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Abstract. This paper introduces four alternative representations of a
set function: the Möbius transformation, the co-Möbius transformation,
and the interactions between elements of any subset of a given set as
extensions of Shapley and Banzhaf values. The links between the five
equivalent representations of a set function are emphasized in this pre-
sentation.
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1 Introduction

Real valued set functions, which are not necessarily additive, are extensively
used in decision theory. This paper mostly concentrates on some alternative
representations of set functions and on their usefulness in game theory and in
multicriteria decision making.

Consider a real valued set function v : 2N → IR, where N is a discrete set
of n elements, n ∈ IN0. In cooperative game theory, v is a game that assigns
to each coalition S of players a real number v(S) representing the worth or the
power of S. One also defines the unanimity game for T ⊆ N , as the game vT

such that vT (S) = 1 if and only if S ⊇ T , and 0 otherwise. In multicriteria
decision making, when N represents a set of criteria, v is a weight function and
the number v(S) represents the weight related to the combination S of criteria.

There exist several equivalent ways to define v. The first one is to give for any
subset S the number v(S). The second one is to observe that v can be expressed



in a unique way as:
v(S) =

∑

T⊆S

a(T ), S ⊆ N. (1)

In game theory, the real coefficients {a(T )}T⊆N are called the dividends of the
coalitions in game v, see [11, 15]. In combinatorics, a viewed as a set function
on N is called the Möbius transform of v (see e.g. Rota [17]), which is given by

a(S) =
∑

T⊆S

(−1)s−tv(T ), S ⊆ N, (2)

where s = |S| and t = |T |.
The set function a is a representation of v since there is a bijection between

the set of games and the set of dividends, i.e. defining one of the two allows to
compute the other without ambiguity. More formally, a set function w : 2N → IR
is a representation of v if there exists an invertible transform T such that

w = T (v) and v = T −1(w).

In addition to the Möbius representation of v, we introduce the following
definitions:

– The dual representation of v, denoted v∗, is defined by

v∗(S) := v(N)− v(N \ S), S ⊆ N.

– The co-Möbius representation of v, denoted b, is defined by

b(S) :=
∑

T⊇N\S
(−1)n−tv(T ) =

∑

T⊆S

(−1)t v(N \ T ), S ⊆ N. (3)

– The Banzhaf interaction index related to v, denoted IB, is defined by

IB(S) :=
1

2n−s

∑

T⊆N\S

∑

L⊆S

(−1)s−lv(L ∪ T ), S ⊆ N. (4)

– The Shapley interaction index related to v, denoted ISh, is defined by

ISh(S) :=
∑

T⊆N\S

(n− t− s)! t!
(n− s + 1)!

∑

L⊆S

(−1)s−lv(L ∪ T ), S ⊆ N. (5)

In evidence theory (Shafer [19]), v corresponds to the belief function, v∗ is
called the plausibility function, a corresponds to the mass or basic probability
assignment and b is called the commonality function.

The interaction indices IB and ISh have been introduced respectively by
Roubens [18] and Grabisch [7] to model interaction among players or criteria.
Actually, the problem of modelling interaction remains a difficult question, often
overlooked in practical applications. Although everybody agrees that interaction
phenomena do exist in real situations, the lack of suitable tool to model them
frequently causes the practitioner to assume that his criteria are independent



and exhaustive. This comes primarily from the absence of a precise definition of
interaction.

However, the problem has recently been addressed under the viewpoint of
cooperative game theory and multicriteria decision making, and an approach
which seems suitable has been pointed out. The origin of the idea is due to
Murofushi and Soneda [13], who propose an interaction index among a pair of
criteria, based on multiattribute utility theory. Later, Grabisch [7] generalized
this index to any subset S, thus giving rise to a new representation of set func-
tions. This representation is called the Shapley interaction index (5). Viewed as
a set function, it coincides on singletons with the Shapley value

φSh(i) =
∑

T⊆N\{i}

(n− t− 1)! t!
n!

[v(T ∪ {i})− v(T )], i ∈ N,

which is a fundamental concept in game theory [20] expressing a power in-
dex. There is in fact another common way of defining a power index, due to
Banzhaf [2] (see also Dubey and Shapley [4]). The so-called Banzhaf value, de-
fined as

φB(i) =
1

2n−1

∑

T⊆N\{i}
[v(T ∪ {i})− v(T )], i ∈ N,

can be viewed as an alternative to the Shapley value, and Roubens [18] developed
a parallel notion of interaction index, based on the Banzhaf value: the Banzhaf
interaction index (4).

It should be noted that the interaction indices IB and ISh have been axiomat-
ically characterized by Grabisch and Roubens [8].

If v(∅) = 0 then v∗ is a representation of v since (v∗)∗ = v. Moreover, for
any v, it is already known that the Möbius transform is invertible and thus
is a representation of v. The main aim of this paper is to show that b is also
a representation of v, as well as the interaction indices IB and ISh. All these
representations are linear, that is, such that T is a linear operator. We also give
all the conversion formulas between v, a, b, IB and ISh.

On this issue, Roubens [18] has expressed IB in terms of the dividends:

IB(S) =
∑

T⊇S

(
1
2
)t−s a(T ), S ⊆ N, (6)

while Grabisch [7] has shown that:

ISh(S) =
∑

T⊇S

1
t− s + 1

a(T ), S ⊆ N. (7)

The paper is organized as follows. In Section 2, we introduce the concept
of pseudo-Boolean functions as substitutes for set functions. In Sections 3 and
4, we introduce the multilinear and Lovász extensions. In Section 5, we present
some conversion formulas which can be obtained from the multilinear extension.



In Section 6, we consider the algebraic aspect of the transformations by investi-
gating the matricial relations between the representations. Two types of trans-
formations are pointed out: fractal and cardinality transformations. In Section 7,
we apply our results to a certain problem of approximations of pseudo-Boolean
functions.

2 The use of pseudo-Boolean functions

For any subset S ⊆ N , eS is the characteristic vector (or incidence vector) of
S, i.e. the vector of {0, 1}n whose i-th component is 1 if and only if i ∈ S.
Geometrically, the characteristic vectors are the 2n vertices of the hypercube
[0, 1]n.

