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Abstract—In previous work, we proposed a set of static 
attributes that characterize input validation and input 
sanitization code patterns. We showed that some of the proposed 
static attributes are significant predictors of web application 
vulnerabilities related to SQL injection and cross site scripting. 
Static attributes have the advantage of reflecting general 
properties of a program. Yet, dynamic attributes collected from 
execution traces may reflect more specific code characteristics 
that are complementary to static attributes. Hence, to improve 
our initial work, in this paper, we propose the use of dynamic 
attributes to complement static attributes in the prediction of 
vulnerabilities. Furthermore, since existing work relies on 
supervised learning, it is dependent on the availability of training 
data labeled with known vulnerabilities. This paper presents 
prediction models that are based on both classification and 
clustering in order to predict vulnerabilities, working in the 
presence or absence of labeled training data, respectively. In our 
experiments across six applications, our new supervised 
vulnerability predictors based on hybrid (static and dynamic) 
attributes achieved, on average, 90% recall and 85% precision, 
that is a sharp increase in recall when compared to static 
analysis-based predictions. Though not nearly as accurate, our 
unsupervised predictors based on clustering achieved, on 
average, 76% recall and 39% precision, thus suggesting they can 
be useful in the absence of labeled training data.   

Index Terms—Defect prediction, vulnerability, input validation 
and sanitization, static and dynamic analysis, empirical study.  

I. INTRODUCTION 
SQL injection (SQLI) and cross site scripting (XSS) are the 

two most common and serious web application vulnerabilities 
threatening the privacy and security of both clients and 
applications nowadays [1]. To mitigate the two threats, many 
vulnerability detection approaches such as static taint analysis 
and concolic testing have been proposed. These approaches 
have been shown to be effective in finding many security 
vulnerabilities. Static taint analysis approaches are generally 
easy to be implemented and adopted but are inefficient in 
practice due to high false positive rates (low precision). 
Concolic testing techniques are highly precise but could be 
impractical for large systems due to state space explosion. 
Alternative or complementary vulnerability detection solutions 
that are both practical for use and precise would be beneficial 
to security teams.  

Input validation and input sanitization methods are 
commonly implemented in web applications to guard against 
application-level attacks such as SQLI, XSS, path traversal, 
and buffer overflow. Hence, intuitively, an application is 
vulnerable if the implementation of input validation and input 
sanitization methods is inadequate or incorrect. In our initial 
work [2, 16], we mined static code patterns that implement 
such methods to build vulnerability predictors based on 
supervised learning. We showed that those predictors provide 
an alternative, effective solution for SQLI and XSS 
vulnerabilities. Although these results were encouraging, our 
earlier work suffers from two major drawbacks—(1) though 
proposed static attributes are useful predictors, they are limited 
in terms of the prediction accuracy they can yield (the 
predictive capability of these attributes is dependent on how 
precise is the classification of the input validation and 
sanitization code patterns); (2) being a supervised learning 
based approach, its effectiveness is dependent on the 
availability of sufficient training data labeled with manually 
checked security vulnerabilities. 

This paper addresses the above limitations and provides a 
more extensive empirical study than that of our previous work. 
It presents a pattern mining approach based on dynamic 
analysis that classifies input validation and sanitization 
functions through the systematic execution of these functions 
and the analysis of their execution traces. We also use both 
supervised learning methods and unsupervised learning 
methods to build vulnerability predictors so as to determine the 
effectiveness of the predictors with or without labeled training 
data. In existing vulnerability prediction studies, supervised 
learning methods are generally used. We have no knowledge of 
vulnerability prediction models built using unsupervised 
learning methods. Our goal is to make vulnerability prediction 
both more practical and accurate than in previous work. 

We evaluated our proposed approach based on experiments 
with a set of open source PHP-based web applications with 
known XSS and SQLI vulnerabilities. We implemented a tool 
called PhpMinerI for extracting relevant data from PHP 
programs. We trained two types of vulnerability prediction 
models (for predicting SQLI vulnerabilities and XSS 
vulnerabilities) using the extracted data. In our cross-validation 
experiments, supervised vulnerability predictors built from 



hybrid attributes achieved, on average, over 10 data sets, 90% 
recall and 85% precision on predicting XSS and SQLI 
vulnerabilities. These new predictors improved the recall by 
16% and the precision by 2% compared to predictors built from 
static analysis attributes alone. Our unsupervised predictors 
also achieved, on average, over 5 data sets, 76% recall, 12% 
false alarm rate, and 39% precision. 

This paper is limited to PHP programming language and 
focuses on classifying PHP functions and operations. SQLI and 
XSS vulnerabilities are commonly found in many PHP-based 
web applications. However, our approach could easily be 
extended to other programming languages. 

The outline of the paper is as follows. Section 2 discusses 
our motivation. Section 3 defines the static-dynamic hybrid 
attributes and presents the two hypotheses that we shall 
formerly investigate in this paper. Section 4 presents our 
vulnerability prediction models and evaluates their accuracy 
based on the proposed hybrid attributes. Section 5 discusses 
related work. Section 6 concludes our study.   

II. MOTIVATION 
Both SQLI and XSS vulnerabilities arise from improper 

handling of inputs in web application programs. Hence, they 
are application-level vulnerabilities. In a typical web program, 
user inputs are accessed via forms, URLs, cookies, and XML 
files. Those inputs are often processed and propagated to 
various program points to accomplish the application’s 
objectives. Some of those inputs may then be stored in the 
application’s persistent data stores, such as databases and 
session objects, for further processing of the application’s 
required functionalities. The operations carried out in those 
processes often include security-sensitive operations (sinks) 
such as HTML response outputs and database accesses. When 
user inputs referenced in such operations have not been 
sanitized or validated, vulnerabilities arise.  XSS vulnerabilities 
arise when an unrestricted user input is used in a HTML 
response output statement. SQLI vulnerabilities occur when a 
user input is used in a SQL statement without proper checks. 

