
Mining SQL Injection and Cross Site Scripting
Vulnerabilities using Hybrid Program Analysis

Lwin Khin Shar and Hee Beng Kuan Tan
Block S2, School of Electrical and Electronic Engineering

Nanyang Technological University
Nanyang Avenue, Singapore 639798

{shar0035, ibktan}@ntu.edu.sg

Lionel C. Briand
SnT Centre, University of Luxembourg

4 rue Alphonse Weicker, L-2721, Luxembourg
lionel.briand@uni.lu

Abstract—In previous work, we proposed a set of static
attributes that characterize input validation and input
sanitization code patterns. We showed that some of the proposed
static attributes are significant predictors of web application
vulnerabilities related to SQL injection and cross site scripting.
Static attributes have the advantage of reflecting general
properties of a program. Yet, dynamic attributes collected from
execution traces may reflect more specific code characteristics
that are complementary to static attributes. Hence, to improve
our initial work, in this paper, we propose the use of dynamic
attributes to complement static attributes in the prediction of
vulnerabilities. Furthermore, since existing work relies on
supervised learning, it is dependent on the availability of training
data labeled with known vulnerabilities. This paper presents
prediction models that are based on both classification and
clustering in order to predict vulnerabilities, working in the
presence or absence of labeled training data, respectively. In our
experiments across six applications, our new supervised
vulnerability predictors based on hybrid (static and dynamic)
attributes achieved, on average, 90% recall and 85% precision,
that is a sharp increase in recall when compared to static
analysis-based predictions. Though not nearly as accurate, our
unsupervised predictors based on clustering achieved, on
average, 76% recall and 39% precision, thus suggesting they can
be useful in the absence of labeled training data.

Index Terms—Defect prediction, vulnerability, input validation
and sanitization, static and dynamic analysis, empirical study.

I. INTRODUCTION
SQL injection (SQLI) and cross site scripting (XSS) are the

two most common and serious web application vulnerabilities
threatening the privacy and security of both clients and
applications nowadays [1]. To mitigate the two threats, many
vulnerability detection approaches such as static taint analysis
and concolic testing have been proposed. These approaches
have been shown to be effective in finding many security
vulnerabilities. Static taint analysis approaches are generally
easy to be implemented and adopted but are inefficient in
practice due to high false positive rates (low precision).
Concolic testing techniques are highly precise but could be
impractical for large systems due to state space explosion.
Alternative or complementary vulnerability detection solutions
that are both practical for use and precise would be beneficial
to security teams.

Input validation and input sanitization methods are
commonly implemented in web applications to guard against
application-level attacks such as SQLI, XSS, path traversal,
and buffer overflow. Hence, intuitively, an application is
vulnerable if the implementation of input validation and input
sanitization methods is inadequate or incorrect. In our initial
work [2, 16], we mined static code patterns that implement
such methods to build vulnerability predictors based on
supervised learning. We showed that those predictors provide
an alternative, effective solution for SQLI and XSS
vulnerabilities. Although these results were encouraging, our
earlier work suffers from two major drawbacks—(1) though
proposed static attributes are useful predictors, they are limited
in terms of the prediction accuracy they can yield (the
predictive capability of these attributes is dependent on how
precise is the classification of the input validation and
sanitization code patterns); (2) being a supervised learning
based approach, its effectiveness is dependent on the
availability of sufficient training data labeled with manually
checked security vulnerabilities.

This paper addresses the above limitations and provides a
more extensive empirical study than that of our previous work.
It presents a pattern mining approach based on dynamic
analysis that classifies input validation and sanitization
functions through the systematic execution of these functions
and the analysis of their execution traces. We also use both
supervised learning methods and unsupervised learning
methods to build vulnerability predictors so as to determine the
effectiveness of the predictors with or without labeled training
data. In existing vulnerability prediction studies, supervised
learning methods are generally used. We have no knowledge of
vulnerability prediction models built using unsupervised
learning methods. Our goal is to make vulnerability prediction
both more practical and accurate than in previous work.

