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Abstract. In the avionics domain, the use of structural coverage criteria
is legally required in determining test suite adequacy. With the success
of automated test generation tools, it is tempting to use these criteria as
the basis for test generation. To more firmly establish the effectiveness of
such approaches, we have generated and evaluated test suites to satisfy
two coverage criteria using counterexample-based test generation and
a random generation approach, contrasted against purely random test
suites of equal size.
Our results yield two key conclusions. First, coverage criteria satisfaction
alone is a poor indication of test suite effectiveness. Second, the use of
structural coverage as a supplement—not a target—for test generation
can have a positive impact. These observations points to the dangers
inherent in the increase in test automation in critical systems and the
need for more research in how coverage criteria, generation approach,
and system structure jointly influence test effectiveness.

1 Introduction

In software testing, the need to determine the adequacy of test suites has mo-
tivated the development of several test coverage criteria [1]. One such class of
criteria are structural coverage criteria, which measure test suite adequacy in
terms of coverage over the structural elements of the system under test. In the
domain of critical systems—particularly in avionics—demonstrating structural
coverage is required for certification [2]. In recent years, there has been rapid
progress in the creation of tools for automatic directed test generation for struc-
tural coverage criteria [3–5]; tools promising to improve coverage and reduce the
cost associated with test creation.

In principle, this represents a success for software engineering research: a
mandatory—and potentially arduous—engineering task has been automated.
However, while there is some evidence that using structural coverage to guide
random test generation provides better tests than purely random tests, the ef-
fectiveness of test suites automatically generated to satisfy various structural
coverage criteria has not been firmly established. In pilot studies, we found that
test inputs generated specifically to satisfy three structural coverage criteria via



counterexample-based test generation were less effective than random test in-
puts [6]. Further, we found that reducing larger test suites providing a certain
coverage—in our case MC/DC—while maintaining coverage reduced their fault
finding significantly, hinting that it is not always wise to build test suites solely
to satisfy a coverage criterion [7].

These results are concerning. Given the strong incentives and the ability to
automate test generation, it is essential to ask: “Are test suites generated using
automated test generation techniques effective?” In earlier studies, we used a
single system to explore this question. In this paper, we report the results of a
study conducted using four production avionics systems from Rockwell Collins
Inc. and one example system from NASA. Our study measures the fault find-
ing effectiveness of automatically generated test suites satisfying two structural
coverage criteria, branch coverage and Modified Condition Decision Coverage
(MC/DC coverage) as compared to randomly generated test suites of the same
size. We generate tests using both counterexample-based test generation and
a random generation approach. In our study we use mutation analysis [8] to
compare the effectiveness of the generated test suites as compared to purely
randomly generated test suites of equal size.

Our results show that for both coverage criteria, in our industrial systems,
the automatically generated test suites perform significantly worse than ran-
dom test suites of equal size when coupled with an output-only oracle (5.2% to
58.8% fewer faults found). On the other hand, for the NASA example—which
was selected specifically because its structure is significantly different from the
Rockwell Collins systems—test suites generated to satisfy structural coverage
perform dramatically better, finding 16 times as many faults as random test
suites of equal size. Furthermore, we found that for most combinations of cov-
erage criteria and case examples, randomly generated test suites reduced while
maintaining structural coverage find more faults than pure randomly generated
test suites of equal size, finding up to 7% more faults.

We draw two key conclusions from these results. First, automatic test genera-
tion to satisfy branch or MC/DC coverage does not, for the systems investigated,
yield effective tests relative to their size. This in turn indicates that satisfying
even a highly rigorous coverage criterion such as MC/DC is a poor indication of
test suite effectiveness. Second, the use of branch or MC/DC as a supplement—
not a target—for test generation (as Chilensky and Miller recommend in their
seminal work on MC/DC [9]) does appear effective.