Hence, to prevent web application vulnerabilities, 
developers often employ input validation/sanitization methods 
along the paths propagating the inputs to the sinks. These 
methods can be broadly categorized into escaping, meta-
character matching/removal, string length truncating, and data 
type checking/conversion [19]. The methods typically 
employed are language-provided functions (e.g., 
htmlentities), trusted third-party libraries (e.g., enterprise 
security APIs provided by OWASP [1]), or custom functions 
developed for specific security or data integrity requirements 
by developer himself or a group of security experts.  

From the analysis of many vulnerability reports in security 
databases such as CVE [6], we derived the following 
observations:  

• First, many SQLI and XSS vulnerability reports show 
that most of these vulnerabilities arise from the 
misidentification of inputs. That is, developers may 
implement adequate input validation and sanitization 
methods but yet, they may fail to recognize all the data 

that could be manipulated by external users, thereby 
missing some of the inputs for validation. Therefore, in 
security analysis, it is important to first identify all the 
inputs and the sinks that use them.  

• Second, when an input to be used in security-sensitive 
program statements is considered to be a numeric type, 
it is most effective to use a numeric-type check or 
numeric-type conversion (from string since inputs are 
originally strings). 

• Third, we observed that individual developers often 
write their own piece of validation and sanitization 
code to protect the specific programs that they are 
responsible for. But as also observed by Jovanovic et 
al. [3] and Xie and Aiken [4], many of such 
customized functions are incorrect often due to 
insufficient expertise in security. Thus, for most cases, 
the use of language-provided sanitization/validation 
functions, widely-accepted third-party security 
libraries, or security functions developed by a group of 
security experts is typically the most effective defense 
method.  

• Lastly, different defense methods are generally 
required to prevent different types of vulnerabilities. 
For example, to prevent SQLI vulnerabilities, escaping 
characters that have special meaning to SQL parser is 
required whereas escaping characters that have special 
meaning to client script interpreters is needed to 
prevent XSS vulnerabilities. Thus, care must be taken 
to use appropriate methods. 

III. PROPOSED APPROACH 
The above observations lead us to our first hypothesis (H1): 

Except for those cases that involve only numeric inputs that can 
always be validated through simple validation, in general, it is 
not straightforward for developers to implement defense 
against SQLI and XSS vulnerabilities from scratch by only 
relying on basic operations provided by the programming 
language. Hence, developers should use functions pre-
developed by security experts to implement these defenses. 
From H1, we derive the following attributes to build 
vulnerability predictors.  

A. Hybrid Attributes 
Data dependence graph: Our unit of measurement is a 

sink. A sink is a node in a control flow graph of a web program 
that may cause SQLI or XSS attacks. Basically, a sink 
represents a program statement that interacts with a database 
(denoted as SQL sink) or web client (denoted as HTML sink). 
Given a sink k, we compute its data dependence graph (DDGk) 
using data flow analysis. The graph provides reachable 
definitions for the variables used in the sink, that is, it contains 
the nodes on which the sink is data dependent [8]. As such, any 
input validation and sanitization operations implemented for 
the sink k can be found in the nodes in DDGk.  

The first step of our method is to classify the nodes in 
DDGk according to their security-related properties, and then to 
capture these classifications in a set of attributes on which 



vulnerability predictors are to be built. Basically, our approach 
attempts to answer the following research question: “Given the 
data dependence graph of a sink, from the number of inputs, 
and the numbers and types of input validation and sanitization 
functions found on the nodes in the graph, can we predict the 
sink’s vulnerability?”. 

To classify nodes in DDGk, we use a hybrid approach that 
combines static analysis and dynamic analysis techniques. 
From the language built-in functions that have specific security 
purposes (e.g., addslashes), the language operators (e.g., 
string concatenation operator “.”), or the predefined language 
parameters (e.g., $_GET) used in a given node n in DDGk, n is 
classified statically. But it is classified dynamically if it invokes 
user-defined functions or some built-in functions such as string 
replacement and string matching functions. As a control flow 
node n may contain a variety of program operations, there may 
be multiple classifications for n (see example in Section 3.3). 
We shall address the attributes on which the classification 
schemes will rely as hybrid attributes. The attributes are listed 
in Table 1 and presented next. 

Static analysis-based classification: Some of the language 
built-in functions and operations can be statically and precisely 
classified from their properties or specific purposes. The 
classification can be carried out by simply checking the 
properties of the function or operation. Attributes 1-15 in Table 
1 characterize the functions and operators to be classified 
statically. These attributes are similar to those proposed in our 
initial work [2, 16]. Hence, we shall only briefly present them.  

Depending on the nature of sources, we categorize the 
inputs into five types as explained by attributes 1-7 in Table 1. 
Attributes 8-13 basically involve language built-in functions 
and operators that could be used in input validation and 
sanitization procedures. Attribute 8 and 9 correspond to 
language-provided SQLI and XSS sanitization routines (e.g., 
htmlspecialchars), respectively. Functions that invoke stored 
procedures or prepared statements (e.g., $query->prepare) are 
also classified as SQLI sanitization routines. Attribute 10 
involves type casting built-in functions or operations (e.g., $a 
= (double) $b/$c) that cast the input string into a numeric 
type data. Attribute 11 corresponds to language-provided 
numeric data type check functions (e.g., is_numeric). Attribute 
12 corresponds to encoding functions. An input variable may 
be properly sanitized using encoding functions (e.g., <a href= 
‘login.php?name=’.urlencode(input)>). Attribute 13 
matches to functions or operations that return predefined 
information or information not extracted from the input string 
(e.g., mysql_num_rows). We include the attribute Boolean as a 
type of validation and sanitization because a Boolean value 
returned from a (user-defined or built-in) function is definitely 
safe for use in the concerned sink. And such a function can be 
classified statically by checking its function protocol. 

Clearly, nodes in DDGk may also include ordinary 
operations that may or may not serve any security purpose. 
They may simply propagate the input. Consequently, we use 
the attribute Propagate to characterize functions and operations 
that are not classified as any of the rest of types via either static 
analysis or dynamic analysis (discussed in the following). 