We evaluated our proposed approach based on experiments
with a set of open source PHP-based web applications with
known XSS and SQLI vulnerabilities. We implemented a tool
called PhpMinerI for extracting relevant data from PHP
programs. We trained two types of vulnerability prediction
models (for predicting SQLI vulnerabilities and XSS
vulnerabilities) using the extracted data. In our cross-validation
experiments, supervised vulnerability predictors built from

hybrid attributes achieved, on average, over 10 data sets, 90%
recall and 85% precision on predicting XSS and SQLI
vulnerabilities. These new predictors improved the recall by
16% and the precision by 2% compared to predictors built from
static analysis attributes alone. Our unsupervised predictors
also achieved, on average, over 5 data sets, 76% recall, 12%
false alarm rate, and 39% precision.

This paper is limited to PHP programming language and
focuses on classifying PHP functions and operations. SQLI and
XSS vulnerabilities are commonly found in many PHP-based
web applications. However, our approach could easily be
extended to other programming languages.

The outline of the paper is as follows. Section 2 discusses
our motivation. Section 3 defines the static-dynamic hybrid
attributes and presents the two hypotheses that we shall
formerly investigate in this paper. Section 4 presents our
vulnerability prediction models and evaluates their accuracy
based on the proposed hybrid attributes. Section 5 discusses
related work. Section 6 concludes our study.

II. MOTIVATION
Both SQLI and XSS vulnerabilities arise from improper

handling of inputs in web application programs. Hence, they
are application-level vulnerabilities. In a typical web program,
user inputs are accessed via forms, URLs, cookies, and XML
files. Those inputs are often processed and propagated to
various program points to accomplish the application’s
objectives. Some of those inputs may then be stored in the
application’s persistent data stores, such as databases and
session objects, for further processing of the application’s
required functionalities. The operations carried out in those
processes often include security-sensitive operations (sinks)
such as HTML response outputs and database accesses. When
user inputs referenced in such operations have not been
sanitized or validated, vulnerabilities arise. XSS vulnerabilities
arise when an unrestricted user input is used in a HTML
response output statement. SQLI vulnerabilities occur when a
user input is used in a SQL statement without proper checks.

Hence, to prevent web application vulnerabilities,
developers often employ input validation/sanitization methods
along the paths propagating the inputs to the sinks. These
methods can be broadly categorized into escaping, meta-
character matching/removal, string length truncating, and data
type checking/conversion [19]. The methods typically
employed are language-provided functions (e.g.,
htmlentities), trusted third-party libraries (e.g., enterprise
security APIs provided by OWASP [1]), or custom functions
developed for specific security or data integrity requirements
by developer himself or a group of security experts.

From the analysis of many vulnerability reports in security
databases such as CVE [6], we derived the following
observations:

• First, many SQLI and XSS vulnerability reports show
that most of these vulnerabilities arise from the
misidentification of inputs. That is, developers may
implement adequate input validation and sanitization
methods but yet, they may fail to recognize all the data

that could be manipulated by external users, thereby
missing some of the inputs for validation. Therefore, in
security analysis, it is important to first identify all the
inputs and the sinks that use them.

• Second, when an input to be used in security-sensitive
program statements is considered to be a numeric type,
it is most effective to use a numeric-type check or
numeric-type conversion (from string since inputs are
originally strings).

• Third, we observed that individual developers often
write their own piece of validation and sanitization
code to protect the specific programs that they are
responsible for. But as also observed by Jovanovic et
al. [3] and Xie and Aiken [4], many of such
customized functions are incorrect often due to
insufficient expertise in security. Thus, for most cases,
the use of language-provided sanitization/validation
functions, widely-accepted third-party security
libraries, or security functions developed by a group of
security experts is typically the most effective defense
method.

• Lastly, different defense methods are generally
required to prevent different types of vulnerabilities.
For example, to prevent SQLI vulnerabilities, escaping
characters that have special meaning to SQL parser is
required whereas escaping characters that have special
meaning to client script interpreters is needed to
prevent XSS vulnerabilities. Thus, care must be taken
to use appropriate methods.