These results in this paper highlight the need for more research in how the
coverage criterion, test generation approach, and the structure of the system
under test jointly influence the effectiveness of testing. The increasing availability
and use of advanced test-generation tools coupled with our lack of knowledge of
their effectiveness is worrisome and careful attention must be paid to their use
and acceptance.



2 Related Work

There exist a number of empirical studies comparing structural coverage criteria
with random testing, with mixed results. Juristo et al. provide a survey of much
of the existing work [10]. With respect to branch coverage, they note that some
authors (such as Hutchins et al. [11]) find that it outperforms random testing,
while others (such as Frankl and Weiss [12]) discover the opposite. Namin and
Andrews have found coverage levels are positively correlated with fault finding
effectiveness [13]. Theoretical work comparing the effectiveness of partition test-
ing against random testing yields similarly mixed results. Weyuker and Jeng,
and Chen and Yu, indicated that partition testing is not necessarily more ef-
fective than random testing [14, 15]. Later theoretical work by Gutjahr [16],
however, provides a stronger case for partition testing. Arcuri et al. [17] re-
cently demonstrated that in many scenarios, random testing is more predictable
and cost-effective at reaching high levels of structural coverage than previously
thought. The authors have also demonstrated that, when cost is taken into ac-
count, random testing is often more effective at detecting failures than a popular
alternative—adaptive random testing [18].

Most studies concerning automatic test generation for structural coverage cri-
teria are focused on how to generate tests quickly and/or improve coverage [19, 3].
Comparisons of the fault-finding effectiveness of the resulting test suites against
other methods of test generation are few. Those that exist apart from our own
limited previous work are, to the best of our knowledge, studies in concolic exe-
cution [4, 5]. One concolic approach by Majumdar and Sen [20] has even merged
random testing with symbolic execution, though their evaluation only focused
on two case examples, and did not explore fault finding effectiveness.

Despite the importance of the MC/DC criterion [9, 2], studies of its effective-
ness are few. Yu and Lau study several structural coverage criteria, including
MC/DC, and find MC/DC is cost effective relative to other criteria [21]. Kandl
and Kirner evaluate MC/DC using an example from the automotive domain,
and note less than perfect fault finding [22]. Dupuy and Leveson evaluate the
MC/DC as a compliment to functional testing, finding that the use of MC/DC
improves the quality of tests [23]. None of these studies, however, compare the
effectiveness of MC/DC to that of random testing. They therefore do not indi-
cate if test suites satisfying MC/DC are truly effective, or if they are effective
merely because MC/DC test suites are generally quite large.

3 Study

Of interest in this paper are two broad classes of approaches: random test genera-
tion and directed test generation. In random test generation, tests are randomly
generated and then later reduced with respect to the coverage criterion. This
approach is useful as a gauge of value of a coverage criterion: if tests randomly
generated and reduced with respect to a coverage criterion are more effective
than pure randomly generated tests, we can safely conclude the use of the cov-
erage criterion led to the improvement. Unfortunately, evidence demonstrating



this is, at best, mixed for branch coverage [10], and non-existent for MC/DC
coverage.

Directed test generation is specifically targeted at satisfying a coverage crite-
rion. Examples include heuristic search methods and approaches based on reach-
ability [19, 3, 4]. Such techniques have advanced to the point where they can be
effectively applied to real-world avionics systems. Such approaches are usually
slower than random testing, but offer the potential to improve the coverage of the
resulting test suites. We aim to determine if using existing directed generation
techniques with these criteria results in test suites more effective than randomly
generated test suites. Evidence addressing this is sparse and, for branch and
MC/DC coverage, absent from the critical systems domain.3

We expect that a test suite satisfying the coverage criterion to be, at a mini-
mum, at least as effective as randomly generated test suites of equal size. Given
the central—and mandated—role the coverage criteria play within certain do-
mains (e.g., DO-178B for airborne software [2]), and the resources required to
satisfy them, this area requires additional study. We thus seek answers to the
following research questions:

RQ1: Are random test suites reduced to satisfy branch and MC/DC coverage
more effective than purely randomly generated test suites of equal size?

