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Abstract

We investigate the distribution functions and
the moments of the so-called Choquet inte-
gral, also known as the Lovász extension,
when regarded as a real function of a ran-
dom sample drawn from a continuous pop-
ulation. Since the Choquet integral includes
weighted arithmetic means, ordered weighted
averaging operators, and lattice polynomi-
als as particular cases, our results encompass
the corresponding results for these aggrega-
tion operators. After recalling the results ob-
tained by the authors in the uniform case, we
present approaches that can be used in the
non-uniform case to obtain moment approx-
imations.
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1 Introduction

Aggregation operators are of central importance in
many fields such as statistics or decision theory.
Among such commonly used operators, the most fre-
quently employed is probably the weighted arithmetic
mean because of its simplicity and its very intuitive
interpretation.

Although very attractive in many fields, the weighted
arithmetic mean is not suited for situations where the
values to be aggregated display some interaction. Let
us choose the framework of multi-criteria decision aid
to elaborate this in more detail. We consider a set
N := {1, . . . , n} of criteria and a set A of alternatives
evaluated according to these criteria. As classically
done, we assume that with each alternative a ∈ A a

vector (a1, . . . , an) ∈ Rn is associated, where, for any
i ∈ N , ai represents the partial score of a related to
criterion i. The partial scores are further assumed to
be defined on the same interval scale.

From the vector of scores of any alternative, one can
compute an overall evaluation by means of an aggre-
gation operator. Once the overall evaluations are com-
puted, they can be used to rank the alternatives. In
such a context, it is very frequent in applications to
have criteria that are substitutive or complementary.
Substitutivity between two criteria arises when an al-
ternative can be assigned a high overall score when
only one of the two criteria has a high partial eval-
uation. Complementarity means that it is necessary
that the two criteria have simultaneously a high eval-
uation for the alternative to receive an overall high
score. A natural extension of the weighted arithmetic
mean that is able to deal with such situations (and
many others) is the so-called Choquet integral w.r.t. a
capacity [1, 2, 3].

Also called Lovász extension [4] in the context of the
extension of pseudo-Boolean functions, the Choquet
integral includes weighted arithmetic means, ordered
weighted averaging operators [5], and lattice polyno-
mials as particular cases [6, 7].

In this paper, we investigate the distribution and the
moments of the Choquet integral when considered as a
real function of a random sample drawn from a con-
tinuous population. In the uniform case, we recall the
results obtained by the authors in [7] and we provide
algorithms for computing the probability density func-
tion (p.d.f.) and the cumulative distribution function
(c.d.f.) of the Choquet integral. In the non-uniform
case, we present approaches that can be used to obtain
approximations of the moments of this functional.

In order to avoid a cumbersome notation, cardinality
of subsets S, T, . . . will be denoted whenever possible
by the corresponding lower case letters s, t, . . ., other-
wise by the standard notation |S|, |T |, . . .. Moreover,



we will often omit braces for singletons, e.g., writing
ν(i), N \ i instead of ν({i}), N \ {i}. Finally, the set
of permutations on N will be denoted by Sn.

2 The Choquet integral and its
particular cases

A set function ν : 2N → [0, 1] is a capacity [1] on N :=
{1, . . . , n} if it is monotone with respect to (w.r.t.)
inclusion and satisfies ν(∅) = 0 and ν(N) = 1. In the
context of aggregation by the Choquet integral, for
any T ⊆ N , the coefficient ν(T ) is to be interpreted
as the weight of importance of the combination T of
criteria, or better, its importance or power to make
the decision alone (without the remaining criteria).
Definition 1. The Choquet integral of x ∈ Rn w.r.t.
a capacity ν on N is defined by

Cν(x) :=
n∑

i=1

pν,σ
i xσ(i), (1)

where σ is a permutation on N such that xσ(1) > · · · >
xσ(n), where

pν,σ
i := νσ

i − νσ
i−1, ∀ i ∈ N, (2)

and where νσ
i := ν

(
{σ(1), . . . , σ(i)}

)
for any i =

0, . . . , n. In particular, νσ
0 := 0.

The Choquet integral can therefore be regarded as
a piecewise linear function that coincides with a
weighted arithmetic mean on each n-dimensional re-
gion

Rσ := {x ∈ Rn | xσ(1) > · · · > xσ(n)} (σ ∈ Sn),
(3)

whose union covers Rn.

