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Abstract The general form of continuous, sym-
metric, increasing, idempotent solutions of the
bisymmetry equation is established and the fam-
ily of sequences of functions which are continuous,
symmetric, increasing, idempotent, decomposable
is described.
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1 Introduction

Kolmogoroff [6] and Nagumo [8] established a fun-
damental result about mean values. In their defi-
nition a mean value is a sequence (M (m))m∈IN0 of
functions M (m) : [a, b]m → [a, b] (where [a, b] is
a closed real interval) which are continuous, sym-
metric, strictly increasing in each argument, and
idempotent (that is M (m)(x, . . . , x) = x for all
x ∈ [a, b]). These functions are also linked by
a pseudo-associativity called the decomposability
property by several authors (see e.g. [3, Chapter
5]):

M (m)(x1, . . . , xk, xk+1, . . . , xm)
= M (m)(Mk, . . . , Mk, xk+1, . . . , xm)

for all m ∈ IN0, k ∈ {1, . . . , m}, x1, . . . , xm ∈ [a, b],
with Mk = M (k)(x1, . . . , xk).

The corresponding result of Kolmogoroff and
Nagumo states that these conditions are neces-
sary and sufficient for the existence of a continuous
strictly monotonic real function f such that

M (m)(x1, . . . , xm) = f−1

[
1
m

m∑

i=1

f(xi)

]

for all m ∈ IN0. Such an expression is called the
generalized mean.

On the other hand, Aczél [1] (see also [2]) proved
that a function M of two variables defined on
[a, b] is continuous, symmetric, strictly increasing
in each argument, idempotent and fulfils the bisym-
metry equation

M [M(x11, x12),M(x21, x22)]
= M [M(x11, x21),M(x12, x22)]

(1)

if and only if

M(x, y) = f−1

[
f(x) + f(y)

2

]
, x, y ∈ [a, b]

with some continuous strictly monotonic function
f .

Note that Horváth [5] investigated the connec-
tion between the two concepts of bisymmetry and
decomposability.

The aim of this paper is to study nonstrict
means in an elementary way. That is, we in-
vestigate means satisfying either the conditions
of Aczél’s theorem or the conditions of Kolmogo-
roff and Nagumo’s theorem above, except strict
monotonicity. We describe the family of contin-
uous, symmetric, increasing, idempotent, bisym-
metric functions (Section 2) and also the family
of sequences of continuous, symmetric, increasing,
idempotent and decomposable functions (Section
3). The general families obtained are very similar
to those ones well-known as ordinal sums in the
theory of the associativity functional equation (see
e.g. [7]). For space limitation, no proof of the re-
sults will be given.
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2 Nonstrict solutions of the
bisymmetry equation

The bisymmetry equation (1), which can be consid-
ered also as a generalization of simultaneous com-
mutativity and associativity, has been investigated
by several authors. For a list of references see [2].

A function M : [a, b]2 → [a, b] is called

• symmetric if M(x, y) = M(y, x) for all x, y ∈
[a, b];

• increasing if x ≤ x′, y ≤ y′ imply M(x, y) ≤
M(x′, y′);

• strictly increasing if x < x′ implies M(x, y) <
M(x′, y) and the same for y < y′;

• idempotent if M(x, x) = x for all x ∈ [a, b].

As said above, our goal is to describe the general
form of continuous, symmetric, increasing, idem-
potent solutions of the bisymmetry equation (1).
In their structures, these solutions are very similar
to ordinal sums which are well-known in the theory
of semigroups, see e.g. [7].

Aczél [1] proved the following result.

Theorem 1 M : [a, b]2 → [a, b] is a continuous,
symmetric, strictly increasing, idempotent, bisym-
metric function if and only if

M(x, y) = f−1

[
f(x) + f(y)

2

]

(generalized mean) where f is any continuous
strictly monotonic function on [a, b].

We also know that this result still holds for in-
tervals of the form (a, b), [a, b), (a, b] or even for
any unbounded interval of the real line (see [2], pp
250–251, 280).

Now define Ba,b,θ as the set of functions M :
[a, b]2 → [a, b] which are continuous, symmetric,
increasing, idempotent, bisymmetric and such that
M(a, b) = θ, θ being a given number in [a, b]. A
general element of a class Ba,b,θ is usually denoted
by Ma,b,θ in the sequel. Then we have the following
result.

Theorem 2 M : [a, b]2 → [a, b] is a continu-
ous, symmetric, increasing, idempotent, bisymmet-
ric function if and only if there exists two numbers
α and β fulfilling a ≤ α ≤ β ≤ b such that

i) M(x, y) = Ma,α,α(x, y) if x, y ∈ [a, α];
ii) M(x, y) = Mβ,b,β(x, y) if x, y ∈ [β, b];

iii) M(x, y) =

f−1

[
f [median(α, x, β)] + f [median(α, y, β)]

2

]

otherwise,

with some Ma,α,α ∈ Ba,α,α, Mβ,b,β ∈ Bβ,b,β, and
f is any continuous strictly monotonic function on
[α, β].

Now, describe the two families Ba,b,a and Ba,b,b.

Theorem 3 We have M ∈ Ba,b,a if and only if

• either
M(x, y) = min(x, y),

• or
M(x, y) = g−1

√
g(x)g(y),

where g is any continuous strictly increasing
function on [a, b], with g(a) = 0,

• or there exists a countable index set K and a
family of disjoint subintervals {(ak, bk) : k ∈
K} of [a, b] such that

M(x, y) =





g−1
k

√
gk[min(x, bk)]gk[min(y, bk)]

if there exists k ∈ K such that
min(x, y) ∈ (ak, bk),

min(x, y) otherwise,

where gk is any continuous strictly increasing
function on [ak, bk], with gk(ak) = 0.

