference



ntroduction Models **Disaggregation** Rank Illustration Inference Implementation Introduction Models **Disaggregation** Rank Illustration Inference Implementation

Disaggregation of \mathcal{M}_1 by mathematical programming

Minimise the maximal gap between the given and the calculated S

Motivations:

- By construction, $\widetilde{S}(x,y)$ is rational in [-1,1]
- If the decimal expansion of a rational number $r \in [-1, 1]$ is **periodic**, then r is hardly representable as a float
- Consequently, the value stored for $\widetilde{S}(x,y)$ might be an approximation
- In such a case, P1 might have no solution

Discussion:

- If $\varepsilon = 0$, then there exist $g_i(x)$ ($\forall i \in N, \forall x \in X$) and associated weights w_i ($\forall i \in N$) generating \widetilde{S} via \mathcal{M}_1
- Else there exists no solution to the problem via the selected representation, and the output of **MIP1bis** is an approximation of \widetilde{S} by \mathcal{M}_1

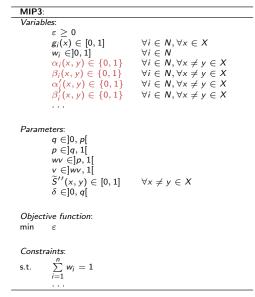
Patrick Meyer (Uni.lu) Disaggregation & inference 13 September 2007 21 / 38 Patrick Meyer (Uni.lu) Disaggregation & inference 13 September 2007 22

Introduction Models Disaggregation Rank Illustration Inference Implementation Introduction Models Disaggregation Rank Illustration Inference Implementation

On the rank of the outranking relation

Disaggregation of \mathcal{M}_2 and \mathcal{M}_3

Similar as \mathcal{M}_1 via mixed integer programs by minimising arepsilon



On the rank of a bipolar-valued outranking relation

Definition

The **rank** of a bipolar-valued outranking relation is given by the minimal number of criteria necessary to construct it via the selected model.

Practical determination:

- MIP1: the objective function gives the rank of \hat{S}
- MIP1bis, MIP2, MIP3:

```
\begin{array}{ll} -\ n:=0;\\ -\ do\ \{\\ &\cdot\ n++;\\ &\cdot\ solve\ the\ optimisation\ problem;\\ -\ \}\ while\ \varepsilon>0;\\ -\ {\bf rank}\ =\ n; \end{array}
```

Note: The algorithm might never stop, if \widetilde{S} cannot be constructed by the chosen model

atrick Meyer (Uni.lu) Disaggregation & inference 13 September 2007 23 / 38 Patrick Meyer (Uni.lu) Disaggregation & inference 13 September 2007 24 / 38

MIP1 & MIP1bis (p = 0.1, $\delta = 0.001$, n = 5):

\widetilde{S}_1	а	Ь	С
а	•	0.258	-0.186
b	0.334	•	0.556
С	0.778	0.036	

	g_1	g_2	g 3	g ₄
а	1.000	0.100	0.000	0.000
b	0.900	0.000	1.000	0.000
С	1.000 0.900 0.000	0.200	0.100	0.099
Wi	0.111	0.222	0.371	0.296

MIP1: there exists an optimal solution for 4 criteria

MIP1bis:

Illustration

- for $n \ge 4$: optimal solution with $\varepsilon = 0$
- for n < 4: optimal solutions with $\varepsilon > 0$

On the inference of model parameters

 \Rightarrow rank (\widetilde{S}_1) = 4 under \mathcal{M}_1

Patrick N	Meyer (Uni.lu)	Disag	gregation & ir	nference	13 Septem	ber 2007 25 / 38	Patrick	Meyer (Uni.lu)	Disag	gregation & ii	nference	13 Septem	ber 2007 26 / 38
Introduction		Disaggregation		Illustration					Disaggregation			Inference	

Illustration

MIP2 & MIP3 (q = 0.1, p = 0.2, wv = 0.6 and v = 0.8, $\delta = 0.001$, n = 5):

Illustrative examples

\widetilde{S}_2	а	Ь	С
а	•	0.258	-0.186
Ь	0.334	•	0.556
С	-1.000	0.036	•

\widetilde{S}_2^{MIP2}	а	Ь	С	g ₁	g 2
а		0.407	0.407	0.280	0.000
b	0.296	•	1.000	0.090	1.000
С	-0.407	0.407	•	0.000	0.200
Wi				0.704	0.296

