# Group-based trajectory modeling An application to economics

Jang SCHILTZ (University of Luxembourg)
joint work with Jean-Daniel GUIGOU (University of Luxembourg)
& Bruno LOVAT (University Nancy II)

August 24, 2009

Nagin's Finite Mixture Model

- Nagin's Finite Mixture Model
- 2 The Luxemburgish salary trajectories

- Nagin's Finite Mixture Model
- 2 The Luxemburgish salary trajectories
- 3 Description of the groups

- Nagin's Finite Mixture Model
- 2 The Luxemburgish salary trajectories
- 3 Description of the groups
- 4 Economic Modeling

- Nagin's Finite Mixture Model
- 2 The Luxemburgish salary trajectories
- 3 Description of the groups
- 4 Economic Modeling
- Outlook

- Nagin's Finite Mixture Model
- 2 The Luxemburgish salary trajectories
- 3 Description of the groups
- 4 Economic Modeling
- Outlook

Peter Molenaar (Luxembourg 2009):

Standard approach to statistical analysis in psychology:

- Analysis of inter-individual variation (variation between subjects in a population of subjects; individual differences)
- Strong assumption of **homogeneity** in (sub-)populations
- Aimed at generalization to the state of affairs at the **population level**
- **Implicit** assumption of applicability of results at the individual level of **intra**-individual variation

#### General description of Nagin's model

We have a collection of individual trajectories.

#### General description of Nagin's model

We have a collection of individual trajectories.

We try to divide the population into a number of homogenous subpopulations and to estimate a mean trajectory for each subpopulation.

#### General description of Nagin's model

We have a collection of individual trajectories.

We try to divide the population into a number of homogenous subpopulations and to estimate a mean trajectory for each subpopulation.

By P.C.M Molenaar's definition, this is still an inter-individual model, but unlike other classical models such as standard growth curve models, it allows the existence of subpolulations with completely different behaviors.

Consider a population of size N and a variable of interest Y.

Consider a population of size N and a variable of interest Y.

Let  $Y_i = y_{i_1}, y_{i_2}, ..., y_{i_T}$  be T measures of the variable, done at times  $t_1, ... t_T$  for subject number i.

Consider a population of size N and a variable of interest Y.

Let  $Y_i = y_{i_1}, y_{i_2}, ..., y_{i_T}$  be T measures of the variable, done at times  $t_1, ... t_T$  for subject number i.

 $P(Y_i)$  denotes the probability of  $Y_i$ 

Consider a population of size N and a variable of interest Y.

Let  $Y_i = y_{i_1}, y_{i_2}, ..., y_{i_T}$  be T measures of the variable, done at times  $t_1, ... t_T$  for subject number i.

 $P(Y_i)$  denotes the probability of  $Y_i$ 

count data ⇒ Poisson distribution

Consider a population of size N and a variable of interest Y.

Let  $Y_i = y_{i_1}, y_{i_2}, ..., y_{i_T}$  be T measures of the variable, done at times  $t_1, ... t_T$  for subject number i.

 $P(Y_i)$  denotes the probability of  $Y_i$ 

- count data ⇒ Poisson distribution
- binary data ⇒ Binary logit distribution

Consider a population of size N and a variable of interest Y.

Let  $Y_i = y_{i_1}, y_{i_2}, ..., y_{i_T}$  be T measures of the variable, done at times  $t_1, ... t_T$  for subject number i.

 $P(Y_i)$  denotes the probability of  $Y_i$ 

- count data ⇒ Poisson distribution
- binary data ⇒ Binary logit distribution
- censored data ⇒ Censored normal distribution

Consider a population of size N and a variable of interest Y.

Let  $Y_i = y_{i_1}, y_{i_2}, ..., y_{i_T}$  be T measures of the variable, done at times  $t_1, ... t_T$  for subject number i.

 $P(Y_i)$  denotes the probability of  $Y_i$ 

- count data ⇒ Poisson distribution
- binary data ⇒ Binary logit distribution
- censored data ⇒ Censored normal distribution

Aim of the analysis: Find r groups of trajectories of a given kind (for instance polynomials of degree 4,  $P(t) = \beta_0 + \beta_1 t + \beta_2 t^2 + \beta_3 t^3 + \beta_4 t^4$ .

 $\pi_j$  : probability of a given subject to belong to group number j

 $\pi_j$ : probability of a given subject to belong to group number j  $\Rightarrow \pi_j$  is the size of group j.

 $\pi_j$ : probability of a given subject to belong to group number j  $\Rightarrow \pi_j$  is the size of group j.

We try to estimate a set of parameters  $\Omega = \left\{ \beta_0^j, \beta_1^j, \beta_2^j, \beta_3^j, \beta_4^j, \pi_j \right\}$  which allow to maximize the probability of the measured data.

 $\pi_j$ : probability of a given subject to belong to group number j  $\Rightarrow \pi_j$  is the size of group j.

We try to estimate a set of parameters  $\Omega = \left\{ \beta_0^j, \beta_1^j, \beta_2^j, \beta_3^j, \beta_4^j, \pi_j \right\}$  which allow to maximize the probability of the measured data.

 $P^{j}(Y_{i})$ : probability of  $Y_{i}$  if subject i belongs to group j

 $\pi_j$ : probability of a given subject to belong to group number j  $\Rightarrow \pi_j$  is the size of group j.

We try to estimate a set of parameters  $\Omega = \left\{ \beta_0^j, \beta_1^j, \beta_2^j, \beta_3^j, \beta_4^j, \pi_j \right\}$  which allow to maximize the probability of the measured data.

 $P^{j}(Y_{i})$ : probability of  $Y_{i}$  if subject i belongs to group j

$$\Rightarrow P(Y_i) = \sum_{j=1}^r \pi_j P^j(Y_i). \tag{1}$$

 $\pi_j$ : probability of a given subject to belong to group number j  $\Rightarrow \pi_j$  is the size of group j.

We try to estimate a set of parameters  $\Omega = \left\{ \beta_0^j, \beta_1^j, \beta_2^j, \beta_3^j, \beta_4^j, \pi_j \right\}$  which allow to maximize the probability of the measured data.

 $P^{j}(Y_{i})$ : probability of  $Y_{i}$  if subject i belongs to group j

$$\Rightarrow P(Y_i) = \sum_{j=1}^r \pi_j P^j(Y_i). \tag{1}$$

<u>Finite mixture model</u> (Daniel S. Nagin (Carnegie Mellon University))

 $\pi_j$ : probability of a given subject to belong to group number j  $\Rightarrow \pi_j$  is the size of group j.

We try to estimate a set of parameters  $\Omega = \left\{ \beta_0^j, \beta_1^j, \beta_2^j, \beta_3^j, \beta_4^j, \pi_j \right\}$  which allow to maximize the probability of the measured data.

 $P^{j}(Y_{i})$ : probability of  $Y_{i}$  if subject i belongs to group j

$$\Rightarrow P(Y_i) = \sum_{j=1}^r \pi_j P^j(Y_i). \tag{1}$$

<u>Finite mixture model</u> (Daniel S. Nagin (Carnegie Mellon University))

• finite: sums across a finite number of groups

◆ロト ◆団 ▶ ◆ 恵 ▶ ◆ 恵 ● りへ○

 $\pi_j$ : probability of a given subject to belong to group number j  $\Rightarrow \pi_j$  is the size of group j.

We try to estimate a set of parameters  $\Omega = \left\{ \beta_0^j, \beta_1^j, \beta_2^j, \beta_3^j, \beta_4^j, \pi_j \right\}$  which allow to maximize the probability of the measured data.

 $P^{j}(Y_{i})$ : probability of  $Y_{i}$  if subject i belongs to group j

$$\Rightarrow P(Y_i) = \sum_{j=1}^r \pi_j P^j(Y_i). \tag{1}$$

<u>Finite mixture model</u> (Daniel S. Nagin (Carnegie Mellon University))

- finite: sums across a finite number of groups
- mixture : population composed of a mixture of unobserved groups

<u>Hypothesis</u>: In a given group, conditional independence is assumed for the sequential realizations of the elements of  $Y_i$ !!!

<u>Hypothesis</u>: In a given group, conditional independence is assumed for the sequential realizations of the elements of  $Y_i$ !!!

$$\Rightarrow P^{j}(Y_{i}) = \prod_{t=1}^{T} p^{j}(y_{i_{t}}), \tag{2}$$

where  $p^{j}(y_{i_t})$  denotes the probability of  $y_{i_t}$  given membership in group j.

<u>Hypothesis</u>: In a given group, conditional independence is assumed for the sequential realizations of the elements of  $Y_i$ !!!

$$\Rightarrow P^{j}(Y_{i}) = \prod_{t=1}^{T} p^{j}(y_{i_{t}}), \tag{2}$$

where  $p^{j}(y_{i_t})$  denotes the probability of  $y_{i_t}$  given membership in group j.

Likelihood of the estimator:

<u>Hypothesis</u>: In a given group, conditional independence is assumed for the sequential realizations of the elements of  $Y_i$ !!!

$$\Rightarrow P^{j}(Y_{i}) = \prod_{t=1}^{T} p^{j}(y_{i_{t}}), \tag{2}$$

where  $p^{j}(y_{i_t})$  denotes the probability of  $y_{i_t}$  given membership in group j.

Likelihood of the estimator:

$$L = \prod_{i=1}^{N} P(Y_i)$$

<u>Hypothesis</u>: In a given group, conditional independence is assumed for the sequential realizations of the elements of  $Y_i$ !!!

$$\Rightarrow P^{j}(Y_{i}) = \prod_{t=1}^{T} p^{j}(y_{i_{t}}), \tag{2}$$

where  $p^{j}(y_{i_t})$  denotes the probability of  $y_{i_t}$  given membership in group j.

Likelihood of the estimator:

$$L = \prod_{i=1}^{N} P(Y_i) = \prod_{i=1}^{N} \sum_{j=1}^{r} \pi_j \prod_{t=1}^{T} p^j(y_{i_t}).$$
 (3)

## The case of a censored normal distribution (1)

 $Y^*$ : latent variable measured by Y.

#### The case of a censored normal distribution (1)

 $Y^*$ : latent variable measured by Y.

$$y_{i_t}^* = \beta_0^j + \beta_1^j A g e_{i_t} + \beta_2^j A g e_{i_t}^2 + \beta_3^j A g e_{i_t}^3 + \beta_4^j A g e_{i_t}^4 + \varepsilon_{i_t},$$
 (4)

where  $\varepsilon_{i_t} \sim \mathcal{N}(0, \sigma)$ ,  $\sigma$  being a constant standard deviation.

