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Summary

The notion of Shannon entropy, recently
generalized to capacities, is extended to bi-
capacities and its main properties are stud-
ied.

Keywords: Multicriteria decision making,
bi-capacity, Choquet integral, entropy.

1 INTRODUCTION

The well-known Shannon entropy [12] is a fundamen-
tal concept in probability theory and related fields. In
a general non probabilistic setting, it is merely a mea-
sure of the uniformity (evenness) of a discrete proba-
bility distribution. In a probabilistic context, it can be
naturally interpreted as a measure of unpredictability.

By relaxing the additivity property of probability mea-
sures, requiring only that they be monotone, one ob-
tains Choquet capacities [1], also known as fuzzy mea-
sures [13], for which an extension of the Shannon en-
tropy was recently defined [6, 7, 9, 10].

The concept of capacity can be further generalized.
In the context of multicriteria decision making, bi-
capacities have been recently introduced by Grabisch
and Labreuche [4, 5] to model in a flexible way the
preferences of a decision maker when the underlying
scales are bipolar.

Since a bi-capacity can be regarded as a generalization
of a capacity, the following natural question arises :
how could one appraise the ‘uniformity’ or ‘uncer-
tainty’ associated with a bi-capacity in the spirit of
the Shannon entropy?

The main purpose of this paper is to propose a defi-
nition of an extension of the Shannon entropy to bi-
capacities. The interpretation of this concept will be
performed in the framework of multicriteria decision
making based on the Choquet integral. Hence, we
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consider a set N := {1,...,n} of criteria and a set
A of alternatives described according to these criteria,
i.e., real-valued functions on N. Then, given an alter-
native x € A, for any i € N , z; := z(i) is regarded
as the utility of z w.r.t. to criterion ¢. The utilities
are further considered to be commensurate and to lie
either on a unipolar or on a bipolar scale. Compared
to a unipolar scale, a bipolar scale is characterized by
the additional presence of a neutral value (usually 0)
such that values above this neutral reference point are
considered to be good by the decision maker, and val-
ues below it are considered to be bad. As in [4, 5],
for simplicity reasons, we shall assume that the scale
used for all utilities is [0, 1] if the scale is unipolar, and
[~1,1] with O as neutral value, if the scale is bipolar.

This paper is organized as follows. The second and
third sections are devoted to a presentation of the no-
tions of capacity, bi-capacity and Choquet integral in
the framework of multicriteria decision making. In the
last section, after recalling the definitions of the proba-
bilistic Shannon entropy and of its extension to capac-
ities, we propose a generalization of it to bi-capacities.
We also give an interpretation of it in the context of
multicriteria decision making and we study its main
properties.

2 CAPACITIES AND
BI-CAPACITIES

In the context of aggregation, capacities [1] and bi-
capacities [4, 5] can be regarded as generalizations
of weighting vectors involved in the calculations of
weighted arithmetic means.

Let P(N) denote the power set of N and let Q(N) :=
{(A4,B) € P(N) x P(N)|ANB = §}.

Definition 2.1 A function g : P(N) — [0,1] is a
capacity if it satisfies :

(i) p®) =0, u(N) =1,



(i) for any S,T C N, S CT = u(S) < u(T).

A capacity p on N is said to be additive if u(SUT) =
1(S)+p(T) for all disjoint subsets S,T C N. A partic-
ular case of additive capacity is the uniform capacity
on N. It is defined by
w(T)=1T|/n, VT CN.

The dual (or conjugate) of a capacity p on N is a ca-
pacity i on N defined by f(A) = u(N) — u(N \ 4),
forall ACN.

Definition 2.2 A function v :
capacity if it satisfies :

Q(N) = R is a bi-

(i) ’0(0, m) =0, 'U(N)@) =1, 'U(@,N) =-1,

(#) A C B implies v(A,-) < v(B,-) and v(-,A) >
v(, B).

Furthermore, a bi-capacity v is said to be :

e of the Cumulative Prospect Theory (CPT) type [4,
5, 14] if there exist two capacities p;, pg such that
v(4,B) = m(A) —m(B), V(4 B)e€ QN).
When p; = po the bi-capacity is further said to
be symmetric, and asymmetric when ps = fiy

o additive if it is of the CPT type with u;, us addi-
tive, i.e. for any (A4, B) € Q(N)

v(4,B) =) () - > ua(i).

i€A i€eB

Note that an additive bi-capacity with u; = s is
both symmetric and asymmetric since fi; = ;.