RQ2: Are test suites directly generated to satisfy branch and MC/DC coverage
more effective than randomly generated test suites of equal size?

We explore two structural coverage criteria: branch coverage, and MC/DC
coverage [10, 9]. Branch coverage is commonly used in software testing research
and improving branch coverage is a common goal in automatic test generation.
MC/DC coverage is a more rigorous coverage criterion based on exercising com-
plex Boolean conditions (such as the ones present in many avionics systems),
and is required when testing critical avionics systems. Accordingly, we view it as
likely to be an effective criterion—particularly for the class of systems studied
in this report.

3.1 Experimental Setup Overview

In this study, we have used four industrial systems developed by Rockwell
Collins, and a fifth system created as a case example at NASA. The Rock-
well Collins systems were modeled using the Simulink notation and the NASA
system using Stateflow [25, 26], and were translated to the Lustre synchronous
programming language [27] to take advantage of existing automation. Two of
these systems, DWM 1 and DWM 2, represent portions of a Display Window

3 It has been suggested that structural coverage criteria should only be used to de-
termine if a test suite has failed to cover functionality in the source code [1, 13].
Nevertheless, test suite adequacy measurement can always be transformed into test
suite generation. In mandating that a coverage criterion be used for measurement,
it seems inevitable that some testers will opt to perform generation to speed the
testing process, and such tools already exist [24].



Manager for a commercial cockpit display system. The other two systems—
Vertmax Batch and Latctl Batch—represent the vertical and lateral mode logic
for a Flight Guidance System (FGS). The NASA system, Docking Approach, de-
scribes the behavior of a space shuttle as it docks with the International Space
Station.

Information related to these systems is provided in Table 1. We list the num-
ber of Simulink subsystems, which are analogous to functions, and the number
of blocks, which are analogous to operators. For the NASA example developed
in Stateflow, we list the number of states, transitions, and variables.

# Simulink Subsystems # Blocks

DWM 1 3,109 11,439

DWM 2 128 429

Vertmax Batch 396 1,453

Latctl Batch 120 718

# Stateflow States # Transitions # Vars

Docking Approach 64 104 51
Table 1. Case Example Information

For each case example, we performed the following steps: (1) mutant gen-
eration (described in Section 3.2), (2) random and structural test generation
(Section 3.3 and 3.4), and (3) computation of fault finding (Section 3.5).

3.2 Mutant Generation
We have created 250 mutants (faulty implementations) for each case example
by introducing a single fault into the correct implementation. Each fault was
seeded by either inserting a new operator into the system or by replacing an
existing operator or variable with a different operator or variable. The mutation
operators used in this study are fairly typical and are discussed at length in [28].
They are similar to the operators used by Andrews et al. where they conclude
that mutation testing is an adequate proxy for real faults [29].

One risk of mutation testing is functionally equivalent mutants—the scenario
in which faults exist, but these faults cannot cause a failure (an externally visible
deviation from correct behavior). This presents a problem when using oracles
that consider internal state: we may detect failures that can never propagate to
the output. For our study, we used NuSMV to detect and remove functionally
equivalent mutants for the four Rockwell Collins systems4. This is made possible
thanks to our use of synchronous reactive systems—each system is finite, and
thus determining equivalence is decidable5.

The complexity of determining non-equivalence for the Docking Approach
system is, unfortunately, prohibitive, and we only report results using the output-
only oracle. Therefore, for every mutant reported as killed in our study, there

4 The percentage of mutants removed is very small, 2.8% on average
5 Equivalence checking is fairly routine in the hardware side of the synchronous reac-

tive system community; a good introduction can be found in [30].



exists at least one trace that can lead to a user-visible failure, and all fault finding
measurements indeed measure faults detected.