#### The case of a censored normal distribution (1)

 $Y^*$ : latent variable measured by Y.

$$y_{i_t}^* = \beta_0^j + \beta_1^j A g e_{i_t} + \beta_2^j A g e_{i_t}^2 + \beta_3^j A g e_{i_t}^3 + \beta_4^j A g e_{i_t}^4 + \varepsilon_{i_t},$$
 (4)

where  $\varepsilon_{i_t} \sim \mathcal{N}(0, \sigma)$ ,  $\sigma$  being a constant standard deviation.

Hence,

$$\begin{aligned} y_{i_t} &= S_{min} & \text{si} & y_{i_t}^* < S_{min}, \\ y_{i_t} &= y_{i_t}^* & \text{si} & S_{min} \leq y_{i_t}^* \leq S_{max}, \\ y_{i_t} &= S_{max} & \text{si} & y_{i_t}^* > S_{max}, \end{aligned}$$

where  $S_{min}$  and  $S_{max}$  dennote the minimum and maximum of the censored normal distribution.

## The case of a censored normal distribution (2)

Notations:

## The case of a censored normal distribution (2)

#### Notations:

$$\bullet \ \beta^j x_{i_t} = \beta_0^j + \beta_1^j Age_{i_t} + \beta_2^j Age_{i_t}^2 + \beta_3^j Age_{i_t}^3 + \beta_4^j Age_{i_t}^4.$$

#### Notations:

- $\bullet \ \beta^{j}x_{i_{t}} = \beta^{j}_{0} + \beta^{j}_{1}Age_{i_{t}} + \beta^{j}_{2}Age^{2}_{i_{t}} + \beta^{j}_{3}Age^{3}_{i_{t}} + \beta^{j}_{4}Age^{4}_{i_{t}}.$
- ullet  $\phi$ : density of standard centered normal law.

#### Notations:

- $\beta^{j}x_{i_{t}} = \beta_{0}^{j} + \beta_{1}^{j}Age_{i_{t}} + \beta_{2}^{j}Age_{i_{t}}^{2} + \beta_{3}^{j}Age_{i_{t}}^{3} + \beta_{4}^{j}Age_{i_{t}}^{4}$ .
- $\bullet$   $\phi$ : density of standard centered normal law.
- Φ: cumulative distribution function of standard centered normal law.

#### Notations:

- $\beta^{j}x_{i_{t}} = \beta_{0}^{j} + \beta_{1}^{j}Age_{i_{t}} + \beta_{2}^{j}Age_{i_{t}}^{2} + \beta_{3}^{j}Age_{i_{t}}^{3} + \beta_{4}^{j}Age_{i_{t}}^{4}$ .
- $\bullet$   $\phi$ : density of standard centered normal law.
- Φ: cumulative distribution function of standard centered normal law.

#### Notations:

- $\bullet \ \beta^j x_{i_t} = \beta_0^j + \beta_1^j Age_{i_t} + \beta_2^j Age_{i_t}^2 + \beta_3^j Age_{i_t}^3 + \beta_4^j Age_{i_t}^4.$
- $\phi$ : density of standard centered normal law.
- Φ: cumulative distribution function of standard centered normal law.

$$\rho^{j}(y_{i_{t}} = S_{min}) = \Phi\left(\frac{S_{min} - \beta^{j} x_{i_{t}}}{\sigma}\right), \tag{5}$$

#### Notations:

- $\bullet \ \beta^{j}x_{i_{t}}=\beta^{j}_{0}+\beta^{j}_{1}Age_{i_{t}}+\beta^{j}_{2}Age^{2}_{i_{t}}+\beta^{j}_{3}Age^{3}_{i_{t}}+\beta^{j}_{4}Age^{4}_{i_{t}}.$
- $\bullet$   $\phi$ : density of standard centered normal law.
- Φ: cumulative distribution function of standard centered normal law.

$$p^{j}(y_{i_{t}} = S_{min}) = \Phi\left(\frac{S_{min} - \beta^{j} x_{i_{t}}}{\sigma}\right), \tag{5}$$

$$p^{j}(y_{i_{t}}) = \frac{1}{\sigma} \phi\left(\frac{y_{i_{t}} - \beta^{j} x_{it}}{\sigma}\right) \quad \text{pour} \quad S_{min} \leq y_{it} \leq S_{max}, \tag{6}$$

#### Notations:

- $\bullet \ \beta^j x_{i_t} = \beta_0^j + \beta_1^j Age_{i_t} + \beta_2^j Age_{i_t}^2 + \beta_3^j Age_{i_t}^3 + \beta_4^j Age_{i_t}^4.$
- $\bullet$   $\phi$ : density of standard centered normal law.
- Φ: cumulative distribution function of standard centered normal law.

$$p^{j}(y_{i_{t}} = S_{min}) = \Phi\left(\frac{S_{min} - \beta^{j} x_{i_{t}}}{\sigma}\right), \tag{5}$$

$$p^{j}(y_{i_{t}}) = \frac{1}{\sigma} \phi\left(\frac{y_{i_{t}} - \beta^{j} x_{it}}{\sigma}\right) \quad \text{pour} \quad S_{min} \leq y_{it} \leq S_{max}, \tag{6}$$

$$p^{j}(y_{i_{t}} = S_{max}) = 1 - \Phi\left(\frac{S_{max} - \beta^{j} x_{i_{t}}}{\sigma}\right). \tag{7}$$

If all the measures are in the interval  $[S_{min}, S_{max}]$ , we get

If all the measures are in the interval  $[S_{min}, S_{max}]$ , we get

$$L = \frac{1}{\sigma} \prod_{i=1}^{N} \sum_{i=1}^{r} \pi_{j} \prod_{t=1}^{T} \phi\left(\frac{y_{i_{t}} - \beta^{j} x_{i_{t}}}{\sigma}\right). \tag{8}$$

If all the measures are in the interval  $[S_{min}, S_{max}]$ , we get

$$L = \frac{1}{\sigma} \prod_{i=1}^{N} \sum_{j=1}^{r} \pi_j \prod_{t=1}^{l} \phi \left( \frac{y_{i_t} - \beta^j x_{i_t}}{\sigma} \right). \tag{8}$$

It is too complicated to get closed-forms equations

If all the measures are in the interval  $[S_{min}, S_{max}]$ , we get

$$L = \frac{1}{\sigma} \prod_{i=1}^{N} \sum_{j=1}^{r} \pi_j \prod_{t=1}^{l} \phi \left( \frac{y_{i_t} - \beta^j x_{i_t}}{\sigma} \right). \tag{8}$$

It is too complicated to get closed-forms equations

⇒ quasi-Newton procedure maximum research routine

If all the measures are in the interval  $[S_{min}, S_{max}]$ , we get

$$L = \frac{1}{\sigma} \prod_{i=1}^{N} \sum_{j=1}^{r} \pi_j \prod_{t=1}^{T} \phi\left(\frac{y_{i_t} - \beta^j x_{i_t}}{\sigma}\right). \tag{8}$$

It is too complicated to get closed-forms equations

⇒ quasi-Newton procedure maximum research routine

#### Software:

SAS-based Proc Traj procedure by Bobby L. Jones (Carnegie Mellon University).

The estimations of  $\pi_j$  must be in [0,1].

The estimations of  $\pi_j$  must be in [0,1].

It is difficult to force this constraint in model estimation.

The estimations of  $\pi_j$  must be in [0,1].

It is difficult to force this constraint in model estimation.

Instead, we estimate the real parameters  $heta_j$  such that

The estimations of  $\pi_j$  must be in [0,1].

It is difficult to force this constraint in model estimation.

Instead, we estimate the real parameters  $\theta_j$  such that

$$\pi_{j} = \frac{e^{\theta_{j}}}{\sum_{j=1}^{r} e^{\theta_{j}}},\tag{9}$$

The estimations of  $\pi_j$  must be in [0,1].

It is difficult to force this constraint in model estimation.

Instead, we estimate the real parameters  $\theta_j$  such that

$$\pi_j = \frac{e^{\theta_j}}{\sum_{j=1}^r e^{\theta_j}},\tag{9}$$

Finally,

$$L = \frac{1}{\sigma} \prod_{i=1}^{N} \sum_{j=1}^{r} \frac{e^{\theta_j}}{\sum_{t=1}^{r} e^{\theta_j}} \prod_{t=1}^{T} \phi\left(\frac{y_{i_t} - \beta^j x_{i_t}}{\sigma}\right). \tag{10}$$

Muthén and Shedden (1999): Generalized growth curve model

Muthén and Shedden (1999): Generalized growth curve model

Elegant and technically demanding extension of the uncensored normal model.

Muthén and Shedden (1999): Generalized growth curve model

Elegant and technically demanding extension of the uncensored normal model.

Adds random effects to the parameters  $\beta^j$  that define a group's mean trajectory.

Muthén and Shedden (1999): Generalized growth curve model

Elegant and technically demanding extension of the uncensored normal model.

Adds random effects to the parameters  $\beta^j$  that define a group's mean trajectory.

Trajectories of individual group members can vary from the group trajectory.

Muthén and Shedden (1999): Generalized growth curve model

Elegant and technically demanding extension of the uncensored normal model.

Adds random effects to the parameters  $\beta^j$  that define a group's mean trajectory.

Trajectories of individual group members can vary from the group trajectory.

#### Software:

Mplus package by L.K. Muthén and B.O Muthén.

### Advantage of GGCM

Fewer groups are required to specify a satisfactory model.

### Advantage of GGCM

Fewer groups are required to specify a satisfactory model.

### Disadvantages of GGCM

Difficult to extend to other types of data.

### Advantage of GGCM

Fewer groups are required to specify a satisfactory model.

### Disadvantages of GGCM

- Difficult to extend to other types of data.
- @ Group cross-over effects.

#### Advantage of GGCM

Fewer groups are required to specify a satisfactory model.

### Disadvantages of GGCM

- Difficult to extend to other types of data.
- ② Group cross-over effects.
- 3 can create the illusion of non-existing groups.

#### Model Selection

Bayesian Information Criterion:

#### Model Selection

Bayesian Information Criterion:

$$BIC = \log(L) - 0.5k \log(N), \tag{11}$$

where k denotes the number of parameters in the model.