Any real valued set function v : 2N → IR can be assimilated unambigu-
ously with a pseudo-Boolean function, that is a function f : {0, 1}n → IR. The
correspondence is straightforward: we have

f(x) =
∑

T⊆N

v(T )
∏

i∈T

xi

∏

i/∈T

(1− xi), x ∈ {0, 1}n,

and v(S) = f(eS) for all S ⊆ N . We shall henceforth make this identification.
Hammer and Rudeanu [10] showed that any pseudo-Boolean function has a

unique expression as a multilinear polynomial in n variables:

f(x) =
∑

T⊆N

a(T )
∏

i∈T

xi, x ∈ {0, 1}n, (8)

where the coefficients a(T ) are nothing else than the dividends (2). Moreover,
equation (8) is the decomposition of the set function v into unanimity games:
indeed,

∏
i∈T xi corresponds to the unanimity game vT and we have, for all

S ⊆ N ,

v(S) = f(eS) =
∑

T⊆N

a(T )
∏

i∈T

(eS)i =
∑

T⊆N

a(T ) vT (S).

Thus, any game v has a canonical representation in terms of unanimity games
that determine a linear basis for v. Note that Gilboa and Schmeidler [5] and
Pap [16] extended this unanimity-basis representation to general (infinite) spaces
of players.

Let us introduce the concept of derivatives of pseudo-Boolean functions,
which will be useful as we continue, see e.g. [9].

Definition 2.1 Given S = {i1, . . . , is} ⊆ N , the s-th order derivative of a
pseudo-Boolean function f : {0, 1}n → IR with respect to xi1 , . . . , xis is the
function ∆S f : {0, 1}n → IR defined inductively as

∆S f(x) = ∆i1(∆S\{i1} f)(x),



where ∆i f(x) (i ∈ N) is the (first) derivative defined by

∆i f(x) := f(x |xi = 1)− f(x |xi = 0), x ∈ {0, 1}n,

and, as usual, ∆∅ f(x) = f(x) for all x ∈ {0, 1}n. For all S ⊆ N , ∆S f(x) will
be called the S-derivative of f(x).

Thus defined, ∆S f(x) depends only on the variables xi for i /∈ S, but we
still regard it as a function on {0, 1}n. For instance, we have, for all T ⊆ N ,

(∆if)(eT ) =
{

f(eT )− f(eT\{i}), if i ∈ T ,
f(eT∪{i})− f(eT ), if i /∈ T .

If f is given under the form (8) then we can easily see that:

∆S f(x) =
∑

T⊇S

a(T )
∏

i∈T\S
xi, ∀x ∈ {0, 1}n, ∀S ⊆ N. (9)

Hence we have

(∆S f)(eT ) =
∑

L⊆T

a(L ∪ S), ∀S ⊆ N, ∀T ⊆ N \ S. (10)

Moreover, we can see that (use induction over |S|):

(∆S f)(eT ) =
∑

L⊆S

(−1)s−lv(L ∪ T ), ∀S ⊆ N, ∀T ⊆ N \ S. (11)

In particular, for S = {i}, we obtain the marginal contribution of player i to
the coalition T ⊆ N \ {i}:

(∆i f)(eT ) = v(T ∪ {i})− v(T ).

For S = {i, j}, we obtain the marginal contribution of j in the presence of i
minus the marginal contribution of j in the absence of i:

(∆{i,j}f)(eT ) = v(T ∪ {i, j})− v(T ∪ {i})− v(T ∪ {j}) + v(T ).

This difference represents the marginal interaction between i and j, conditioned
to the presence of elements of the coalition T ⊆ N \ {i, j}.

More generally, (∆S f)(eT ) represents the marginal interaction between the
elements of a coalition S ⊆ N in the presence of elements of the coalition T ⊆
N \ S.

By combining (11) and (3), we obtain

b(S) = (∆S f)(eN\S) = (∆S f)(eN ), S ⊆ N, (12)

and by using (9),
b(S) =

∑

T⊇S

a(T ), S ⊆ N. (13)



Moreover, it should be noted that, from (11), equations (4) and (5) become:

IB(S) =
1

2n−s

∑

T⊆N\S
(∆S f)(eT ), S ⊆ N, (14)

ISh(S) =
1

n− s + 1

∑

T⊆N\S

(
n− s

t

)−1

(∆S f)(eT ), S ⊆ N, (15)

thus showing that IB and ISh are of the form (see [8]):

I(S) =
∑

T⊆N\S
pS

T (∆S f)(eT ), S ⊆ N. (16)

This points out the following probabilistic interpretation of IB and ISh: let us
suppose that any coalition S ⊆ N joins a coalition T ⊆ N \ S at random
with a probability pS

T . Then the interaction index (16) can be thought of as the
mathematical expectation of the marginal interaction (∆S f)(eT ). Depending on
the given randomization scheme, this interaction index takes a well defined form
(see also [22]):

– if the coalition S is equally likely to join any coalition T ⊆ N \ S, its prob-
ability to join is pS

T = 1
2n−s and we get IB.

– if the coalition S is equally likely to join any coalition T ⊆ N \ S of size
t (0 ≤ t ≤ n − s) and that all coalitions of size t are equally likely, its
probability to join is pS

T = 1
n−s+1

(
n−s

t

)−1
and we get ISh.

The following result shows that equations (14) and (15) can be rewritten in
another form.

Proposition 2.1 We have

IB(S) =
1
2n

∑

x∈{0,1}n

(∆S f)(x), S ⊆ N, (17)

ISh(S) =
1

n + 1

∑

x∈{0,1}n

(
n∑
i xi

)−1

(∆S f)(x), S ⊆ N. (18)

Proof. Given S ⊆ N , we simply have

1
2n

∑

x∈{0,1}n

(∆S f)(x) =
1
2n

∑

T⊇S

a(T )
∑

x∈{0,1}n

∏

i∈T\S
xi (by (9))

=
1
2n

∑

T⊇S

a(T )
∑

K⊆N\(T\S)

1

=
∑

T⊇S

(
1
2
)t−sa(T )

= IB(S) (by (6)),



and

1
n + 1

∑

x∈{0,1}n

(
n∑
i xi

)−1

(∆S f)(x)

=
1

n + 1

∑

T⊇S

a(T )
∑

x∈{0,1}n

(
n∑
i xi

)−1 ∏

i∈T\S
xi (by (9))

=
1

n + 1

∑

T⊇S

a(T )
∑

K⊆N\(T\S)

(
n

k

)−1

=
1

n + 1

∑

T⊇S

a(T )
n−t+s∑

k=0

(
n− t + s

k

)(
n

k

)−1

=
∑

T⊇S

1
t− s + 1

a(T )

= ISh(S) (by (7)),

which proves the result. ut
Before going on, let us make some observations.