Dynamic analysis-based classification: When a node 
invokes a user-defined function or a language built-in string 
replacement/matching function (such as str_replace), the type 
or purpose of the function cannot be easily inferred from static 
analysis. Because inputs to web applications are naturally 
strings, string replacement/matching functions are generally 
used to implement input validation and sanitization procedures. 
A good security function generally consists of a set of string 
functions that allow only valid strings or filter unsafe strings. A 
filtering action entails character removal or escaping. 

In our earlier work [2, 16], we simply characterized such 
string functions with attributes such as Match (e.g., strcmp) 
and Regex-replacement (e.g., preg_replace). This is too 
general and thus, our earlier work could not discriminate 
correct and incorrect string functions (e.g., it treats all 
preg_replace functions as correct or as incorrect). Hence, to 
improve the accuracy of classification, in this paper, dynamic 
analysis is used if a node in DDGk invokes a user-defined 
function or a language built-in string replacement/matching 
function. The dynamic analysis attributes are defined as 
follows: 

1) Numeric: functions that return only numeric, 
mathematic, and/or dash ‘-’ characters (e.g., functions 
that validate inputs such as mathematic equations, 
postal code, or credit card number).    

2) LimitLength: functions that limit the length of an input 
string to a specified number.  

3) URL: functions that filter directory paths or URLs 
(e.g., <a href src=‘www.hack.com/hack.js’).  

4) EventHandler: functions that filter event handlers such 
as onload. 

5) HTMLTag: functions that filter HTML tags (e.g., 
strings between < and the first white space or >).  

6) Delimiter: functions that filter delimiters that could 
disrupt the syntax of intended HTML documents or 
SQL queries (e.g., string-delimiters such as single 
quote and double quote; comment-delimiters such as 
/*, #, //, and --; and some other special characters 
such as parenthesis, semi-colon, backslash, null byte, 
and new line). 

7) AlternateEncode: functions that filter alternate 
character encodings (e.g., char(0x27)). 

Note that though the attribute Numeric is similar to static 
analysis attributes 10 and 11 (Table 1), those two attributes 
characterize the nodes that invoke language-built-in-specific 
numeric type casting operations and numeric type checking 
functions, respectively. 

We believe that the above attributes reflect the types of 
input validation and sanitization methods that are commonly 
used to prevent SQLI or XSS attacks. Clearly, a user-defined 
function or a string replacement/matching function may 
correspond to more than one attribute. If a function corresponds 
to attributes A and B, then, both the values of A and B are to be 
incremented (say A and B are numeric attributes). In detail, (1) 
we maintain seven sets of test inputs derived from XSS and 
SQLI cheat sheets provided by OWASP [1] and RSnake [10]. 
These two security specialists provide a comprehensive 



TABLE I.  STATIC-DYNAMIC HYBRID ATTRIBUTES 

Attribute ID Attribute Name Description 
Static analysis attributes 

1 Client The number of nodes that access data from HTTP request parameters 
2 File The number of nodes that access data from files 
3 Database The number of nodes that access data from database 
4 Text-database Boolean value ‘TRUE’ if there is any text-based data accessed from database; ‘FALSE’ otherwise 
5 Other-database Boolean value ‘TRUE’ if there is any data except text-based data accessed from database; ‘FALSE’ otherwise 
6 Session The number of nodes that access data from persistent data objects 
7 Uninit The number of nodes that reference un-initialized program variable 
8 SQLI-sanitization The number of nodes that apply standard sanitization functions for preventing SQLI issues 
9 XSS-sanitization The number of nodes that apply standard sanitization functions for preventing XSS issues 
10 Numeric-casting The number of nodes that type cast data into a numeric type data 
11 Numeric-type-check The number of nodes that perform numeric data type check 
12 Encoding The number of nodes that encode data into a certain format 
13 Un-taint The number of nodes that return predefined information or information not influenced by external users 
14 Boolean The number of nodes which invoke functions that return Boolean value 
15 Propagate The number of nodes that propagate the tainted-ness of an input string 

Dynamic analysis attributes 
16 Numeric The number of nodes which invoke functions that return only numeric, mathematic, or dash characters 
17 LimitLength The number of nodes that invoke string-length limiting functions 
18 URL The number of nodes that invoke path-filtering functions 
19 EventHandler The number of nodes that invoke event handler filtering functions 
20 HTMLTag The number of nodes that invoke HTML tag filtering functions 
21 Delimiter The number of nodes that invoke delimiter filtering functions 
22 AlternateEncode The number of nodes that invoke alternate character encoding filtering functions 

Target attribute 
23 Vulnerable? Indicates a class label—Vulnerable or Not-Vulnerable  

coverage of XSS and SQLI attack vectors that could filter 
many types of input validation and sanitization routines. Each 
set of test inputs (denoted as test-attr-set) tests for each 
dynamic analysis attribute (e.g., a test input <p>test</p> tests 
for attribute HTMLTag as it could discriminate functions that 
accept or reject HTML tags); and (2) for a test-attr-set T that 
tests for an attribute A, we execute the concerned function with 
a test input t1 from T and check if the function corresponds to A 
from the returned result. If the function cannot be classified as 
A, we choose a different test input t2 and repeat the process 
until it is classified as A or all the test inputs from T have been 
used; (3) step 2 is iterated for all the seven test-attr-sets, each 
set testing for each dynamic analysis attribute. 

Not all function arguments are associated with user inputs. 
Some arguments are assigned with literal values in the 
program. Such literal arguments can be easily identified from 
the nodes in DDGk. Test inputs are only assigned to arguments 
that are derived from user inputs and literal arguments are 
assigned with their own literal values extracted using data flow 
analysis. More than one value is also possible for a literal 
argument if there are conditional branches. It is logical as the 
same function can be used to sanitize a variable differently 
depending on the path along which the variable is propagated. 
For each possible value of a literal argument, we repeat the 
above dynamic classification process. As explained, we expect 
some functions to match multiple classifications.  