III. PROPOSED APPROACH
The above observations lead us to our first hypothesis (H1):

Except for those cases that involve only numeric inputs that can
always be validated through simple validation, in general, it is
not straightforward for developers to implement defense
against SQLI and XSS vulnerabilities from scratch by only
relying on basic operations provided by the programming
language. Hence, developers should use functions pre-
developed by security experts to implement these defenses.
From H1, we derive the following attributes to build
vulnerability predictors.

A. Hybrid Attributes
Data dependence graph: Our unit of measurement is a

sink. A sink is a node in a control flow graph of a web program
that may cause SQLI or XSS attacks. Basically, a sink
represents a program statement that interacts with a database
(denoted as SQL sink) or web client (denoted as HTML sink).
Given a sink k, we compute its data dependence graph (DDGk)
using data flow analysis. The graph provides reachable
definitions for the variables used in the sink, that is, it contains
the nodes on which the sink is data dependent [8]. As such, any
input validation and sanitization operations implemented for
the sink k can be found in the nodes in DDGk.

The first step of our method is to classify the nodes in
DDGk according to their security-related properties, and then to
capture these classifications in a set of attributes on which

vulnerability predictors are to be built. Basically, our approach
attempts to answer the following research question: “Given the
data dependence graph of a sink, from the number of inputs,
and the numbers and types of input validation and sanitization
functions found on the nodes in the graph, can we predict the
sink’s vulnerability?”.

To classify nodes in DDGk, we use a hybrid approach that
combines static analysis and dynamic analysis techniques.
From the language built-in functions that have specific security
purposes (e.g., addslashes), the language operators (e.g.,
string concatenation operator “.”), or the predefined language
parameters (e.g., $_GET) used in a given node n in DDGk, n is
classified statically. But it is classified dynamically if it invokes
user-defined functions or some built-in functions such as string
replacement and string matching functions. As a control flow
node n may contain a variety of program operations, there may
be multiple classifications for n (see example in Section 3.3).
We shall address the attributes on which the classification
schemes will rely as hybrid attributes. The attributes are listed
in Table 1 and presented next.

Static analysis-based classification: Some of the language
built-in functions and operations can be statically and precisely
classified from their properties or specific purposes. The
classification can be carried out by simply checking the
properties of the function or operation. Attributes 1-15 in Table
1 characterize the functions and operators to be classified
statically. These attributes are similar to those proposed in our
initial work [2, 16]. Hence, we shall only briefly present them.

Depending on the nature of sources, we categorize the
inputs into five types as explained by attributes 1-7 in Table 1.
Attributes 8-13 basically involve language built-in functions
and operators that could be used in input validation and
sanitization procedures. Attribute 8 and 9 correspond to
language-provided SQLI and XSS sanitization routines (e.g.,
htmlspecialchars), respectively. Functions that invoke stored
procedures or prepared statements (e.g., $query->prepare) are
also classified as SQLI sanitization routines. Attribute 10
involves type casting built-in functions or operations (e.g., $a
= (double) $b/$c) that cast the input string into a numeric
type data. Attribute 11 corresponds to language-provided
numeric data type check functions (e.g., is_numeric). Attribute
12 corresponds to encoding functions. An input variable may
be properly sanitized using encoding functions (e.g., <a href=
‘login.php?name=’.urlencode(input)>). Attribute 13
matches to functions or operations that return predefined
information or information not extracted from the input string
(e.g., mysql_num_rows). We include the attribute Boolean as a
type of validation and sanitization because a Boolean value
returned from a (user-defined or built-in) function is definitely
safe for use in the concerned sink. And such a function can be
classified statically by checking its function protocol.

Clearly, nodes in DDGk may also include ordinary
operations that may or may not serve any security purpose.
They may simply propagate the input. Consequently, we use
the attribute Propagate to characterize functions and operations
that are not classified as any of the rest of types via either static
analysis or dynamic analysis (discussed in the following).