1. It should be noted that equations (6) and (7) can be easily obtained from
(14) and (15) respectively by using the following formula:

∑

T⊆N\S
ps

t (∆S f)(eT ) =
∑

T⊇S

[ n−t∑

k=0

(
n− t

k

)
ps

k+t−s

]
a(T ), S ⊆ N.

The proof of this formula is simple: setting L′ := L∪ S, we have, from (10),
∑

T⊆N\S
ps

t (∆S f)(eT ) =
∑

T⊆N\S
ps

t

∑

L⊆T

a(L ∪ S)

=
∑

L′⊇S

[ ∑

T :L′\S⊆T⊆N\S
ps

t

]
a(L′)

=
∑

L′⊇S

[ n−s∑

t=l′−s

(
n− l′

t− l′ + s

)
ps

t

]
a(L′)

=
∑

L′⊇S

[ n−l′∑

k=0

(
n− l′

k

)
ps

k+l′−s

]
a(L′).

2. In their definitions, Grabisch and Roubens [8] introduced the notation

δSv(T ) := (∆Sf)(eT ), S ⊆ T ⊆ N.

Using this concept of derivative, we immediately have

(∆Sf)(eT ) = δSv(T ∪ S), ∀S, T ⊆ N,



and (16) becomes

I(S) =
∑

T⊆N\S
pS

T δSv(T ∪ S), S ⊆ N.

3 Multilinear extension of pseudo-Boolean functions

From any pseudo-Boolean function f : {0, 1}n → IR, we can define a variety of
extensions f̄ : [0, 1]n → IR which interpolate f at the 2n vertices of [0, 1]n, that
is f̄(eS) = f(eS) = v(S) for all S ⊆ N .

The S-derivative of any extension f̄ is defined inductively in the same way
as for f . In particular, we have

∆S f̄(x) = ∆S f(x), ∀x ∈ {0, 1}n, ∀S ⊆ N.

Let us introduce the notation x := (x, . . . , x) ∈ [0, 1]n for all x ∈ [0, 1]. By
(10) and (12), we immediately have

a(S) = (∆S f̄)(0), S ⊆ N

b(S) = (∆S f̄)(1), S ⊆ N

for any extension f̄ of f .

The polynomial expression (8) was used in game theory in 1972 by Owen [14]
as the multilinear extension of a game.

Definition 3.1 If the pseudo-Boolean function f has the unique multilinear
expression (8) then the multilinear extension of f (MLE) is the function g :
[0, 1]n → IR defined by

g(x) :=
∑

T⊆N

f(eT )
∏

i∈T

xi

∏

i/∈T

(1− xi) =
∑

T⊆N

a(T )
∏

i∈T

xi, x ∈ [0, 1]n. (19)

It has been proved by Owen [15] that g is the only multilinear function (i.e.
linear in each of the variables xi) on [0, 1]n that coincides with f on {0, 1}n.
More precisely, g corresponds to the classical linear interpolation (with respect
to each of the n variables) of f .

It is easy to see that:

∆S g(x) =
∑

T⊇S

a(T )
∏

i∈T\S
xi, ∀x ∈ [0, 1]n, ∀S ⊆ N, (20)

and, by (9), we can observe that ∆S g(x) is the MLE of ∆S f(x).

From (6) and (20), we can readily see that the Banzhaf interaction index
related to S is obtained by integrating the S-derivative of the MLE of game v
over the hypercube. Formally, this result can be stated as follows.



Proposition 3.1 We have

IB(S) =
∫

[0,1]n
(∆S g)(x) dx, S ⊆ N. (21)

This result can be interpreted by analogy with (17): IB(S) is the average
value of ∆S f over {0, 1}n, but also the average value of its MLE over [0, 1]n.

From (20), we immediately have:

(∆S g)(x) =
∑

T⊇S

a(T )xt−s, ∀x ∈ [0, 1], ∀S ⊆ N. (22)

Consequently, we have, using (13), (6), and (7):

a(S) = (∆S g)(0), S ⊆ N (23)
b(S) = (∆S g)(1), S ⊆ N (24)

IB(S) = (∆S g)(1/2), S ⊆ N (25)

ISh(S) =
∫ 1

0

(∆S g)(x) dx, S ⊆ N. (26)

We see that the Banzhaf interaction index related to S is the value of the S-
derivative of the MLE of game v on the center of the hypercube [0, 1]n, while the
Shapley interaction index related to S is obtained by integrating the S-derivative
of the MLE of game v along the main diagonal of the hypercube. This latter
result has been proved by Owen [15] when |S| = 1.

4 Lovász extension of pseudo-Boolean functions

Let Πn denote the family of all permutations π of N . The Lovász extension
f̂ : [0, 1]n → IR of any pseudo-Boolean function f is defined on each n-simplex

Bπ = {x ∈ [0, 1]n |xπ(1) ≤ · · · ≤ xπ(n)}, π ∈ Πn,

as the unique affine function which interpolates f at the n + 1 vertices of Bπ,
see Lovász [12, §3] and Singer [21, §2].

When f is given under the form (8), the Lovász extension of f can take the
form of a min-polynomial as follows:

f̂(x) =
∑

T⊆N

a(T )
∧

i∈T

xi x ∈ [0, 1]n, (27)

where ∧ denotes the min operation; indeed, the function (27) agrees with f at
all the vertices of [0, 1]n, and identifies with an affine function on each simplex
Bπ.

It is easy to see that:

∆S f̂(x) =
∑

T⊇S

a(T )
∧

i∈T\S
xi, ∀x ∈ [0, 1]n, ∀S ⊆ N, (28)

and, by (9), we can observe that ∆S f̂ is the Lovász extension of ∆S f .
The following lemma will be very useful as we continue.



Lemma 4.1 There holds
∫

[0,1]n

∧

i∈S

xi dx =
1

s + 1
, S ⊆ N. (29)

Proof. Observe first that we can assume S = N . Next, we have
∫

[0,1]n

∧

i∈N

xi dx =
∑

π∈Πn

∫

Bπ

xπ(1) dx

=
∑

π∈Πn

∫ 1

0

∫ xπ(n)

0

· · ·
∫ xπ(2)

0

xπ(1) dxπ(1) · · · dxπ(n)

=
∑

π∈Πn

1
(n + 1)!