Attributes 16-22 in Table 1 represent the classifications 
presented above. We shall provide more details on the 
classification methods in our example section. 

 Target attribute: The last attribute Vulnerable? is the 
target attribute which is used to indicate the class label to be 
predicted. 

B. Classification and Clustering  
Our goal is to build accurate vulnerability prediction 

models (supervised vulnerability prediction) from the hybrid 
attributes presented above. Since the proposed attributes are 
designed to reflect H1, if H1 is true, we should expect that, 
given a sufficient sample of vulnerability data, classifiers learnt 
from such data be accurate at vulnerability predictions. 

Although classifiers can be effective, a sufficient number of 
instances with known vulnerability information is required to 
train a classifier. It is usually tedious and labor-intensive to tag 
many instances with vulnerability labels. Sometimes, the 
vulnerability information is not even yet known. In such 
situations, supervised training (i.e., where training instances 
need to be labeled with vulnerability information) is simply not 
feasible.  

Cluster analysis, on the other hand, is a type of 
unsupervised learning methods in which no class labels are 
required for training with instances. Intrusion detection studies 
[17, 18] have shown that cluster analysis could identify 
numerous anomalies (intrusions in their context) based on the 
two assumptions that (1) normal instances are much more 
frequent than anomalies and (2) anomalies have different 
characteristics from normal instances. If, in our context, the 
same two assumptions hold, cluster analysis could be used for 
identifying vulnerable sinks as well. This leads us our second 
hypothesis (H2): Vulnerable sinks can be distinguished from 
non-vulnerable sinks based on the hybrid attributes proposed 
above.  

If H2 is true, we would observe that cluster analysis on the 
unlabeled instances containing the data of hybrid attributes can 
predict vulnerabilities. Hence, when classification-based 



vulnerability prediction models are not a feasible option, our 
approach also include making use of clustering for building 
vulnerability prediction models from our hybrid attributes 
when the above assumptions are met.  

C. Example 
In this section, we explain in detail the classification 

methods and the attribute collection process using the program 
in Fig. 1. Statement 1 is a class of input because it accesses an 
HTTP session parameter. It can be statically classified via 
checking the accessed, predefined parameter ($_SESSION). 
Statement 2 can be classified as XSS-sanitization because it 
invokes a standard escaping routine. Again, it can be statically 
classified via checking the invoked function name; that is, we 
predefine the function htmlspecialchars as a XSS sanitization 
type. Statement 3 is an Un-taint type. 

Figure 1b shows the data dependence graph of HTML sink 
6 in Fig. 1a. Node 4 invokes a user-defined function and it is 
clear that it could not be precisely classified by just looking up 
the predefined classifications. We classify such nodes via 
dynamic analysis.  

In node 4, a customized security function PMA_backquote is 
invoked with two arguments $trg_db and $sqlEscape. By a 
data flow analysis, the literal value ‘``’ for $sqlEscape is 
extracted from node 3. From node 1, $trg_db is identified as an 
input variable. It is then assigned with a value obtained from 
test-attr-sets. And the function is executed multiple times (each 
time selecting a different value from test-attr-sets) to determine 
if it can be classified with one or more dynamic analysis 
attributes (see Dynamic analysis-based classification). 
Classifications are carried out based on the types of input 
values used and the contents of the resulting outputs. When a 
test input such as `1 or 1=1 is used, the returned result shall be 
``1 or 1=1 and the function would be classified as Delimiter 
as it escapes a string-delimiter ‘`’. Nodes 9 and 10 shall not be 

 
Fig. 1.  (a) Sample vulnerable PHP code extracted from 

PhpMyadmin\server_synchronize.php (slightly modified for illustration 
purpose). The code cleanses an input using standard and customized 
sanitization functions. (b) Data dependence graph of sink statement 6.  

classified as the nodes are contained in the user-defined 
function that has already been classified. 

Based on the above classifications, the attribute vectors for 
HTML sinks 2 and 6 could be extracted from their respective 
data dependence graphs as (1, 1, 1, 0, 0, 1,…, Not-Vulnerable) 
and (1, 1, 0, 1, 1, 1,…, Vulnerable), respectively, according to 
attribute vector (Session, HTML, XSS-sanitization, Un-taint, 
Delimiter, Propagate,…, Vulnerable?). As we propose 23 
hybrid attributes, each sink would be represented by a 23-
dimensional attribute vector. 

IV. EVALUATION 
We conducted two types of experiments in order to assess 

the accuracy of the predictors learnt from the proposed hybrid 
attributes in terms of vulnerability prediction. In the first 
experiment (Section 4.3), we evaluated two different types of 
classifiers on the data sets with class labels—Vulnerable or 
Not-Vulnerable. In the second experiment (Section 4.4), we 
removed the class labels and evaluated a clustering algorithm 
on the data sets without class labels.  

Performance Measures: To evaluate the vulnerability 
predictors, we computed recall or probability of detection (pd), 
probability of false alarm (pf), and precision (pr). We can use 
the following contingency table to define these standard 
measures. 
  Actual 

Vulnerable Not-Vulnerable 
Predicted 
 

Vulnerable True positive (tp) False positive (fp) 
Not-Vulnerable False negative (fn) True negative (tn) 

Recall (pd=tp/(tp+fn)) measures how good our prediction 
model is in finding actual vulnerable sinks. Precision 
(pr=tp/(tp+fp)) measures the actual vulnerable sinks that are 
correctly predicted in terms of a percentage of total number of 
sinks predicted as vulnerable. False alarms (pf=fp/(fp+tn)) is 
generally used to measure the cost of using the model.  
Increasing pd by tuning the prediction model may, in turn, 
cause more false alarms or reduce precision. Ideally, the model 
should neither miss actual vulnerabilities (pd~1) nor throw 
false alarms (pf~0, pr~1). 