3.3 Test Data Generation

We generated a single set of 1,000 random tests for each case example. The tests
in this set are between 2 and 10 steps (evenly distributed in the set). For each
test step, we randomly selected a valid value for all inputs. As all inputs are
scalar, this is trivial. We refer to this as a random test suite.

We have directly generated test suites satisfying the branch and MC/DC [10,
31] criteria. Several variations of MC/DC exist—for this study, we use Masking
MC/DC, as it is a common criterion within the avionics community [31].

For our directed test generation approach, we used counterexample-based test
generation to generate tests satisfying branch and MC/DC coverage [19, 3]. In
this approach each coverage obligation is encoded as a temporal logic formula and
the model checker can be used to detect a counterexample (test case) illustrating
how the coverage obligation can be covered. This approach guarantees that we
achieve the maximum possible coverage of the system under test. This guarantee
is why we have elected to use counterexample-based test generation, as other
directed approaches (such as concolic/SAT-based approaches) do not offer such
a straightforward guarantee. We have used the NuSMV model checker in our
experiments [32] because we have found that it is efficient and produces tests
that are both simple and short [6].

Note that as all of our case examples are modules of larger systems, the tests
generated are effectively unit tests.

3.4 Test Suite Reduction

Counterexample-based test generation results in a separate test for each coverage
obligation. This leads to a large amount of redundancy in the tests generated,
as each test likely covers several obligations. Consequently, the test suite gen-
erated for each coverage criterion is generally much larger than is required to
provide coverage. Given the correlation between test suite size and fault finding
effectiveness [13], this has the potential to yield misleading results—an unneces-
sarily large test suite may lead us to conclude that a coverage criterion has led
us to select effective tests, when in reality it is the size of the test suite that is
responsible for its effectiveness. To avoid this, we reduce each näıvely generated
test suite while maintaining the coverage achieved. To prevent us from selecting
a test suite that happens to be exceptionally good or exceptionally poor relative
to the possible reduced test suites, we produce 50 different test suites for each
case example using this process.

Per RQ1, we also create tests suites satisfying branch and MC/DC coverage
by reducing the random test suite with respect to the coverage criteria (that is,
the suite is reduced while maintaining the coverage level of the unreduced suite).
Again, we produce 50 tests suites satisfying each coverage criterion.

For both counterexample-based test generation and random testing reduced
with respect to a criterion, reduction is done using a simple greedy algorithm.



We first determine the coverage obligations satisfied by each test generated, and
initialize an empty test set reduced. We then randomly select a test input from
the full set of tests; if it satisfies obligations not satisfied by any test input in
reduced, we add it to reduced. We continue until all tests have been removed
from the full set of tests.

For each of our existing reduced test suites, we also produce a purely random
test suite of equal size using the set of random test data. We measure suite size in
terms of the number of total test steps, rather than the number of tests, as ran-
dom tests are on average longer than tests generated using counterexample-based
test generation. These random suites are used as a baseline when evaluating the
effectiveness of test suites reduced with respect to coverage criteria. We also
generate random test suites of sizes varying from 1 to 1,000. These tests are not
part of our analysis, but provide context in our illustrations.

When generating tests suites to satisfy a structural coverage criterion, the
suite size can vary from the minimum required to satisfy the coverage criterion
(generally unknown) to infinity. Previous work has demonstrated that test suite
reduction can have a negative impact on test suite effectiveness [7]. Despite
this, we believe the test suite size most likely to be used in practice is one
designed to be small—reduced with respect to coverage—rather than large (every
test generated in the case of counterexample-based generation or, even more
arbitrarily, 1,000 random tests)6.

3.5 Computing Fault Finding

In our study, we use expected value oracles, which define concrete expected values
for each test input. We explore the use of two oracles: an output-only oracle
that defines expected values for all outputs, and a maximum oracle that defines
expected values for all outputs and all internal state variables. The output-only
oracle represents the oracle most likely to be used in practice. Both oracles have
been used in previous work, and thus we use both to allow for comparison. The
fault finding effectiveness of the test suite and oracle pair is computed as the
number of mutants detected (or “killed”).