=
1

n + 1
,

and the lemma is proved. ut
From (7), (28) and (29), we can readily see that the Shapley interaction index

related to S is obtained by integrating the S-derivative of the Lovász extension
of game v over the hypercube. This result, which is to be compared with (21),
can be stated as follows.

Proposition 4.1 We have

ISh(S) =
∫

[0,1]n
∆S f̂(x) dx, S ⊆ N.

From (28), we immediately have

(∆S f̂)(x) = a(S) + x
∑
T⊇S
T 6=S

a(T ), ∀x ∈ [0, 1], ∀S ⊆ N.

Consequently, we have, using (13):

a(S) = (∆S f̂)(0), S ⊆ N

b(S) = (∆S f̂)(1), S ⊆ N

a(S) + b(S)
2

= (∆S f̂)(1/2), S ⊆ N

a(S) + b(S)
2

=
∫ 1

0

(∆S f̂)(x) dx, S ⊆ N

5 Some conversion formulas derived from the MLE

It is easy to see that, for any function g of the form (19), the operator ∆S

identifies with the classical S-derivative, that is,

∆S g(x) =
∂s g(x)

∂xi1 · · · ∂xis

where S = {i1, . . . , is}.



The Taylor formula for functions of several variables then can be applied to g.
This leads to the equality:

g(x) =
∑

T⊆N

∏

i∈T

(xi − yi) ∆T g(y), x, y ∈ [0, 1]n. (30)

Replacing x by eS and y by y provides:

v(S) =
∑

T⊆N

∏

i∈T

((eS)i − y) (∆T g)(y), ∀y ∈ [0, 1], ∀S ⊆ N. (31)

On the basis of (23)–(25), we can obtain the conversions from a, b, IB to v by
replacing y respectively by 0, 1 and 1/2 in (31). The corresponding formulas can
be found in Tables 3 and 4 (Section 6).

By successive derivations of (30), we obtain:

∆S g(x) =
∑

T⊇S

∏

i∈T\S
(xi − yi)∆T g(y), ∀x, y ∈ [0, 1]n, ∀S ⊆ N.

In particular, we have:

(∆S g)(x) =
∑

T⊇S

(x− y)t−s (∆T g)(y), ∀x, y ∈ [0, 1], ∀S ⊆ N. (32)

We can get all the conversions between a, b, and IB by replacing x and y by
0, 1, and 1/2 in (32). The corresponding formulas are written in Tables 3 and 4.

Combining (26) and (32), we immediately have:

ISh(S) =
∑

T⊇S

[∫ 1

0

(x− y)t−s dx

]
(∆T g)(y)

=
∑

T⊇S

(1− y)t−s+1 − (−y)t−s+1

t− s + 1
(∆T g)(y), ∀y ∈ [0, 1], ∀S ⊆ N.(33)

We then obtain the conversions from a, b, IB to ISh by replacing y successively
by 0, 1, and 1/2 in (33), see Tables 3 and 4.

The conversions from ISh to a, b, IB, are a little bit more delicate. Let
{Bn}n∈IN be the sequence of Bernoulli numbers defined recursively by





B0 = 1,

n∑

k=0

(
n + 1

k

)
Bk = 0, n ∈ IN0.

The first elements of the sequence are:

B0 = 1, B1 = −1
2
, B2 =

1
6
, B3 = 0, B4 = − 1

30
, B5 = 0, B6 =

1
42

, . . . .



The Bernoulli polynomials are then defined by

Bn(x) =
n∑

k=0

(
n

k

)
Bk xn−k, ∀n ∈ IN, ∀x ∈ IR.

It is well known that these polynomials fulfil the following properties (see e.g.
[1]):

Bn(0) = Bn, ∀n ∈ IN (34)
Bn(1) = (−1)n Bn, ∀n ∈ IN (35)

Bn(1/2) = (
1

2n−1
− 1)Bn, ∀n ∈ IN (36)

Bn(x + y) =
n∑

k=0

(
n

k

)
Bk(x) yn−k, ∀n ∈ IN, ∀x, y ∈ IR (37)

∫ 1

0

Bn(x) dx = 0, ∀n ∈ IN0. (38)

We have the following lemma.

Lemma 5.1 For all S, K ⊆ N such that S ⊆ K, we have:
∑

T :S⊆T⊆K

Bt−s(x)
1

k − t + 1
= xk−s, x ∈ [0, 1]. (39)

Proof. We have

∑

T :S⊆T⊆K

Bt−s(x)
1

k − t + 1
=

k∑
t=s

(
k − s

t− s

)
Bt−s(x)

1
k − t + 1

=
k−s∑
u=0

(
k − s

u

)
Bu(x)

1
k − s− u + 1

=
∫ 1

0

k−s∑
u=0

(
k − s

u

)
Bu(x) yk−s−u dy

=
∫ 1

0

k−s∑
u=0

(
k − s

u

)
Bu(y) xk−s−u dy (by (37))

= xk−s (by (38)),

which proves the result. ut
We then have the following result.

Proposition 5.1 We have

(∆S g)(x) =
∑

T⊇S

Bt−s(x) ISh(T ), ∀x ∈ [0, 1], ∀S ⊆ N. (40)



Proof. We have

∑

T⊇S

Bt−s(x) ISh(T ) =
∑

T⊇S

Bt−s(x)
∑

K⊇T

1
k − t + 1

a(K) (by (7))

=
∑

K⊇S

a(K)
∑

T :S⊆T⊆K

Bt−s(x)
1

k − t + 1

=
∑

K⊇S

a(K)xk−s (by (39))

= (∆S g)(x) (by (22)),

and the result is proved. ut
We then obtain the conversions from ISh to a, b, IB by replacing x successively

by 0, 1, and 1/2 in (40), and by using (34)–(36).

6 Fractal and cardinality transformations

In this section, we give all the conversion formulas between the five representa-
tions v, a, b, IB, ISh of a game v. All these representations are linear, that is,
such that the transform T is a linear operator which can be written in a matrix
form.