Dynamic analysis-based classification: When a node
invokes a user-defined function or a language built-in string
replacement/matching function (such as str_replace), the type
or purpose of the function cannot be easily inferred from static
analysis. Because inputs to web applications are naturally
strings, string replacement/matching functions are generally
used to implement input validation and sanitization procedures.
A good security function generally consists of a set of string
functions that allow only valid strings or filter unsafe strings. A
filtering action entails character removal or escaping.

In our earlier work [2, 16], we simply characterized such
string functions with attributes such as Match (e.g., strcmp)
and Regex-replacement (e.g., preg_replace). This is too
general and thus, our earlier work could not discriminate
correct and incorrect string functions (e.g., it treats all
preg_replace functions as correct or as incorrect). Hence, to
improve the accuracy of classification, in this paper, dynamic
analysis is used if a node in DDGk invokes a user-defined
function or a language built-in string replacement/matching
function. The dynamic analysis attributes are defined as
follows:

1) Numeric: functions that return only numeric,
mathematic, and/or dash ‘-’ characters (e.g., functions
that validate inputs such as mathematic equations,
postal code, or credit card number).

2) LimitLength: functions that limit the length of an input
string to a specified number.

3) URL: functions that filter directory paths or URLs
(e.g., <a href src=‘www.hack.com/hack.js’).

4) EventHandler: functions that filter event handlers such
as onload.

5) HTMLTag: functions that filter HTML tags (e.g.,
strings between < and the first white space or >).

6) Delimiter: functions that filter delimiters that could
disrupt the syntax of intended HTML documents or
SQL queries (e.g., string-delimiters such as single
quote and double quote; comment-delimiters such as
/*, #, //, and --; and some other special characters
such as parenthesis, semi-colon, backslash, null byte,
and new line).

7) AlternateEncode: functions that filter alternate
character encodings (e.g., char(0x27)).

Note that though the attribute Numeric is similar to static
analysis attributes 10 and 11 (Table 1), those two attributes
characterize the nodes that invoke language-built-in-specific
numeric type casting operations and numeric type checking
functions, respectively.

We believe that the above attributes reflect the types of
input validation and sanitization methods that are commonly
used to prevent SQLI or XSS attacks. Clearly, a user-defined
function or a string replacement/matching function may
correspond to more than one attribute. If a function corresponds
to attributes A and B, then, both the values of A and B are to be
incremented (say A and B are numeric attributes). In detail, (1)
we maintain seven sets of test inputs derived from XSS and
SQLI cheat sheets provided by OWASP [1] and RSnake [10].
These two security specialists provide a comprehensive

TABLE I. STATIC-DYNAMIC HYBRID ATTRIBUTES

Attribute ID Attribute Name Description
Static analysis attributes

1 Client The number of nodes that access data from HTTP request parameters
2 File The number of nodes that access data from files
3 Database The number of nodes that access data from database
4 Text-database Boolean value ‘TRUE’ if there is any text-based data accessed from database; ‘FALSE’ otherwise
5 Other-database Boolean value ‘TRUE’ if there is any data except text-based data accessed from database; ‘FALSE’ otherwise
6 Session The number of nodes that access data from persistent data objects
7 Uninit The number of nodes that reference un-initialized program variable
8 SQLI-sanitization The number of nodes that apply standard sanitization functions for preventing SQLI issues
9 XSS-sanitization The number of nodes that apply standard sanitization functions for preventing XSS issues
10 Numeric-casting The number of nodes that type cast data into a numeric type data
11 Numeric-type-check The number of nodes that perform numeric data type check
12 Encoding The number of nodes that encode data into a certain format
13 Un-taint The number of nodes that return predefined information or information not influenced by external users
14 Boolean The number of nodes which invoke functions that return Boolean value
15 Propagate The number of nodes that propagate the tainted-ness of an input string

Dynamic analysis attributes
16 Numeric The number of nodes which invoke functions that return only numeric, mathematic, or dash characters
17 LimitLength The number of nodes that invoke string-length limiting functions
18 URL The number of nodes that invoke path-filtering functions
19 EventHandler The number of nodes that invoke event handler filtering functions
20 HTMLTag The number of nodes that invoke HTML tag filtering functions
21 Delimiter The number of nodes that invoke delimiter filtering functions
22 AlternateEncode The number of nodes that invoke alternate character encoding filtering functions

