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Summary

The notion of Shannon entropy, recently
generalized to capacities, is extended to bi-
capacities and its main properties are stud-
ied.
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1 Introduction

The well-known Shannon entropy [12] is a fundamen-
tal concept in probability theory and related fields. In
a general non probabilistic setting, it is merely a mea-
sure of the uniformity (evenness) of a discrete proba-
bility distribution. In a probabilistic context, it can be
naturally interpreted as a measure of unpredictability.

By relaxing the additivity property of probability mea-
sures, requiring only that they be monotone, one ob-
tains Choquet capacities [1], also known as fuzzy mea-
sures [13], for which an extension of the Shannon en-
tropy was recently defined [6, 7, 9, 10].

The concept of capacity can be further generalized.
In the context of multicriteria decision making, bi-
capacities have been recently introduced by Grabisch
and Labreuche [4, 5] to model in a flexible way the
preferences of a decision maker when the underlying
scales are bipolar.

Since a bi-capacity can be regarded as a generalization
of a capacity, the following natural question arises :
how could one appraise the ‘uniformity’ or ‘uncer-
tainty’ associated with a bi-capacity in the spirit of
the Shannon entropy?

The main purpose of this paper is to propose a defi-
nition of an extension of the Shannon entropy to bi-
capacities. The interpretation of this concept will be
performed in the framework of multicriteria decision
making based on the Choquet integral. Hence, we
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consider a set N := {1,...,n} of criteria and a set
A of alternatives described according to these criteria,
i.e., real-valued functions on N. Then, given an alter-
native x € A, for any i € N , x; := x(i) is regarded
as the utility of x w.r.t. to criterion 7. The utilities
are further considered to be commensurate and to lie
either on a unipolar or on a bipolar scale. Compared
to a unipolar scale, a bipolar scale is characterized by
the additional presence of a neutral value (usually 0)
such that values above this neutral reference point are
considered to be good by the decision maker, and val-
ues below it are considered to be bad. As in [4, 5],
for simplicity reasons, we shall assume that the scale
used for all utilities is [0, 1] if the scale is unipolar, and
[—1, 1] with O as neutral value, if the scale is bipolar.

This paper is organized as follows. The second and
third sections are devoted to a presentation of the no-
tions of capacity, bi-capacity and Choquet integral in
the framework of multicriteria decision making. In the
last section, after recalling the definitions of the proba-
bilistic Shannon entropy and of its extension to capac-
ities, we propose a generalization of it to bi-capacities.
We also give an interpretation of it in the context of
multicriteria decision making and we study its main
properties.

2 Capacities and bi-capacities

In the context of aggregation, capacities [1] and bi-
capacities [4, 5] can be regarded as generalizations
of weighting vectors involved in the calculations of
weighted arithmetic means.

Let P(N) denote the power set of N and let Q(N) :=
{(A,B) € P(N) x P(N)|An B = 0}.

Definition 2.1 A function u : P(N) — [0,1] is a
capacity if it satisfies :

(i) p(@) =0, p(N) =1,
(i) for any S,T C N, S CT = pu(S) < pu(T).



A capacity pon N is said to be additive if u(SUT) =
w1(S)+u(T) for all disjoint subsets S, T C N. A partic-
ular case of additive capacity is the uniform capacity
on N. It is defined by

(1) = |Tl/n, YT CN.

The dual (or conjugate) of a capacity p on N is a ca-
pacity i on N defined by i(A) = p(N) — u(N \ 4),
for all A C N.

Definition 2.2 A function v :
capacity if it satisfies :

Q(N) — R is a bi-

(i) v(0,0) =0, v(N,0) =1, v(B, N) = —1,

(ii) A C B implies v(A,-) < v(B,-) and v(-,A) >
v(-, B).

Furthermore, a bi-capacity v is said to be :

e of the Cumulative Prospect Theory (CPT) type [4,
5, 14] if there exist two capacities p, po such that
v(A, B) = p1(A) — p2(B),  V(A,B) € Q(N).

When py = po the bi-capacity is further said to

be symmetric, and asymmetric when s = fiq

e additive if it is of the CPT type with py, uo addi-
tive, i.e. for any (A4, B) € Q(N)

v(A, B) = Zm(i) - Zuz(’i)-

i€A i€EB

Note that an additive bi-capacity with u; = po is
both symmetric and asymmetric since ji; = .