Any pair (x, y) extracted from the set {v, a, b, IB, ISh} can produce a matricial
relation

y = T ◦ x

where x, y : 2N → IR and where T is a transformation matrix of dimension
2n × 2n if the 2n elements of 2N are ordered according to some sequence.

Let us consider the following total ordering of the elements of 2N ,

O : ∅, {1}, {2}, {1, 2}, {3}, {1, 3}, {2, 3}, {1, 2, 3}, {4}, . . . , N.

This order is obtained as follows. We consider the natural sequence of inte-
gers from 0 to 2n − 1, that is 0, 1, 2, . . . , i, . . . , 2n − 1, and its binary nota-
tion [0]2, [1]2, . . . , [i]2, . . . , [2n−1]2, which is (with n digits) 000 · · · 00, 000 · · · 01,
000 · · · 10, . . . , 111 · · · 11. To any number [i]2 in binary notation corresponds a
unique subset I ⊆ N such that j ∈ I if and only if the (n +1− j)-th digit in [i]2
is 1.

We obtain the vectors of IR2n

:

xt
(n) = ( x(∅) x({1}) x({2}) x({1, 2}) . . . x(N) )

yt
(n) = ( y(∅) y({1}) y({2}) y({1, 2}) . . . y(N) )

(here the superscript t represents the transposition operation) and we determine
the matricial relation

y(n) = T(n) ◦ x(n)



with

T(n) =




∅ {1} · · · N

∅ T (∅, ∅) T (∅, {1}) · · · T (∅, N)
{1} T ({1}, ∅) T ({1}, {1}) · · · T ({1}, N)
...

...
...

...
N T (N, ∅) T (N, {1}) · · · T (N, N)


.

Three particular transformations will be considered:

(i) the fractal transformation linked to a “fractal matrix” T = F defined with
the help of one “basic fractal matrix” F(1) which is supposed to be invertible.

F(1) :=
(

f1 f2

f3 f4

)
, fi ∈ IR, i = 1, 2, 3, 4

F−1
(1) :=

(
g1 g2

g3 g4

)

F(k) :=
(

f1 F(k−1) f2 F(k−1)

f3 F(k−1) f4 F(k−1)

)
, k = 2, . . . , n.

It can be shown that the inverse matrix is also fractal. In general we have:

F−1
(k) =

(
g1 F−1

(k−1) g2 F−1
(k−1)

g3 F−1
(k−1) g4 F−1

(k−1)

)
, k = 2, . . . , n.

(ii) the upper-cardinality transformation linked to an “upper-cardinality ma-
trix” T = C based on asequence of real numbers (c0, c1, . . . , ck, . . . , cn),
c0 = 1, and

C(1) :=
(

c0 c1

0 c0

)
, Cl

(1) :=
(

cl−1 cl

0 cl−1

)
, l = 1, . . . , n

C(2) :=
(

C1
(1) C2

(1)

0 C1
(1)

)
, Cl

(2) :=
(

Cl
(1) Cl+1

(1)

0 Cl
(1)

)
, l = 1, . . . , n− 1

C(k) :=
(

C1
(k−1) C2

(k−1)

0 C1
(k−1)

)
, k = 2, . . . , n.

Using the sequence O to order the rows and the columns of C(n), one obtains
(blanks replace zeroes):

C(n) =




∅ {1} {2} {1, 2} {3} {1, 3} {2, 3} {1, 2, 3} · · ·
∅ c0 c1 c1 c2 c1 c2 c2 c3

{1} c0 c1 c1 c2

{2} c0 c1 c1 c2

{1, 2} c0 c1

{3} c0 c1 c1 c2

{1, 3} c0 c1

{2, 3} c0 c1

{1, 2, 3} c0

...




.



(iii) the lower-cardinality transformation linked to a “lower-cardinality matrix”
T = Ct based on a sequence of real numbers (c0, c1, . . . , ck, . . . , cn), c0 = 1,
and

Ct
(1) :=

(
c0 0
c1 c0

)
, . . .

Ct
(k) :=

(
C1 t

(k−1) 0
C2 t

(k−1) C1 t
(k−1)

)
, k = 2, . . . , n.

Both fractal and cardinality transformations correspond to a two-place real
valued set function Φ. We introduce the product of two such transformations Φ
and Ψ to define:

(Φ ◦ Ψ)(A,B) :=
∑

C⊆N

Φ(A,C)Ψ(C, B), A, B ⊆ N.

In the case of the upper-cardinality transformation (see Denneberg and Gra-
bisch [3])

Φ(A,B) = Φ(∅, B \A) =
{

c|B\A|, if A ⊆ B,
0, otherwise,

and this definition justifies the terminology used.
If we are concerned with a lower-cardinality transformation,

Φ(A,B) = Φ(A \B, ∅) =
{

c|A\B|, if B ⊆ A,
0, otherwise.

Let us now consider the families:

GF := {F : 2N × 2N → IR |F is built on a basic invertible fractal matrix F(1)}
GC := {C : 2N × 2N → IR |C is determined by a sequence (ck)}
GC := {Ct : 2N × 2N → IR |Ct is determined by a sequence (ck)}

The three families form a multiplicative group for the composition law (◦)
with neutral element

I(A, B) :=
{

1, if A = B,
0, else.

The families GC and GC form an Abelian group (i.e. commutative) but the
property of commutativity is generally not satisfied for GF .

In the case of the upper-cardinality transformation, y(n) = C(n) x(n) can be
rewritten as

y(S) =
∑

T⊇S

ct−s x(T ), S ⊆ N. (41)

Moreover, if C1 and C2 represent two upper-cardinality transformations, the
sequence (ck) related to C1 ◦ C2 corresponds to (see [3])

ck =
k∑

l=0

(
k

l

)
c1
k−l c

2
l =

k∑

l=0

(
k

l

)
c2
k−l c

1
l , k = 0, . . . , n. (42)



The inverse C−1 of the upper-cardinality transformation C is obtained with
c−1
0 = 1 and

c−1
k = −

k−1∑

l=0

(
k

l

)
ck−l c

−1
l , k = 1, . . . , n. (43)

It is obvious that the lower-cardinality transformation y(n) = Ct
(n) x(n) can

be rewritten as
y(S) =

∑

T⊆S

cs−t x(T ), S ⊆ N.