Target attribute
23 Vulnerable? Indicates a class label—Vulnerable or Not-Vulnerable

coverage of XSS and SQLI attack vectors that could filter
many types of input validation and sanitization routines. Each
set of test inputs (denoted as test-attr-set) tests for each
dynamic analysis attribute (e.g., a test input <p>test</p> tests
for attribute HTMLTag as it could discriminate functions that
accept or reject HTML tags); and (2) for a test-attr-set T that
tests for an attribute A, we execute the concerned function with
a test input t1 from T and check if the function corresponds to A
from the returned result. If the function cannot be classified as
A, we choose a different test input t2 and repeat the process
until it is classified as A or all the test inputs from T have been
used; (3) step 2 is iterated for all the seven test-attr-sets, each
set testing for each dynamic analysis attribute.

Not all function arguments are associated with user inputs.
Some arguments are assigned with literal values in the
program. Such literal arguments can be easily identified from
the nodes in DDGk. Test inputs are only assigned to arguments
that are derived from user inputs and literal arguments are
assigned with their own literal values extracted using data flow
analysis. More than one value is also possible for a literal
argument if there are conditional branches. It is logical as the
same function can be used to sanitize a variable differently
depending on the path along which the variable is propagated.
For each possible value of a literal argument, we repeat the
above dynamic classification process. As explained, we expect
some functions to match multiple classifications.

Attributes 16-22 in Table 1 represent the classifications
presented above. We shall provide more details on the
classification methods in our example section.

 Target attribute: The last attribute Vulnerable? is the
target attribute which is used to indicate the class label to be
predicted.

B. Classification and Clustering
Our goal is to build accurate vulnerability prediction

models (supervised vulnerability prediction) from the hybrid
attributes presented above. Since the proposed attributes are
designed to reflect H1, if H1 is true, we should expect that,
given a sufficient sample of vulnerability data, classifiers learnt
from such data be accurate at vulnerability predictions.

Although classifiers can be effective, a sufficient number of
instances with known vulnerability information is required to
train a classifier. It is usually tedious and labor-intensive to tag
many instances with vulnerability labels. Sometimes, the
vulnerability information is not even yet known. In such
situations, supervised training (i.e., where training instances
need to be labeled with vulnerability information) is simply not
feasible.

Cluster analysis, on the other hand, is a type of
unsupervised learning methods in which no class labels are
required for training with instances. Intrusion detection studies
[17, 18] have shown that cluster analysis could identify
numerous anomalies (intrusions in their context) based on the
two assumptions that (1) normal instances are much more
frequent than anomalies and (2) anomalies have different
characteristics from normal instances. If, in our context, the
same two assumptions hold, cluster analysis could be used for
identifying vulnerable sinks as well. This leads us our second
hypothesis (H2): Vulnerable sinks can be distinguished from
non-vulnerable sinks based on the hybrid attributes proposed
above.

If H2 is true, we would observe that cluster analysis on the
unlabeled instances containing the data of hybrid attributes can
predict vulnerabilities. Hence, when classification-based

vulnerability prediction models are not a feasible option, our
approach also include making use of clustering for building
vulnerability prediction models from our hybrid attributes
when the above assumptions are met.

C. Example
In this section, we explain in detail the classification

methods and the attribute collection process using the program
in Fig. 1. Statement 1 is a class of input because it accesses an
HTTP session parameter. It can be statically classified via
checking the accessed, predefined parameter ($_SESSION).
Statement 2 can be classified as XSS-sanitization because it
invokes a standard escaping routine. Again, it can be statically
classified via checking the invoked function name; that is, we
predefine the function htmlspecialchars as a XSS sanitization
type. Statement 3 is an Un-taint type.