As we continue, to indicate that a CPT type bi-
capacity v is constructed from two capacities p1, uo,
we shall denote it by v, 4,

Let us also consider a particular additive bi-capacity
on N : the uniform bi-capacity. It is defined by

v AL=1B]
n

Y(A, B) € Q(N).

3 The Choquet integral

When utilities are considered to lie on a unipolar scale,
the importance of the subsets of (interacting) criteria
can be modeled by a capacity. A suitable aggrega-
tion operator that generalizes the weighted arithmetic
mean is then the Choquet integral [8].

Definition 3.1 The Choquet integral of a function x :
N — RT represented by the profile (x1,...,x,) w.r.t
a capacity p on N is defined by

Cu(z) = Z To(i) 1M Ao (i) — (Aot )]s
=1

where o is a permutation on N such that x5y < -+ <
ZTo(n)s Ag(i) = {U(i), ey U(H)}, for alli € {17 .. ,n},
and Ag(nJrl) = @

When the underlying utility scale is bipolar, Grabisch
and Labreuche proposed to substitute a bi-capacity to
the capacity and proposed a natural generalization of
the Choquet integral [5].

Definition 3.2 The Choquet integral of a function x :
N — R represented by the profile (z1,...,z,) w.r.t a
bi-capacity v on N 1is defined by

C,(a) = Cyr_(Je])

where v}, is a game on N (i.e. a set function on N
vanishing at the empty set) defined by

Vi (C)=v(CNNT,CNN™), VC C N,

and Nt :={i € N|z; >0}, N-:=N\NT.

As shown in [5], an equivalent expression of C, () is :

Co(@) =Y 2@ [V(Ae@y NN T, Ag@y NN7)
iEN
_U(Ao(iJrl) n N+a Ao(iJrl) N Ni)] ) (1)

where Ay = {o(i),...,0(n)}, Agni1) =0, and o
is a permutation on N so that |[z,1)| < < |z

4 Entropy of a bi-capacity

4.1 The concept of probabilistic entropy

The fundamental concept of entropy of a probability
distribution was initially proposed by Shannon [11, 12].
The Shannon entropy of a probability distribution p
defined on a nonempty finite set N := {1,...,n} is
defined by

Hs(p) :== > hlp(i)]

iEN

—xl if
h(x)::{ rlnz, if x>0,

where

0, ifx=0,

The quantity Hg(p) is always non negative and zero if
and only if p is a Dirac mass (decisivity property). As
a function of p, Hg is strictly concave. Furthermore,



it reaches its maximum value (Inn) if and only if p is
uniform (mazimality property).

In a general non probabilistic setting, Hg(p) is nothing
else than a measure of the uniformity of p. In a prob-
abilistic context, it can be interpreted as a measure of
the information contained in p.

4.2 Extension to capacities

Let p be a capacity on N. The following entropy was
proposed by Marichal [7, 9] (see also [10]) as an exten-
sion of the Shannon entropy to capacities :

Hy(p) o= Y > ya(m)hlu(S U i) — w(S)],

i€N SCN\i
where
—s—1)ls!
~s(n) ::M Vs €{0,1,...,n—1}.
n!

Regarded as a uniformity measure, Hjs has been re-
cently axiomatized by means of three axioms [6] : the
symmetry property, a boundary condition for which
Hj; reduces to the Shannon entropy, and a general-
ized version of the well-known recursivity property.

A fundamental property of H); is that it can be rewrit-
ten in terms of the maximal chains of the Hasse dia-
gram of (N, C) [6], which is equivalent to :

() = o S Hsloh) 2

" o€elly

where Il denotes the set of permutations on N and,
for any o € Iy,

ph(i) = p({o(i),. ..
Vi € N.

The quantity Hys(u) can therefore simply be seen as
an average over Iy of the uniformity values of the
probability distributions p# calculated by means of the
Shannon entropy. As shown in [6], in the context of
aggregation by a Choquet integral w.r.t a capacity p
on N, Hy(p) can be interpreted as a measure of the
average value over all z € [0, 1] of the degree to which
the arguments 1, ..., x, contribute to the calculation
of the aggregated value C, ().

To stress on the fact that Hj, is an average oféhannon
entropies, we shall equivalently denote it by Hg as we
go on.