If C1 t and C2 t represent two lower-cardinality transformations, the sequence
(ck) related to C1 t ◦C2 t corresponds to the formula (42) and the inverse (Ct)−1

of the lower-cardinality transformation Ct is obtained with (43).
If a fractal transformation F is considered, y(n) = F(n) x(n) can be rewritten

as
y(S) =

∑

T⊆N

F (S, T )x(T ), S ⊆ N.

We know that F−1 is also a fractal transformation and we can easily check that

F−1
(n)(S, T ) =

(−1)t−s

(det F(1))n
F(n)(N \ T,N \ S), ∀S, T ⊆ N. (44)

Moreover, the composition of two fractal transformations F 1 and F 2 corresponds
to a fractal transformation with basic fractal matrix F(1) = F 1

(1) ◦ F 2
(1).

It should be noted that any fractal transformation with a basic fractal matrix:

F(1) =
(

1 ρ
0 1

)
or

(
1 0
ρ 1

)

is an upper (lower)-cardinality transformation with the sequence ck = ρk. The
converse is also true.

From classical results in combinatorics [17], all conversion formulas between
v, a and b are well known. We can observe that all the transformations between
v, a, b and IB are fractal. For instance, the Möbius representation (2) can be
rewritten under the fractal form

a(n) = M(n) ◦ v(n)

with the use of the basic fractal matrix:

M(1) =
(

1 0
−1 1

)
. (45)

We see that transformation M also corresponds to a lower-cardinality trans-
formation with ck = (−1)k and we immediately obtain that

v(n) = M−1
(n) ◦ a(n)



where M−1 corresponds to the basic fractal matrix:

M−1
(1) =

(
1 0
1 1

)
,

or the lower-cardinality transformation with sequence ck = 1, which gives (1).
More generally, one can easily see that the generating conversion formula

(31) corresponds, for any fixed y ∈ [0, 1], to a fractal transformation whose basic
fractal matrix is

F(1) =
(

1 −y
1 1− y

)
.

By (44), the formula (31) can immediately be inverted into

(∆S g)(y) =
∑

T⊆N

(−1)t−s
∏

i∈N\S
((eN\T )i − y) v(T ), y ∈ [0, 1]. (46)

Replacing y respectively by 0, 1 and 1/2 in (46), we obtain the conversions from
v to a, b and IB, see Table 3.

The generating conversion formula (32) corresponds, for any fixed x, y ∈
[0, 1], to a fractal transformation with basic fractal matrix:

F(1) =
(

1 x− y
0 1

)
.

Observe that this transformation also corresponds to an upper-cardinality trans-
formation with sequence ck = (x− y)k.

We have just shown that all the transformations between v, a, b and IB are
fractal. The corresponding basic fractal matrices are summarized in Table 1.

Due to (41), it is clear that the generating conversion formula (33) corre-
sponds, for any fixed y ∈ [0, 1], to an upper-cardinality transformation with
sequence

ck =
∫ 1

0

(x− y)k dx =
(1− y)k+1 − (−y)k+1

k + 1
,

whereas the inverse transformation (40) corresponds to an upper-cardinality
transformation with sequence c−1

k = Bk(y). Thus, all the transformations be-
tween a, b, IB and ISh are upper-cardinality transformations. The corresponding
sequences are summarized in Table 2.

Now, let us turn to the two remaining cases: the transformations from v to
ISh and the converse, which are neither fractal, nor upper-cardinal. From (5),
we obtain, by setting T ′ := T ∪ L (which implies L = T ′ ∩ S and T = T ′ \ S):

ISh(S) =
∑

T ′⊆N

|N \ (S ∪ T ′)|! |T ′ \ S|!
(n− s + 1)!

(−1)|S\T
′| v(T ′), S ⊆ N,



which can also be written under the form

ISh(S) =
∑

T⊆N

(−1)|S\T |

(n− s + 1)
(

n−s
|T\S|

) v(T ), S ⊆ N. (47)

With matricial notation, this identity is written:

IS (n) = H(n) ◦ a(n) = H(n) ◦M(n) ◦ v(n) (48)

where H(n) is an upper-cardinality matrix based on the sequence hk = 1
k+1 , and

M(n) is the fractal matrix generated by (45).
The inverse formula can be found in [3, 6]: for all S ⊆ N , we have, using

adequate correspondence formulas,

v(S) =
∑

K⊆S

a(K) =
∑

K⊆S

∑

T⊇K

Bt−k ISh(T ) =
∑

T⊆N

ISh(T )
∑

K⊆T∩S

Bt−k

=
∑

T⊆N

ISh(T )
|T∩S|∑

k=0

(|T ∩ S|
k

)
Bt−k,

that is

v(S) =
∑

T⊆N

β
|T |
|T∩S| ISh(T ), S ⊆ N,

with

βl
k :=

k∑

j=0

(
k

j

)
Bl−j .

The first values of βl
k are:

k\l 0 1 2 3 4
0 1 −1/2 1/6 0 −1/30
1 1/2 −1/3 1/6 −1/30
2 1/6 −1/6 2/15
3 0 −1/30
4 −1/30

Some properties of the βl
k are shown in [3, 6]. This inverse formula corresponds

to

v(n) = M−1
(n) ◦H−1

(n) ◦ IS (n).

Although these transformations between ISh and v are neither fractal nor cardi-
nal, their associated matrices have nevertheless a remarkable structure, and we
call them Pascal matrices:



(i) a direct Pascal matrix P based on a sequence of real numbers (p0, p1, . . . , pk,
. . . , pn), such that:

P(1) :=

(
p0 p1

p0 p0 + p1

)
, P l

(1) :=

(
pl−1 pl

pl−1 pl−1 + pl

)
, l = 1, . . . , n

P(2) :=

(
P 1

(1) P 2
(1)

P 1
(1) P 1

(1) + P 2
(1)

)
, P l

(2) :=

(
P l

(1) P l+1
(1)

P l
(1) P l

(1) + P l+1
(1)

)
, l = 1, . . . , n− 1

P(k) :=

(
P 1

(k−1) P 2
(k−1)

P 1
(k−1) P 1

(k−1) + P 2
(k−1)

)
, k = 2, . . . , n.