A. Data Collection 
For data collection, we modified the tool PhpMinerI, which 

was used in our earlier work [2]. PhpMinerI is based on an 
open source PHP program analysis tool called Pixy [3]. For 
classification via static analysis, 300 PHP built-in functions and 
30 PHP operators are predefined in PhpMinerI, which 
computes data dependence graph for each sink and collects 
static analysis attributes.  In this work, we modified the tool to 
incorporate dynamic analysis classification. Dynamic analysis 
is used when a node in DDGk invokes user-defined functions or 
language built-in string replacement/matching functions. No 
classification is made for nodes in DDGk that are contained in 
dynamically classified user-defined functions to avoid 
unnecessary or overlapping classifications. To identify function 
arguments (i.e., literals or inputs), static data flow analysis is 
used. Test inputs are generated from our predefined test suite 
which reflects the dynamic classification scheme proposed in 
Section 3.1. Functions are executed using the APIs from a 

 

1  $trg_db = $_SESSION['trg_db']; 
2  echo ‘<table><tr><th>Target database: ’ .  

htmlspecialchars($trg_db);  //HTML sink 
. . . 

3  $sqlEscape = ‘``’; 
4  $query = “UPDATE ” . PMA_backquote($trg_db,  

$sqlEscape) . “ SET …”;   
5  if ($display == true) { 
6     echo “<p>” . $query . “</p>”; //HTML sink 
7  $rs = mysql_query($query);  //SQL sink 

 
function PMA_backquote($a_name, $replace) { 

8     if (strlen($a_name) && $a_name !== ‘*’) { 
9       return ‘`’ .  
          str_replace(‘`’, $replace, $a_name) . ‘`’; 

  } else { 
10       return $a_name; 

  } 
   }  
 



PHP/Java Bridge Java package (provided in http://php-java-
bridge.sourceforge.net/pjb/). Function return results are then 
analyzed to determine the intended validation and sanitization 
scheme.  

Experiments were conducted on six real-world PHP-based 
web applications obtained from SourceForge [5]. Table 2 
shows relevant statistics for these test subjects. The last column 
in Table 2 shows the security advisories, such as CVE [6], from 
which the test subjects’ vulnerability information is obtained. 
Some of these test subjects have also been benchmarked for the 
evaluation of some vulnerability detection approaches [3, 4, 28, 
29]. Table 3 shows the data sets collected by PhpMinerI. As 
shown in Table 3, we extracted two types of data sets—one 
corresponds to HTML sinks and another corresponds to SQL 
sinks. In total, we collected 10 data sets (only 4 sets of SQL 
sinks were used as we have not tagged the vulnerability labels 
for SQL sinks in PhpMyAdmin and Utopia systems yet). 
Column 3 in Table 3 shows the number and percentage of 
vulnerable sinks in each data set (manually inspected and 
tagged by the first author). On our web site [7], we provide 
implementation details of PhpMinerI and the data sets. 

B. Data Preprocessing 
Normalization: To generalize the results, our vulnerability 

predictors must be able to handle data of arbitrary distributions. 
Excluding the target attribute, we have 22 hybrid attributes. 
Twenty attributes take on numeric values and two attributes are 
binary. From our preliminary tests, we observed that different 
numeric attributes are defined on different scales and most of 
the attributes’ distributions are highly skewed.  This may cause 
bias toward some attributes (e.g., attributes with large scale 
values), especially in the context of clustering where similarity 
measurement combines multiple attribute scales. We use a data 
standardizing technique called min-max normalization to avoid 
this problem, as described in Witten and Frank [9]. 

Min-max normalization enables our predictors to work in a 
standardized data space instead of a raw data space. An 
attribute is normalized when its value is scaled so as to fall 
within a small specified range (we used the range of zero to 
one). As the normalized value is a linear transformation from 
the original data value, the relationships among the original 
data values are preserved. The min-max normalization is to be 
made for all the instances of every numeric attribute. This shall 
result in a set of values within the range of zero to one. The 
binary attributes do not need to be transformed. 

 Principal component analysis: Principal component 
analysis (PCA) is a useful technique to identify linearly 
uncorrelated dimensions in a large datasets with possibly many 
inter-correlated attributes. Multivariate data mining and 
statistical techniques used to build classifiers, such as logistic 
regression, see their performance negatively impacted in the 
presence of numerous inter-correlated attributes. PCA results in 
a new set of attributes (principal components), each of which is 
a linear combination of some of the original attributes. The 
number of principal components is usually much smaller.   

In our experiments, we applied PCA to every data set (after 
min-max normalization) and used a subset of principal 
components as attributes such that the selected explain at least 

TABLE II.  STATISTICS OF THE TEST SUBJECTS 

Test Subject Description LOC Security Advisories 
SchoolMate  

1.5.4 
A tool for school  

administration 
8145 Vulnerability  

information in [29] 
FaqForge  

1.3.2 
Document creation  
and management 

2238 Bugtraq-43897 

Utopia News 
Pro 1.1.4 

News management 
system 

5737 Bugtraq-15027 

Phorum  
5.2.18 

Message board  
software 

12324 CVE-2008-1486 
CVE-2011-4561 

CuteSITE  
1.2.3 

Content manage-
ment framework 

11441 CVE-2010-5024 
CVE-2010-5025 

PhpMyAdmin 
3.4.4 

MySQL database 
management 

44628 PMASA-2011-14 –  
PMASA-2011-20 

TABLE III.  DATA SETS 

Data Set #HTML sinks #Vuln. sinks 
(%Vuln.) 

Principal  
components 

schmate-html 172 138 (80%) 7 
faqforge-html 115 53 (46%) 7 
utopia-html 86 17 (20%) 9 

phorum-html 237 9 (4%) 9 
cutesite-html 239 40 (17%) 10 

myadmin-html 305 20 (7%) 9 
Data Set #SQL sinks #Vuln. sinks 

(%Vuln.) 
Principal  

components 
schmate-sql 189 152 (80%) 7 
faqforge-sql 42 17 (40%) 3 
phorum-sql 122 5 (4%) 6 
cutesite-sql 63 35 (56%) 7 

95% of the data variance. The last column in Table 3 shows the 
numbers of principal components selected for building 
supervised and unsupervised vulnerability predictors. 