The Choquet integral satisfies very appealing proper-
ties for aggregation. For instance, it is continuous,
non decreasing, comprised between min and max, sta-
ble under the same transformations of interval scales
in the sense of the theory of measurement, and coin-
cides with the weighted arithmetic mean whenever the
capacity is additive. An axiomatic characterization is
provided in [3].

We now present some subclasses of Choquet integrals.
Any vector ω ∈ [0, 1]n such that

∑
i ωi = 1 will be

called a weight vector as we continue.

2.1 The weighted arithmetic mean

Definition 2. For any weight vector ω ∈ [0, 1]n, the
weighted arithmetic mean operator WAMω associated
to ω is defined by

WAMω(x) :=
n∑

i=1

ωi xi, ∀x ∈ Rn.

We can easily see that WAMω is a Choquet integral
Cν with respect to the additive capacity defined by
ν(T ) :=

∑
i∈T ωi for all T ⊆ N . Conversely, the

weights associated to WAMω are defined by ωi := ν(i)
for all i ∈ N .

The class of weighted arithmetic means WAMω in-
cludes two important special cases, namely:

• the arithmetic mean AM(x) := 1
n

∑n
i=1 xi, when

ωi = 1/n for all i ∈ N . In this case, we have
ν(T ) := t/n for all T ⊆ N .

• the k-th projection Pk(x) := xk, when ωk = 1 for
some k ∈ N . In this case, we have ν(T ) := 1 if
T 3 k and 0 otherwise.

2.2 The ordered weighted averaging operator

The concept of ordered weighted averaging operator
was proposed in aggregation theory by Yager [5] and
corresponds, in statistics, to that of linear combination
of order statistics.

Definition 3. For any weight vector ω ∈ [0, 1]n, the
ordered weighted averaging operator OWAω associ-
ated to ω is defined by

OWAω(x) :=
n∑

i=1

ωi xσ(i), ∀x ∈ Rn,

where σ is a permutation on N such that xσ(1) > · · · >
xσ(n).

It is easy to verify that an OWA operator is a Cho-
quet integral w.r.t. a capacity that depends only on
the cardinality of subsets. The capacity ν associated
to OWAω is defined by

ν(T ) :=
t∑

i=1

ωi, T ⊆ N, T 6= ∅.

Conversely, the weights associated to OWAω are de-
fined by ωt := ν(T ) − ν(T \ i) for all T ⊆ N and all
i ∈ T .

The class of ordered weighted averaging operators
OWAω includes some important special cases, namely:

• the arithmetic mean when ωi = 1/n for all i ∈ N .

• the k-th order statistic when ωn−k+1 = 1 for some
k ∈ N . In this case, we have

ν(T ) :=
{

1 if t > n− k + 1,
0 otherwise,

• the min operator

min(x) = min
i∈N

xi,



when ωn = 1. In this case, we have ν(T ) := 1 if
T = N and 0 otherwise.

• the max operator

max(x) = max
i∈N

xi,

when ω1 = 1. In this case, we have ν(T ) := 1 for
all T 6= ∅.

2.3 Partial minimum and maximum

Definition 4. For any non-empty subset A ⊆ N , the
partial minimum operator minA and the partial maxi-
mum operator maxA, associated to A, are respectively
defined by

minA(x) = min
i∈A

xi,

maxA(x) = max
i∈A

xi.

For the operator minA (resp. maxA), for any T ⊆ N ,
we have

ν(T ) :=
{

1 if T ⊇ A,
0 otherwise.(
resp. ν(T ) :=

{
1 if T ∩A 6= ∅,
0 otherwise.

)
These operators are particular cases of lattice polyno-
mials that also correspond to special classes of Cho-
quet integrals; see [6, 7] for more details.

3 Distributional relationships with
linear combination of order
statistics

From Definition 1, it is clear that the Choquet integral
is a linear combination of order statistics whose coef-
ficients depend on the order of the arguments. We
state hereafter immediate relationships between the
moments (resp. the c.d.f.) of the Choquet integral
and the moments (resp. the c.d.f.) of linear combina-
tion of order statistics.