(ii) an inverse Pascal matrix Q based on a sequence of real numbers (q0, q1, . . . ,
qk, . . . , qn), such that:

Q(1) :=

(
q0 − q1 q1

−q0 q0

)
, Ql

(1) :=

(
ql−1 − ql ql

−ql−1 ql−1

)
, l = 1, . . . , n

Q(2) :=

(
Q1

(1) −Q2
(1) Q2

(1)

−Q1
(1) Q1

(1)

)
, Ql

(2) :=

(
Ql

(1) −Ql+1
(1) Ql+1

(1)

−Ql
(1) Ql

(1)

)
, l = 1, . . . , n− 1

Q(k) :=

(
Q1

(k−1) −Q2
(k−1) Q2

(k−1)

−Q1
(k−1) Q1

(k−1)

)
, k = 2, . . . , n.

The name “Pascal matrix” comes from the fact that, as in the Pascal trian-
gle, elements are obtained by the sum of two preceding elements. Direct Pascal
matrices are constructed from the upper left-hand corner, while inverse Pascal
matrices start from the lower right-hand corner. An example of each kind is
shown below (n = 2), where for P(2) the sequence of Bernoulli numbers have
been chosen (thus retrieving the βl

k coefficients and all their properties shown in
[3, 6]), and for Q(2) the sequence hk = 1

k+1 , k = 0, 1, 2, defined above (see (48))
(thus retrieving the coefficients of (47)):

P(2) = M−1
(2) ◦H−1

(2) =




1 −1/2 −1/2 1/6
1 1/2 −1/2 −1/3
1 −1/2 1/2 −1/3
1 1/2 1/2 1/6




Q(2) = H(2) ◦M(2) =




1/3 1/6 1/6 1/3
−1/2 1/2 −1/2 1/2
−1/2 −1/2 1/2 1/2

1 −1 −1 1




Any Pascal matrix can be written as the product of an upper-cardinal matrix
and either the Möbius matrix M or its inverse:

P(n), p0,...,pn
= M−1

(n) ◦ C(n), p0,...,pn

Q(n), q0,...,qn
= C(n), q0,...,qn

◦M(n)

(the generating sequence is written in subscript), as it can be easily verified. The
set of (direct or inverse) Pascal matrices does not form a group since the product
of two such matrices is no more a Pascal matrix. However, since the inverse of



an upper-cardinality transformation is again upper-cardinal, it follows that the
inverse of a direct (resp. inverse) Pascal matrix is an inverse (resp. direct) Pascal
matrix.

Before closing this section, we present the explicit transformation formulas
between v, a, b, IB and ISh. They are gathered in Tables 3 and 4.

7 Approximations of pseudo-Boolean functions

Hammer and Holzman [9] investigated the approximation of a pseudo-Boolean
function by a multilinear polynomial of (at most) a specified degree. According
to them, fixing k ∈ IN with k ≤ n, the best k-th approximation of f is the
multilinear polynomial f (k) : {0, 1}n → IR of degree ≤ k defined by

f (k)(x) =
∑
T⊆N
t≤k

a(k)(T )
∏

i∈T

xi

which minimizes ∑

x∈{0,1}n

[f(x)− f (k)(x)]2

among all multilinear polynomials of degree ≤ k. They proved that the best k-th
approximation f (k) is given by the unique solution {a(k)(T ) |T ⊆ N, t ≤ k} of
the triangular linear system:

1
2n

∑

x∈{0,1}n

∆Sf (k)(x) =
1
2n

∑

x∈{0,1}n

∆Sf(x), ∀S ⊆ N, s ≤ k. (49)

They also solved this system for k = 1 and k = 2. In this final section, we intend
to solve the system for any k ≤ n.

Let I
(k)
B be the Banzhaf interaction index related to f (k). By (17), the system

(49) can be written as

I
(k)
B (S) = IB(S), ∀S ⊆ N, s ≤ k. (50)

This shows that the approximation problem amounts to finding a multilinear
polynomial of degree ≤ k that has the same Banzhaf interaction indices as f for
subsets of at most k elements.

By (6), the system (50) becomes

∑
T⊇S
t≤k

(
1
2
)t−sa(k)(T ) = IB(S), ∀S ⊆ N, s ≤ k.

In particular, we have a(k)(S) = IB(S) for all S ⊆ N such that s = k. Hammer
and Holzman [9, §3] obtained this result for k = 1: a(1)({i}) = φB(i) for all
i ∈ N .



By (6), we observe immediately that I
(k)
B (S) = 0 for all S ⊆ N such that

s > k. Hence, by using the conversion formula from IB to a, we have

a(k)(S) =
∑
J⊇S
j≤k

(−1
2
)j−sI

(k)
B (J), ∀S ⊆ N, s ≤ k.

The system (50) then becomes

a(k)(S) =
∑
J⊇S
j≤k

(−1
2
)j−sIB(J), ∀S ⊆ N, s ≤ k,

and by (6), we have, for all S ⊆ N with s ≤ k,

a(k)(S) =
∑
J⊇S
j≤k

(−1
2
)j−s

∑

T⊇J

(
1
2
)t−ja(T )

=
∑

T⊇S

(
1
2
)t−sa(T )

∑
J:S⊆J⊆T

j≤k

(−1)j−s

=
∑

T⊇S

(
1
2
)t−sa(T )

min(k,t)∑

j=s

(
t− s

j − s

)
(−1)j−s.

However, we have

min(k,t)∑

j=s

(
t− s

j − s

)
(−1)j−s =

{
(1− 1)t−s, if t ≤ k,
(−1)k−s

(
t−s−1
k−s

)
, if t > k (use induction over k ≥ s).

Therefore, we obtain an explicit formula for a(k)(S):

Proposition 7.1 The coefficients of the best k-th approximation of f are given
by

a(k)(S) = a(S) + (−1)k−s
∑
T⊇S
t>k

(
t− s− 1

k − s

)
(
1
2
)t−s a(T ), ∀S ⊆ N, s ≤ k.

Some particular cases are shown in Table 5. We thus retrieve the solutions
obtained by Hammer and Holzman for k = 1 and k = 2.

8 Conclusions

In this paper, we have analyzed the mathematical structure of the transforma-
tions from some linear representation of a game (or weight function) to another
one, where a representation is any bijective transform of a game. Interactions
indices, as well as dividends, are examples of linear representations. It was shown
that the underlying matrices have remarkable properties.



References

1. Abramowitz, M., Stegun, I.A.: Handbook of mathematical functions with formulas,
graphs, and mathematical tables. Dover Publications, New York, 7th printing,
1970.