C. Supervised Vulnerability Prediction 
Based on H1, we evaluated two different classifiers learnt 

from our proposed hybrid attributes. 
Classifiers: Classification is a type of supervised learning 

methods because the class label of each training instance has to 
be provided. We built Logistic Regression (LR) and Multi-
Layer Perceptron (MLP) models for this experiment. These 
classifiers were benchmarked as among the top classifiers in 
recent studies [14]. MLP is a type of neural networks. LR is a 
type of statistical regression models. Details about these 
classification techniques are provided by Witten and Frank [9]. 
We used two very different techniques in an attempt to 
optimize accuracy.  

Training and testing: We used a standard sampling method 
called 10-fold cross validation setup. The data is divided into 
ten sets. A classifier is trained on nine sets and then tested on 
the remaining set. This process is repeated ten times; each time 
testing on a different set. The order of training and test set is 
randomized. This test design overcomes the ordering effects 
due to randomization. This is important to avoid a malignant 
increase in performance by a certain ordering of training and 
test data. Isolating a test set from the training set also conforms 
to hold-out test design which is important to evaluate the 
classifier’ capability to predict new vulnerabilities [9].  

Result: The results of the two classifiers learnt from hybrid 
attributes are shown in Fig. 2. On average, both models showed 
good performances with high vulnerability detection rates 



(≥74%) and low false alarm rates (≤8%). But on some data sets 
such as phorum-html and phorum-sql, MLP could not 
discriminate vulnerabilities whereas LR is able to. Therefore, 
based on current results we advise to the use of LR to build 
vulnerability prediction models. 

The significantly low false alarm rates achieved by our new 
models indicate that the models’ precision has improved from 
our initial work [2, 16]. Yet, to provide an exact comparison 
baseline, we also built LR models from static analysis attributes 
alone and evaluated them in the same way as the above models. 
Results are shown in Fig. 3. On average, our proposed LR 
models built from hybrid attributes achieved (pd=16%, pf=3%, 
pr=2%) improvements over the LR models built from static 
analysis attributes only. As suggested by Demšar [20], we also 
used one-tailed Wilcoxon signed-ranks tests to perform 
pairwise comparisons of the measures achieved by the two       

                Measure (%) 
Data &  
Classifier 

 
Pd 

 

 
Pf 
 

 
Pr 

 
schmate-html LR 99 3 98 

MLP 99 0 100 
faqforge-html LR 89 5 94 

MLP 91 5 94 
utopia-html LR 94 1 94 

MLP 94 2 89 
phorum-html LR 78 1 70 

MLP 33 0 100 
cutesite-html LR 68 9 61 

MLP 78 8 67 
myadmin-html 

 
LR 85 1 89 

MLP 75 1 83 
Average results on 

XSS prediction 
LR 86 3 84 

MLP 78 3 89 
schmate-sql LR 97 8 98 

MLP 96 35 92 
faqforge-sql LR 88 4 94 

MLP 88 4 94 
phorum-sql LR 100 3 63 

MLP 0 1 0 
cutesite-sql LR 91 14 89 

MLP 89 18 86 
Average results on 
SQLIV prediction 

LR 94 7 86 
MLP 68 15 68 

Overall average LR 90 5 85 
MLP 74 8 81 

Fig. 2.  Classification results of XSS and SQLI vulnerability predictors built 
from hybrid attributes. 

                Measure (%) 
Data &  
Classifier 

 
Pd 

 

 
Pf 
 

 
Pr 

 
schmate-html LR 99 9 98 
faqforge-html LR 91 6 92 
utopia-html LR 88 3 88 

phorum-html LR 44 1 67 
cutesite-html LR 35 6 54 

myadmin-html LR 80 1 89 
schmate-sql LR 93 30 93 
faqforge-sql LR 88 4 94 
phorum-sql LR 40 1 67 
cutesite-sql LR 86 18 86 

Overall average LR 74 8 83 

Fig. 3.  Classification results of XSS and SQLI vulnerability predictors built 
from static analysis attributes. 

types of LR models over the 10 data sets. The tests show that 
the improvements of recall and precision were statistically 
significant at a 95% level, though only the increase in recall is 
interesting from a practical standpoint. 

We can conclude that dynamic analysis attributes contribute 
to significantly improving the accuracy of vulnerability 
predictors. As these attributes are designed to store the 
information about potentially correct and incorrect input 
validation and sanitization procedures implemented in the 
program, these results support H1. 

D. Unsupervised Vulnerability Prediction 
Regarding H2, we evaluated a clustering model learnt from 

our proposed hybrid attributes. 
Cluster analysis: Unlike classification methods, cluster 

analysis works in the absence of class labels for training 
instances. But its predictive capability would be expected to be 
inherently lower due to the absence of supervision. Like 
Portnoy et al.’s unsupervised intrusion detection study [17], the 
performance of our cluster analysis here should depend on the 
following two assumptions: (1) non-vulnerable sinks are much 
more frequent than vulnerable sinks and (2) vulnerable sinks 
have different characteristics from non-vulnerable sinks. If 
these two assumptions are met and H2 is true, vulnerable sinks 
would be clustered together as outliers in terms of hybrid 
attribute values, which could then be detected by cluster 
analysis.  

Because there is no need to label instances, unsupervised 
learning, such as cluster analysis, is expected to be much less 
expensive than building classifiers for vulnerability prediction.  

We evaluated k-means clustering algorithm applied to our 
proposed hybrid attributes. k-means is a simple and often 
effective partitioning algorithm. Given an input k, it partitions a 
set of instances into k clusters in such a way that similarity 
among instances is maximized within the same clusters and 
minimized across the different clusters. For similarity 
measurement, standard distance functions can be used. For our 
experiments, we used the Euclidean distance function. Further 
details about the algorithm are provided in [9].  

