ON NONSTRICT MEANS

by

János FODOR Eötvös Loránd University, Budapest

and

Jean-Luc MARICHAL University of Liège

ORBEL 10, BRUXELLES January 18-19, 1996

AGGREGATION OPERATORS

We consider m real numbers $x_1, \ldots, x_m, x_i \in [a, b]$, and we are willing to substitute to the vector (x_1, \ldots, x_m) one simple number x using the aggregation operator M:

$$M: \Lambda = \bigcup_{m \in N_0} [a, b]^m \rightarrow R$$

$$(x_1, \dots, x_m) \rightarrow x = M(x_1, \dots, x_m).$$

Synthesizing judgments is an important part of MCDM methods. The typical situation concerns individuals which form quantitative judgments about a measure. In order to obtain a consensus of these judgments, classical operators are proposed.

Some examples:

$$\begin{split} M\left(x_1,\ldots,x_m\right) &= \frac{1}{m} \; \Sigma_i \; x_i \quad \text{(arithmetic mean)} \\ M\left(x_1,\ldots,x_m\right) &= (\Pi_i \; x_i)^{\frac{1}{m}} \quad \text{(geometric mean)} \\ M\left(x_1,\ldots,x_m\right) &= \min_i x_i \quad \text{(minimum)} \\ M\left(x_1,\ldots,x_m\right) &= \max_i x_i \quad \text{(maximum)} \\ M\left(x_1,\ldots,x_m\right) &= \sum_i \; \omega_i^{(m)} x_i, \quad \omega_i^{(m)} \geq 0, \; \Sigma_i \; \omega_i^{(m)} = 1 \\ &\qquad \qquad \text{(weighted arithmetic mean)} \\ M\left(x_1,\ldots,x_m\right) &= \max_i \{\min(\omega_i^{(m)},x_i)\}, \; \; \omega_i^{(m)} \geq 0, \; \max_i \omega_i^{(m)} = 1 \\ &\qquad \qquad \qquad \text{(weighted maximum)} \end{split}$$

etc.

AGGREGATION PROPERTIES NATURAL PROPERTIES

An aggregation operator M can be

• Continuous (Co):

 $\forall m \in N_0, M^{(m)}(x_1, \ldots, x_m)$ is a continuous function;

• Symmetric (Sy) :

 $\forall m \in N_0, M^{(m)}(x_1, \ldots, x_m)$ is a symmetric function;

• Increasing (In):

 $\forall m \in N_0, M^{(m)}(x_1, \ldots, x_m)$ is increasing on each argument;

• Strictly increasing (SIn):

 $\forall m \in N_0, M^{(m)}(x_1, \ldots, x_m)$ is strictly increasing on each argument;

• Idempotent (Id) :

 $\forall m \in N_0, M^{(m)}(x,\ldots,x) = x.$

Proposition 1 If M is In then

M is $\mathbf{Id} \Leftrightarrow \min_{i} x_{i} \leq M(x_{1}, \ldots, x_{m}) \leq \max_{i} x_{i}$.

AGGREGATION PROPERTIES ITERATIVE PROPERTIES

An aggregation operator M can be

• Associative (As):

$$M^{(3)}(x_1, x_2, x_3) = M^{(2)}(x_1, M^{(2)}(x_2, x_3)) = M^{(2)}(M^{(2)}(x_1, x_2), x_3);$$

 $\forall m \in N_0, \ M^{(m)}(x_1, \dots, x_m) = M^{(2)}(M^{(m-1)}(x_1, \dots, x_{m-1}), x_m)$

Examples: $M(x_1, \ldots, x_m) = \sum_i x_i \vee \min_i x_i \vee \max_i x_i$.

• Decomposable (De): $\forall 1 \leq k \leq m$,

$$M^{(m)}(x_1, \ldots, x_k, x_{k+1}, \ldots, x_m) = M^{(m)}(M_k, \ldots, M_k, x_{k+1}, \ldots, x_m)$$

where $M_k = M^{(k)}(x_1, \ldots, x_k)$.

Examples: $M(x_1, \ldots, x_m) = \frac{1}{m} \sum_i x_i \vee \min_i x_i \vee \max_i x_i$.

Proposition 2

As $\mathcal{E} \operatorname{Id} \Rightarrow \operatorname{De}$.

THE GENERALIZED MEAN

Theorem 1 M is defined on Λ $(\Lambda = \bigcup_{m \in N_0} [a, b]^m)$ and fulfils Co, Sy, SIn, Id, De $\Leftrightarrow \forall m \in N_0$,

$$M(x_1,\ldots,x_m)=f^{-1}\left[rac{1}{m}\;\Sigma_i\;f(x_i)
ight]$$

where f is any continuous strictly monotonic function on [a,b].

Kolmogoroff (1930), Sur la notion de la moyenne, Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Natur. Sez., 12: 388-391.

Examples:

Generator	Mean	Name
f(x)	$M(x_1,\ldots,x_m)$	
x	$rac{1}{m} \; \Sigma \; x_i$	arithmetic
x^2	$\sqrt{rac{1}{m}\;\Sigma\;x_i^2}$	quadratic
x^{-1}	$rac{1}{rac{1}{m} \; \Sigma \; rac{1}{x_i}}$	harmonic
$x^{\alpha} \ (\alpha \neq 0)$	$\left(rac{1}{m}\;\Sigma\;x_i^lpha ight)^{rac{1}{lpha}}$	root-power
$\log x$	$\sqrt[m]{\Pi \ x_i}$	geometric

THE MAIN PURPOSE

To describe the class \mathcal{D} of operators M defined on Λ and fulfilling \mathbf{Co} , \mathbf{Sy} , \mathbf{In} , \mathbf{Id} , \mathbf{De} .