As we continue, to indicate that a CPT type bi-
capacity v is constructed from two capacities p1, pa,
we shall denote it by v, ,,

Let us also consider a particular additive bi-capacity
on N : the uniform bi-capacity. It is defined by

|| - |B]

v'(4,B) ===, V(4,B) € Q).

3 THE CHOQUET INTEGRAL

When utilities are considered to lie on a unipolar scale,
the importance of the subsets of (interacting) criteria
can be modeled by a capacity. A suitable aggrega-
tion operator that generalizes the weighted arithmetic
mean is then the Choquet integral [8].
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Definition 3.1 The Choguet integral of a function z :
N — R* represented by the profile (z1,...,z,) w.r.t
a capacity p on N is defined by

Cu(z) == Z To i) [1(Ao(i)) — #(As(ir))]s

=1

where o is a permutation on N such that £,y < --- <

Ta(n)s Ao(i) = {0(3),...,0(n)}, for allie {1,...,ni
and Aa(n+1) = .

When the underlying utility scale is bipolar, Grabisch
and Labreuche proposed to substitute a bi-capacity to
the capacity and proposed a natural generalization of
the Choquet integral [5].

Definition 3.2 The Choquet integral of a function z :
N — R represented by the profile (z1,...,2,) w.rta
bi-capacity v on N is defined by

Cy(z) := C"X:+ (I=)

where v}, is a game on N (i.e. a set function on N
vanishing at the empty set) defined by

v%+(C) =v(CNN*,CNN-), VCCN,

and N* :={i € N|z; >0}, N":= N\ N+,

As shown in [5], an equivalent expression of C,(z) is :

Cv(:c) = Z |:1:‘,(,-)| [’U(Aa(,-) n N+, A,(i) n N_)
ieN

_U(AJ(H-I) n N+: Aa(i+1) N N—)] ’ (1)

where A,(;) = {0(i),...,0(n)}, Ag(nt1) :=0, and o

is a permutation on N so that |z5(1)| < -+ < |To(nyl-

4 ENTROPY OF A BI-CAPACITY

4.1 THE CONCEPT OF PROBABILISTIC
ENTROPY

The fundamental concept of entropy of a probability
distribution was initially proposed by Shannon [11, 12].
The Shannon entropy of a probability distribution p
defined on a nonempty finite set N := {1,...,n} is

defined by
Hs(p) := ) hip(i)]
ieN
where
h(z) = —zlnz, ff:c >0,
0, ifx =0,

The quantity Hg(p) is always non negative and zero if
and only if p is a Dirac mass (decisivity property). As




a function of p, Hg is strictly concave. Furthermore,
it reaches its maximum value (Inn) if and only if p is
uniform (mazimality property).

In a general non probabilistic setting, Hg(p) is nothing
else than a measure of the uniformity of p. In a prob-
abilistic context, it can be interpreted as a measure of
the information contained in p.

4.2 EXTENSION TO CAPACITIES
Let u be a capacity on N. The following entropy was

proposed by Marichal (7, 9] (see also [10]) as an exten-
sion of the Shannon entropy to capacities :

Hu(p) == Y D vmhu(S ui) - u(s),

i€eN SCN\i
where
_(n—s-1)!s!
~s(n) = Vs € {0,1,...,n—1}.

Regarded as a uniformity measure, Hys has been re-
cently axiomatized by means of three axioms [6] : the
symmetry property, a boundary condition for which
Hjs reduces to the Shannon entropy, and a general-
ized version of the well-known recursivity property.

A fundamental property of Hys is that it can be rewrit-
ten in terms of the maximal chains of the Hasse dia-
gram of (N, C) [6], which is equivalent to :

Hu(w) =~ 3 Hs(oh),

o€lln

(2)

where IIy denotes the set of permutations on N and,
for any o € Iy,

p5(8) = p({o(@),...,0(n)})
—p{ei+1),...,0(n)}), Vi € N.

The quantity Hps(p) can therefore simply be seen as
an average over IIy of the uniformity values of the
probability distributions p# calculated by means of the
Shannon entropy. As shown in [6], in the context of
aggregation by a Choquet integral w.r.t a capacity u
on N, Hp(u) can be interpreted as a measure of the
average value over all z € [0, 1]" of the degree to which
the arguments z, . .. , Z, contribute to the calculation
of the aggregated value C\,(z).

To stress on the fact that Hjs is an average of Shannon
entropies, we shall equivalently denote it by Hg as we
go on.