Parameter estimation: As clustering only groups instances 
based on their similarities, some parameters must be defined to 
label the clusters as Vulnerable or Not-Vulnerable. The 
problem here is “Given a set of clusters produced by a 
clustering algorithm, what are the best rules (parameters) to 
single out clusters that contain a large proportion of 
vulnerable sinks?”. In Portnoy et al.’s clustering-based 
intrusion detection study [17], a parameter N=15% was used as 
the percentage of the largest clusters that would be labeled as 
normal as it was found to optimize their results. 

For our clustering-based vulnerability prediction study, we 
used a parameter %Normal. It defines the minimum size (in 
terms of percentage of instances) of clusters that would be 
labeled as Not-Vulnerable. For example, if %Normal=10, the 
clusters containing more than 10% of data would be labeled as 
Not-Vulnerable. As required by k-means algorithm, we also 
needed to determine a parameter k that indicates the number of 
clusters to be produced by k-means.  



We determined the two parameters by performing 
experiments that optimize results on the test subjects used in 
our initial work [2, 16]. The resulting parameters, k=4 and 
%Normal=12, were then consistently used throughout this 
evaluation. 

Result: More than 40% of sinks in schmate-html, faqforge-
html, schmate-sql, faqforge-sql, and cutesite-sql are vulnerable 
sinks (see %Vuln. in Table 3). These data sets clearly violate 
the first assumption (stated above) as they contain many 
vulnerabilities. We expect low predictive power from our 
clustering models for such data sets. Consequently, we 
separated the data sets which meet our assumptions from the 
ones that violate the assumptions, and performed separate 
evaluations. The results on the former data sets are shown in 
Fig. 4 and the results on the latter sets are shown in Fig. 5.  

As shown in Fig. 4, the k-mean’s detection rate is very 
good, especially on utopia-html and phorum-sql data sets. But 
its average precision is half that of the supervised models 
above. This is directly caused by the inherent weakness of the 
unsupervised learning scheme. It is also affected by different 
trade-offs between detection rates and false alarms. The trade-
offs mainly result from the parameter %Normal. With a high 
value of %Normal we label more clusters as Vulnerable and 
reduce precision. Tuning such a parameter must be done in 
context based on available resources for vulnerability 
detections.  

As expected, as shown in Fig. 5, cluster analyses on data 
sets which violate our first assumption result in very low 
detection rates because many or all of the vulnerable sinks did 
not appear as outliers (in terms of hybrid attribute values) to 
our clustering model. Pr was also undefined for some data sets 
as both pd and pf were null.  

From the results in Fig. 4, we can conclude that, if certain 
assumptions are met, cluster analysis on unlabeled instances 
using hybrid attributes can help accurately predict 
vulnerabilities, thus supporting H2.   

 
                Measure (%) 
Data 

 
Pd 

 

 
Pf 
 

 
Pr 
 

utopia-html 100 13 65 
phorum-html 56 11 16 
cutesite-html 70 20 41 
myadmin-html 55 8 33 
phorum-sql 100 7 38 
Average 76 12 39 

Fig. 4.  k-means clustering analysis results on the data sets which meet the 
assumptions. 

                Measure (%) 
Data 

 
Pd 

 

 
Pf 
 

 
Pr 
 

schmate-html 9 0 100 
faqforge-html 26 0 100 
schmate-sql 3 32 29 
faqforge-sql 0 0 undefined 
cutesite-sql 0 0 undefined 
Average 8 6 undefined 

Fig. 5.  k-means clustering analysis results on the data sets which violate the 
assumptions. 

E. Threats to Validity 
Our data only reflects the known vulnerabilities that are 

reported in vulnerability databases. Hence, our vulnerability 
predictions based on classifiers do not account for 
undiscovered vulnerabilities.  

The application of cluster analysis is limited by the two 
assumptions stated above. In our experiments, clustering-based 
prediction models could accurately isolate vulnerabilities in the 
data sets which satisfy those assumptions. However, it is 
unclear how frequently these assumptions hold in practice 
across systems and types of vulnerabilities. Further, we 
estimated two parameters (k and %Normal) driving the 
accuracy of cluster analysis based on our experience with 
preliminary experiments. We used the same two parameters for 
all the data sets. The parameters worked well for our context 
but may not generalize well elsewhere. But as most of our test 
subjects such as PhpMyAdmin are widely-used, real-world 
applications, we believe that the above threats do not 
significantly affect our results although tuning the parameters 
may be required for some applications.  

The use of different or more data preprocessing activities 
may also alter our results. For example, during our preliminary 
experiments, we tested the data sets with and without PCA (see 
Section 4.2). Results without PCA were significantly inferior to 
results with PCA for the majority of data sets though no 
significant differences were observed for some.  

Different classification and clustering algorithms could 
result in different results. In our experiments, we used two very 
different classification algorithms which are statistical-based 
and network-based, respectively. We also tried other classifiers 
like C4.5 and naïve bayes, but the average results were similar. 
We have not tried another algorithm for clustering-based 
prediction, but we expect similar results if similar parameters 
(i.e., k and %Normal) are used. 

Like all other empirical studies, our results are limited to 
the applied data mining processes, the test subjects, and the 
experimental setup used. One good solution to refute, prove, or 
improve our results is to replicate the experiments with new 
test subjects and probably with further data mining strategies. 
This can be easily done since we have clearly defined our 
methods and setup, and we also provide the data used in the 
experiments and the data collection tool on our web site [7]. 

V. RELATED WORK 
Our work applies data mining for the prediction of 

vulnerabilities in web applications. Hence, its related work falls 
into three categories: defect prediction, vulnerability prediction, 
and vulnerability detection. 

