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AN EXTENSION OF THE SHANNON ENTROPY TO
BI-CAPACITIES

Ivan Kojadinovic
LINA CNRS FRE 2729

Site école polytechnique de I'univ. de Nantes
Rue Christian Pauc

44306 Nantes, Rance
ivan. koj adinovic@univ-nantes.fr

Summary

The notion of Shannon entropy, recently
generalized to capacities, is extended to bi-
capacities and its main properties a,re stud-
ied.

Keywords: Multicriteria decision making,
bi-capacity, Choquet integral, entropy.

1 INTRODUCTION

The well-known Shannon entropy [12] is a fundamen-
tal concept in probability theory and related fields. In
a general non probabilistic setting, it is merely a mea-
sure of the uniformity (evenness) of a discrete proba-
bility distribution. In a probabilistic context, it can be
naturally interpreted a,s a mea.sure of unpredictability.

By rela>cing the additivity property of probability mea-
sures, requiring only that they be monotone, one ob-
tains Choquet capacities [1], also known asfi:azy mea-
sures [13], for which an extension of the Shannon en-
tropy wa.s recently defined [6, 7, 9, 10].

The concept of capacity can be further generalized.
In the context of multicriteria decision making, bi-
capacities have been recently introduced by Grabisch
and Labreuche [4, 5] to model in a flexible way the
preferences of a decision maker when the underlying
scales are bipolar.

Since a bi-capacity can be regarded a.s a generalization
of a capacity, the following natural question a.rises :
how could one appraise the 'uniformity' or 'uncer-

tainty' associated with a bi-capacity in the spirit of
the Shannon entropy?

The main purpose of this paper is to propose a defi-
nition of an exbension of the Shannon entropy to bi-
capacities. The interpretation of this concept will be
performed in the framework of multicriteria decision
making based on the Choquet integral. Hence, we
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consider a set N :- {1, . . .,n} of. criteria and a set
A of alternatiues described according to these criteria,
i.e., real-valued functions on N. Then, given an alter-
native r e. A, for any i, e N s ti i: r(i) is regarded
a.s the utility of r w.r.t. to criterion i. The utilities
are frrrther considered to be commensurate and to lie
either on a unipolar or on a bipolar scale. Compared
to a unipolar scale, a bipolar scale is characterized by
the additional presence of a neutral value (usuatly 0)
such that values above this neutral reference point are
considered to be good by the decision maker, and val-
ues below it are considered to be bad. As in [4, 5],
for simplicity reasons, we shall a.ssume that the scale
used for all utilities is [0, 1] if the scale is unipolar, ild

[-1,1] with 0 as neutral value, if the scale is bipolar.

This paper is organized a.s follows. The second and
third sections are devoted to a presentation of the ne
tions of capacity, bi-capacity and Choquet integral in
the framework of multicriteria decision making. In the
last section, after recalling the definitions of the proba-
bilistic Shannon entropy and of its extension to ca,pac-
ities, we propose a generalization of it to bi-capacities.
We also give an interpretation of it in the context of
multicriteria decision making and we study its main
properties.

2 CAPACITIES AND
BI-CAPACITIES

In the context of aggregation, capacities [1] and bi-
capacities [4, 5] can be regarded a.s generalizations
of weighting vectors involved in the calculations of
weighted a.rithmetic means.

Let P(N) denote the power set of N and let Q(N) :-

{(A,B) € P(.^r) x P(lr)@n a - 0}.

Definition 2.1- A function p, : P(,nf) -+ [0, 1] is a
capacity if it satisfies :

(t) p(0) - 0, /r(l/) : 1,
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( i i )  for  any S,T ç N, S çr + / r (S) 3 pQ).

A capacity p orl N is said to be additiueif p,(SUT) -
p(S) +pg) for all disjoint subsets S,T ç N. A parric-
ular ca.se of additive capacity is the uniform capacity
on N. It is defined by

t'.(T) - lTlln, V" ç N.

The duol (or conjugate) of a capacity p on N is a ca-
pacity F on N defined by p(A) - p(N) - p(N \ ,4),
f o r a l l  A ç N .

Definitiort 2,2 A lunction u : aW) -+ IR is a bi-
capacity if it satisfies :

( i)  u(0,0) :  0, ?r(N, 0) :  I ,  u(0, N) - -1,

( i i )  A ç B implies u(A,-) < u(8,.) and u(.,A)
u ( . ,  B ) .

Rrrthermore, a bi-capacity u is said to be :

r of the Cumulatiue Prvspect Theory QPf) fupelL,
5, L4l if there exist two capacities Ft, Fz such that

u(A,B) :  pt(A) - pz(B), Y(A,B) e A(N).