Let X1, . . . , Xn be a random sample from a continuous
distribution with p.d.f. f and let X1:n 6 · · · 6 Xn:n

denote the corresponding order statistics. Further, let
Yν := Cν(X1, . . . , Xn) and let h be any function. By
definition of the expectation, we have

E[h(Yν)] =
∫

Rn

h(Cν(x1, . . . , xn))
n∏

i=1

f(xi)dxi

=
∑

σ∈Sn

∫
Rσ

h

(
n∑

i=1

pν,σ
i xσ(i)

)
n∏

i=1

f(xi)dxi

Using the well-known fact that the joint p.d.f. of
Xn:n > · · · > X1:n is

n!
n∏

i=1

f(xi), xn > · · · > x1,

we obtain

E[h(Yν)] =
1
n!

∑
σ∈Sn

E

[
h

(
n∑

i=1

pν,σ
i Xn−i+1:n

)]

=
1
n!

∑
σ∈Sn

E[h(Y σ
ν )]. (4)

where Y σ
ν :=

∑n
i=1 pν,σ

i Xn−i+1:n are linear combina-
tions of order statistics. Clearly, the special cases

h(x) = xr, [x−E(Yν)]r, and etx

provide similar relationships, respectively, for raw mo-
ments, central moments, and moment-generating func-
tions.

Now, consider the minus (resp. plus) truncated power
function xn

− (resp. xn
+) defined to be xn if x < 0 (resp.

x > 0) and zero otherwise. Given y ∈ R, taking
h(x) = (x− y)0− in (4) provides a relationship between
the c.d.f. Fν of Yν and those of the random variables∑n

i=1 pν,σ
i Xn−i+1:n. Indeed, we clearly have

Fν(y) := Pr[Yν 6 y] = E[(Yν − y)0−],

and, denoting by Fσ
ν the c.d.f. of Y σ

ν ,

Fσ
ν (y) :=Pr

[
n∑

i=1

pν,σ
i Xn−i+1:n 6 y

]

=E

( n∑
i=1

pν,σ
i Xn−i+1:n − y

)0

−

 ,

which immediately gives

Fν(y) =
1
n!

∑
σ∈Sn

Fσ
ν (y) (5)

As one could have expected from the definition of the
Choquet integral, the determination of the moments
and the distribution functions of the Choquet integral
is closely related to the determination of the moments
and the distribution functions of linear combinations
of order statistics.

4 The uniform case

In this section, we are interested in the moments and
distribution functions of Yν when the random sample



X1, . . . , Xn is drawn from the standard uniform dis-
tribution. In order to emphasize this last point, as
classically done, we shall denote the random sample
as U1, . . . , Un and the corresponding order statistics
by U1:n 6 · · · 6 Un:n.

Before yielding the main results obtained in [7], let
us recall some basic material related to divided differ-
ences. See for instance [8, 9, 10] for further details.

4.1 Divided differences

Let A(n) be the set of n − 1 times differentiable one-
place functions g such that g(n−1) is absolutely contin-
uous. The nth divided difference of a function g ∈ A(n)

is the symmetric function of n + 1 arguments defined
inductively by ∆[g : a0] := g(a0) and

∆[g : a0, . . . , an] :=
∆[g : a1, . . . , an]−∆[g : a0, . . . , an−1]

an − a0
, if a0 6= an,

∂

∂a0
∆[g : a0, . . . , an−1], if a0 = an.

The Peano representation of the divided differences,
which can be obtained by a Taylor expansion of g, is
given by

∆[g : a0, . . . , an] =
1
n!

∫
R

g(n)(t) M(t | a0, . . . , an) dt,

(6)
where M(t | a0, . . . , an) is the B-spline of order n, with
knots {a0, . . . , an}, defined as

M(t | a0, . . . , an) := n ∆[(·− t)n−1
+ : a0, . . . , an]. (7)

We also recall the Hermite-Genocchi formula: For any
function g ∈ A(n), we have

∆[g : a0, . . . , an]

=
∫

Rid∩[0,1]n
g(n)

[
a0 +

n∑
i=1

(ai − ai−1)xi

]
dx, (8)

where Rid is the region defined in (3) when σ is the
identity permutation.