Figure 1b shows the data dependence graph of HTML sink
6 in Fig. 1a. Node 4 invokes a user-defined function and it is
clear that it could not be precisely classified by just looking up
the predefined classifications. We classify such nodes via
dynamic analysis.

In node 4, a customized security function PMA_backquote is
invoked with two arguments $trg_db and $sqlEscape. By a
data flow analysis, the literal value ‘``’ for $sqlEscape is
extracted from node 3. From node 1, $trg_db is identified as an
input variable. It is then assigned with a value obtained from
test-attr-sets. And the function is executed multiple times (each
time selecting a different value from test-attr-sets) to determine
if it can be classified with one or more dynamic analysis
attributes (see Dynamic analysis-based classification).
Classifications are carried out based on the types of input
values used and the contents of the resulting outputs. When a
test input such as `1 or 1=1 is used, the returned result shall be
``1 or 1=1 and the function would be classified as Delimiter
as it escapes a string-delimiter ‘`’. Nodes 9 and 10 shall not be

Fig. 1. (a) Sample vulnerable PHP code extracted from

PhpMyadmin\server_synchronize.php (slightly modified for illustration
purpose). The code cleanses an input using standard and customized
sanitization functions. (b) Data dependence graph of sink statement 6.

classified as the nodes are contained in the user-defined
function that has already been classified.

Based on the above classifications, the attribute vectors for
HTML sinks 2 and 6 could be extracted from their respective
data dependence graphs as (1, 1, 1, 0, 0, 1,…, Not-Vulnerable)
and (1, 1, 0, 1, 1, 1,…, Vulnerable), respectively, according to
attribute vector (Session, HTML, XSS-sanitization, Un-taint,
Delimiter, Propagate,…, Vulnerable?). As we propose 23
hybrid attributes, each sink would be represented by a 23-
dimensional attribute vector.

IV. EVALUATION
We conducted two types of experiments in order to assess

the accuracy of the predictors learnt from the proposed hybrid
attributes in terms of vulnerability prediction. In the first
experiment (Section 4.3), we evaluated two different types of
classifiers on the data sets with class labels—Vulnerable or
Not-Vulnerable. In the second experiment (Section 4.4), we
removed the class labels and evaluated a clustering algorithm
on the data sets without class labels.

Performance Measures: To evaluate the vulnerability
predictors, we computed recall or probability of detection (pd),
probability of false alarm (pf), and precision (pr). We can use
the following contingency table to define these standard
measures.
 Actual

Vulnerable Not-Vulnerable
Predicted

Vulnerable True positive (tp) False positive (fp)
Not-Vulnerable False negative (fn) True negative (tn)

Recall (pd=tp/(tp+fn)) measures how good our prediction
model is in finding actual vulnerable sinks. Precision
(pr=tp/(tp+fp)) measures the actual vulnerable sinks that are
correctly predicted in terms of a percentage of total number of
sinks predicted as vulnerable. False alarms (pf=fp/(fp+tn)) is
generally used to measure the cost of using the model.
Increasing pd by tuning the prediction model may, in turn,
cause more false alarms or reduce precision. Ideally, the model
should neither miss actual vulnerabilities (pd~1) nor throw
false alarms (pf~0, pr~1).

A. Data Collection
For data collection, we modified the tool PhpMinerI, which

was used in our earlier work [2]. PhpMinerI is based on an
open source PHP program analysis tool called Pixy [3]. For
classification via static analysis, 300 PHP built-in functions and
30 PHP operators are predefined in PhpMinerI, which
computes data dependence graph for each sink and collects
static analysis attributes. In this work, we modified the tool to
incorporate dynamic analysis classification. Dynamic analysis
is used when a node in DDGk invokes user-defined functions or
language built-in string replacement/matching functions. No
classification is made for nodes in DDGk that are contained in
dynamically classified user-defined functions to avoid
unnecessary or overlapping classifications. To identify function
arguments (i.e., literals or inputs), static data flow analysis is
used. Test inputs are generated from our predefined test suite
which reflects the dynamic classification scheme proposed in
Section 3.1. Functions are executed using the APIs from a

1 $trg_db = $_SESSION['trg_db'];
2 echo ‘<table><tr><th>Target database: ’ .

htmlspecialchars($trg_db); //HTML sink
. . .