When pt - 1t2 the bi-capacity is further said to
be symmetric, and osymmetric when Fz : l.tt

. odditioe if it is of the CPT type with Ft,ltz addi-
tive, i.e. for any (A,B) € Q(If)

a(A,B)  - I  nU) - t  pz ( i ) .
ieA i€B

Note that an additive bi-capacity with Ft: ltz is
both symmetric and a^symmetric since ltt: I,tt.

As we continue, to indicate that a CPT type bi-
capacity u is constructed from two capacities pr, ltz,
we shall denote it by upr,t z

Let us also consider a particular additive bi-capacity
on N : the uniform bi-capacity. It is defined by

,*(A,B) :  l / l  :  lBl ,  v(,4 ,B) e a(N).
n

3 THE CHOQUET INTEGRAL

When utilities are considered to lie on a unipolar scale,
the importance of the subsets of (interacting) criteria
can be modeled by . capacity. A suitable aggrega-
tion operator that generalizes the weighted arithmetic
mean is then the Choquet integral [8].

Definition 3.1 The Choquet integral of a function r :
N -+ IR+ represented by the prof i , le (r t ) . . . . rn)  w.r . t
a capacity p on N is defined bg

C r@) ' -  Ë  r ,e ) l t t (Ad( , ) )  -  F (A"e+t ) ] ,
i :1,

where o is a pertnutation on N such that rogl < . .. S
n o ( n ) ,  A o ( i )  7 -  { o ( i , ) , . . . , o ( n ) } ,  T o r  a l l i  e  { 1 , . .  . , n } ,
ond Ao6+1) :: 0.

When the underlying utility scale is bipola^r, Grabisch
and Labreuche proposed to substitute a bi-capacity to
the capacity and proposed a natural generalization of
the Choquet integral [5].

Definition 3.2 The Choquet integrvl of a function x :
N - l  R rcpresented by the prof i le (r t , . . . , rn)  w.r . t  a
bi-capacity u on N is defined by

C"(r) :- C"" *(lrl)

where uf,ra is a gorne on N (i.e. a set function on N
vanishing at, the empty set) defined by

uiv*Q)  -u(C oN*,CnN-) ,  VC c  N,

and N+ ,: { i € Nlr; > 0}, N- :- N \ ru+.

As shown in [5], an equivalent expression of Cr(n) is :

C,(r) - I lro4)l b(A"t.t o N*, Ao(ù n N-)
i€.lv

-u (Ao7+ry  f lN+,Ao( i *L )  nN- ) ]  ,  (1 )

where  AoG)  ; -  {o ( f ) ,  . . . ,o (n ) } t  Ao(n+L)  , :0 ,  a .nd  o
is a permutation on N so that lroe) I S ... < lr,(r,)1.

4 ENTR,OPY OF A BI-CAPACITY

4.1 THE CONCEPT OF PROBABILISTIC
ENTROPY

The fundarnental concept of entrcpy of a probability
distributior? wa.s initially proposed by Shannon [11, 12].
The Shannon entropy of a probability distribution p
defined on a nonempty finite set N r: {1, . . ., zr,} is
defined by

Hs(p),: I hlp(i,))
i€]v

where

h ( r )  : -  { - x : h x '  
i f  r  >  o '

| . 0 ,  i f r : 0 ,

The quantity f/s(p) ir always non negative and zero If
and only if p is a Dirac ma.ss (decisiuity property). As
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a function of. p, I15 is strictly concave. F\rrthermore,
it reaches its ma>cimum value (lnn) if and only if p is
uniform (marimality property).

In a general non probabilistic settin5, Hs@) is nothing
else than a mea.sure of the uniformity of p. In a prob-

abilistic context, it can be interpreted as a measure of
the infor"rnation contained in p.

4.2 EXTENSION TO CAPACITIES

Let p, be a capacity on N. The following entropy wa.s
proposed by Marichul [7, 9] (see also [10]) a.s an exten-
sion of the Shannon entropy to capacities :

H u j t ) : - I
t€JV

* ( n ) h l p ( s u i ) - p ( s ) 1 ,
i

where

1,(n) ::
( n -  t  -  1 ) ! s !

V s  €  { 0 , 1 ,  . .  .  , n  -  1 } .

Rega,rded as a uniformity measure, Hu has been re
cently axiomatized by means of three a:cioms [6] : the
symmetry property, a boundary condition for which
I/1a reduces to the Shannon entropy, md a general-
ized version of the well-known recursivity property.