#### Model Selection

Bayesian Information Criterion:

$$BIC = \log(L) - 0.5k \log(N), \tag{11}$$

where k denotes the number of parameters in the model.

#### Rule:

The bigger the BIC, the better the model!

Posterior probability of individual i's membership in group  $j : P(j/Y_i)$ .

Posterior probability of individual i's membership in group  $j: P(j/Y_i)$ .

Bayes's theorem

$$\Rightarrow P(j/Y_i) = \frac{P(Y_i/j)\hat{\pi}_j}{\sum_{j=1}^r P(Y_i/j)\hat{\pi}_j}.$$
 (12)

Posterior probability of individual i's membership in group  $j : P(j/Y_i)$ .

Bayes's theorem

$$\Rightarrow P(j/Y_i) = \frac{P(Y_i/j)\hat{\pi}_j}{\sum_{j=1}^r P(Y_i/j)\hat{\pi}_j}.$$
 (12)

Bigger groups have on average larger probability estimates.

Posterior probability of individual i's membership in group  $j: P(j/Y_i)$ .

Bayes's theorem

$$\Rightarrow P(j/Y_i) = \frac{P(Y_i/j)\hat{\pi}_j}{\sum_{j=1}^r P(Y_i/j)\hat{\pi}_j}.$$
 (12)

Bigger groups have on average larger probability estimates.

To be classified into a small group, an individual really needs to be strongly consistent with it.

# Use for Model diagnostics (2)

Diagnostic 1: Average Posterior Probability of Assignment

AvePP should be at least 0,7 for all groups.

# Use for Model diagnostics (2)

#### Diagnostic 1: Average Posterior Probability of Assignment

AvePP should be at least 0,7 for all groups.

### Diagonostic 2: Odds of Correct Classification

$$OCC_{j} = \frac{AvePP_{j}/1 - AvePP_{j}}{\hat{\pi}_{j}/1 - \hat{\pi}_{j}}.$$
(13)

# Use for Model diagnostics (2)

#### Diagnostic 1: Average Posterior Probability of Assignment

AvePP should be at least 0,7 for all groups.

### Diagonostic 2: Odds of Correct Classification

$$OCC_{j} = \frac{AvePP_{j}/1 - AvePP_{j}}{\hat{\pi}_{j}/1 - \hat{\pi}_{j}}.$$
(13)

 $OCC_i$  should be greater than 5 for all groups.

## Use for Model diagnostics (2)

Diagonostic 3: Comparing  $\hat{\pi}_j$  to the Proportion of the Sample Assigned to Group j

The ratio of the two should be close to 1.

## Use for Model diagnostics (2)

Diagonostic 3: Comparing  $\hat{\pi}_j$  to the Proportion of the Sample Assigned to Group j

The ratio of the two should be close to 1.

Diagonostic 4: Confidence Intervals for Group Membership Probabilities

The confidence intervals for group membership probabilities estimates should be narrow, i.e. standard deviation of  $\pi_j$  should be small.

### Outline

- Nagin's Finite Mixture Model
- 2 The Luxemburgish salary trajectories
- 3 Description of the groups
- 4 Economic Modeling
- Outlook

Salaries of workers in the private sector in Luxembourg from 1940 to 2006.

Salaries of workers in the private sector in Luxembourg from 1940 to 2006.

About 7 million salary lines corresponding to 718.054 workers.

Salaries of workers in the private sector in Luxembourg from 1940 to 2006.

About 7 million salary lines corresponding to 718.054 workers.

Some sociological variables:

gender (male, female)

Salaries of workers in the private sector in Luxembourg from 1940 to 2006.

About 7 million salary lines corresponding to 718.054 workers.

- gender (male, female)
- nationality and residentship (luxemburgish residents, foreign residents, foreign non residents)

Salaries of workers in the private sector in Luxembourg from 1940 to 2006.

About 7 million salary lines corresponding to 718.054 workers.

- gender (male, female)
- nationality and residentship (luxemburgish residents, foreign residents, foreign non residents)
- working status (white collar worker, blue collar worker)

Salaries of workers in the private sector in Luxembourg from 1940 to 2006.

About 7 million salary lines corresponding to 718.054 workers.

- gender (male, female)
- nationality and residentship (luxemburgish residents, foreign residents, foreign non residents)
- working status (white collar worker, blue collar worker)
- year of birth

Salaries of workers in the private sector in Luxembourg from 1940 to 2006.

About 7 million salary lines corresponding to 718.054 workers.

- gender (male, female)
- nationality and residentship (luxemburgish residents, foreign residents, foreign non residents)
- working status (white collar worker, blue collar worker)
- year of birth
- age in the first year of professional activity

### Mathematica programming

ullet 1 row per year o 1 row per worker

- ullet 1 row per year o 1 row per worker
- selection of the period we are interested in

- ullet 1 row per year o 1 row per worker
- selection of the period we are interested in
- taking out the years without years up to a maximum of five years

- ullet 1 row per year ightarrow 1 row per worker
- selection of the period we are interested in
- taking out the years without years up to a maximum of five years
- selection of the people who worked the number of years we are interested in

#### Mathematica programming

- ullet 1 row per year o 1 row per worker
- selection of the period we are interested in
- taking out the years without years up to a maximum of five years
- selection of the people who worked the number of years we are interested in

Transformations in SPSS

#### Mathematica programming

- ullet 1 row per year ightarrow 1 row per worker
- selection of the period we are interested in
- taking out the years without years up to a maximum of five years
- selection of the people who worked the number of years we are interested in

#### Transformations in SPSS

elimination of all the workers who had monthly salaries above 15.000

#### Mathematica programming

- ullet 1 row per year o 1 row per worker
- selection of the period we are interested in
- taking out the years without years up to a maximum of five years
- selection of the people who worked the number of years we are interested in

#### Transformations in SPSS

- elimination of all the workers who had monthly salaries above 15.000
- transforming all the salaries above 7.577 to 7.577

#### Mathematica programming

- ullet 1 row per year o 1 row per worker
- selection of the period we are interested in
- taking out the years without years up to a maximum of five years
- selection of the people who worked the number of years we are interested in

#### Transformations in SPSS

- elimination of all the workers who had monthly salaries above 15.000
- transforming all the salaries above 7.577 to 7.577
- creation of the time variables necessary for the Proc Traj procedure

Selection of the time period for macroeconomic reasons

Selection of the time period for macroeconomic reasons (Crisis in the steel industry and emergence of the financial market place of Luxembourg)

Selection of the time period for macroeconomic reasons (Crisis in the steel industry and emergence of the financial market place of Luxembourg)

20 years of work for workers beginning their carrier between 1982 and 1987

Selection of the time period for macroeconomic reasons (Crisis in the steel industry and emergence of the financial market place of Luxembourg)

20 years of work for workers beginning their carrier between 1982 and 1987

Proc Traj Macro:

Selection of the time period for macroeconomic reasons (Crisis in the steel industry and emergence of the financial market place of Luxembourg)

20 years of work for workers beginning their carrier between 1982 and 1987

```
Proc Traj Macro:

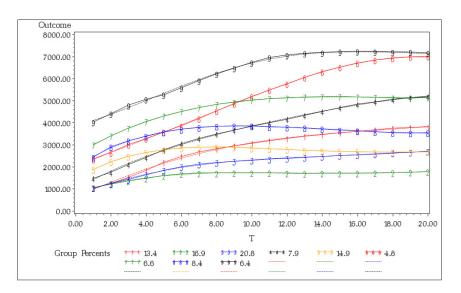
DATA TEST;

INPUT ID O1-O20 T1-T20;

CARDS;

data

RUN;
```


Selection of the time period for macroeconomic reasons (Crisis in the steel industry and emergence of the financial market place of Luxembourg)

20 years of work for workers beginning their carrier between 1982 and 1987

```
Proc Traj Macro:
DATA TEST:
    INPUT ID 01-020 T1-T20:
    CARDS:
data
RUN:
PROC TRAJ DATA=TEST OUTPLOT=OP OUTSTAT=OS OUT=OF
OUTEST=OE ITDETAIL:
    ID ID: VAR O1-O20: INDEP T1-T20:
    MODEL CNORM: MAX 8000: NGROUPS 6: ORDER 4 4 4 4 4 4:
RUN:
```

Results for 9 groups (1)

## Results for 9 groups (1)



## Results for 9 groups (2)

Maximum Likelihood Estimates Model: Censored Normal (CNORM)

| Group | Parameter                                            | Estimate                                                   | Standard<br>Error                                    | T for HO:<br>Parameter=0                       | Prob >  T                            |
|-------|------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------|------------------------------------------------|--------------------------------------|
| 1     | Intercept                                            | 589.03067                                                  | 18.46813                                             | 31.894                                         | 0.0000                               |
|       | Linear                                               | 387.72145                                                  | 11.31617                                             | 34.263                                         | 0.0000                               |
|       | Quadratic                                            | -14.36621                                                  | 2.12997                                              | -6.745                                         | 0.0000                               |
|       | Cubic                                                | -0.01563                                                   | 0.15109                                              | -0.103                                         | 0.9176                               |
|       | Quartic                                              | 0.00856                                                    | 0.00358                                              | 2.395                                          | 0.0166                               |
| 2     | Intercept<br>Linear<br>Quadratic<br>Cubic<br>Quartic | 784.79156<br>277.63602<br>-28.36731<br>1.17739<br>-0.01635 | 15.75939<br>9.78078<br>1.83236<br>0.12972<br>0.00307 | 49.798<br>28.386<br>-15.481<br>9.076<br>-5.330 | 0.0000<br>0.0000<br>0.0000<br>0.0000 |
| 3     | Intercept                                            | 709.28728                                                  | 15.90545                                             | 44.594                                         | 0.0000                               |
|       | Linear                                               | 318.88029                                                  | 8.97949                                              | 35.512                                         | 0.0000                               |
|       | Quadratic                                            | -21.54540                                                  | 1.69611                                              | -12.703                                        | 0.0000                               |
|       | Cubic                                                | 0.62010                                                    | 0.12002                                              | 5.167                                          | 0.0000                               |
|       | Quartic                                              | -0.00440                                                   | 0.00284                                              | -1.554                                         | 0.1203                               |

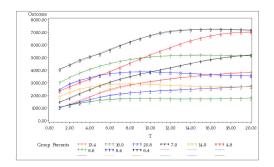
### Outline

- Nagin's Finite Mixture Model
- 2 The Luxemburgish salary trajectories
- 3 Description of the groups
- 4 Economic Modeling
- Outlook