3 $sqlEscape = ‘``’;
4 $query = “UPDATE ” . PMA_backquote($trg_db,

$sqlEscape) . “ SET …”;
5 if ($display == true) {
6 echo “<p>” . $query . “</p>”; //HTML sink
7 $rs = mysql_query($query); //SQL sink

function PMA_backquote($a_name, $replace) {

8 if (strlen($a_name) && $a_name !== ‘*’) {
9 return ‘`’ .
 str_replace(‘`’, $replace, $a_name) . ‘`’;

 } else {
10 return $a_name;

 }
 }

PHP/Java Bridge Java package (provided in http://php-java-
bridge.sourceforge.net/pjb/). Function return results are then
analyzed to determine the intended validation and sanitization
scheme.

Experiments were conducted on six real-world PHP-based
web applications obtained from SourceForge [5]. Table 2
shows relevant statistics for these test subjects. The last column
in Table 2 shows the security advisories, such as CVE [6], from
which the test subjects’ vulnerability information is obtained.
Some of these test subjects have also been benchmarked for the
evaluation of some vulnerability detection approaches [3, 4, 28,
29]. Table 3 shows the data sets collected by PhpMinerI. As
shown in Table 3, we extracted two types of data sets—one
corresponds to HTML sinks and another corresponds to SQL
sinks. In total, we collected 10 data sets (only 4 sets of SQL
sinks were used as we have not tagged the vulnerability labels
for SQL sinks in PhpMyAdmin and Utopia systems yet).
Column 3 in Table 3 shows the number and percentage of
vulnerable sinks in each data set (manually inspected and
tagged by the first author). On our web site [7], we provide
implementation details of PhpMinerI and the data sets.

B. Data Preprocessing
Normalization: To generalize the results, our vulnerability

predictors must be able to handle data of arbitrary distributions.
Excluding the target attribute, we have 22 hybrid attributes.
Twenty attributes take on numeric values and two attributes are
binary. From our preliminary tests, we observed that different
numeric attributes are defined on different scales and most of
the attributes’ distributions are highly skewed. This may cause
bias toward some attributes (e.g., attributes with large scale
values), especially in the context of clustering where similarity
measurement combines multiple attribute scales. We use a data
standardizing technique called min-max normalization to avoid
this problem, as described in Witten and Frank [9].

Min-max normalization enables our predictors to work in a
standardized data space instead of a raw data space. An
attribute is normalized when its value is scaled so as to fall
within a small specified range (we used the range of zero to
one). As the normalized value is a linear transformation from
the original data value, the relationships among the original
data values are preserved. The min-max normalization is to be
made for all the instances of every numeric attribute. This shall
result in a set of values within the range of zero to one. The
binary attributes do not need to be transformed.

 Principal component analysis: Principal component
analysis (PCA) is a useful technique to identify linearly
uncorrelated dimensions in a large datasets with possibly many
inter-correlated attributes. Multivariate data mining and
statistical techniques used to build classifiers, such as logistic
regression, see their performance negatively impacted in the
presence of numerous inter-correlated attributes. PCA results in
a new set of attributes (principal components), each of which is
a linear combination of some of the original attributes. The
number of principal components is usually much smaller.

In our experiments, we applied PCA to every data set (after
min-max normalization) and used a subset of principal
components as attributes such that the selected explain at least

TABLE II. STATISTICS OF THE TEST SUBJECTS

Test Subject Description LOC Security Advisories
SchoolMate

1.5.4
A tool for school

administration
8145 Vulnerability

information in [29]
FaqForge

1.3.2
Document creation
and management

2238 Bugtraq-43897

Utopia News
Pro 1.1.4

News management
system

5737 Bugtraq-15027

Phorum
5.2.18

Message board
software

12324 CVE-2008-1486
CVE-2011-4561

CuteSITE
1.2.3

Content manage-
ment framework

11441 CVE-2010-5024
CVE-2010-5025

PhpMyAdmin
3.4.4

MySQL database
management

44628 PMASA-2011-14 –
PMASA-2011-20

TABLE III. DATA SETS

Data Set #HTML sinks #Vuln. sinks
(%Vuln.)