MIP2: for n = 4: opt. sol. with $\varepsilon = 0.593$

MIP3:

- for $n \ge 4$: optimal solution with $\varepsilon = 0$
- for n < 4: optimal solution with $\varepsilon > 0$

MIP3	g ₁	g 2	g 3	g ₄
а	0.000	0.000	0.000	1.000
Ь	0.400	0.100	0.090	0.590
С	0.200	0.290	0.000	0.000
Wi	0.149	0.444	0.074	0.333

 \Rightarrow rank (\widetilde{S}_2) = 4 under \mathcal{M}_3

Note: Veto between c and a on criterion 4 $(\widetilde{S}(c, a) = -1)$

troduction Models Disaggregation Rank Illustration **Inference** Implementation Introduction Models Disaggregation Rank Illustration **Inference** Implementatio

Usefulness in MCDA: inference of model parameters

In real-world decision problems involving multiple criteria:

- Performances $g_i(x)$ ($\forall i \in N$, $\forall x \in X$) are known
- Weights and thresholds are usually unknown

Objective

Show how these parameters can be determined from a priori knowledge provided by the decision maker

Patrick N	Meyer (Uni.lu)	Disa	ggregation & ir	nference	13 Septem	ber 2007 29 / 38	Patrick	Meyer (Uni.lu)	Disag	gregation & ir	nference	13 Septemb	ber 2007 30 / 38
Introduction		Disaggregation			Inference				Disaggregation			Inference	

A priori information: constraints

- the validation of wSx is strictly more credible than that of ySz can be translated as $\widetilde{S}(w,x) \widetilde{S}(y,z) \ge \delta$;
- the validation of wSx is similar to that of ySz can be translated as $-\delta \leq \widetilde{S}(w,x) \widetilde{S}(y,z) \leq \delta$;
- the importance of criterion i is strictly higher than that of j can be translated as $w_i w_j \ge \delta$;
- the importance of criterion i is similar to that of j can be translated as $-\delta \le w_i w_i \le \delta$;

where $w, x, y, z \in X$, $i, j \in N$ and δ is a non negative separation parameter.

A priori information

In our context, the **a priori** preferences of the decision maker could take the form of:

- a partial weak order over the credibilities of the validation of outrankings;
- a partial weak order over the importances of some criteria;
- quantitative intuitions about some credibilities of the validation of outrankings;
- quantitative intuitions about the importance of some criteria;
- quantitative intuitions about some thresholds;
- subsets of criteria important enough for the validation of an outranking situation;
- subsets of criteria not important enough for the validation of an outranking situation;
- etc.

A priori information: constraints

- a quantitative intuition about the credibility of the validation of xSy can be translated as $\eta_{(x,y)} \leq \widetilde{S}(x,y) \leq \theta_{(x,y)}$, where $\eta_{(x,y)} \leq \theta_{(x,y)} \in [-1,1]$ are to be fixed by the DM;
- a quantitative intuition about the importance of criterion i can be translated as $\eta_{w_i} \leq w_i \leq \theta_{w_i}$, where $\eta_{w_i} \leq \theta_{w_i} \in]0,1]$ are to be fixed by the DM;
- a quantitative intuition about the preference threshold p_i of criterion i can be translated as $\eta_{p_i} \leq p_i \leq \theta_{p_i}$, where $\eta_{p_i} \leq \theta_{p_i} \in [0,1]$ are to be fixed by the DM;
- the fact that the subset $M \subset N$ of criteria is sufficient (resp. not sufficient) to validate an outranking statement can be translated as $\sum\limits_{i \in M} w_i \geq \eta_M$ (resp. $\sum\limits_{i \in M} w_i \leq -\eta_M$), where $\eta_M \in]0,1]$ is a parameter of concordant coallition which is to be fixed by the DM.