 $1^{st}$  group

13.4 % of the population

## 1<sup>st</sup> group


13.4 % of the population

$$P(x) = 590 + 388t - 14t^2 + 0.009t^4$$

## 1<sup>st</sup> group

#### 13.4 % of the population

$$P(x) = 590 + 388t - 14t^2 + 0.009t^4$$



# $1^{st}$ group

Age\_initial

|         |        | Frequency | Percent | Valid Percent | Cumulative<br>Percent |
|---------|--------|-----------|---------|---------------|-----------------------|
| Valid   | 13,00  | 2         | ,1      | ,1            | ,1                    |
|         | 15,00  | 318       | 10,6    | 10,7          | 10,7                  |
|         | 16,00  | 540       | 18,1    | 18,1          | 28,8                  |
|         | 17,00  | 556       | 18,6    | 18,6          | 47,5                  |
|         | 18,00  | 494       | 16,5    | 16,6          | 64,0                  |
|         | 19,00  | 348       | 11,7    | 11,7          | 75,7                  |
|         | 20,00  | 187       | 6,3     | 6,3           | 82,0                  |
|         | 21,00  | 152       | 5,1     | 5,1           | 87,1                  |
|         | 22,00  | 90        | 3,0     | 3,0           | 90,1                  |
|         | 23,00  | 74        | 2,5     | 2,5           | 92,6                  |
|         | 24,00  | 37        | 1,2     | 1,2           | 93,8                  |
|         | 25,00  | 42        | 1,4     | 1,4           | 95,2                  |
|         | 26,00  | 27        | ,9      | ,9            | 96,1                  |
|         | 27,00  | 18        | ,6      | ,6            | 96,7                  |
|         | 28,00  | 16        | ,5      | ,5            | 97,3                  |
|         | 29,00  | 18        | .6      | ,6            | 97,9                  |
|         | 30,00  | 9         | ,3      | ,3            | 98,2                  |
|         | 31,00  | 10        | ,3      | ,3            | 98,5                  |
|         | 32,00  | 11        | ,4      | ,4            | 98,9                  |
|         | 33,00  | 5         | .2      | ,2            | 99,0                  |
|         | 34,00  | 2         |         | .1            | 99,1                  |
|         | 35,00  | 3         | .1      | .1            | 99,2                  |
|         | 36,00  | 6         | ,2      | ,2            | 99,4                  |
|         | 37,00  | 5         | ,2      | ,2            | 99,6                  |
|         | 38,00  | 3         |         | .1            | 99,7                  |
|         | 39,00  | 2         | .1      | .1            | 99,7                  |
|         | 40,00  | 3         | .1      | .1            | 99,8                  |
|         | 41,00  | 3         | .1      | ,1            | 99,9                  |
|         | 43,00  | 1         | .0      | .0            | 100,0                 |
|         | 46,00  | 1         | .0      | ,0            | 100,0                 |
|         | Total  | 2983      | 99,9    | 100,0         |                       |
| Missing | System | 3         | .1      |               |                       |
| Total   |        | 2986      | 100,0   | 1             |                       |

# $1^{st}$ group

#### Men:

#### Classe d'employé

|       |               | Frequency | Percent | Valid Percent | Cumulative<br>Percent |
|-------|---------------|-----------|---------|---------------|-----------------------|
| Valid | ouvrier       | 1213      | 57,8    | 57,8          | 57,8                  |
|       | employé privé | 887       | 42,2    | 42,2          | 100,0                 |
|       | Total         | 2100      | 100,0   | 100,0         |                       |

# $1^{\textit{st}}$ group

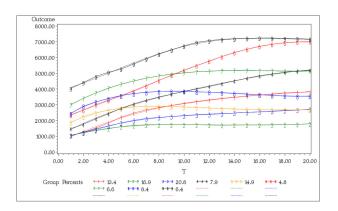
#### Men:

#### Classe d'employé

|       |               | Frequency | Percent | Valid Percent | Cumulative<br>Percent |
|-------|---------------|-----------|---------|---------------|-----------------------|
| Valid | ouvrier       | 1213      | 57,8    | 57,8          | 57,8                  |
|       | employé privé | 887       | 42,2    | 42,2          | 100,0                 |
|       | Total         | 2100      | 100,0   | 100,0         |                       |

#### Women:

#### Classe d'employé


|       |               | Frequency | Percent | Valid Percent | Cumulative<br>Percent |
|-------|---------------|-----------|---------|---------------|-----------------------|
| Valid | ouvrier       | 43        | 4,9     | 4,9           | 4,9                   |
|       | employé privé | 840       | 95,1    | 95,1          | 100,0                 |
|       | Total         | 883       | 100,0   | 100,0         |                       |

# 2<sup>nd</sup> group

16.9 % of the population

$$P(x) = 785 + 278t - 28t^2 + 1.18t^3 - 0.016t^4$$

$$P(x) = 785 + 278t - 28t^2 + 1.18t^3 - 0.016t^4$$



Age\_initial

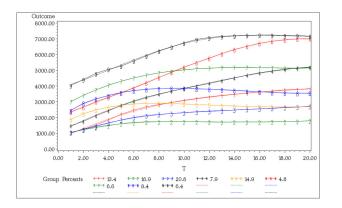
| Age_iiittai |        |           |         |               |                       |  |  |
|-------------|--------|-----------|---------|---------------|-----------------------|--|--|
|             |        | Frequency | Percent | Valid Percent | Cumulative<br>Percent |  |  |
| Valid       | 15,00  | 588       | 15,7    | 15,7          | 15,7                  |  |  |
|             | 16,00  | 864       | 23,1    | 23,1          | 38,8                  |  |  |
|             | 17,00  | 489       | 13,1    | 13,1          | 51,9                  |  |  |
|             | 18,00  | 316       | 8,4     | 8,4           | 60,3                  |  |  |
|             | 19,00  | 277       | 7,4     | 7,4           | 67,8                  |  |  |
|             | 20,00  | 209       | 5,6     | 5,6           | 73,3                  |  |  |
|             | 21,00  | 148       | 4,0     | 4,0           | 77,3                  |  |  |
|             | 22,00  | 111       | 3,0     | 3,0           | 80,3                  |  |  |
|             | 23,00  | 107       | 2,9     | 2,9           | 83,1                  |  |  |
|             | 24,00  | 81        | 2,2     | 2,2           | 85,3                  |  |  |
|             | 25,00  | 68        | 1,8     | 1,8           | 87,1                  |  |  |
|             | 26,00  | 59        | 1,6     | 1,6           | 88,7                  |  |  |
|             | 27,00  | 57        | 1,5     | 1,5           | 90,2                  |  |  |
|             | 28,00  | 51        | 1,4     | 1,4           | 91,6                  |  |  |
|             | 29,00  | 41        | 1,1     | 1,1           | 92,7                  |  |  |
|             | 30,00  | 31        | .8      | .8            | 93,5                  |  |  |
|             | 31,00  | 32        | ,9      | ,9            | 94,4                  |  |  |
|             | 32,00  | 32        | ,9      | ,9            | 95,2                  |  |  |
|             | 33,00  | 23        | ,6      | ,6            | 95,8                  |  |  |
|             | 34,00  | 20        | ,5      | ,5            | 96,4                  |  |  |
|             | 35,00  | 22        | ,6      | ,6            | 97,0                  |  |  |
|             | 36,00  | 23        | ,6      | ,6            | 97,6                  |  |  |
|             | 37,00  | 24        | ,6      | ,6            | 98,2                  |  |  |
|             | 38,00  | 14        | ,4      | ,4            | 98,6                  |  |  |
|             | 39,00  | 14        | ,4      | .4            | 99,0                  |  |  |
|             | 40,00  | 15        | ,4      | .4            | 99,4                  |  |  |
|             | 41,00  | 10        | ,3      | ,3            | 99,6                  |  |  |
|             | 42,00  | 5         | .1      | .1            | 99,8                  |  |  |
|             | 43,00  | 3         | ,1      | ,1            | 99,8                  |  |  |
|             | 44,00  | 2         |         | .1            | 99,9                  |  |  |
|             | 45,00  | 4         | .1      | .1            | 100,0                 |  |  |
|             | Total  | 3740      | 99,9    | 100,0         |                       |  |  |
| Missing     | System | 2         |         |               |                       |  |  |

### Men:

|       |               | Frequency | Percent | Valid Percent | Cumulative<br>Percent |
|-------|---------------|-----------|---------|---------------|-----------------------|
| Valid | ouvrier       | 994       | 82,8    | 82,8          | 82,8                  |
|       | employé privé | 206       | 17,2    | 17,2          | 100,0                 |
|       | Total         | 1200      | 100,0   | 100,0         |                       |

### Men:

#### Classe d'employé


|       |               | Frequency | Percent | Valid Percent | Cumulative<br>Percent |
|-------|---------------|-----------|---------|---------------|-----------------------|
| Valid | ouvrier       | 994       | 82,8    | 82,8          | 82,8                  |
|       | employé privé | 206       | 17,2    | 17,2          | 100,0                 |
|       | Total         | 1200      | 100,0   | 100,0         |                       |