It has also been shown that Hy, = Hg satisfies many
properties that one would intuitively require from an
entropy measure [6, 9]. The most important ones are :

1. Boundary property for additive measures.
For any additive capacity u on N, we have

Hs(p) = Hs(p),

where p is the probability distribution on N de-
fined by p(i) = p(é) for all i € N.

2. Boundary property for cardinality-based
measures. For any cardinality-based capacity p
on N (i.e. such that, for any T C N, u(T) de-
pends only on |T']), we have

Hs(p) = Hs(p"),

where p* is the probability distribution on N de-

fined by p*(i) = p({1,...,¢}) — u({1,...,1 = 1})
for all i € N.

3. Decisivity. For any capacity p on N,
Hg(p) = 0.

Moreover, Hg (i) = 0 if and only if 4 is a binary-
valued capacity, that is, such that u(7) € {0,1}
for all T C N.

4. Maximality. For any capacity u on N, we have
Hs(p) <lnn.

with equality if and only if p is the uniform ca-
pacity u* on N.

5. Increasing monotonicity toward p*. Let p
be a capacity on N such that p # p* and, for
any A € [0,1], define the capacity uy on N as
wx = p+A(p*—p). Then forany 0 < A\ < A2 <1
we have

HS(IJ’)\I) < HS(/’L)Q)’

6. Strict concavity. For any two capacities puq, po
on N and any A € |0, 1, we have

Hs\p1 + (1= A) p2) > XHs () + (1= X) Hs (p2).

4.3 Generalization to bi-capacities

For any bi-capacity v on N and any Nt C N, as in [5],
we define the game v}, on N by

Vi (C):==v(CNNT,CNN), VC C N,
where N~ := N\ N*.

Furthermore, for any Nt C N, let Do y+ be the prob-
ability distribution on N defined, for any i € N, by

‘VXH (Ao(i)) - V})\H (Aa(i-&-l))‘
jEN W3+ (Ao()) = VRrs (Ao




where Ay = {o(i),...,0(n)}, for all i € N, and

AO’(’IL+1) =0

We then propose the following simple definition of the
extension of the Shannon entropy to a bi-capacity v
on N :

pUN+ (4)

DI

N+CN T oelly

As in the case of capacities, the extended Shannon en-
tropy H s(v) is nothing else than an average of the uni-
formity values of the probability distributions Py N+
calculated by means of Hg.

In the context of aggregation by a Choquet integral
w.r.t a bi-capacity v on N, let us show that, as pre-
viously, Hg(v) can be interpreted as a measure of the
average value over all z € [—1,1]" of the degree to
which the arguments x1,...,x, contribute to the cal-
culation of the aggregated value C,(x).

In order to do so, consider an alternative x € [—1,1]"
and denote by Nt C N the subset of criteria for which
x > 0. Then, from Eq. (1), we see that the Cho-
quet integral of z w.r.t v is simply a weighted sum of
|To(1)]s - -5 [To(n)], where each |z, ;)| is weighted by
VN+ (Aa(i)) — U+ (Aa(i—i-l))'

Clearly, these weights are not always positive, nor do
they sum up to one. From the monotonicity conditions

of a bi-capacity, it follows that the weight correspond-
ing to |z, (4)| is positive if and only if (i) € NT.

Depending on the evenness of the distribution of the
absolute values of the weights, the utilities x1,...,z,
will contribute more or less evenly in the calculation

of Cy(x).

A straightforward way to measure the evenness of the
contribution of z1, ..., x, to C,(x) consists in measur-
ing the uniformity of the probability distribution Do N+
defined by Eq. (3). Note that Py n+ is simply obtained
by normalizing the distribution of the absolute values
of the weights involved in the calculation of C,(x).

Clearly, the uniformity of Py N+ Can be measured by
the Shannon entropy. Should Hg(p? N+) be close to
Inn, the distribution p? N+ will be approxmlately uni-
form and all the partlal evaluations z1,...,x, will be
involved almost equally in the calculatlon of Cy(x).
On the contrary, should Hg (pj; N+) be close to zero,
one py n+ (i) will be very close to one and Cy(z) will
be almost proportional to the corresponding partial
evaluation.

