Equivalent Representations of a Set Function with Applications to Game Theory and Multicriteria Decision Making

by

Jean-Luc MARICHAL
University of Liège, Belgium
Michel GRABISCH
Thomson-CSF, Orsay, France
Marc ROUBENS
University of Liège, Belgium

Set functions in game theory and multicriteria decision making

Consider a set function $v: 2^{N} \rightarrow \mathbb{R}$, where $N=\{1, \ldots, n\}$.

- Game theory: $v(\emptyset)=0$
N is a set of players
v is the characteristic function of a game
$v(S)=$ worth or power of $S \subseteq N$.
- Multicriteria decision making:
$v(\emptyset)=0, v(N)=1, S \subseteq T \Rightarrow v(S) \leq v(T)$
N is a set of criteria
$v(S)=$ weight of importance of $S \subseteq N$.

Any real valued set function v can be assimilated unambiguously with a pseudo-Boolean function $f:\{0,1\}^{n} \rightarrow \mathbb{R}$

$$
v \longleftrightarrow f
$$

If e_{S} represents the characteristic vector of S in $\{0,1\}^{n}$, we have

$$
v(S)=f\left(e_{S}\right), \quad S \subseteq N
$$

Theorem (Hammer and Rudeanu, 1968)
Any pseudo-Boolean function $f:\{0,1\}^{n} \rightarrow \mathbb{R}$ has a unique expression as a multilinear polynomial in n variables:

$$
f(x)=\sum_{T \subseteq N} a(T) \prod_{i \in T} x_{i}, \quad x \in\{0,1\}^{n},
$$

where $a(T) \in \mathbb{R}$.

$$
v(S)=\sum_{T \subseteq S} a(T), \quad S \subseteq N .
$$

In combinatorics, a viewed as a set function on N is called the Möbius transform of v.

$$
a(S)=\sum_{T \subseteq S}(-1)^{s-t} v(T), \quad S \subseteq N
$$

where $s=|S|$ and $t=|T|$.
a is a representation of v, and conversely : defining one of the two allows to compute the other without ambiguity.

Definition

A set function $w: 2^{N} \rightarrow \mathbb{R}$ is a representation of v if there exists an invertible transform \mathcal{T} such that

$$
w=\mathcal{T}(v) \quad \text { and } \quad v=\mathcal{T}^{-1}(w) .
$$

Banzhaf and Shapley power indices

Given $i \in N$, it may happen that

- $v(i)=0$,
- $v(T \cup i) \gg v(T)$ for many $T \subseteq N \backslash i$

The overall importance of $i \in N$ should not be solely determined by $v(i)$, but also by all $v(T \cup i)$ such that $T \subseteq N \backslash i$.

The marginal contribution of i in coalition $T \subseteq N \backslash i$ is defined by

$$
v(T \cup i)-v(T)
$$

A power index for i is given by an average value of the marginal contributions of i alone in all coalitions.

- The Banzhaf power index (1965) :

$$
\begin{aligned}
\phi_{\mathrm{B}}^{v}(i) & :=\frac{1}{2^{n-1}} \sum_{T \subseteq N \backslash i}[v(T \cup i)-v(T)] \\
& =\sum_{T \ni i} \frac{1}{2^{t-1}} a(T) .
\end{aligned}
$$

- The Shapley power index (1953) :

$$
\begin{aligned}
\phi_{\mathrm{Sh}}^{v}(i) & :=\frac{1}{n} \sum_{t=0}^{n-1} \frac{1}{\binom{n-1}{t}} \sum_{\substack{T \subseteq N \backslash i \\
|T|=t}}[v(T \cup i)-v(T)] \\
& =\sum_{T \subseteq N \backslash i} \frac{(n-t-1)!t!}{n!}[v(T \cup i)-v(T)] \\
& =\sum_{T \ni i} \frac{1}{t} a(T) .
\end{aligned}
$$

Banzhaf and Shapley interaction indices

The difference

$$
a(i j)=v(i j)-v(i)-v(j)
$$

seems to reflect a degree of interaction between i and j :

- positive interaction $a(i j)>0: i$ and j should cooperate
- negative interaction $a(i j)<0: i$ and j should not cooperate
- no interaction $a(i j)=0: i$ and j can act independently

As for power indices, an interaction index should consider not only $v(i), v(j), v(i j)$ but also the worths of all subsets not containing i and j. We may say that i and j have interest to cooperate if

$$
v(T \cup i j)-v(T \cup i)>v(T \cup j)-v(T), \quad T \subseteq N \backslash i j .
$$

i and j can act independently in case of $=$ and have no interest to cooperate in case of $<$.