### Women:

|       |               | Frequency | Percent | Valid Percent | Cumulative<br>Percent |
|-------|---------------|-----------|---------|---------------|-----------------------|
| Valid | ouvrier       | 1453      | 57,2    | 57,2          | 57,2                  |
|       | employé privé | 1087      | 42,8    | 42,8          | 100,0                 |
|       | Total         | 2540      | 100,0   | 100,0         | 75                    |

$$P(x) = 709 + 318t - 21.5t^2 + 0.62t^3$$

$$P(x) = 709 + 318t - 21.5t^2 + 0.62t^3$$



leitini on

| rige_minum |        |           |         |               |                       |  |  |  |
|------------|--------|-----------|---------|---------------|-----------------------|--|--|--|
|            |        | Frequency | Percent | Valid Percent | Cumulative<br>Percent |  |  |  |
| Valid      | 10,00  | 1         | .0      | .0            | .0                    |  |  |  |
|            | 13,00  | 2         | ,0      | ,0            | .1                    |  |  |  |
|            | 14,00  | 3         | 1       | .1            |                       |  |  |  |
|            | 15,00  | 635       | 13,7    | 13,7          | 13,9                  |  |  |  |
|            | 16,00  | 1045      | 22,6    | 22,6          | 36,5                  |  |  |  |
|            | 17,00  | 700       | 15,1    | 15,1          | 51,6                  |  |  |  |
|            | 18,00  | 542       | 11,7    | 11,7          | 63,3                  |  |  |  |
|            | 19,00  | 358       | 7,7     | 7,7           | 71,1                  |  |  |  |
|            | 20,00  | 288       | 6,2     | 6,2           | 77,3                  |  |  |  |
|            | 21,00  | 195       | 4,2     | 4,2           | 81,5                  |  |  |  |
|            | 22,00  | 168       | 3,6     | 3,6           | 85,2                  |  |  |  |
|            | 23,00  | 140       | 3,0     | 3,0           | 88,2                  |  |  |  |
|            | 24,00  | 98        | 2,1     | 2,1           | 90,3                  |  |  |  |
|            | 25,00  | 81        | 1,8     | 1,8           | 92,1                  |  |  |  |
|            | 26,00  | 68        | 1,5     | 1,5           | 93,5                  |  |  |  |
|            | 27,00  | 42        | .9      | .9            | 94,4                  |  |  |  |
|            | 28,00  | 47        | 1,0     | 1,0           | 95,5                  |  |  |  |
|            | 29,00  | 30        | ,6      | ,6            | 96,1                  |  |  |  |
|            | 30,00  | 30        | ,6      | ,6            | 96,8                  |  |  |  |
|            | 31,00  | 27        | ,6      | ,6            | 97,3                  |  |  |  |
|            | 32,00  | 14        | ,3      | ,3            | 97,6                  |  |  |  |
|            | 33,00  | 16        | ,3      | ,3            | 98,0                  |  |  |  |
|            | 34,00  | 13        | ,3      | ,3            | 98,3                  |  |  |  |
|            | 35,00  | 14        | ,3      | ,3            | 98,6                  |  |  |  |
|            | 36,00  | 16        | ,3      | ,3            | 98,9                  |  |  |  |
|            | 37,00  | 11        | ,2      | ,2            | 99,2                  |  |  |  |
|            | 38,00  | 9         | ,2      | ,2            | 99,4                  |  |  |  |
|            | 39,00  | 10        | ,2      | ,2            | 99,6                  |  |  |  |
|            | 41,00  | 8         | ,2      | ,2            | 99,7                  |  |  |  |
|            | 42,00  | 4         |         | ,1            | 99,8                  |  |  |  |
|            | 43,00  | 3         |         | ,1            | 99,9                  |  |  |  |
|            | 44,00  | 3         |         | ,1            | 100,0                 |  |  |  |
|            | 45,00  | 1         | .0      | .0            | 100,0                 |  |  |  |
|            | 48,00  | 1         | .0      | .0            | 100,0                 |  |  |  |
|            | Total  | 4623      | 100,0   | 100,0         |                       |  |  |  |
| Missing    | System | 1         | .0      |               |                       |  |  |  |

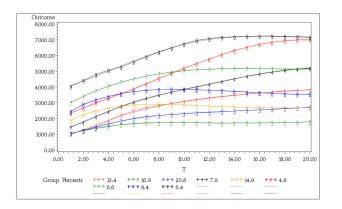
Total

### Men:

|       |               | Frequency | Percent | Valid Percent | Cumulative<br>Percent |
|-------|---------------|-----------|---------|---------------|-----------------------|
| Valid | ouvrier       | 2452      | 78,2    | 78,2          | 78,2                  |
|       | employé privé | 684       | 21,8    | 21,8          | 100,0                 |
|       | Total         | 3136      | 100,0   | 100,0         | ×2                    |

### Men:

#### Classe d'employé


|       |               | Frequency | Percent | Valid Percent | Cumulative<br>Percent |
|-------|---------------|-----------|---------|---------------|-----------------------|
| Valid | ouvrier       | 2452      | 78,2    | 78,2          | 78,2                  |
|       | employé privé | 684       | 21,8    | 21,8          | 100,0                 |
|       | Total         | 3136      | 100,0   | 100,0         | 200                   |

### Women:

|       |               | Frequency | Percent | Valid Percent | Cumulative<br>Percent |
|-------|---------------|-----------|---------|---------------|-----------------------|
| Valid | ouvrier       | 539       | 36,2    | 36,2          | 36,2                  |
|       | employé privé | 948       | 63,8    | 63,8          | 100,0                 |
|       | Total         | 1487      | 100,0   | 100,0         |                       |

$$P(x) = 976 + 474t - 29.6t^2 - 0.029t^4$$

$$P(x) = 976 + 474t - 29.6t^2 - 0.029t^4$$



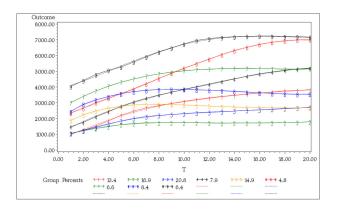
Age\_initial

|         |        |           |         |               | Cumulative |
|---------|--------|-----------|---------|---------------|------------|
|         |        | Frequency | Percent | Valid Percent | Percent    |
| Valid   | 15,00  | 40        | 2,3     | 2,3           | 2,3        |
|         | 16,00  | 94        | 5,4     | 5,4           | 7,7        |
|         | 17,00  | 221       | 12,7    | 12,7          | 20,4       |
|         | 18,00  | 303       | 17,4    | 17,4          | 37,7       |
|         | 19,00  | 303       | 17,4    | 17,4          | 55,1       |
|         | 20,00  | 220       | 12,6    | 12,6          | 67,7       |
|         | 21,00  | 160       | 9,2     | 9,2           | 76,9       |
|         | 22,00  | 114       | 6,5     | 6,5           | 83,4       |
|         | 23,00  | 66        | 3,8     | 3,8           | 87,2       |
|         | 24,00  | 39        | 2,2     | 2,2           | 89,4       |
|         | 25,00  | 38        | 2,2     | 2,2           | 91,6       |
|         | 26,00  | 27        | 1,5     | 1,5           | 93,2       |
|         | 27,00  | 31        | 1,8     | 1,8           | 95,0       |
|         | 28,00  | 22        | 1,3     | 1,3           | 96,2       |
|         | 29,00  | 16        | ,9      | .9            | 97,1       |
|         | 30,00  | 11        | ,6      | .6            | 97,8       |
|         | 31,00  | 12        |         | .7            | 98,5       |
|         | 32,00  | 5         | ,3      | ,3            | 98,7       |
|         | 33,00  | 2         |         | .1            | 98,9       |
|         | 34,00  | 4         | ,2      | ,2            | 99,1       |
|         | 35,00  | 5         | ,3      | ,3            | 99,4       |
|         | 36,00  | 1         | .1      | .1            | 99,4       |
|         | 37,00  | 2         |         | .1            | 99,5       |
|         | 39,00  | 1         |         | .1            | 99,6       |
|         | 41,00  | 1         | .1      | .1            | 99,7       |
|         | 42,00  | 1         |         | .1            | 99,7       |
|         | 43,00  | 2         |         | .1            | 99,8       |
|         | 46,00  | 2         | .1      | .1            | 99,9       |
|         | 49,00  | 1         | .1      | .1            | 100,0      |
|         | Total  | 1744      | 99,9    | 100,0         |            |
| Missing | System | 2         | .1      |               |            |
| Total   |        | 1746      | 100,0   |               |            |

#### Résidence et nationalité

|         |                                            | Frequency | Percent | Valid Percent | Cumulative<br>Percent |
|---------|--------------------------------------------|-----------|---------|---------------|-----------------------|
| Valid   | résident de nationalité<br>luxembourgeoise | 1211      | 69,4    | 69,4          | 69,4                  |
|         | résident étranger                          | 260       | 14,9    | 14,9          | 84,3                  |
|         | frontalier                                 | 273       | 15,6    | 15,7          | 100,0                 |
|         | Total                                      | 1744      | 99,9    | 100,0         |                       |
| Missing | System                                     | 2         | ,1      |               |                       |
| Total   |                                            | 1746      | 100,0   |               |                       |

|         |               | Frequency | Percent | Valid Percent | Cumulative<br>Percent |
|---------|---------------|-----------|---------|---------------|-----------------------|
| Valid   | ouvrier       | 117       | 6,7     | 6,7           | 6,7                   |
|         | employé privé | 1627      | 93,2    | 93,3          | 100,0                 |
|         | Total         | 1744      | 99,9    | 100,0         |                       |
| Missing | System        | 2         | ,1      | 03000         |                       |
| Total   |               | 1746      | 100,0   |               |                       |


#### Résidence et nationalité

|         |                                            | Frequency | Percent | Valid Percent | Cumulative<br>Percent |
|---------|--------------------------------------------|-----------|---------|---------------|-----------------------|
| Valid   | résident de nationalité<br>luxembourgeoise | 1211      | 69,4    | 69,4          | 69,4                  |
|         | résident étranger                          | 260       | 14,9    | 14,9          | 84,3                  |
|         | frontalier                                 | 273       | 15,6    | 15,7          | 100,0                 |
|         | Total                                      | 1744      | 99,9    | 100,0         |                       |
| Missing | System                                     | 2         | ,1      |               |                       |
| Total   |                                            | 1746      | 100,0   |               |                       |

|         |               | Frequency | Percent | Valid Percent | Cumulative<br>Percent |
|---------|---------------|-----------|---------|---------------|-----------------------|
| Valid   | ouvrier       | 117       | 6,7     | 6,7           | 6,7                   |
|         | employé privé | 1627      | 93,2    | 93,3          | 100,0                 |
|         | Total         | 1744      | 99,9    | 100,0         |                       |
| Missing | System        | 2         | ,1      | 0300          |                       |
| Total   |               | 1746      | 100,0   |               |                       |