A fundarnental property of. Hy is that it can be rewrit-
ten in terms of the marcimal chains of the Hasse dia-
gr€un of (N, g) t6], which is equivalent to :

I Hs(É), (2)
o€Iïrv

where IIrv denotes the set of permutations on N and,
f o r a ^ n y a € I I r y ,

û@ ;  1 t ( {o ( i ) , .  .  . ,  " ( " ) } )
-  t t l ( { " ( i  +  1 ) , . . . ,o (n ) ) ) ,  V i  e  N.

The quarrtity Hy(1r) c*t therefore simply be seen a.s
an average over flrv of the uniformity values of the
probability distributions ft calculated by means of the
Sha,nnon entropy. As shown in [6], in the context of
aggregation by a Choquet integral w.r.t a capacity p
on N, H*rQt) ca.n be interpreted a.s a mea"sure of the
average value over all c e [0, 1]' of the degree to which
the arguments 11 ,. . . )r, contribute to the calculation
of the aggregated value Cr(r).

To stress on the fact that Hy is an average of Shannon
entropies, we shall equivalently denote it by ff5 a^s we
go on.

It has also been shown that H y - H s satisfies many
properties that one would intuitively require from an
entropy mea"sure [6, 9]. The most important ones are :

1 . Boundary property for additive ûleasures.
For any additive capacity p on N, we have

H s0ù -- Hs(p),

where p is the probability distribution on l/ de-
fined bv p$) - p(i) for all i e N.

Boundary property for cardinality-based
measures. For any ca.rdinality-based capacity p

on N (i.e. such that, for any ? q N, P,Q) de
pends only on l7l), we have

H s0') - Hs(f),

where t is the probability distribution on N de-
f i n e d  b v  f ' ( i )  :  p ( { 1 , . . . , i } )  -  p ( { 1 ,  . . . , i  -  1 } )
for all i e N.

3. Decisivity. For any capacity p on N,

frsfu) > 0.

Moreover,H sQù: 0 if and only if p is a binary-
valued capacity, that is, such that pg) € {0,1}
for all T ç N.

4. Maximality. For any capacity p on N, we have

E s!t) ( ln n.

with equality if and only if p is the uniform ca-
pacity p* on N.

5. Increasing monotonicity toward p*. Let p'

be a capacity on N such that pr * tt. and, for

any À e [0, 1], define the capacity lr,r on N a.s

lrx:-- p*\Qf -p).Thenfor any0 S Àr ( Àz ( 1

we have
H s(t tx)  < Fs(p^,) .

6. Strict concavity. For a.ny two capacities Ptr ltz
on N a.nd any À e ]0, 1[, we have

Es(À&r  *  (L  -  À)pr )  >  À f /s (p t )  +  (1  -  À)  Ht ( t  r \ .

4.3 GENERALIZATTON TO
BI.CAPACITIES

For any bi-capacity u on N and any N+ ç N, as in [5],
we define the game uf,,a on N by

,k*(C) : -  u(C n N+ ,C À N-),  VC ç N,

where N- :: N \ ru+.

Furthermore, for any N+ Ç N, let p].r-1- be the prob-

abitity distribution on .A[ defined, for arly i € N, by

lrk * (A"ri) ) - uo*a (A"ç+1) ) |

2 .

T
C]v\

n!

HuAr) :  
*

(3)
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where AoU) ; {o(i,)
A o ( n + D  : : 0

W'e then propose the following simple definition of the
extension of the Shannon entropy to a bi-capacity u
on -ly' :

nr@), -#  f  * f  Hs( fo , * * )  (4)
N+Clv o€Ilrv

As in the case of capacities, the extended Shannon en-
tropy E"(r) is nothing else than a,n average of the uni-
formity values of the probability distributions f".**
calculated by means of f/s.

In the context of aggregation by u Choquet integral
w.r.t a bi-capacity tr on N, let us show that, a^s pre-
viously H s(r) can be interpreted as a mea,sure of the
average value over all r € [-1, 1]' of the degree to
which the arguments 11
culation of the aggregated value Cr(r).

In order to do so, consider an alternative o € [-1,1]rl
and denote by N+ g N the subset of criteria for which
r ) 0. Then, from Eq.(1), we see that the Cho-
quet integral of r w.r.t u is simply a weighted sum of
lr,$) l, . . . , lro6,1l, where each lro1) | is weighted by

uk+ (4" e1) - ri,1 *(/,(r+r) ).

Clearl5 these weights are not always positive, nor do
they sum up to one. Fbom the monotonicity conditions
of a bi-capacity it follows that the weight correspond-
ing to lr"(i)l is positive if and only if o(i) € N+.

Depending on the evenness of the distribution of the
absolute values of the weights, the utilities o1 t...tnn
will contribute more or less evenly in the calculation
of C,(r).