4 Results and Analysis

We present the fault finding results in Tables 2 and 3, listing for each case
example, coverage criterion, test generation method, and oracle: the average
fault finding for test suites reduced to satisfy a coverage criterion, next to the
average fault finding for random test suites of equal size; the relative change in
average fault finding when using the test suite satisfying the coverage criteria
versus the random test suite of equal size; and the p-value for the statistical

6 One could build a counterexample-based test suite generation tool that, upon gener-
ating a test, removes from consideration all newly covered obligations, and randomly
selects a new uncovered obligation to try to satisfy, repeating until finished. Such a
tool would produce test suites equivalent to our reduced test suites, and thus require
no reduction; alternatively, we could view such test suites as pre-reduced.



Counterexample Generation Random Generation

Case Example Oracle
Satisfying Random of %

p-val
Satisfying Random of %

p-val
Branch Same Size Change Branch Same Size Change

Latctl Batch
MX 217.0 215.8 0.6% 0.24 238.7 234.4 1.8%

< 0.01
OO 82.2 140.3 -41.4%

< 0.01

196.4 189.2 3.8%

Vertmax Batch
MX 211.2 175.3 20.5% 219.5 209.7 4.6%
OO 77.1 101.7 -24.2% 153.5 143.4 7.0%

DWM 1
MX 195.1 227.9 -14.4% 230.2 227.1 1.4%
OO 32.1 77.9 -58.8% 79.8 76.9 3.77% 0.04

DWM 2
MX 202.1 215.5 -6.2% 232.0 225.8 2.7%

< 0.01
OO 131.9 174.7 -24.5% 200.3 192.3 4.2%

Docking Approach OO 38.1 2.0 1805% 2.0 2.0 0.0% 1.0

Table 2. Average number of faults identified, branch coverage criterion. OO = Output-
Only, MX = Maximum

Counterexample Generation Random Generation

Case Example Oracle
Satisfying Random of %

p-val
Satisfying Random of %

p-val
MCDC Same Size Change MCDC Same Size Change

Latctl Batch
MX 235.0 241.8 -2.8%

< 0.01

241.5 240.3 0.3%

< 0.01
OO 194.2 226.7 -14.4% 218.6 214.6 1.9%

Vertmax Batch
MX 248.0 239.3 3.6% 248.0 237.1 4.6%
OO 147.0 195.5 -24.8% 204.2 191.4 6.7%

DWM 1
MX 210.0 230.4 -12.8% 230.6 229.5 0.4% 0.048
OO 44.6 86.6 -48.5% 85.4 86.4 -1.2% 0.6

DWM 2
MX 233.7 232.2 0.7% 0.08 241.9 235.5 2.7%

< 0.01
OO 196.2 207.0 -5.2%

< 0.01
222.6 213.5 4.3%

Docking Approach OO 37.34 2.0 1750% 2.0 2.0 0.0% 1.0

Table 3. Average number of faults identified, MCDC criterion. OO = Output-Only,
MX = Maximum

analysis below. Note that negative values for % Change indicate the test suites
satisfying the coverage criterion are less effective on average than random test
suites of equal size.

Branch Coverage MCDC Coverage

DWM 1 100.0% 100.0%

DWM 2 100.0% 97.76%

Vertmax Batch 100.0% 99.4%

Latctl Batch 100.0% 100.0%

Docking Approach 58.1% 37.76%

Table 4. Coverage Achieved (of Maximum Coverage) by Randomly Generated Test
Suites Reduced to Satisfy Coverage Criteria

The test suites generated using counterexample-based test generation are
guaranteed to achieve the maximum achievable coverage, but the randomly gen-
erated test suites reduced to satisfy structural coverage criteria are not. We
therefore present the coverage achieved by these test suites (with 100% repre-
senting the maximum achievable coverage) in Table 4.