$$P(x) = 1452 + 490t - 29.6t^2 + 1.38t^3 - 0.028t^4$$

$$P(x) = 1452 + 490t - 29.6t^2 + 1.38t^3 - 0.028t^4$$



| Age_ | initia |
|------|--------|
|      |        |

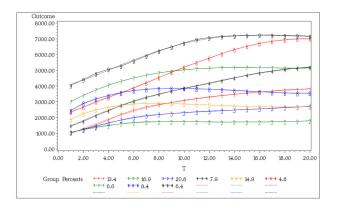
|         |        |           | nge_iiiidai |               |                       |
|---------|--------|-----------|-------------|---------------|-----------------------|
|         |        | Frequency | Percent     | Valid Percent | Cumulative<br>Percent |
| Valid   | 15,00  | 13        | ,4          | .4            | ,4                    |
|         | 16,00  | 65        | 2,0         | 2,0           | 2,4                   |
|         | 17,00  | 147       | 4,5         | 4,5           | 6,8                   |
|         | 18,00  | 276       | 8,4         | 8,4           | 15,2                  |
|         | 19,00  | 306       | 9,3         | 9,3           | 24,5                  |
|         | 20,00  | 358       | 10,9        | 10,9          | 35,4                  |
|         | 21,00  | 332       | 10,1        | 10,1          | 45,5                  |
|         | 22,00  | 264       | 8,0         | 8,0           | 53,5                  |
|         | 23,00  | 217       | 6,6         | 6,6           | 60,                   |
|         | 24,00  | 172       | 5,2         | 5,2           | 65,3                  |
|         | 25,00  | 158       | 4,8         | 4,8           | 70,1                  |
|         | 26,00  | 161       | 4,9         | 4,9           | 75,0                  |
|         | 27,00  | 130       | 3,9         | 4,0           | 79,0                  |
|         | 28,00  | 100       | 3,0         | 3,0           | 82,0                  |
|         | 29,00  | 94        | 2,9         | 2,9           | 84,9                  |
|         | 30,00  | 69        | 2,1         | 2,1           | 87,0                  |
|         | 31,00  | 65        | 2,0         | 2,0           | 88,9                  |
|         | 32,00  | 68        | 2,1         | 2,1           | 91,0                  |
|         | 33,00  | 61        | 1,9         | 1,9           | 92,9                  |
|         | 34,00  | 48        | 1,5         | 1,5           | 94,3                  |
|         | 35,00  | 56        | 1,7         | 1,7           | 96,0                  |
|         | 36,00  | 36        | 1,1         | 1,1           | 97,1                  |
|         | 37,00  | 23        | ,7          | .7            | 97,8                  |
|         | 38,00  | 21        | ,6          | ,6            | 98,5                  |
|         | 39,00  | 19        | ,6          | .6            | 99,0                  |
|         | 40,00  | 8         | ,2          | ,2            | 99,3                  |
|         | 41,00  | 8         | ,2          | ,2            | 99,5                  |
|         | 42,00  | 6         | ,2          | ,2            | 99,7                  |
|         | 43,00  | 5         | ,2          | ,2            | 99,6                  |
|         | 44,00  | 5         | ,2          | ,2            | 100,0                 |
|         | Total  | 3291      | 99,9        | 100,0         | 1                     |
| Missing | System | 2         | ,1          |               |                       |
| Total   |        | 2202      | 400.0       |               |                       |

### Men:

|       |               | Frequency | Percent | Valid Percent | Cumulative<br>Percent |
|-------|---------------|-----------|---------|---------------|-----------------------|
| Valid | ouvrier       | 1910      | 81,0    | 81,0          | 81,0                  |
|       | employé privé | 449       | 19,0    | 19,0          | 100,0                 |
|       | Total         | 2359      | 100,0   | 100,0         |                       |

### Men:

#### Classe d'employé


|       |               | Frequency | Percent | Valid Percent | Cumulative<br>Percent |
|-------|---------------|-----------|---------|---------------|-----------------------|
| Valid | ouvrier       | 1910      | 81,0    | 81,0          | 81,0                  |
|       | employé privé | 449       | 19,0    | 19,0          | 100,0                 |
|       | Total         | 2359      | 100,0   | 100,0         |                       |

### Women:

|       |               | Frequency | Percent | Valid Percent | Cumulative<br>Percent |
|-------|---------------|-----------|---------|---------------|-----------------------|
| Valid | ouvrier       | 71        | 7,6     | 7,6           | 7,6                   |
|       | employé privé | 861       | 92,4    | 92,4          | 100,0                 |
|       | Total         | 932       | 100,0   | 100,0         |                       |

$$P(x) = 2089 - 0.017t^4$$

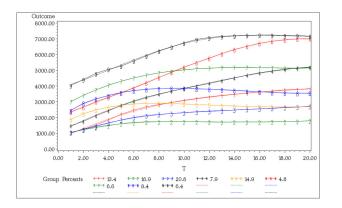
$$P(x) = 2089 - 0.017t^4$$



| initia |
|--------|
|        |

|         |        |           | Age_initial |               |                       |
|---------|--------|-----------|-------------|---------------|-----------------------|
|         |        | Frequency | Percent     | Valid Percent | Cumulative<br>Percent |
| Valid   | 15,00  | 1         | ,1          | ,1            | .1                    |
|         | 16,00  | 8         | .8          | .8            | .9                    |
|         | 17,00  | 38        | 3,6         | 3,6           | 4,5                   |
|         | 18,00  | 56        | 5,3         | 5,3           | 9,8                   |
|         | 19,00  | 103       | 9,7         | 9,8           | 19,5                  |
|         | 20,00  | 140       | 13,2        | 13,3          | 32,8                  |
|         | 21,00  | 175       | 16,5        | 16,6          | 49,4                  |
|         | 22,00  | 103       | 9,7         | 9,8           | 59,1                  |
|         | 23,00  | 91        | 8,6         | 8,6           | 67,8                  |
|         | 24,00  | 66        | 6,2         | 6,3           | 74,0                  |
|         | 25,00  | 64        | 6,0         | 6,1           | 80,1                  |
|         | 26,00  | 52        | 4,9         | 4,9           | 85,0                  |
|         | 27,00  | 37        | 3,5         | 3,5           | 88,5                  |
|         | 28,00  | 36        | 3,4         | 3,4           | 91,9                  |
|         | 29,00  | 18        | 1,7         | 1,7           | 93,6                  |
|         | 30,00  | 12        | 1,1         | 1,1           | 94,8                  |
|         | 31,00  | 12        | 1,1         | 1,1           | 95,9                  |
|         | 32,00  | 8         | .8          | ,8            | 96,7                  |
|         | 33,00  | 7         | .7          | .7            | 97,3                  |
|         | 34,00  | 6         | ,6          | ,6            | 97,9                  |
|         | 35,00  | 5         | ,5          | .5            | 98,4                  |
|         | 36,00  | 4         | ,4          | .4            | 98,8                  |
|         | 37,00  | 4         | ,4          | .4            | 99,1                  |
|         | 38,00  | 1         | .1          | .1            | 99,2                  |
|         | 41,00  | 3         | ,3          | ,3            | 99,5                  |
|         | 43,00  | 3         | ,3          | .3            | 99,8                  |
|         | 45,00  | 2         | ,2          | .2            | 100,0                 |
|         | Total  | 1055      | 99,2        | 100,0         |                       |
| Missing | System | 8         | .8          |               |                       |
| Total   |        | 1063      | 100,0       |               |                       |

#### Résidence et nationalité


|         |                                            | Frequency | Percent | Valid Percent | Cumulative<br>Percent |
|---------|--------------------------------------------|-----------|---------|---------------|-----------------------|
| Valid   | résident de nationalité<br>luxembourgeoise | 651       | 61,2    | 61,7          | 61,7                  |
|         | résident étranger                          | 184       | 17,3    | 17,4          | 79,1                  |
|         | frontalier                                 | 220       | 20,7    | 20,9          | 100,0                 |
|         | Total                                      | 1055      | 99,2    | 100,0         |                       |
| Missing | System                                     | 8         | ,8      |               |                       |
| Total   |                                            | 1063      | 100,0   | P-            |                       |

|         |               | Frequency | Percent | Valid Percent | Cumulative<br>Percent |
|---------|---------------|-----------|---------|---------------|-----------------------|
| Valid   | ouvrier       | 3         | ,3      | ,3            | ,3                    |
|         | employé privé | 1052      | 99,0    | 99,7          | 100,0                 |
|         | Total         | 1055      | 99,2    | 100,0         |                       |
| Missing | System        | 8         | ,8      | 557507533     |                       |
| Total   |               | 1063      | 100,0   |               |                       |

6.6~% of the population

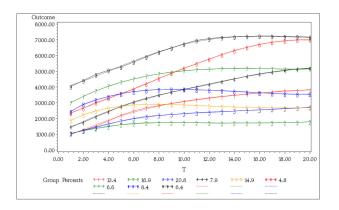
$$P(x) = 2556 + 484t - 29.9t^2 + 0.66t^3$$

$$P(x) = 2556 + 484t - 29.9t^2 + 0.66t^3$$



| initial |
|---------|
|         |

|         |        |           | nge_iiiidai |               |                       |
|---------|--------|-----------|-------------|---------------|-----------------------|
|         |        | Frequency | Percent     | Valid Percent | Cumulative<br>Percent |
| Valid   | 16,00  | 1         | .1          | .1            | .1                    |
|         | 17,00  | 8         | ,5          | .5            | .6                    |
|         | 18,00  | 34        | 2,3         | 2,3           | 3,0                   |
|         | 19,00  | 116       | 7,9         | 8,0           | 10,9                  |
|         | 20,00  | 168       | 11,5        | 11,5          | 22,5                  |
|         | 21,00  | 180       | 12,3        | 12,4          | 34,8                  |
|         | 22,00  | 191       | 13,1        | 13,1          | 47,9                  |
|         | 23,00  | 164       | 11,2        | 11,3          | 59,2                  |
|         | 24,00  | 115       | 7,9         | 7,9           | 67,1                  |
|         | 25,00  | 101       | 6,9         | 6,9           | 74,0                  |
|         | 26,00  | 76        | 5,2         | 5,2           | 79,3                  |
|         | 27,00  | 44        | 3,0         | 3,0           | 82,3                  |
|         | 28,00  | 37        | 2,5         | 2,5           | 84,8                  |
|         | 29,00  | 29        | 2,0         | 2,0           | 86,8                  |
|         | 30,00  | 23        | 1,6         | 1,6           | 88,4                  |
|         | 31,00  | 16        | 1,1         | 1,1           | 89,5                  |
|         | 32,00  | 25        | 1,7         | 1,7           | 91,2                  |
|         | 33,00  | 17        | 1,2         | 1,2           | 92,4                  |
|         | 34,00  | 16        | 1,1         | 1,1           | 93,5                  |
|         | 35,00  | 20        | 1,4         | 1,4           | 94,8                  |
|         | 36,00  | 20        | 1,4         | 1,4           | 96,2                  |
|         | 37,00  | 11        | .8          | .8            | 97,0                  |
|         | 38,00  | 13        | .9          | ,9            | 97,9                  |
|         | 39,00  | 9         | .6          | ,6            | 98,5                  |
|         | 40,00  | 9         | .6          | ,6            | 99,1                  |
|         | 41,00  | 4         | .3          | ,3            | 99,4                  |
|         | 42,00  | 4         | .3          | .3            | 99,7                  |
|         | 43,00  | 2         | ,1          | 3             | 99,8                  |
|         | 44.00  | 2         | .1          | j j           | 99,9                  |
|         | 45,00  | 1         | 1           | 3             | 100,0                 |
|         | Total  | 1456      | 99,6        | 100.0         |                       |
| Missing | System | 6         | .4          |               |                       |
| Total   |        | 4400      | 400.0       | 1             |                       |