Defect prediction: Data mining models used by our 
approach are similar to those used in many defect prediction 
studies [12, 13, 14, 15, 25]. In these studies, defect predictors 
are generally built from static code attributes such as object-
oriented design attributes [12], LOC counts and code 
complexity attributes [14, 15] because static attributes can be 
cheaply and consistently collected across many systems [15]. 
However, it was quickly realized that such attributes can only 
provide limited accuracy [13, 15, 25]. Arisholm et al. [13] and 



Nagappan et al. [25] reported that process attributes (e.g., 
developer experience and fault history) could significantly 
improve prediction models. On the other hand, as process 
attributes are difficult to measure and measurements are often 
inconsistent, Menzies et al. [15] showed that static code 
attributes can still be effective if predictors are tuned to user-
specific goals.  

In contrast to defect prediction studies, our study targets 
security vulnerabilities in web applications. Since these studies 
show that there is no universal set of attributes, we define 
specific attributes targeted at predicting vulnerabilities based 
on automated and scalable static and dynamic analysis. 

Vulnerability prediction: Shin et al. [23] used code 
complexity, code churn, and developer activity attributes to 
predict vulnerable programs. They achieved 80% recall and 
25% false alarm rate. Their assumption was that, the more 
complex the code, the higher the chances of vulnerability. But 
from our observations, many of the vulnerabilities arise from 
simple code and, if a program does not employ any input 
validation and sanitization routines, it would be simpler but 
nevertheless contain many vulnerabilities.  

Walden et al. [24] investigated correlations between the 
security resource indicator (SRI) and the numbers of 
vulnerabilities in PHP web applications. SRI is derived from 
publicly available security information such as past 
vulnerabilities, secure development guidelines, and security 
implications regarding system configurations. Neuhaus et al. 
[26] also predicted vulnerabilities in software components from 
the past vulnerability information, and the imports and function 
calls attributes. Their work is based on the concept that 
components which contain imports and function calls that are 
similar to known vulnerable components are likely to be 
vulnerable as well. They achieved 45% recall and 70% 
precision.  

These existing vulnerability prediction approaches 
generally target software components. By contrast, our method 
targets specific program statements for vulnerability prediction. 
The other difference is that we use code attributes that 
characterize input validation and sanitization routines. 

Vulnerability detection: Jovanovic et al. [3] and Xie and 
Aiken [4] showed that many XSS and SQLI vulnerabilities can 
be detected by static program analysis techniques. They 
identify various input sources and sensitive sinks, and 
determine whether any input data is used in those sinks without 
passing through sanity checks. In general, such static taint 
tracking approaches are effective but not efficient as they 
generate many false alarms. 

To improve precision, Fu and Li [27] and Wassermann and 
Su [28] approximated the string values that may appear at 
sensitive sinks by using symbolic execution and string analysis 
techniques. More recent approaches incorporate dynamic 
analysis techniques, such as concolic execution [11, 29] and 
model checking [30]. These approaches reason about various 
paths in the program that lead to sensitive sinks and attempt to 
generate test cases that are likely to be attack vectors. All these 
approaches reduce false alarm rates. But symbolic, concolic, 
and model checking techniques often lead to a path explosion 

problem. It is difficult to reason about all the paths in the 
program when the program contains many branches and loops. 
Further, the performance of these approaches also depends very 
much on the capabilities of their underlying model checkers or 
string constraint solvers in handling a myriad of string 
operations offered by programming languages. 

By contrast, although our approach also requires dynamic 
analysis, this is done at the function level. It does not require 
string solving and reasoning of (potentially infinite) program 
paths like concolic execution and model checking techniques.  

However, symbolic, concolic, and model checking 
approaches could possibly yield high precision rates which 
may never be matched by data mining methods. Thus, our 
objective is not to provide a replacement for such techniques 
but rather to provide a complementary approach to use when 
they are not applicable or in combination with them. One 
could, for example, first to gather vulnerability predictions on 
code sections using data mining and then focus on the code 
sections with predicted vulnerabilities using any of the more 
precise techniques mentioned above. Thereafter, ideally, the 
confirmed vulnerabilities should be removed by manual 
auditing or by using automated vulnerability removal 
techniques such as the ones proposed in [21, 22]. 

VI. CONCLUSION 
The goal of this paper is to aid security auditing and testing 

by providing probabilistic alerts about potentially vulnerable 
code statements. We propose attributes, based on hybrid static 
and dynamic code analysis, which characterize input validation 
and sanitization code patterns for predicting vulnerabilities 
related to SQL injection and cross site scripting. Given a 
security-sensitive program statement, we collect the hybrid 
attributes by classifying the nodes from its data dependency 
graph. Static analysis is used to classify nodes that have 
unambiguous security-related purposes. Dynamic analysis is 
used to classify nodes that invoke user-defined or language 
built-in string replacement/matching functions since 
classification of such nodes by static analysis could be 
imprecise.  

We evaluated if these hybrid attributes can be used to build 
effective vulnerability predictors, using both supervised and 
unsupervised learning methods. The latter have, in practice, the 
advantage of not requiring labeled training data (with known 
vulnerabilities) but may be significantly less accurate. In the 
experiments on six PHP web applications, we first showed that 
the hybrid attributes can accurately predict vulnerabilities (90% 
recall and 85% precision on average for logistic regression). 
We also observed that dynamic analysis helped achieve much 
better accuracy than static analysis alone, thus justifying its 
application. Last but not least, when meeting certain 
assumptions, cluster analysis showed to be a reasonably 
accurate, unsupervised learning method when no labeled data is 
available for training (76% recall and 39% precision on 
average). But since it is not nearly as accurate as supervised 
learning, it should be considered as a trade-off between data 
collection cost and accuracy.   



To generalize our current results, we hope that researchers 
will replicate our experiment, possibly using the data and tool 
we posted online. We also intend to conduct more experiments 
with industrial applications. While we believe that the proposed 
approach can be a useful and complementary solution to 
existing vulnerability detection and removal approaches, 
studies should be carried out first to determine the feasibility 
and usefulness of integrating multiple approaches (i.e., 
prediction+detection+removal).  
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