In Figure 1, we plot, for MC/DC coverage and four case examples, the test
suites size and fault finding effectiveness of every test suite generated when using
the output-only oracle.7 Test suites generated via counterexample-based test
generation are shown as pluses, random test suites reduced to satisfy structural
coverage criteria are shown as circles, and random test suites of increasing size
(including those paired with test suites satisfying coverage criteria) are shown
in the line. The line has been smoothed with LOESS smoothing (with a factor

7 For reasons of space, plots for branch coverage and the maximum oracle are omitted.
Figures for the Docking Approach case example are not very illustrative.
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Fig. 1. Faults identified compared to test suite size using NuSMV-generated test suites
(’+’), randomly generated test suites reduced to satisfy a coverage criterion (’o’), and
pure random test generation (line). Output-only oracles.

of 0.3) to improve the readability of the figure. Note that, while 1,000 random
test inputs have been generated, we have only plotted random test suites (i.e.,
the line) of sizes slightly larger than the test suites satisfying coverage criteria
to maintain readability.

4.1 Statistical Analysis

For both RQ1 and RQ2, we are interested in determining if test suites satisfying
structural coverage criteria outperform purely random test suites of equal size.
We begin by formulating statistical hypotheses H1 and H2:

H1: A test suite generated using random test generation to provide structural
coverage will find more faults than a pure random test suite of similar size.
H2: A test suite generated using counterexample-based test generation to provide
structural coverage will find more faults than a random test suite of similar size.
We then formulate the appropriate null hypotheses:
H01: A test suite generated using random test generation to provide structural
coverage will find the same number of faults as a pure random test suite of sim-
ilar size.
H02: A test suite generated using counterexample-based test generation to pro-
vide structural coverage will find the same number of faults as a random test
suite of similar size.

Our observations are drawn from an unknown distribution; therefore, we
cannot fit our data to a theoretical probability distribution. To evaluate H01
and H02 without any assumptions on the distribution of our data, we use the
two-tailed bootstrap paired permutation test (a non-parametric test with no
distribution assumptions [33]) with 250,000 samples. We pair each test suite



reduced to satisfy a coverage criteria with a purely random test suite of equal
size. We then apply this statistical test for each case example, structural coverage
criteria, and test oracle with α = 0.05.8

4.2 Evaluation of RQ1 and RQ2

Based on the p-values less than 0.05 in Tables 2 and 3, we reject H01 for nearly
all case examples and coverage criteria when using either oracle.9 For cases with
differences that are statistically significant, test suites reduced to satisfy coverage
criteria are more effective than purely randomly generated test suites of equal
size; for these combinations, we accept H1. Our results confirm that branch and
MC/DC coverage can be effective metrics for test suite adequacy within the
domain of critical avionics systems: reducing test suites generated via a non-
directed approach to satisfy structural coverage criteria is at least not harmful,
and in some instances improves test suite effectiveness relative to their size by
up to 7.0%. Thus, considering branch and MC/DC coverage when using random
test generation generally leads to a positive, albeit slight, improvement in test
suite effectiveness.

Based on the p-values less than 0.05 in Tables 2 and 3, we reject H02 for all
case examples and coverage criteria when using the output-only oracle. However,
for all but one case example, test suites generated via counterexample-based test
generation are less effective than pure random test suites by 5.2% to 58.8%; we
therefore conclude that our initial hypothesis H2 is false10. Nevertheless, the con-
verse of H2—randomly generated test suites are more effective that equally large
test suites generated via counterexample-based test generation—is also false, as
the Docking Approach example illustrates. For this case example, random test-
ing is effectively useless, finding a mere 2 faults, while tests generated using
counterexample-based test generation find 37-38 faults. We discuss the reasons
behind, and implications of, this strong dichotomy in Section 5.