It has also been shown that Hy; = Hg satisfies many
properties that one would intuitively require from an
entropy measure [6, 9]. The most important ones are :
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1. Boundary property for additive measures.
For any additive capacity x on N, we have

Hs(p) = Hs(p),

where p is the probability distribution on N de-
fined by p(i) = p(i) for alli € N.

2. Boundary property for cardinality-based
measures. For any cardinality-based capacity p
on N (i.e. such that, for any T C N, p(T) de-
pends only on |T|), we have

Hs(p) = Hs(p"),

where p* is the probability distribution on N de-

fined by pu("') = u({l,...,i}) _/"’({17"-’7: - 1})
forallie N.

3. Decisivity. For any capacity u on N,
Hs(p) > 0.

Moreover, Hs(u) = 0 if and only if y is a binary-
valued capacity, that is, such that u(T) € {0,1}
forall TCN.

Maximality. For any capacity g on N, we have
Hs(p) <Inn.

with equality if and only if g is the uniform ca-
pacity u* on N.

5. Increasing monotonicity toward p*. Let p
be a capacity on N such that g # p* and, for
any A\ € [0,1], define the capacity ux on N as
px = p+A(p*—p). Thenforany0 < A; < A2 <1
we have .

Hg(pa,) < Hs(pag)-

Strict concavity. For any two capacities y;, po
on N and any A € ]0, 1], we have

Hsp1 + Q=N p2) > AHs(pa) + (1 — A) Hs(p2)-

4.3 GENERALIZATION TO
BI-CAPACITIES

For any bi-capacity v on N and any N* C N, asin [5],
we define the game v, on N by

V3+(C) :==v(CAN*,CAN-), VCCN,
where N~ := N\ N*.

Furthermore, for any N* C N, let p v be the prob-
ability distribution on N defined, for any ¢ € N, by

WX+ (Aoiy) — VR+ (Aoivn))l
JEN R+ (Ao (i) — Vi+ (Aol

pg-,N+(i) = E (3)



where A,;) = {o(3),...,
Av(n+1) =10

o(n)}, for all i € N, and

We then propose the following simple definition of the
extension of the Shannon entropy to a bi-capacity v

on N :
1
w O o

N+CN

Hs(v) := Y Hs@yns) (@)

n! o€lln

As in the case of capacities, the extended Shannon en-
tropy H s(v) is nothing else than an average of the uni-
formity values of the probability distributions . N+
calculated by means of Hg.

In the context of aggregation by a Choquet integral
w.r.t a bi-capacity v on N, let us show that, as pre-
viously, Hs(v) can be interpreted as a measure of the
average value over all z € [—1,1]" of the degree to
which the arguments z;, ... , z, contribute to the cal-
culation of the aggregated value C,(z).

In order to do so, consider an alternative z € [—1,1]"
and denote by N* C N the subset of criteria for which
z > 0. Then, from Eq. (1), we see that the Cho-
quet integral of z w.r.t v is simply a weighted sum of
|Zo(1) |5 - - - 5 |Ta(m)], where each |z, ;)| is weighted by

v+ (Ao(y) — VR+ (Ao'(i+1))-

Clearly, these weights are not always positive, nor do
they sum up to one. From the monotonicity conditions
of a bi-capacity, it follows that the weight correspond-
ing to |z, (7)| is positive if and only if o(5) € N+.

Depending on the evenness of the distribution of the
absolute values of the weights, the utilities z,,...,z,

will contribute more or less evenly in the calculation
of Cy(z).

A straightforward way to measure the evenness of the
contribution of x;,...,z, to C,(z) consists in mea-
suring the uniformity of the probability distribution

P, n+ defined by Eq. (3). Note that p? N+ 18 simply
obtained by normalizing the distribution of the abso-
lute values of the weights involved in the calculation
of Cy(z).

Clearly, the uniformity of p? N+ can be measured by
the Shannon entropy. Should Hs(p) n+) be close to
Inn, the distribution p? ~+ will be approxlmately uni-
form and all the partial evaluations T1,...,ZT, will be
involved almost equally in the calculatlon of Cy(x).
On the contrary, should Hg(p? _n+) be close to zero,
one py . (i) will be very close to one and Cy(z) will
be almost proportional to the corresponding partial
evaluation.