#### Résidence et nationalité

|         |                                            | Frequency | Percent | Valid Percent | Cumulative<br>Percent |
|---------|--------------------------------------------|-----------|---------|---------------|-----------------------|
| Valid   | résident de nationalité<br>luxembourgeoise | 632       | 43,2    | 43,4          | 43,4                  |
|         | résident étranger                          | 273       | 18,7    | 18,8          | 62,2                  |
|         | frontalier                                 | 551       | 37,7    | 37,8          | 100,0                 |
|         | Total                                      | 1456      | 99,6    | 100,0         |                       |
| Missing | System                                     | 6         | .4      |               |                       |
| Total   |                                            | 1462      | 100,0   |               |                       |

|         |               | Frequency | Percent | Valid Percent | Cumulative<br>Percent |  |  |  |
|---------|---------------|-----------|---------|---------------|-----------------------|--|--|--|
| Valid   | ouvrier       | 19        | 1,3     | 1,3           | 1,3                   |  |  |  |
|         | employé privé | 1437      | 98,3    | 98,7          | 100,0                 |  |  |  |
|         | Total         | 1456      | 99,6    | 100,0         |                       |  |  |  |
| Missing | System        | 6         | ,4      |               |                       |  |  |  |
| Total   |               | 1462      | 100,0   |               |                       |  |  |  |

$$P(x) = 1987 + 537t - 52.7t^2 + 2.06t^3 - 0.028t^4$$

$$P(x) = 1987 + 537t - 52.7t^2 + 2.06t^3 - 0.028t^4$$



Age\_initial

|         |        | Frequency | Percent | Valid Percent | Cumulative<br>Percent |
|---------|--------|-----------|---------|---------------|-----------------------|
| Valid   | 15,00  | 3         | ,2      | ,2            | ,2                    |
|         | 16,00  | 17        | ,9      | ,9            | 1,1                   |
|         | 17,00  | 58        | 3,1     | 3,1           | 4,2                   |
|         | 18,00  | 123       | 6,6     | 6,6           | 10,8                  |
|         | 19,00  | 204       | 10,9    | 10,9          | 21,7                  |
|         | 20,00  | 210       | 11,2    | 11,3          | 33,0                  |
|         | 21,00  | 225       | 12,0    | 12,1          | 45,0                  |
|         | 22,00  | 187       | 10,0    | 10,0          | 55,0                  |
|         | 23,00  | 134       | 7,2     | 7,2           | 62,2                  |
|         | 24,00  | 107       | 5,7     | 5,7           | 68,0                  |
|         | 25,00  | 95        | 5,1     | 5,1           | 73,0                  |
|         | 26,00  | 65        | 3,5     | 3,5           | 76,5                  |
|         | 27,00  | 56        | 3,0     | 3,0           | 79,5                  |
|         | 28,00  | 60        | 3,2     | 3,2           | 82,7                  |
|         | 29,00  | 49        | 2,6     | 2,6           | 85,4                  |
|         | 30,00  | 34        | 1,8     | 1,8           | 87,2                  |
|         | 31,00  | 24        | 1,3     | 1,3           | 88,5                  |
|         | 32,00  | 33        | 1,8     | 1,8           | 90,2                  |
|         | 33,00  | 38        | 2,0     | 2,0           | 92,3                  |
|         | 34,00  | 18        | 1,0     | 1,0           | 93,2                  |
|         | 35,00  | 19        | 1,0     | 1,0           | 94,3                  |
|         | 36,00  | 24        | 1,3     | 1,3           | 95,6                  |
|         | 37,00  | 17        | ,9      | ,9            | 96,5                  |
|         | 38,00  | 14        | ,7      | ,8            | 97,2                  |
|         | 39,00  | 13        | ,7      | ,7            | 97,9                  |
|         | 40,00  | 13        | ,7      | .7            | 98,6                  |
|         | 41,00  | 7         | ,4      | ,4            | 99,0                  |
|         | 42,00  | 8         | ,4      | ,4            | 99,4                  |
|         | 43,00  | 1         | .1      | .1            | 99,5                  |
|         | 44,00  | 8         | .4      | ,4            | 99,9                  |
|         | 46,00  | 2         | ,1      | ,1            | 100,0                 |
|         | Total  | 1866      | 99,8    | 100,0         |                       |
| Missing | System | 3         | ,2      |               |                       |
|         |        |           |         |               |                       |

#### Men:

#### Classe d'employé

|       |               | Frequency | Percent | Valid Percent | Cumulative<br>Percent |
|-------|---------------|-----------|---------|---------------|-----------------------|
| Valid | ouvrier       | 594       | 52,6    | 52,6          | 52,6                  |
|       | employé privé | 535       | 47,4    | 47,4          | 100,0                 |
|       | Total         | 1129      | 100,0   | 100,0         |                       |

#### Men:

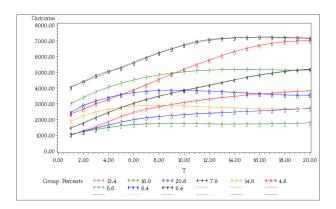
#### Classe d'employé

|       |               | Frequency | Percent | Valid Percent | Cumulative<br>Percent |
|-------|---------------|-----------|---------|---------------|-----------------------|
| Valid | ouvrier       | 594       | 52,6    | 52,6          | 52,6                  |
|       | employé privé | 535       | 47,4    | 47,4          | 100,0                 |
|       | Total         | 1129      | 100,0   | 100,0         |                       |

#### Women:

#### Classe d'employé

|       |               | Frequency | Percent | Valid Percent | Cumulative<br>Percent |
|-------|---------------|-----------|---------|---------------|-----------------------|
| Valid | ouvrier       | 6         | ,8      | ,8            | ,8                    |
|       | employé privé | 731       | 99,2    | 99,2          | 100,0                 |
|       | Total         | 737       | 100,0   | 100,0         | 7                     |


6.4 % of the population

6.4 % of the population

$$P(x) = 3873 + 206t + 30t2 - 2.89t^3 + 0.06t^4$$

#### 6.4 % of the population

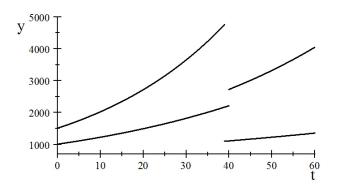
$$P(x) = 3873 + 206t + 30t2 - 2.89t^3 + 0.06t^4$$

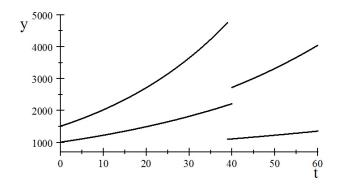


Age initial

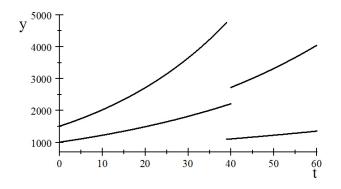
|         |        |           | nge_iiildai |               |                       |
|---------|--------|-----------|-------------|---------------|-----------------------|
|         |        | Frequency | Percent     | Valid Percent | Cumulative<br>Percent |
| Valid   | 17,00  | 1         | .1          | ,1            | ,1                    |
|         | 18,00  | 4         | ,3          | ,3            | .4                    |
|         | 19,00  | 19        | 1,3         | 1,4           | 1,7                   |
|         | 20,00  | 35        | 2,5         | 2,5           | 4,2                   |
|         | 21,00  | 68        | 4,8         | 4,8           | 9,0                   |
|         | 22,00  | 107       | 7,5         | 7,6           | 16,6                  |
|         | 23,00  | 123       | 8,7         | 8,7           | 25,4                  |
|         | 24,00  | 167       | 11,8        | 11,9          | 37,2                  |
|         | 25,00  | 150       | 10,6        | 10,7          | 47,9                  |
|         | 26,00  | 107       | 7,5         | 7,6           | 55,5                  |
|         | 27,00  | 92        | 6,5         | 6,5           | 62,0                  |
|         | 28,00  | 79        | 5,6         | 5,6           | 67,7                  |
|         | 29,00  | 65        | 4,6         | 4,6           | 72,3                  |
|         | 30,00  | 54        | 3,8         | 3,8           | 76,1                  |
|         | 31,00  | 48        | 3,4         | 3,4           | 79,5                  |
|         | 32,00  | 41        | 2,9         | 2,9           | 82,4                  |
|         | 33,00  | 33        | 2,3         | 2,3           | 84,8                  |
|         | 34,00  | 28        | 2,0         | 2,0           | 86,8                  |
|         | 35,00  | 38        | 2,7         | 2,7           | 89,5                  |
|         | 36,00  | 25        | 1,8         | 1,8           | 91,3                  |
|         | 37,00  | 24        | 1,7         | 1,7           | 93,0                  |
|         | 38,00  | 18        | 1,3         | 1,3           | 94,2                  |
|         | 39,00  | 19        | 1,3         | 1,4           | 95,6                  |
|         | 40,00  | 19        | 1,3         | 1,4           | 96,9                  |
|         | 41,00  | 12        | ,8          | ,9            | 97,8                  |
|         | 42,00  | 10        | .7          | .7            | 98,5                  |
|         | 43,00  | 7         | ,5          | ,5            | 99,0                  |
|         | 44,00  | 7         | ,5          | .5            | 99,5                  |
|         | 45,00  | 4         | ,3          | ,3            | 99,8                  |
|         | 46,00  | 3         | ,2          | .2            | 100,0                 |
|         | Total  | 1407      | 99,2        | 100,0         |                       |
| Missing | System | 11        | ,8          |               |                       |
| Total   |        | 1418      | 100,0       | 1             |                       |