NONSTRICT MEANS

Toward a description of \mathcal{D} : Co, Sy, In, Id, De.

Two families:

- 1. $\mathcal{D}_{a,b,a} \subset \mathcal{D}$ with M(a,b) = a (min $\in \mathcal{D}_{a,b,a}$)
- 2. $\mathcal{D}_{a,b,b} \subset \mathcal{D}$ with M(a,b) = b $(\max \in \mathcal{D}_{a,b,b})$

Theorem 2 $M \in \mathcal{D} \Leftrightarrow \exists a \leq \alpha \leq \beta \leq b \text{ such that } \forall m \in N_0,$

- $M \in \mathcal{D}_{a,\alpha,\alpha}$ on $[a,\alpha]^m$ $(M(a,\alpha)=\alpha)$
- $M \in \mathcal{D}_{\beta,b,\beta}$ on $[\beta,b]^m$ $(M(\beta,b)=\beta)$
- $M(x_1, ..., x_m) = f^{-1}\left[\frac{1}{m} \sum f[median(\alpha, x_i, \beta)]\right]$ everywhere else, where f is any continuous strictly monotonic function on $[\alpha, \beta]$.

Three observations

- 1. $[\alpha, \beta] = [a, b] \Leftrightarrow M \text{ is } \mathbf{SIn}$ (generalized mean of Kolmogoroff)
- 2. If $\alpha = \beta$, we have

close to:

Theorem 3 M is defined on Λ and fulfils $\mathbf{Co}, \mathbf{Sy}, \underline{\mathbf{In}}, \underline{\mathbf{Id}}, \underline{\mathbf{As}} \Leftrightarrow \exists \ a \leq \alpha \leq b \ such \ that \ \forall m \in N_0, \\ M(x_1, \dots, x_m) = median(\max_i x_i, \alpha, \min_i x_i).$

Fung and Fu (1975)

3. $\mathcal{D}_{a,\alpha,\alpha}$ and $\mathcal{D}_{\beta,b,\beta}$, or equivalently, $\mathcal{D}_{a,b,b}$ and $\mathcal{D}_{a,b,a}$ are yet to be described.

DESCRIPTION OF $\mathcal{D}_{a,b,a}$ (M(a,b)=a)

Theorem 4 $M \in \mathcal{D}_{a,b,a} \Leftrightarrow \forall m \in N_0$,

• either

$$M(x_1,\ldots,x_m)=\min_i x_i,$$

• or

$$M(x_1,\ldots,x_m)=g^{-1}\sqrt[m]{\Pi\ g(x_i)}$$

where g is any continuous strictly increasing function on [a, b] with g(a) = 0,

• or there exists a countable index set K and a family of disjoint subintervals $\{(a_k, b_k)|k \in K\}$ of [a, b] such that

$$M(x_1, \dots, x_m) = \left\{egin{array}{ll} g_k^{-1} \sqrt[m]{\Pi_i \ g_k[\min(x_i, b_k)]} & if \ \exists \ k \in K \ such \ that \ \min_i x_i \in (a_k, b_k) \ \min_i x_i & otherwise, \end{array}
ight.$$

where g_k is any continuous strictly increasing function on $[a_k, b_k]$, with $g_k(a_k) = 0$.

DESCRIPTION OF $\mathcal{D}_{a,b,b}$ (M(a,b) = b)

Theorem 5 $M \in \mathcal{D}_{a,b,b} \Leftrightarrow \forall m \in N_0$,

• either

$$M(x_1,\ldots,x_m)=\max_i x_i,$$

• or

$$M(x_1,\ldots,x_m)=g^{-1}\sqrt[m]{\Pi\ g(x_i)}$$

where g is any continuous strictly decreasing function on [a, b] with g(b) = 0,

• or there exists a countable index set K and a family of disjoint subintervals $\{(a_k, b_k)|k \in K\}$ of [a, b] such that

$$M(x_1, \dots, x_m) = \left\{egin{array}{ll} g_k^{-1} \sqrt[m]{\prod_i g_k[\max(x_i, b_k)]} & if \exists k \in K \ such \ that \ \max_i x_i \in (a_k, b_k) \ \max_i x_i & otherwise, \end{array}
ight.$$

where g_k is any continuous strictly decreasing function on $[a_k, b_k]$, with $g_k(b_k) = 0$.

BISYMMETRY EQUATION

A function $M(x_1, x_2)$ of two variables is said to be **bisymmetric** (**Bi**) if it satisfies the following equation

$$M\left[M\left(x_{11},x_{12}
ight),M\left(x_{21},x_{22}
ight)
ight]=M\left[M\left(x_{11},x_{21}
ight),M\left(x_{12},x_{22}
ight)
ight].$$

Theorem 6 M is defined on $[a,b]^2$ and fulfils Co, Sy, SIn, Id, Bi \Leftrightarrow

$$M(x_1, x_2) = f^{-1} \left[\frac{f(x_1) + f(x_2)}{2} \right]$$

where f is any continuous monotonic function on [a, b].

Aczél (1948), On mean values, Bulletin of the American Math. Society, ${f 54}:$ 392-400.

Theorem 7 Let \mathcal{B} be the class of functions M defined on $[a, b]^2$ and fulfilling \mathbf{Co} , \mathbf{Sy} , \mathbf{In} , \mathbf{Id} , \mathbf{Bi} .

To obtain a description of \mathcal{B} , it suffices to consider the case m=2 in the description of \mathcal{D} presented before.