For distinct arguments a0, . . . , an, we also have the
following formula, which can be verified by induction,

∆[g : a0, . . . , an] =
n∑

i=0

g(ai)∏
j 6=i(ai − aj)

. (9)

4.2 Moments and distribution

Let g ∈ A(n). From (8), we immediately have that

E

[
g(n)

(
n∑

i=1

pν,σ
i Un−i+1:n

)]
= n!∆[g : νσ

0 , . . . , νσ
n ]

since the joint p.d.f. of Un:n > · · · > U1:n is equal to
1
n! on Rid ∩ [0, 1]n and is zero elsewhere. Combining
the previous expression with (4), we obtain

E[g(n)(Yν)] =
∑

σ∈Sn

∆[g : νσ
0 , . . . , νσ

n ]. (10)

Eq. (10) provides the expectation E[g(n)(Yν)] in
terms of the divided differences of g with arguments
νσ
0 , . . . , νσ

n (σ ∈ Sn). An explicit formula can be ob-
tained by (9) whenever the arguments are distinct for
every σ ∈ Sn.

Clearly, the special cases

g(x) =
r!

(n + r)!
xn+r,

r!
(n + r)!

[x−E(Yν)]n+r, and
etx

tn

(11)
give, respectively, the raw moments, the central mo-
ments, and the moment-generating function of Yν . As
far as the raw moments are concerned, the following
result was obtained in [7].
Proposition 1. For any integer r > 1, setting A0 :=
N , we have,

E[Y r
ν ] =

1(
n+r

r

) ∑
A1⊆N

A2⊆A1
···

Ar⊆Ar−1

r∏
i=1

1(|Ai−1|
|Ai|

) ν(Ai).

Proposition 1 provides an explicit expression for the
rth raw moment of Yν as a sum of (r +1)n terms. For
instance, the first two moments are

E[Yν ] =
1

n + 1

∑
A⊆N

1(
n
|A|
) ν(A),

E[Y 2
ν ] =

2
(n + 1)(n + 2)

×∑
A1⊆N

1(
n
|A1|
) ν(A1)

∑
A2⊆A1

1(|A1|
|A2|
) ν(A2).

As far as the distribution function Fν(y) := Pr[Yν 6 y]
of Yν is concerned, using (10) with g(x) = 1

n! (x− y)n
−,

the following result was obtained in [7].
Theorem 1. There holds

Fν(y) =
1
n!

∑
σ∈Sn

∆[(·− y)n
− : νσ

0 , . . . , νσ
n ] (12)

= 1− 1
n!

∑
σ∈Sn

∆[(·− y)n
+ : νσ

0 , . . . , νσ
n ].

It follows from (12) that the distribution function of
Yν is absolutely continuous and hence its probability
density function is simply given by

fν(y) =
1

(n− 1)!

∑
σ∈Sn

∆[(·− y)n−1
+ : νσ

0 , . . . , νσ
n ],

(13)



or, using the B-spline notation (7),

fν(y) =
1
n!

∑
σ∈Sn

M(y | νσ
0 , . . . , νσ

n).

Remark 1. (i) When the arguments νσ
0 , . . . , νσ

n are
distinct for every σ ∈ Sn, then combining (9)
with (12) immediately yields the following explicit
expression

Fν(y) = 1− 1
n!

∑
σ∈Sn

n∑
i=0

(νσ
i − y)n

+∏
j 6=i(ν

σ
i − νσ

j )
,

or, using the minus truncated power function,

Fν(y) =
1
n!

∑
σ∈Sn

n∑
i=0

(νσ
i − y)n

−∏
j 6=i(ν

σ
i − νσ

j )
.

(ii) The case of linear combinations of order statis-
tics, called ordered weighted averaging operators
in aggregation theory (see § 2.2), is of particular
interest. In this case, each νσ

i is independent of σ,
so that we can write νi := νσ

i . The main formulas
then reduce to (see for instance [11] and [12])

E[g(n)(Yν)] = n!∆[g : ν0, . . . , νn],
Fν(y) = ∆[(·− y)n

− : ν0, . . . , νn],
fν(y) = M(y | ν0, . . . , νn).

We also note that the Hermite-Genocchi for-
mula (8) provides nice geometric interpretations
of Fν(y) and fν(y) in terms of volumes of slices
and sections of canonical simplices (see also [13]
and [14]).

4.3 Algorithms for computing divided
differences

Both functions Fν and fν require the computation of
divided differences of truncated power functions. On
this issue, we recall a recurrence equation, due to de
Boor [15] and rediscovered independently by Varsi [16]
(see also [13]), which allows to compute ∆[(·− y)n−1

+ :
a0, . . . , an] in O(n2) operations.

