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Set functions in game theory and
multicriteria decision making

Consider a set function v : 2% — R, where N = {1,...,n}.

e Game theory: v(()) =0
N is a set of players

v is the characteristic function of a game

v(S) = worth or power of S C N.

e Multicriteria decision making;:
v(0)=0,v(N)=1,SCT = vS) <o)
N is a set of criteria

v(S) = weight of importance of S C N,

Any real valued set function v can be assimilated unambiguously
with a pseudo-Boolean function f : {0,1}" — R

v o — f

If eg represents the characteristic vector of S in {0, 1}", we have

v(S) = fles), S CN.



Theorem (Hammer and Rudeanu, 1968)

Any pseudo-Boolean function f : {0,1}" — IR has a unique
expression as a multilinear polynomial in n variables:

flx)y=> a(T) II z;, x € {0,1}",

TCN €T

where a(T) € R.

In combinatorics, a viewed as a set function on N is called the
Mobius transform of v.

a(S) = T%(—ns—%(T), SCN

where s = |S| and t = |T].

a is a representation of v, and conversely : defining one of the
two allows to compute the other without ambiguity.

Definition

A set function w : 2V — IR is a representation of v if there exists
an invertible transform 7 such that

w=T(w) and v=T '(w).



Banzhaf and Shapley power indices

Given ¢ € N, it may happen that
o v(i) =0,
v(T'Ui) > o(T) for many T"C N \ i

The overall importance of ¢ € N should not be solely determined
by v(i), but also by all v(T"U14) such that T C N \ i.

The marginal contribution of ¢ in coalition T C N \ i is defined
by
v(T'Ui) —o(T)

A power index for 7 is given by an average value of the marginal
contributions of 7 alone in all coalitions.

e The Banzhaf power index (1965) :

Ohli) = 5y 135,70~
- LoD

e The Shapley power index (1953) ;

i) = 5 oy | 5 T U0 (D)
t et
- = (n - tn!_ DM T ) — ()
= T%:Zia(T).



Banzhaf and Shapley interaction indices

The difference
a(ij) = v(ij) — v(i) — v(j)
seems to reflect a degree of interaction between ¢ and 7 :
e positive interaction a(ij) > 0 : ¢ and j should cooperate

e negative interaction a(ij) < 0 : ¢ and j should not cooperate

e 10 interaction a(ij) = 0 : ¢ and j can act independently

As for power indices, an interaction index should consider not only
v(7),v(7),v(ij) but also the worths of all subsets not containing 4
and 5. We may say that ¢ and j have interest to cooperate if

v(T'Uij) —v(TUi)>v(TUj)—v(T), T CN\ij.

1 and 7 can act independently in case of = and have no interest to
cooperate in case of <.

An wnteraction index for the pair 7, 5 € N is given by the average
of the marginal interaction between ¢ and j, conditioned to the
presence of elements of the coalition T'C N \ 75 : (Murofushi and
Soneda, 1993)

1

I3(ig) = 53 TC%V:\“[U(TU ij) —v(TUi) —o(TUj) 4+ v(T)]

(n—t—2)!t!

TCN\ij (n—1)!

I§,(1j) = [W(T'Uij) —v(TUi)—ov(TUj)+o(T)].



Interaction indices among a combination S of players or criteria
has been introduced by Grabisch and Roubens (1998) as natural
extensions of the case |S| = 2:

e The Banzhaf interaction index :

! S (1) W(LUT), SCN

IL(S) =
5(5) 25 pCN\S LCS

e The Shapley interaction index :

., - (n—t—s)tl s
1§,(S) = TQJZV\S st 1) L%S( D) 'o(LUT), SCN

(characterized by Grabisch and Roubens, 1998)

We have
v 1 —S
I§(S) = ¥ () all)
TDOS
1
15 (S) = —qa(T
§n(S5) T;gt—s+1a( )
and
op(i) = Ig(i) and ¢gy (i) = 1§,(7)
forall 2 € N.
Theorem

The interaction indices Ig and Ig),, viewed as set functions from

2N to IR are equivalent representations of v.



Multilinear extension of pseudo-Boolean
functions

Let S C N. The S-derivative of the pseudo-Boolean function f
at x € {0, 1}", denoted Ag f(z), is defined inductively as

A fla) = fla|zi=1)— flz]a,=0)
Ay fla) = Ml f)le) = AlA (),

As f(x) = Ai(Ag f)(z)

Definition The multilinear extension (MLE) of a pseudo-Boolean
function f (or a game v) is defined by

g(x) = ¥ a(l) Il zi;, x€[0,1]"
TCN =
see Hammer and Rudeanu (1968) and Owen (1972).

The S-derivative of g is defined inductively in the same way as
for f :

Asg(x)= > a(T) II =, =€]0,1]"
o8 i€T\S

In particular, we have

Ip(S) = X 1

738 2t—s

A(T) = fy (D5 9)(a) da.

Note that it has been proved that

Ig(S) =, X (Agf))

2" xe{0,1}"



Recall that

Asglz)= > a(T) II =, ze€l0,1)"

Setting z := (z,...,x), we have

Asgla)= ¥ a(T)a"™, =< [0,1]"

Consequently, we have, for all S C N,
a(S) = (Asg)(0)

B(S) = ¥ Sall) = (As9)(1/2)
[(8) = £ o olT) = [(Asg)(w)d



Some conversion formulas derived from the
MLE

For the multilinear extension ¢, the operator Ag identifies with
the classical S-derivative, that is

9° g()

The Taylor formula for functions of several variables then can be
applied to g. This leads to the equality:

o) = < TMai-wirgy). wyelbl. ()

Ag g(x) where S = {iy,...,is}.

Replacing x by eg (S C N) provides:
v(S)= X M ((es)i—y) (Arg)y), ye0,1].

TCN €T

y — 0,1/2 : passages from a and Ig to v

By successive derivations of (%), we obtain:

Asglx)= > Il (v —yi)Argly), Va,y e [0,1]".
T35 iel\S

In particular,

(Asg)(z) = X (v~ )~ (Arg)(y), Y,y € [0,1].

x,y — 0,1/2 : passages between a and Iy




Recall that

(Asg)(z) = %S(:E —y)" " (Arg)(y), Vaz,ye[0,1].

We then have
Is(S) = ['(Asg)(x)da
= = [B =y dn] (arg)w

_ Z (1 o y)t—s—l—l _ (_y)t—s—H

755 t—s+1 (Arg)(y)

y — 0,1/2 : passages from a and Ig to Igy

Let { By, }new be the sequence of Bernoulli numbers:
1 1 1 1
By=1,Bi=—,By=-,B3=0,By=——,B;=0,B=—, ...
0 y P21 9’ 2 G’ 3 y 4 30 ) y 26 49’

and define the Bernoulli polynomials by

B,(x) = é@ (Z) Brz" % VneN, VreR.

Theorem We have

(As g)(z) = P Bis(x) Isn(T), ¥ € [0,1].

r — 0,1/2 : passages from Ig, to a and I
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Conversion formulas

o(S) = ¥ alT)
o(8) = ¥ () (=)(T)

725 2

CL(S) = Tgth_S ]Sh(T)

Ib(S) = ¥ (5) ()
728

15(S) = X (sms — DBeaTsn(T)
TO8

Is(S) = S—

() = T;st—3+1a( )

Isn(S) = L+ (D 7 (1)

I
755 (t — s+ 1) 20—+ 7"
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