Let us now go back to the definition of the extended
Shannon entropy. From Eq. (4), we clearly see that

70

Hg(v) is nothing else than a measure of the average
of the behavior we have just discussed, i.e. taking into
account all the possibilities for ¢ and Nt with uniform
probability. More formally, for any N* C N, and any
o € IIy, define the set

Opn+ :={z€[-1,1]"|Vie Nt z; € 0,1],
Vie N—,IL‘,' € [_170[7 ’za(1)| <o < Ixa(n)l}'
We clearly have Un+cn Useny Oo v+ = [-1,1]™

Let x € [-1,1]" be fixed. Then there exist N* C N
and o € IIy such that z € O, y+ and hence C,(z) is
proportional to ;. n (i) Py N+ (%).

Starting from Eq. (4) and using the fact that
Joc O, ns dz = 1/n!, the entropy Hs(v) can be rewrit-
ten as

=3 X % [

N+CN celly Y%€

1
= 2—n HS(pz,,N:')dx’

H S (pﬁ,m) dz

(-1

where N} C N and o, € Iy are defined such that
T € Oa,,, N+

We thus observe that Hg(v) measures the average
value over all € [—1,1]" of the degree to which the
arguments 21, ... ,T, contribute to the calculation of
Cy(z). In probabilistic terms, it corresponds to the
expectation over all z € [—1,1]", with uniform dis-
tribution, of the degree of contribution of arguments
Z1,... ,Zn in the calculation of C,(z).

4.4 PROPERTIES OF Hg

We first present two lemmas giving the form of
the probability distributions Py N+ for CPT type bi-
capacities.

Lemma 4.1 For any CPT type bi-capacity vy, ., on
N, any Nt C N, anyo € lly, and any i € N we
have
i = g
m(N*) + pp(N-)
X [p1(As) NNY) = gy (Ag(ipry NNT)
+p2(As() NN7) — pa(Apiyy NN7)] .

”;11 B2
o' N+

Lemma 4.2 For any asymmetric bi-capacity v, A on
N, any Nt C N, and any o € Iy, we have

Py (i) = u({o(i),...,a(n)} N NT)
—pu({o(i+1),...,a(m)INN)+u({o(1),...,0()JUNT)
—u({o(1),...,0(i—1)}UNT), Vi€ N.




4.4.1 Boundary conditions
We now give the form of Hs for asymmetric bicapac-
ities.

Property 4.1 For any asymmetric bi-capacity v, p
on N, we have

Hs(v,,5) = Hs(p).

Note that the above property is completly in accor-
dance with the fact the Choquet integral w.r.t a gen-
eral bi-capacity is a generalization of the asymmetric
Choquet integral [2, 3].

The following proposition gives the form of ﬁs for
additive bi-capacities.

Property 4.2 For any additive bi-capacity vy, ., on
N, we have

ﬁs(vux,uz) =
1 pGENNT) + pa(iNN7)
—_ h _ .
2 Ngg:zvi%:v 2jen+ m(d) + > ien- #2(7)

We end this subsection by a natural result giving the

form of Hg for additive asymmetric/symmetric bi-
capacities.

Property 4.3 For any additive asymmet-
ric/symmetric bi-capacity v, , on N, we have

TI—S(U’-":I‘) = ‘Hs(p)7
where p is the probability distribution on N defined by
p(i) := p(t) for alli e N.

4.4.2 Symmetry

Property 4.4 For any bi-capacity v on N, and any
permutation m on N, we have

Hs(vorn™) = Hs(v).

4.4.3 Expansibility

An element k£ € N is null for a bi-capacity v on N
if lAUK,B) = v(A,B) forall BC N\k,all AC
N\(BUk), and v(A, BUk) = v(A, B) for all A C N\k,
al BCN\(AUKk).

Property 4.5 Let v be a bi-capacity on N. If k € N
is a null element for v, then

Hs(v) = Hs(v_g),

where v_y denotes the restriction of v to N \ k.
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4.4.4 Decisivity

Property 4.6 For any bi-capacity v on N,
Hs(v) > 0.

Moreover, ﬁs('u) = 0 tf and only, for any z € [-1,1]7,
there exzists A € Rt and i € N such that Cy(z) = Az;.

4.4.5 Maximality

Property 4.7 For any bi-capacity v on N, we have
ﬁs(v) <lInn.

with equality if and only if v is the uniform capacity
v* on N.

4.4.6 Increasing monotonicity toward v*

Property 4.8 Let v be a bi-capacity on N such that
v # v* and, for any A € [0,1], define the bi-capacity
vy on N as vy := v + A(v* —v). Then for any 0 <
A1 < A2 <1 we have

Hs(va,) < Hs(va,)-
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