#### Résidence et nationalité


|         |                                            | Frequency | Percent | Valid Percent | Cumulative<br>Percent |
|---------|--------------------------------------------|-----------|---------|---------------|-----------------------|
| Valid   | résident de nationalité<br>luxembourgeoise | 468       | 33,0    | 33,3          | 33,3                  |
|         | résident étranger                          | 475       | 33,5    | 33,8          | 67,0                  |
|         | frontalier                                 | 464       | 32,7    | 33,0          | 100,0                 |
|         | Total                                      | 1407      | 99,2    | 100,0         |                       |
| Missing | System                                     | 11        | ,8      |               |                       |
| Total   |                                            | 1418      | 100,0   |               |                       |

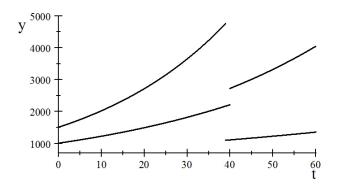

#### Classe d'employé

|         |               | Frequency | Percent | Valid Percent | Cumulative<br>Percent |
|---------|---------------|-----------|---------|---------------|-----------------------|
| Valid   | ouvrier       | 1         | ,1      | .1            | .1                    |
|         | employé privé | 1406      | 99,2    | 99,9          | 100,0                 |
|         | Total         | 1407      | 99,2    | 100,0         |                       |
| Missing | System        | 11        | ,8      |               |                       |
| Total   |               | 1418      | 100,0   |               |                       |


#### Outline

- Nagin's Finite Mixture Model
- The Luxemburgish salary trajectories
- 3 Description of the groups
- 4 Economic Modeling
- Outlook






2 trajectories  $S^1$  and  $S^2$  with groupe size 60% and 40% of the population.



2 trajectories  $S^1$  and  $S^2$  with groupe size 60% and 40% of the population.

Length of the professional life: T=40 years.



2 trajectories  $S^1$  and  $S^2$  with groupe size 60% and 40% of the population.

Length of the professional life: T=40 years.

Additional life expectancy:  $T^* = 20$  years.

## Hypotheses

Salaries grow linearly,  $S^1$  with a starting value of 1500 and a growth coefficient of 3 %,  $S^2$  with a starting value of 1000 and a growth coefficient of 2 %.

## Hypotheses

Salaries grow linearly,  $S^1$  with a starting value of 1500 and a growth coefficient of 3 %,  $S^2$  with a starting value of 1000 and a growth coefficient of 2 %.

Pensions grow also linearly,  $S^1$  with a starting value of 2718 and a growth coefficient of 2%,  $S^2$  with a starting value of 1104 and a growth coefficient of 1%.

# Hypotheses

Salaries grow linearly,  $S^1$  with a starting value of 1500 and a growth coefficient of 3 %,  $S^2$  with a starting value of 1000 and a growth coefficient of 2 %.

Pensions grow also linearly,  $S^1$  with a starting value of 2718 and a growth coefficient of 2%,  $S^2$  with a starting value of 1104 and a growth coefficient of 1%.

Luxembourg adopts a repartition model, which means that the current pensions are paid with the tax incomes from the current workers. Each generation hence pays the pension for the generation before it.

Replacement rate = first pension / last salary

Replacement rate = first pension / last salary

For 
$$S^1$$
,  $t_{rep} = \frac{2718}{1500(1+0.03)^{39}} \simeq 57\%$ .

Replacement rate = first pension / last salary

For 
$$S^1$$
,  $t_{rep} = \frac{2718}{1500(1+0.03)^{39}} \simeq 57\%$ .

For 
$$S^2$$
,  $t_{rep} = \frac{1104}{1000(1+0.02)^{39}} = 50\%$ .

Replacement rate = first pension / last salary

For 
$$S^1$$
,  $t_{rep} = \frac{2718}{1500(1+0.03)^{39}} \simeq 57\%$ .

For 
$$S^2$$
,  $t_{rep} = \frac{1104}{1000(1+0.02)^{39}} = 50\%$ .

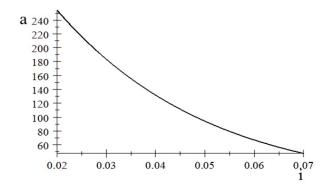
A worker who's trajectory is  $S^1$  with a probability of 75 % and  $S^2$  with a probability of 25 % has a replacement rate of

$$t_{rep} = \frac{0.75 \times 2718 + 0.25 \times 1104}{0.75 \times 1500(1 + 0.03)^{39} + 0.25 \times 1000(1 + 0.02)^{39}} \simeq 56\%.$$

## Coverage potential in a repartition & capitalization model

We want to know the sum a that we have to put every year in a saving account to get a desired replacement rate  $t_{aim}$ .

# Coverage potential in a repartition & capitalization model


We want to know the sum a that we have to put every year in a saving account to get a desired replacement rate  $t_{aim}$ .

a of course depends on the account's interest rate i.

# Coverage potential in a repartition & capitalization model

We want to know the sum a that we have to put every year in a saving account to get a desired replacement rate  $t_{aim}$ .

a of course depends on the account's interest rate i.



If  $i \sim U(2\%; 7\%)$ , a varies between 46 euros and 252 euros with a mean of 124 euros.

 $\tau_2 = \text{Sum of the salaries on the salary trajectory} / \text{sum of the pensions on the pension trajectory} = 16.5 on average.}$ 

 $au_2 = \text{Sum of the salaries on the salary trajectory} \ / \ \text{sum of the pensions on the pension trajectory} = 16.5 \ \text{on average}.$ 

That means that you need 16.5 euros from the salary to get 1 euro by capitalization for the pension.

 $au_2=$  Sum of the salaries on the salary trajectory / sum of the pensions on the pension trajectory = 16.5 on average.

That means that you need 16.5 euros from the salary to get 1 euro by capitalization for the pension.

In fact, if  $i \sim U(2\%; 7\%)$ ,  $\tau_2$  varies between 18 euros and 15 euros.

 $au_2=$  Sum of the salaries on the salary trajectory / sum of the pensions on the pension trajectory = 16.5 on average.

That means that you need 16.5 euros from the salary to get 1 euro by capitalization for the pension.

In fact, if  $i \sim U(2\%; 7\%)$ ,  $\tau_2$  varies between 18 euros and 15 euros.

 $au_2$  depends on a, hence a not only allows to get the desired replacement rate, but a also serves to control the variability of the capitalization effort coefficient.

 $au_2=$  Sum of the salaries on the salary trajectory / sum of the pensions on the pension trajectory = 16.5 on average.

That means that you need 16.5 euros from the salary to get 1 euro by capitalization for the pension.

In fact, if  $i \sim U(2\%; 7\%)$ ,  $\tau_2$  varies between 18 euros and 15 euros.

 $au_2$  depends on a, hence a not only allows to get the desired replacement rate, but a also serves to control the variability of the capitalization effort coefficient.

We need a compromise between a high replacement rate and a small capitalization effort coefficient.

 $au_1$  = weighted mean of the salaries on the salary trajectory / weighted mean of the pensions in the repartition model on the pension trajectory = 2.7 on average.

 $au_1$  = weighted mean of the salaries on the salary trajectory / weighted mean of the pensions in the repartition model on the pension trajectory = 2.7 on average.

That means that the active worker have to earn 2.7 euros to pay 1 euro of pesnion by repartition. pause

 $\tau_1$  depends on the demographic rate d.

 $au_1=$  weighted mean of the salaries on the salary trajectory / weighted mean of the pensions in the repartition model on the pension trajectory = 2.7 on average.

That means that the active worker have to earn 2.7 euros to pay 1 euro of pesnion by repartition. pause

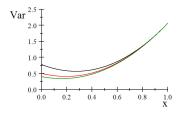
 $au_1$  depends on the demographic rate d. In fact, if  $d \sim U(0\%; 5\%)$ ,  $au_1$  varies between 6.7 euros and 1.6 euros.

 $au_1=$  weighted mean of the salaries on the salary trajectory / weighted mean of the pensions in the repartition model on the pension trajectory = 2.7 on average.

That means that the active worker have to earn 2.7 euros to pay 1 euro of pesnion by repartition. pause

 $au_1$  depends on the demographic rate d. In fact, if  $d \sim U(0\%; 5\%)$ ,  $au_1$  varies between 6.7 euros and 1.6 euros.

|                | Market<br>risk | Demographic risk |
|----------------|----------------|------------------|
| Repartition    | Negligeable    | Extreme          |
| Capitalization | Extreme        | Negligeable      |


#### Global effort coefficient

$$\tau = x\tau_1 + (1-x)\tau_2$$

is the number of euros necessary to pay  $1\ \mbox{euro}$  for the pension.

Here x euros come from repartition and 1-x euros from capitalization.

We want to limit the risk of the hybrid system without reducing the pension and in the same time minimize the capitalization effort.



#### Aim and solution

Aim : volatility of  $\tau = (\text{volatility of } \tau_1)/k$ .

#### Aim and solution

Aim : volatility of  $\tau = (\text{volatility of } \tau_1)/k$ .

Solution:

$$x = \frac{1}{k^2}.$$

#### Outline

- Nagin's Finite Mixture Model
- The Luxemburgish salary trajectories
- Oescription of the groups
- 4 Economic Modeling
- Outlook

• Do the computations for the 9 groups of real trajectories instead of the dummy ones.

- Do the computations for the 9 groups of real trajectories instead of the dummy ones.
- Add macroeconomic covariates to the finite mixture model to get trajectories depending on the general economical situation.

- Do the computations for the 9 groups of real trajectories instead of the dummy ones.
- Add macroeconomic covariates to the finite mixture model to get trajectories depending on the general economical situation.
- Extend the Nagin model to exponential trajectories and Pareto distributions.

- Do the computations for the 9 groups of real trajectories instead of the dummy ones.
- Add macroeconomic covariates to the finite mixture model to get trajectories depending on the general economical situation.
- Extend the Nagin model to exponential trajectories and Pareto distributions.
- Get another decision criterion for the optimal number of groups in the model.

- Do the computations for the 9 groups of real trajectories instead of the dummy ones.
- Add macroeconomic covariates to the finite mixture model to get trajectories depending on the general economical situation.
- Extend the Nagin model to exponential trajectories and Pareto distributions.
- Get another decision criterion for the optimal number of groups in the model.
- Combining dynamic clustering and dynamic factor analysis.