When using the maximum oracle, we see that the test suites generated via
counterexample-based test generation fare better. In select instances, counter-
example-based test suites outperform random test suites of equal size (notably
Vertmax Batch), and otherwise close the gap, being less effective than pure ran-
dom test suites by at most 14.4%. Nevertheless, we note that for most case
examples and coverage criteria, random test suites of equal size are still more
effective.

8 Note that we do not generalize across case examples, oracles or coverage criteria,
as the needed statistical assumption, random selection from the population of case
examples, oracles, or coverage criteria, is not met. The statistical tests are used only
demonstrate that observed differences are unlikely to have occurred by chance.

9 We do not reject H01 for the DWM 1 case example when using MC/DC coverage
and the output-only oracle, nor do we reject H01 for the Docking Approach case
example.

10 In our previous work we found the opposite effect [34].



5 Discussion

Our results indicate that for our systems (1) the use of branch and MC/DC
coverage as a supplement to random testing generally results in more effective
tests suites than random testing alone, and (2) the use of branch and MC/DC
coverage as a target for directed, automatic test case generation (specifically
counterexample-based test generation) results in less effective test suites than
random testing alone, with decreases of up to 58.8%. This indicates that branch
and MC/DC coverage are—by themselves—not good indicators of test suite
effectiveness. Given the role of structural coverage criteria in software validation
in our domain of interest, we find these results quite troublesome.

The lack of effectiveness for test suites generated via counterexample-based
test generation is a result of the formulation of these structural coverage criteria,
properties of the case examples, and the behavior of NuSMV. We have previously
shown that varying the structure of the program can significantly impact the
number of tests required to satisfy the MC/DC coverage criterion [35]. These
results were linked partly to masking present in the systems—some expressions
in the systems can easily be prevented from influencing the outputs. This can
reduce the effectiveness of a testing process based on structural coverage criteria,
as we can satisfy coverage obligations for internal expressions without allowing
resulting errors to propagate to the output.

This masking can be a problem; we have found that test inputs generated
using counterexample-based generation (including those in this study) tend to
be short, and manipulate only a handful of input values, leaving other inputs
at default values (false or 0) [6]. Such tests tend to exercise the program just
enough to satisfy the coverage obligations for which they were generated and do
not consider the propagation of values to the outputs. In contrast, random test
inputs can vary arbitrarily in length (up to 10 in this study) and vary all input
values; such test inputs may be more likely to overcome any masking present in
the system.

As highlighted by the Docking Approach example, however, tests generated
to satisfy structural coverage criteria can sometimes dramatically outperform
random test generation. This example differs from the Rockwell Collins systems
chiefly in its structure: large portions of the system’s behavior are activated
only when very specific conditions are met. The state space is both deep and
contains bottlenecks; exploration of states requires relatively long tests with
specific combinations of input values. Thus, random testing is highly unlikely
to reach much of the state space. The impact of structure on the effectiveness
of random testing can be seen in the coverage of the Docking Approach (only
37.7% of obligations were covered) and is in contrast to the Rockwell Collins
systems which—while stateful—have a state space that is shallow and highly
interconnected and is, therefore, easier to cover with random testing.

We see two key implications in our results. First, per RQ1, using branch
and MC/DC coverage as an addition to another non-structure-based testing
method—in this case, random testing—can yield improvements (albeit small)
in the testing process. These results are similar to those of other authors, for



example, results indicating MC/DC is an effective coverage criterion when used
to check the adequacy of manual, requirement-driven test generation [23] and
results indicating that reducing randomly generated tests with respect to branch
coverage yields improvements over pure random test generation [13]. These re-
sults, in conjunction with the results for RQ2, reinforce the advice that coverage
criteria are best applied after test generation to find areas of the source code
that have not been tested. In the case of MC/DC this advice is explicitly stated
in regulatory requirements and by experts on the use of the criterion [2, 9].