Rename as b1, . . . , br the elements ai such that ai < y
and as c1, . . . , cs the elements ai such that ai > y so
that r + s = n + 1. Then, the unique solution of the
recurrence equation

αk,l =
(cl − y)αk−1,l + (y − bk)αk,l−1

cl − bk
(k 6 r, l 6 s),

with initial values α1,1 = (c1−b1)−1 and α0,l = αk,0 =
0 for all l, k > 2, is given by

αk,l := ∆[(·−y)k+l−2
+ : b1, . . . , bk, c1, . . . , cl], (k+l > 2).

Algorithm 1 Algorithm for the computation of ∆[(·−
y)n−1

+ : a0, . . . , an].
Require: n, a0, . . . , an, y

S ← 0, R← 0
for i = 0, 1, . . . , n do

if xi − y > 0 then
S ← S + 1
CS ← xi − y

else
R← R + 1
BR ← xi − y

end if
end for
A0 ← 0, A1 ← 1/(C1−B1) {Initialization of the uni-
dimensional temporary array of size S +1 necessary
for the computation of the divided difference}
for j = 2, . . . , S do

Aj ← −B1Aj−1/(Cj −B1)
end for
for i = 2, . . . , R do

for j = 1, . . . , S do
Aj ← (CjAj −BiAj−1)/(Cj −Bi)

end for
end for
return AR {Contains the value of ∆[(· − y)n−1

+ :
a0, . . . , an].}

In order to compute ∆[(·− y)n−1
+ : a0, . . . , an] = αr,s,

it suffices therefore to compute the sequence αk,l for
k + l > 2, k 6 r, l 6 s, by means of 2 nested loops,
one on k, the other on l. We detail this computation
in Algorithm 1; see also [13, 16].

We can compute ∆[(·− y)n
− : a0, . . . , an] similarly. In-

deed, the same recurrence equation applied to the ini-
tial values α0,l = 0 for all l > 1 and αk,0 = 1 for all
k > 1, produces the solution

αk,l := ∆[(·−y)k+l−1
− : b1, . . . , bk, c1, . . . , cl] (k+l > 1).

Example. As we have already mentioned, the Cho-
quet integral is widely used in non-additive expected
utility theory, cooperative game theory, complex-
ity analysis, measure theory, etc. (see [17] for an
overview.) For instance, when a discrete Choquet inte-
gral is used as an aggregation tool in a given decision
making problem, it is then very informative for the
decision maker to know its distribution. In that con-
text, the most natural a priori density on [0, 1]n is the
uniform one, which makes the results presented in this
section of particular interest.

Let ν be the capacity on {1, 2, 3} defined by ν({1}) =
0.1, ν({2}) = 0.6, ν({3}) = ν({1, 2}) = ν({1, 3}) =
ν({2, 3}) = 0.9, and ν({1, 2, 3}) = 1. The density
of the Choquet integral w.r.t. ν, which can be com-
puted through (13) and by means of Algorithm 1, is



Figure 1: Density of a discrete Choquet integral (solid
line).

represented in Figure 1 by the solid line. The dot-
ted line represents the density estimated by the kernel
method from 10 000 randomly generated realizations.
The typical value and standard deviation can also be
calculated through the raw moments: we have

E[Yν ] ≈ 0.608 and
√

E[Y 2
ν ]−E[Yν ]2 ≈ 0.204.

From a practical perspective, routines for computing
the p.d.f. and the c.d.f. of the Choquet integral in the
uniform case have been implemented in the Kappalab
package for GNU R [18].

5 The non-uniform case

We now turn to the non-uniform case. Let X1, . . . , Xn

be a random sample from a continuous distribution
with c.d.f. F . Unlike in the uniform case, in this
section we will only be able to present results allow-
ing to compute approximations of moments of Yν :=
Cν(X1, . . . , Xn).

5.1 Expectation and variance of the Choquet
integral

We first focus on the expectation and the variance of
Yν . Starting from (4) with h(x) = x, we immediately
obtain

E[Yν ] =
1
n!

∑
σ∈Sn

n∑
i=1

pν,σ
i E[Xn−i+1:n]. (14)

Similarly, for h(x) = x2, we get

E[Y 2
ν ] =

1
n!

∑
σ∈Sn

n∑
i=1

n∑
j=1

pν,σ
i pν,σ

j E[Xn−i+1:nXn−j+1:n].

(15)
It immediatelty follows that the expectation and the
variance of the Choquet integral can be computed in
the non-uniform case only if the first product moments

of order statistics from the same underlying distribu-
tion can be computed. As we shall see in the next
subsection, it is possible to obtain approximations of
these product moments provided the inverse of F and
the derivatives of the inverse can be computed.