Patrick Meyer (Uni.lu) Disaggregation & inference 13 September 2007 31 / 38 Patrick Meyer (Uni.lu) Disaggregation & inference 13 September 2007 32 / 38

Variables: $\varepsilon \geq 0$ $w_i \in]0, 1]$ $\forall i \in \mathit{N}$ $q_i \in]0, p[$ $\forall i \in N$ $p_i \in]q,1[$ $\forall i \in N$ $wv_i \in]p, 1[$ $\forall i \in N$ $v_i \in]wv, 1[$ $\forall i \in N$ $\widetilde{S}^{\prime\prime}(x,y)\in[0,1]$ $\forall x \neq y \in X$ Parameters: $g_i(x) \in [0,1]$ $\forall i \in N, \forall x \in X$ $\delta \in]0, q[$ Objective function: $\min \quad \varepsilon$ MIP3 (some of them linearised) Constraints of a priori information (informal): $\widetilde{S}(w,x) - \widetilde{S}(y,z) \geq \delta$ for some pairs of alternatives $-\delta \leq \widetilde{S}(w,x) - \widetilde{S}(y,z) \leq \delta$ for some pairs of alternatives for some pairs of weights $w_i - w_j \geq \delta$ $-\delta \leq w_i - w_j \leq \delta$ for some pairs of weights $\begin{aligned} -0 &\leq w_i - w_j \leq \delta \\ \eta_{(x,y)} &\leq \tilde{S}(x,y) \leq \theta_{(x,y)} \\ \eta_{w_i} &\leq w_i \leq \theta_{w_i} \\ \eta_{p_i} &\leq p_i \leq \theta_{p_i} \\ \sum_{i \in M} w_i \geq \eta_M \\ i &\in M \end{aligned}$ for some pairs of alternatives for some weights for some thresholds and some weights for some subsets M of weights for some subsets M of weights

Illustration

Starting point:

	g ₁	g 2	g 3	g ₄
а	0.000	0.000	0.000	1.000
b	0.400	0.100	0.090	0.590
С	0.200	0.290	0.090 0.000	0.000

Inference

Unknown:

- $w_i \quad \forall i \in N$
- $q_i, p_i, wv_i, w_i \quad \forall i \in N$

A priori preferences:

\widetilde{S}_3	а	b	С
а	•	∈]0, 0.5]	$\in [-0.5, 0[$
Ь	∈]0, 0.5]		∈]0.5,1]
С	=-1	$\in \left[-0.1, 0.1\right]$	•

Patrick N	Meyer (Uni.lu)	Disa	ggregation & in	nference	13 Septemb	per 2007 33 / 38	Patrick	Meyer (Uni.lu)	Disag	gregation & i	nference	13 Septem	nber 2007 34 / 38
Introduction		Disaggregation			Inference				Disaggregation				Implementation

Illustration

Output of MIP3-MCDA:

\widetilde{S}_3	а	Ь	С
а	•	0.500	-0.010
b	0.500		1.000
С	-1.000	0.000	•

		g_1	g_2	g 3	g ₄
	Wi	0.120	0.380	0.250	0.250
	q_i	0.970	0.270	0.000	0.250 0.000 0.410 0.590
	pi	0.980	0.280	0.090	0.410
ν	vv _i	0.990	0.290	0.990	0.590
	Vi	1.000	0.300	1.000	0.600

Table: \widetilde{S}_3

Table: Model parameters for \widetilde{S}_3 via \mathcal{M}_3

Note: $\widetilde{S}_3(c,a) = -1$ (resp $\widetilde{S}_3(c,b) = 0$) results from a veto (resp. weak veto) situation on criterion 4.

A few words on the implementation

atrick Meyer (Uni.lu) Disaggregation & inference 13 September 2007 35 / 38 Patrick Meyer (Uni.lu) Disaggregation & inference 13 September 2007 36 / 38

troduction Models Disaggregation Rank Illustration Inference **Implementation** Introduction Models Disaggregation Rank Illustration Inference **Implementation**

On the implementation

• Implemented in the **GNU MathProg** programming language

- Simple examples of this presentation have been solved on a standard desktop computer with **Glpsol**
- Harder examples are solved with ILOG CPLEX 9.1 on a HP rx4640-8 server with four Itanium 2 processors
- Very time consuming!

That's all folks

Patrick Meyer (Uni.lu) Disaggregation & inference 13 September 2007 37 / 38 Patrick Meyer (Uni.lu) Disaggregation & inference 13 September 2007 38