An interaction index for the pair $i, j \in N$ is given by the average of the marginal interaction between i and j, conditioned to the presence of elements of the coalition $T \subseteq N \backslash i j$: (Murofushi and Soneda, 1993)

$$
\begin{aligned}
I_{\mathrm{B}}^{v}(i j) & :=\frac{1}{2^{n-2}} \sum_{T \subseteq N(i j}[v(T \cup i j)-v(T \cup i)-v(T \cup j)+v(T)] \\
I_{\mathrm{Sh}}^{v}(i j) & :=\sum_{T \subseteq N \backslash i j} \frac{(n-t-2)!t!}{(n-1)!}[v(T \cup i j)-v(T \cup i)-v(T \cup j)+v(T)] .
\end{aligned}
$$

Interaction indices among a combination S of players or criteria has been introduced by Grabisch and Roubens (1998) as natural extensions of the case $|S|=2$:

- The Banzhaf interaction index :

$$
I_{\mathrm{B}}^{v}(S):=\frac{1}{2^{n-s}} \sum_{T \subseteq N \backslash S} \sum_{L \subseteq S}(-1)^{s-l} v(L \cup T), \quad S \subseteq N
$$

- The Shapley interaction index:

$$
I_{\mathrm{Sh}}^{v}(S):=\sum_{T \subseteq N \backslash S} \frac{(n-t-s)!t!}{(n-s+1)!} \sum_{L \subseteq S}(-1)^{s-l} v(L \cup T), \quad S \subseteq N
$$

(characterized by Grabisch and Roubens, 1998)

We have

$$
\begin{aligned}
I_{\mathrm{B}}^{v}(S) & =\sum_{T \supseteq S}\left(\frac{1}{2}\right)^{t-s} a(T) \\
I_{\mathrm{Sh}}^{v}(S) & =\sum_{T \supseteq S} \frac{1}{t-s+1} a(T)
\end{aligned}
$$

and

$$
\phi_{\mathrm{B}}^{v}(i)=I_{\mathrm{B}}^{v}(i) \quad \text { and } \quad \phi_{\mathrm{Sh}}^{v}(i)=I_{\mathrm{Sh}}^{v}(i)
$$

for all $i \in N$.

Theorem

The interaction indices I_{B} and I_{Sh}, viewed as set functions from 2^{N} to \mathbb{R} are equivalent representations of v.

Multilinear extension of pseudo-Boolean functions

Let $S \subseteq N$. The S-derivative of the pseudo-Boolean function f at $x \in\{0,1\}^{n}$, denoted $\Delta_{S} f(x)$, is defined inductively as

$$
\begin{aligned}
\Delta_{i} f(x) & :=f\left(x \mid x_{i}=1\right)-f\left(x \mid x_{i}=0\right), \\
\Delta_{i j} f(x) & :=\Delta_{i}\left(\Delta_{j} f\right)(x)=\Delta_{j}\left(\Delta_{i} f\right)(x), \\
& \vdots \\
\Delta_{S} f(x) & :=\Delta_{i}\left(\Delta_{S \backslash i} f\right)(x)
\end{aligned}
$$

Definition The multilinear extension (MLE) of a pseudo-Boolean function f (or a game v) is defined by

$$
g(x):=\sum_{T \subseteq N} a(T) \prod_{i \in T} x_{i}, \quad x \in[0,1]^{n}
$$

see Hammer and Rudeanu (1968) and Owen (1972).
The S-derivative of g is defined inductively in the same way as for f :

$$
\Delta_{S} g(x)=\sum_{T \supseteq S} a(T) \prod_{i \in T \backslash S} x_{i}, \quad x \in[0,1]^{n}
$$

In particular, we have

$$
I_{\mathrm{B}}(S)=\sum_{T \supseteq S} \frac{1}{2^{t-s}} a(T)=\int_{[0,1]^{n}}\left(\Delta_{S} g\right)(x) d x
$$

Note that it has been proved that

$$
I_{\mathrm{B}}(S)=\frac{1}{2^{n}} \sum_{x \in\{0,1\}^{n}}\left(\Delta_{S} f\right)(x) .
$$

Recall that

$$
\Delta_{S} g(x)=\sum_{T \supseteq S} a(T) \prod_{i \in T \backslash S} x_{i}, \quad x \in[0,1]^{n}
$$

Setting $\underline{x}:=(x, \ldots, x)$, we have

$$
\Delta_{S} g(\underline{x})=\sum_{T \supseteq S} a(T) x^{t-s}, \quad x \in[0,1]^{n}
$$

Consequently, we have, for all $S \subseteq N$,

$$
\begin{aligned}
a(S) & =\left(\Delta_{S} g\right)(\underline{0}) \\
I_{\mathrm{B}}(S) & =\sum_{T \supseteq S} \frac{1}{2^{t-s}} a(T)=\left(\Delta_{S} g\right)(\underline{1 / 2}) \\
I_{\mathrm{Sh}}(S) & =\sum_{T \supseteq S} \frac{1}{t-s+1} a(T)=\int_{0}^{1}\left(\Delta_{S} g\right)(\underline{x}) d x .
\end{aligned}
$$

Some conversion formulas derived from the MLE

For the multilinear extension g, the operator Δ_{S} identifies with the classical S-derivative, that is

$$
\Delta_{S} g(x)=\frac{\partial^{s} g(x)}{\partial x_{i_{1}} \cdots \partial x_{i_{s}}} \quad \text { where } S=\left\{i_{1}, \ldots, i_{s}\right\} .
$$