5.2 Moments of order statistics and their
approximation

Let U1, . . . , Un be a random sample from the stan-
dard uniform distribution. The product moments of
the corresponding order statistics are then given by
the following formula (see e.g. [19, Chap. 3] and the
references therein):

E

 l∏
j=1

U
mj

ij :n

 =
n!(

n +
∑l

j=1 mj

)
!

×
l∏

j=1

(ij + m1 + · · ·+ mj − 1)!
(ij + m1 + · · ·+ mj−1 − 1)!

. (16)

Now, it is well-known that the c.d.f. of Xi:n is given
by

Pr(Xi:n 6 x) =
n∑

j=i

(
n

j

)
F j(x)[1− F (x)]n−j .

It immediately follows that

Pr(F−1(Ui:n) 6 x) = Pr(Ui:n 6 F (x)) = Pr(Xi:n 6 x),

i.e. that F−1(Ui:n) and Xi:n are equal in distribution.

Starting from this distributional equality, David and
Johnson [20] expanded F−1(Ui:n) in a Taylor series
around the point E(Ui:n) = i/(n+1) in order to obtain
approximations of product moments of non-uniform
order statistcs; see also [19, §4.6]. Setting pi := i/(n+
1) and G := F−1, we have

Xi:n = G(pi) + (Ui:n − pi)G′(pi)

+
1
2
(Ui:n − pi)2G′′(pi) +

1
6
(Ui:n − pi)3G′′′(pi) + . . .

(17)

Taking the expectation of the previous expression and
using (16), the following approximation for the expec-
tation of Xi:n can be obtained to order (n + 2)−2 [19,
§4.6]:

E[Xi:n] ≈ Gi +
piqi

2(n + 2)
G′′

i

+
piqi

(n + 2)2

[
1
3
(qi − pi)G′′′

i +
1
8
piqiG

′′′′
i

]
, (18)

where qi := 1− pi and Gi := G(pi), G′
i := G′(pi), etc.

Similarly, for the first product moment, we have, to



order (n + 2)−2,

E[Xi:nXj:n] ≈ GiGj +
piqj

n + 2
G′

iG
′
j +

piqi

2(n + 2)
GjG

′′
i

+
pjqj

2(n + 2)
GiG

′′
j +

piqj

(n + 2)2
[
(qi − pi)G′′

i G′
j

+ (qj − pj)G′
iG

′′
j +

1
2
piqiG

′′′
i G′

j +
1
2
pjqjG

′
iG

′′′
j

+
1
2
piqjG

′′
i G′′

j

]
+

pipjqiqj

4(n + 2)2
G′′

i G′′
j

+
piqiGj

(n + 2)2
[1
8
piqiG

′′′′
i +

1
3
(qi − pi)G′′

i

]
+

pjqjGi

(n + 2)2
[1
8
pjqjG

′′′′
j +

1
3
(qj − pj)G′′

j

]
. (19)

The accuracy of the above approximations is discussed
in [19, §4.6]. Note that Childs and Balakrishnan
[21] have recently proposed MAPLE routines facilitat-
ing the computations and permitting the inclusion of
higher order terms.

From a practical perspective, the previous expressions
are useful only if G := F−1 and its derivates can be
easily computed. This is the case for instance when
F is the c.d.f. of the standard normal distribution.
Indeed, there exists algorithms that enable an accu-
rate computation of F−1 (see [22] and the references
therein) and it can be verified (see [19, p 85]) that
G′ = (f ◦G)−1,

G′′ =
G

f2 ◦G
,G′′′ =

1 + 2G2

f3 ◦G
and G′′′′ =

G(7 + 6G2)
f4 ◦G

,

where f = F ′.

5.3 Back to the two first moments of the
Choquet integral

Combining (18) and (19) with (14) and (15), it is there-
fore possible to obtain approximate values for the ex-
pectation and the variance of the Choquet integral pro-
vided F−1 and its derivates can be easily computed.

6 Future work

Using the expresssions given in Section 3 and distribu-
tional results on linear combinations of order statistics
[19], it is possible to obtain the exact distribution of
the Choquet integral for certain non-uniform distri-
butions and also conditions under which the Choquet
integral is asymptotically normal. These aspects will
be studied in a forthcoming paper.
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