Second, the dichotomy between the Docking Approach example and the Rock-
well Collins systems highlights that while the current methods of determining
test suite adequacy in avionics systems are themselves inadequate, some method
of determining testing adequacy is needed. While current practice stipulates that
coverage criteria should be applied after test generation, in practice, this relies on
the honesty of the tester (it is not required in the standard). Therefore, it seems
inevitable that at least some practitioners will use automatic test generation to
reduce the cost of achieving the required coverage.

Assuming our results generalize, we believe this represents a serious prob-
lem. The tools are not at fault: we have asked these tools to produce test inputs
satisfying branch and MC/DC coverage, and they have done so admirably; for
example, satisfying MC/DC for the Docking Approach example, for which ran-
dom testing achieves a mere 37.7% of the possible coverage. The problem is that
the coverage criteria are simply too weak, which allows for the construction of
ineffective tests. We see two possible solutions. First, automatic test generation
tools could be improved to avoid pitfalls in using structural coverage criteria. For
example, such tools could be encouraged to generate longer test cases increasing
the chances that a corrupted internal state would propagate to an observable
output (or other monitored variable). Nevertheless, this is a somewhat ad-hoc
solution to weak coverage criteria and various tool vendors would provide di-
verse solutions rendering the coverage criteria themselves useless as certification
or quality control tools.

Second, we could improve—or replace—existing structural coverage criteria.
Automatic test generation has improved greatly in the last decade, thanks to
improvements in search heuristics, SAT solving tools, etc. However, the targets of
such tools have not been updated to account for this increase in power. Instead,
we continue to use coverage criteria that were originally formulated when manual
test generation was the only practical method of ensuring 100% coverage. New
and improved coverage metrics are required in order to take full advantage of
the improvements in automatic test generation without allowing the generation
of inefficient test suites (such as some generated in our study).

6 Threats to Validity

External Validity: Our study has focused on a relatively small number of
systems but, nevertheless, we believe the systems are representative of the class
of systems in which we are interested, and our results are generalizable to other
systems in the avionics domain.



We have used two methods for test generation (random generation and
counterexample-based). There are many methods of generating tests and these
methods may yield different results. Nevertheless, we have selected methods that
we believe are likely to be used in our domain of interest.

For all coverage criteria, we have examined 50 test suites reduced using a
simple greedy algorithm. It is possible that larger sample sizes may yield different
results. However, in previous studies, smaller numbers of reduced test suites have
been seen to produce consistent results [35].

Construct Validity: In our study, we measure fault finding over seeded
faults, rather than real faults encountered during development. It is possible
real faults would lead to different results. However, Andrews et al. showed that
seeded faults leads to conclusions similar to those obtained using real faults [29].

We measure the cost of test suites in terms of the number of steps. Other
measurements exist, e.g., the time required to generate and/or execute tests [34].
We chose size to be favorable towards directed test generation. Thus, conclusions
concerning the inefficacy of directed test generation are reasonable.

Conclusion Validity: When using statistical analyses, we have attempted
to ensure the base assumptions beyond these analyses are met, and have favored
non-parametric methods. In cases in which the base assumptions are clearly
not met, we have avoided using statistical methods. (Notably, we have avoided
statistical inference across case examples.)

7 Conclusion and Future Work

The results presented in this paper indicate that coverage directed test gen-
eration may not be an effective means of creating tests within the domain of
avionics systems, even when using metrics which can improve random test gen-
eration. Simple random test generation can yield equivalently sized, but more
effective test suites (up to twice as effective in our study). This indicates that
adequacy criteria are, for the domain explored, potentially unreliable, and thus,
unsuitable, for determining test suite adequacy.

The observations in this paper indicate a need for methods of determining
test adequacy that (1) provide a reliable measure of test quality and (2) are better
suited as targets for automated techniques. At a minimum, such coverage criteria
must, when satisfied, indicate that our test suites are better than simple random
test suites of equal size. Such criteria must address the problem holistically to
account for all factors influencing testing, including the program structure, the
nature of the state space of the system under test, the test oracle used, and the
method of test generation.
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