Theorem 4 We have M ∈ Ba,b,b if and only if

• either
M(x, y) = max(x, y),

• or
M(x, y) = g−1

√
g(x)g(y),

where g is any continuous strictly decreasing
function on [a, b], with g(b) = 0,

• or there exists a countable index set K and a
family of disjoint subintervals {(ak, bk) : k ∈
K} of [a, b] such that

M(x, y) =





g−1
k

√
gk[max(ak, x)]gk[max(ak, y)]

if there exists k ∈ K such that
max(x, y) ∈ (ak, bk),

max(x, y) otherwise,

where gk is any continuous strictly decreasing
function on [ak, bk], with gk(bk) = 0.

2



3 Extended
Kolmogoroff-means

We show now that the results obtained in the pre-
vious section can be extend to the mean values
by replacing bisymmetry by decomposability. Ac-
cording to Fodor and Roubens [3], we can see any
mean value M as an aggregation operator:

M : Λ =
∞⋃

m=1

[a, b]m → [a, b]

(x1, . . . , xm) → x = M (m)(x1, . . . , xm)1

Such an operator M is said to be

• continuous if for all m ∈ IN0, M(x1, . . . , xm)
is a continuous function on [a, b]m;

• symmetric if for all m ∈ IN0, M(x1, . . . , xm)
is a symmetric function on [a, b]m:

M(x1, . . . , xm) = M(xσ(1), . . . , xσ(m))

where σ is a permutation of {1, . . . , m};
• increasing if for all m ∈ IN0, M(x1, . . . , xm) is

increasing in each argument:

xi < x′i ⇒ M(x1, . . . , xi, . . . , xm)
≤ M(x1, . . . , x

′
i, . . . , xm),

for i = 1, . . . , m;

• strictly increasing if for all m ∈ IN0,
M(x1, . . . , xm) is strictly increasing in each ar-
gument:

xi < x′i ⇒ M(x1, . . . , xi, . . . , xm)
< M(x1, . . . , x

′
i, . . . , xm),

for i = 1, . . . , m;

• idempotent if for all m ∈ IN0, M has to satisfy

M (m)(x, . . . , x) = x, ∀x ∈ [a, b];

• decomposable if for all m ∈ IN0 and all k ∈
{1, . . . ,m}, M has to satisfy

M (m)(x1, . . . , xk, xk+1, . . . , xm)
= M (m)(Mk, . . . , Mk, xk+1, . . . , xm)

where Mk = M (k)(x1, . . . , xk).

Kolmogoroff [6] established the following result.

Theorem 5 An aggregation operator M , defined
on Λ, is continuous, symmetric, strictly increasing,
idempotent and decomposable if and only if for all
m ∈ IN0,

M (m)(x1, . . . , xm) = f−1

[
1
m

∑

i

f(xi)

]

(generalized mean) where f is any continuous
strictly monotonic function on [a, b].

Theorem 5 still holds for sets Λ of the form⋃∞
m=1(a, b)m,

⋃∞
m=1[a, b)m,

⋃∞
m=1(a, b]m, even if

a = −∞ and/or b = +∞.
Define Da,b,θ as the set of aggregation operators

M : Λ =
⋃∞

m=1[a, b]m → [a, b] which are contin-
uous, symmetric, increasing, idempotent, decom-
posable and such that M(a, b) = θ, θ being a given
number in [a, b]. Then we have the following result:

Theorem 6 An aggregation operator M , defined
on Λ, is continuous, symmetric, increasing, idem-
potent and decomposable if and only if there exists
two numbers α and β fulfilling a ≤ α ≤ β ≤ b,
such that, for all m ∈ IN0,

i) M(x1, . . . , xm) = Ma,α,α(x1, . . . , xm)
if maxi xi ∈ [a, α];

ii) M(x1, . . . , xm) = Mβ,b,β(x1, . . . , xm)
if mini xi ∈ [β, b];

iii) M(x1, . . . , xm) =

f−1

[
1
m

∑

i

f [median(α, xi, β)]

]

otherwise,

where Ma,α,α ∈ Da,α,α, Mβ,b,β ∈ Dβ,b,β and where
f is any continuous strictly monotonic function on
[α, β].

Now, describe the two families Da,b,a and Da,b,b.

Theorem 7 We have M ∈ Da,b,a if and only if
for all m ∈ IN0,

• either
M(x1, . . . , xm) = min

i
xi,

• or

M(x1, . . . , xm) = g−1
m

√∏

i

g(xi),

where g is any continuous strictly increasing
function on [a, b], with g(a) = 0,
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• or there exists a countable index set K and a
family of disjoint subintervals {(ak, bk) : k ∈
K} of [a, b] such that

M(x1, . . . , xm) =





g−1
k

m
√∏

i gk[min(xi, bk)]
if there exists k ∈ K
such that
mini xi ∈ (ak, bk),

mini xi otherwise,

where gk is any continuous strictly increasing
function on [ak, bk], with gk(ak) = 0.

Theorem 8 We have M ∈ Da,b,b if and only if
for all m ∈ IN0,

• either

M(x1, . . . , xm) = max
i

xi,

• or

M(x1, . . . , xm) = g−1
m

√∏

i

g(xi),

where g is any continuous strictly decreasing
function on [a, b], with g(b) = 0,

• or there exists a countable index set K and a
family of disjoint subintervals {(ak, bk) : k ∈
K} of [a, b] such that

M(x1, . . . , xm) =





g−1
k

m
√∏

i gk[max(ak, xi)]
if there exists k ∈ K
such that
maxi xi ∈ (ak, bk),

maxi xi otherwise,

where gk is any continuous strictly decreasing
function on [ak, bk], with gk(bk) = 0.
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