The Taylor formula for functions of several variables then can be applied to g. This leads to the equality:

$$
\begin{equation*}
g(x)=\sum_{T \subseteq N} \prod_{i \in T}\left(x_{i}-y_{i}\right) \Delta_{T} g(y), \quad x, y \in[0,1]^{n} . \tag{*}
\end{equation*}
$$

Replacing x by $e_{S}(S \subseteq N)$ provides:

$$
\begin{gathered}
v(S)=\sum_{T \subseteq N} \prod_{i \in T}\left(\left(e_{S}\right)_{i}-y\right)\left(\Delta_{T} g\right)(\underline{y}), \quad y \in[0,1] . \\
y \rightarrow 0,1 / 2: \text { passages from } a \text { and } I_{\mathrm{B}} \text { to } v
\end{gathered}
$$

By successive derivations of $(*)$, we obtain:

$$
\Delta_{S} g(x)=\sum_{T \supseteq S} \prod_{i \in T \backslash S}\left(x_{i}-y_{i}\right) \Delta_{T} g(y), \quad \forall x, y \in[0,1]^{n} .
$$

In particular,

$$
\begin{gathered}
\left(\Delta_{S} g\right)(\underline{x})=\sum_{T \supseteq S}(x-y)^{t-s}\left(\Delta_{T} g\right)(\underline{y}), \quad \forall x, y \in[0,1] . \\
x, y \rightarrow 0,1 / 2: \text { passages between } a \text { and } I_{\mathrm{B}}
\end{gathered}
$$

Recall that

$$
\left(\Delta_{S} g\right)(\underline{x})=\sum_{T \supseteq S}(x-y)^{t-s}\left(\Delta_{T} g\right)(\underline{y}), \quad \forall x, y \in[0,1] .
$$

We then have

$$
\begin{aligned}
I_{\mathrm{Sh}}(S) & =\int_{0}^{1}\left(\Delta_{S} g\right)(\underline{x}) d x \\
& =\sum_{T \supseteq S}\left[\int_{0}^{1}(x-y)^{t-s} d x\right]\left(\Delta_{T} g\right)(\underline{y}) \\
& =\sum_{T \supseteq S} \frac{(1-y)^{t-s+1}-(-y)^{t-s+1}}{t-s+1}\left(\Delta_{T} g\right)(\underline{y})
\end{aligned}
$$

$$
y \rightarrow 0,1 / 2: \text { passages from } a \text { and } I_{\mathrm{B}} \text { to } I_{\mathrm{Sh}}
$$

Let $\left\{B_{n}\right\}_{n \in \mathbb{N}}$ be the sequence of Bernoulli numbers:

$$
B_{0}=1, B_{1}=-\frac{1}{2}, B_{2}=\frac{1}{6}, B_{3}=0, B_{4}=-\frac{1}{30}, B_{5}=0, B_{6}=\frac{1}{42}, \ldots
$$

and define the Bernoulli polynomials by

$$
B_{n}(x)=\sum_{k=0}^{n}\binom{n}{k} B_{k} x^{n-k}, \quad \forall n \in \mathbb{N}, \quad \forall x \in \mathbb{R}
$$

Theorem We have

$$
\begin{gathered}
\left(\Delta_{S} g\right)(\underline{x})=\sum_{T \supseteq S} B_{t-s}(x) I_{\mathrm{Sh}}(T), \quad \forall x \in[0,1] . \\
x \rightarrow 0,1 / 2: \text { passages from } I_{\mathrm{Sh}} \text { to } a \text { and } I_{\mathrm{B}}
\end{gathered}
$$

Conversion formulas

$$
\begin{aligned}
& v(S)=\sum_{T \subseteq S} a(T) \\
& v(S)=\sum_{T \subseteq N}\left(\frac{1}{2}\right)^{t}(-1)^{|T \backslash S|} I_{\mathrm{B}}(T) \\
& a(S)=\sum_{T \subseteq S}(-1)^{s-t} v(T) \\
& a(S)=\sum_{T \supseteq S}\left(-\frac{1}{2}\right)^{t-s} I_{\mathrm{B}}(T) \\
& a(S)=\sum_{T \supseteq S} B_{t-s} I_{\mathrm{Sh}}(T) \\
& I_{\mathrm{B}}(S)=\sum_{T \supseteq S}\left(\frac{1}{2}\right)^{t-s} a(T) \\
& I_{\mathrm{B}}(S)=\sum_{T \supseteq S}\left(\frac{1}{2^{t-s-1}}-1\right) B_{t-s} I_{\mathrm{Sh}}(T) \\
& I_{\mathrm{Sh}}(S)=\sum_{T \supseteq S} \frac{1}{t-s+1} a(T) \\
& I_{\mathrm{Sh}}(S)=\sum_{T \supseteq S} \frac{1+(-1)^{t-s}}{(t-s+1) 2^{t-s+1}} I_{\mathrm{B}}(T)
\end{aligned}
$$