Let us now go back to the definition of the extended
Shannon entropy. From Eq. (4), we clearly see that

Hg(v) is nothing else than a measure of the average
of the behavior we have just discussed, i.e. taking into
account all the possibilities for o and N+ with uniform
probability. More formally, for any N* C N, and any
o € Iy, define the set

Oy n+ :={z € [-1,1]"|Vie NT,z; € [0,1],
Vie N~ ,x; € [—1,0[7 |Z‘J(1)| <-... < |x0.(n)\}.
O, n+ = [-1,1]™

Let z € [~1,1]" be fixed. Then there exist N* C N
and o € Iy such that z € O, y+ and hence C,(z) is

proportional to ),y To (i) Py N+ (7).

We clearly have |+ cN U

o€elly

Starting from Eq. (4) and using the fact that

fIE@a,zw dx = 1/n!, the entropy Hs(v) can be rewrit-
ten as
1 U
Hui =5 S % [ Hehude
zeO +

N+CN oelly
1
= 5 Hs(pgmN;;_)dl’,
[71)1]”
where Nj C N and o, € IIy are defined such that
S 00'17N;.

We thus observe that Hg(v) measures the average
value over all € [—1,1]™ of the degree to which the
arguments x1,..., T, contribute to the calculation of
Cy(z). In probabilistic terms, it corresponds to the
expectation over all z € [—1,1]", with uniform dis-
tribution, of the degree of contribution of arguments
Z1,...,Z, in the calculation of C,(x).

4.4 Properties of ﬁs

We first present two lemmas giving the form of
the probability distributions p? ., for CPT type bi-
capacities.

Lemma 4.1 For any CPT type bi-capacity vy, u, on
N, any NT C N, any o € Uy, and any i € N we
have
B 1
i (N*) + p2(N7)
X [p1(Agy NNT) = p1(Agip1y NNT)
+p2(Agiy NNT) = p2(Asiyny NN

Vg, .
ont (0)

Lemma 4.2 For any asymmetric bi-capacity v, on
N, any NT C N, and any o € lly, we have

po (i) = n({o(i),...,a(n)} N N)
—p({o(i4+1),...,o(n)INN*)+u({o(1),...,0(i) }JUNT)
n({o () o(i—1)}UNT),  VieN.



4.4.1 Boundary conditions

We now give the form of ﬁs for asymmetric bicapac-
ities.

Property 4.1 For any asymmetric bi-capacity v, g
on N, we have

ﬁs(”u,ﬂ) = Hg(u).

Note that the above property is completly in accor-
dance with the fact the Choquet integral w.r.t a gen-
eral bi-capacity is a generalization of the asymmetric
Choquet integral [2, 3].

The following proposition gives the form of ﬁg for
additive bi-capacities.

Property 4.2 For any additive bi-capacity vy, ., on
N, we have

HS(Uﬂl,#Q):
1 p(iNNT) + pp(iNN™)
2 s Yy )

N+CNiEN

We end this subsection by a natural result giving the

form of Hg for additive asymmetric/symmetric bi-
capacities.

Property 4.3 For any additive asymmet-
ric/symmetric bi-capacity v, , on N, we have

ﬁs(vuyu) = Hs(p),

where p is the probability distribution on N defined by
p(i) == p(i) for allie N.

4.4.2 Symmetry

Property 4.4 For any bi-capacity v on N, and any
permutation w on N, we have

Hs(vorn 1) =Hg(v).

4.4.3 Expansibility

An element k € N is null for a bi-capacity v on N
if v(AUK,B) = v(A,B) for all BC N\ k, all A C
N\ (BUE), and v(A, BUk) = v(A, B) forall A C N\k,
al BC N\ (AUk) .

Property 4.5 Let v be a bi-capacity on N. If k € N
is a null element for v, then

ﬁs(v) = ﬁs(v—k%

where v_j, denotes the restriction of v to N \ k.

4.4.4 Decisivity

Property 4.6 For any bi-capacity v on N,
Hs(v) > 0.

Moreover, ﬁs(v) = 0 if and only, for any x € [—1,1]",
there exists A € RY and i € N such that Cy(x) = Az;.

4.4.5 Maximality

Property 4.7 For any bi-capacity v on N, we have
ﬁs(v) <lnn.

with equality if and only if v is the uniform capacity
v* on N.

4.4.6 Increasing monotonicity toward v*

Property 4.8 Let v be a bi-capacity on N such that
v # v* and, for any A € [0,1], define the bi-capacity
vy on N as vy := v+ Av* —v). Then for any 0 <
A1 < A2 <1 we have

HS(U)\l) < HS(U)Q)'
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