A straightforward way to mea.sure the evenness of the
contribution of rLt. . . ,nn to Cr(n) consists in mea-
suring the uniformity of the probability distribution
pI,N* defined by Eq. (3). Note that p].r* is simply
obtained by normalizing the distributiori of the abso-
lute values of the weights involved in the calculation
of C,(r).

Clearly, the uniformity of fo,** can be mea^sured by
the Shannon entropy. Should Hs(fo,**) be close to
lnn, the distribution p!.iv+ will be apiroximately uni-
form and all the partial'evaluatiorrs 11
involved almost equally in the calculation of Co(r).
On the contrary, should Hs(pi.**) be close to zero,
one p],r*(i) will be very close to one and Cr(r) will
be almost proportional to the corresponding partial
evaluation.

Let us now go back to the definition of the extended
Shannon entropy. Flom Eq. (a), we clea,rly see that

:
H s(u) is nothing else than a measure of the average
of the behavior we have just discussed, i.e. taking into
account all the possibilities for a and l[+ with uniform
probability. More formally, for any .Af+ ç .ô/, and any
o € fI1., define the set

2o,N+ r-  {"  € [ -1,  1]"  I  Vi  € N+ ,nt  € [0,  1] ,

Vz e N- , ï i  €  [ -1 ,0 [ ,  l "o( t ) l  <  . . .  <  l " , f " l l ] .

We clearly have Ur*cry Uaen N Oo,N+ - [-1, 1]'.

Let r € [-1, l]n be fixed. Then there exist N+ ç N
and o € fliv such that c e Oo,y+ and hence C"(r) is
proportional to Io., r oe) fo,x* (r).

Starting from Eq. (4) and using the fact that
f r

J'reo..*+ du : lf n!, the entropy }Is(u) can be rewrit-

[en as

1
Hu(p)  -  

ù

1

2n

T
€IIrv

Hs(p"r,y+) dr

ns@i,,rv,+) dr,

l,.o,,n*/V+qjv d

f
I

"/  1- r,r l .

where N"* Ç N and oæ e IIiv are defined such that
t  €  O o . , N t '

We thus observe that Fs(o) meariures the average
value over all r e [-1,1]" of the degree to which the
arguments or.r ... ,frn contribute to the calculation of
C"(r). In probabilistic terms, it corresponds to the
expectation over all c € [-1,1]", with uniform dis-
tribution, of the degree of contribution of arguments
ïrt.. . ,în in the calculation of. Cr(r).

4.4 PROPERTTES OF Fs

We first present two lemmas Slving the form of
the probability distributions p].r* for CPT type bi-
capacities

Lemma 4.1 For ony CPT type bi-copacity upr,t, on
N, any N+ Ç N, ony o € IIryr and ony i e N we
haue

f:,]iT' (i) : pr(N+) * t t  (N-)

, lur(A,G) n N+) - h(A"(i+ry fl l/+)

+p2(A"e) n N-) - pz(A,(,+l) o N-)] .

Lernrna 4.2 For any asyrnmetric bi-capacit! up,p orr
N, any N+ ç N, and any o € flrr, we haue

p';#. (i) : tt{0t"(t), . . ., "(n)\ n N+)
-  1r( {o( i+1) ,  .  .  . ,  o(n)}n l r+)+ t  ( " ( t )

-  t tQo( t ) , . . .  , o ( i  -  1 ) )  U  N* ) ,  Vz  e  t [ .
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4.4.7 Boundaryconditions

We now give the form of I/s for a.symmetric bicapac-
ities.

Property 4.L For any asymmetric bi-capacity ur,p,
on N, we haue

:
Hs(ur,-r) - nsjt).

Note that the above property is completly in accor-
dance with the fact the Choquet integral w.r.t a gen-
eral bi-capacity is a generalization of the asymmetric
Choquet integral [2, 3].

The following proposition gives the form of f/s for
additive bi-capacities.

Property 4.2 For any aililitiue bi-capacit! upr,t, on
N, we hoae

:
H s(ur, , r , )  :

4.4.4 Decisivity

Property 4.6 For ang bi-capacity a on N,

a"1r; > o.

Moreoaer,E t@) - 0 i| and, only, for anyo € [-1, 1]'],
there erists À e IR+ ond i e N such thot Cr(r) : Àrt.

4.4.5 Maxirnality

Property 4.7 For any bi-capacity u on N, we haue

Hs@) (  lnn.

with equality if and only if u is the uniforrn capacity
u* on N.

4.4.6 Increasing monotonicity toward u*

Property 4.8 Let a be a bi-capocitg on N such that
a * u* ond, for any ), € [0, I], defi,ne the bi-capacity
ay orù N as ?.r1 :: u * À(u* - u). Then for any 0 1
À r ( À z ( I w e h a a e

: :
H s(uxr) < Ils(or, ).
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