2. Banzhaf, J.F.: Weighted voting doesn’t work: A mathematical analysis. Rutgers
Law Review 19 (1965) 317–343.

3. Denneberg, D., Grabisch, M.: Shapley value and interaction index. Mathematik-
Arbeitspapiere Nr. 46 (1996), Universität Bremen.

4. Dubey, P., Shapley, L.S.: Mathematical properties of the Banzhaf power index.
Math. of Oper. Res. 4 (1979) 99–131.

5. Gilboa, I. Schmeidler, D.: Canonical representation of set functions. Mathematics
of Operations Research 20 No. 1 (1995) 197–212.

6. Grabisch, M.: Alternative representations of discrete fuzzy measures for decision
making. Int. J. of Uncertainty, Fuzziness, and Knowledge Based Systems. 5 (1997)
587–607.

7. Grabisch, M.: k-order additive discrete fuzzy measures and their representation.
Fuzzy Sets and Systems 92 (1997) 167–189.

8. Grabisch, M., Roubens, M.: An axiomatic approach to the concept of interaction
among players in cooperative games. Int. Journal of Game Theory (submitted).

9. Hammer, P.L., Holzman, R.: Approximation of pseudo-Boolean functions; appli-
cations to game theory. ZOR - Methods and Models of Operations Research 36
(1992) 3–21.

10. Hammer, P.L., Rudeanu, S.: Boolean methods in operations research and related
areas. Springer, Berlin, 1968.

11. Harsanyi, J.V.: A simplified bargaining model for the n-person cooperative game.
International Economic Review 4 (1963) 194–220.

12. Lovász, L.: Submodular function and convexity. In: Mathematical programming.
The state of the art. Bonn 1982, Eds. A. Bachem, M. Grötschel, B. Korte. Springer-
Verlag, Berlin-Heidelberg-New York-Tokyo, 1983, 235–257.

13. Murofushi, T., Soneda, S.: Techniques for reading fuzzy measures (III): interaction
index, in: 9th Fuzzy System Symposium. pp. 693–696, Sapporo, Japan, May 1993.
In Japanese.

14. Owen, G.: Multilinear extensions of games. Management Sciences 18 (1972) 64–79.

15. Owen, G.: Multilinear extensions of games. In A.E. Roth, editor, The Shapley
Value. Essays in Honor of Lloyd S. Shapley. pp. 139–151. Cambridge University
Press, 1988.

16. Pap, E.: Null-additive set functions. Kluwer Academic, Dordrecht, 1995.

17. Rota, G.C.: On the foundations of combinatorial theory I. Theory of Möbius func-
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v a b IB

v

(
1 0
0 1

) (
1 0
1 1

) (
1 −1
1 0

) (
1 −1/2
1 1/2

)

a

(
1 0
−1 1

) (
1 0
0 1

) (
1 −1
0 1

) (
1 −1/2
0 1

)

b

(
0 1
−1 1

) (
1 1
0 1

) (
1 0
0 1

) (
1 1/2
0 1

)

IB

(
1/2 1/2
−1 1

) (
1 1/2
0 1

) (
1 −1/2
0 1

) (
1 0
0 1

)

Table 1. Basic fractal matrices for the equivalent representations (v, a, b, IB).

a b IB ISh

a
{

c0 = 1
ck>0 = 0

ck = (−1)k ck = (− 1
2
)k ck = Bk

b ck = 1
{

c0 = 1
ck>0 = 0

ck = ( 1
2
)k ck = (−1)kBk

IB ck = ( 1
2
)k ck = (− 1

2
)k

{
c0 = 1
ck>0 = 0

ck = ( 1
2k−1 − 1)Bk

ISh ck = 1
k+1

ck = (−1)k

k+1
ck = 1+(−1)k

(k+1)2k+1

{
c0 = 1
ck>0 = 0

Table 2. Cardinality sequences for the equivalent representations (a, b, IB, ISh).



v a b

v(S) = v(S)
∑
T⊆S

a(T )
∑

T⊆N\S

(−1)tb(T )

a(S) =
∑
T⊆S

(−1)s−tv(T ) a(S)
∑
T⊇S

(−1)t−sb(T )

b(S) =
∑

T⊇N\S

(−1)n−tv(T )
∑
T⊇S

a(T ) b(S)

IB(S) = (
1

2
)n−s

∑
T⊆N

(−1)|S\T |v(T )
∑
T⊇S

(
1

2
)t−sa(T )

∑
T⊇S

(−1

2
)t−sb(T )

ISh(S) =
∑
T⊆N

(−1)|S\T |

(n− s + 1)
(

n−s
|T\S|

) v(T )
∑
T⊇S

1

t− s + 1
a(T )

∑
T⊇S

(−1)t−s

t− s + 1
b(T )

Table 3. Alternative representations in terms of v, a, b



IB ISh

v(S) =
∑
T⊆N

(
1

2
)t(−1)|T\S|IB(T )

∑
T⊆N

[ |T∩S|∑
k=0

(
|T ∩ S|

k

)
Bt−k

]
ISh(T )

a(S) =
∑
T⊇S

(−1

2
)t−sIB(T )

∑
T⊇S

Bt−s ISh(T )

b(S) =
∑
T⊇S

(
1

2
)t−sIB(T )

∑
T⊇S

(−1)t−sBt−s ISh(T )

IB(S) = IB(S)
∑
T⊇S

(
1

2t−s−1
− 1)Bt−s ISh(T )

ISh(S) =
∑
T⊇S

1 + (−1)t−s

(t− s + 1) 2t−s+1
IB(T ) ISh(S)

Table 4. Alternative representations in terms of IB and ISh



a
(0)

∅ =
∑
T⊆N

1

2t
aT

a
(1)

∅ =
∑
T⊆N

−(t− 1)

2t
aT

a
(1)
i =

∑
T3i

1

2t−1
aT , i ∈ N

a
(2)

∅ =
∑
T⊆N

(t− 1)(t− 2)

2t+1
aT

a
(2)
i =

∑
T3i

−(t− 2)

2t−1
aT , i ∈ N

a
(2)
ij =

∑
T3i,j

1

2t−2
aT , {i, j} ⊆ N

a
(n−1)
S = aS − (−1

2
)n−s aN , S ⊆ N, s ≤ n− 1

Table 5. Coefficients of the best k-th approximation for some values of k