Principal
components

schmate-html 172 138 (80%) 7
faqforge-html 115 53 (46%) 7
utopia-html 86 17 (20%) 9

phorum-html 237 9 (4%) 9
cutesite-html 239 40 (17%) 10

myadmin-html 305 20 (7%) 9
Data Set #SQL sinks #Vuln. sinks

(%Vuln.)
Principal

components
schmate-sql 189 152 (80%) 7
faqforge-sql 42 17 (40%) 3
phorum-sql 122 5 (4%) 6
cutesite-sql 63 35 (56%) 7

95% of the data variance. The last column in Table 3 shows the
numbers of principal components selected for building
supervised and unsupervised vulnerability predictors.

C. Supervised Vulnerability Prediction
Based on H1, we evaluated two different classifiers learnt

from our proposed hybrid attributes.
Classifiers: Classification is a type of supervised learning

methods because the class label of each training instance has to
be provided. We built Logistic Regression (LR) and Multi-
Layer Perceptron (MLP) models for this experiment. These
classifiers were benchmarked as among the top classifiers in
recent studies [14]. MLP is a type of neural networks. LR is a
type of statistical regression models. Details about these
classification techniques are provided by Witten and Frank [9].
We used two very different techniques in an attempt to
optimize accuracy.

Training and testing: We used a standard sampling method
called 10-fold cross validation setup. The data is divided into
ten sets. A classifier is trained on nine sets and then tested on
the remaining set. This process is repeated ten times; each time
testing on a different set. The order of training and test set is
randomized. This test design overcomes the ordering effects
due to randomization. This is important to avoid a malignant
increase in performance by a certain ordering of training and
test data. Isolating a test set from the training set also conforms
to hold-out test design which is important to evaluate the
classifier’ capability to predict new vulnerabilities [9].

Result: The results of the two classifiers learnt from hybrid
attributes are shown in Fig. 2. On average, both models showed
good performances with high vulnerability detection rates

(≥74%) and low false alarm rates (≤8%). But on some data sets
such as phorum-html and phorum-sql, MLP could not
discriminate vulnerabilities whereas LR is able to. Therefore,
based on current results we advise to the use of LR to build
vulnerability prediction models.

The significantly low false alarm rates achieved by our new
models indicate that the models’ precision has improved from
our initial work [2, 16]. Yet, to provide an exact comparison
baseline, we also built LR models from static analysis attributes
alone and evaluated them in the same way as the above models.
Results are shown in Fig. 3. On average, our proposed LR
models built from hybrid attributes achieved (pd=16%, pf=3%,
pr=2%) improvements over the LR models built from static
analysis attributes only. As suggested by Demšar [20], we also
used one-tailed Wilcoxon signed-ranks tests to perform
pairwise comparisons of the measures achieved by the two

 Measure (%)
Data &
Classifier

Pd

Pf

Pr

schmate-html LR 99 3 98

MLP 99 0 100
faqforge-html LR 89 5 94

MLP 91 5 94
utopia-html LR 94 1 94

MLP 94 2 89
phorum-html LR 78 1 70

MLP 33 0 100
cutesite-html LR 68 9 61

MLP 78 8 67
myadmin-html

LR 85 1 89

MLP 75 1 83
Average results on

XSS prediction
LR 86 3 84

MLP 78 3 89
schmate-sql LR 97 8 98

MLP 96 35 92
faqforge-sql LR 88 4 94

MLP 88 4 94
phorum-sql LR 100 3 63

MLP 0 1 0
cutesite-sql LR 91 14 89

MLP 89 18 86
Average results on
SQLIV prediction

LR 94 7 86
MLP 68 15 68

Overall average LR 90 5 85
MLP 74 8 81

Fig. 2. Classification results of XSS and SQLI vulnerability predictors built
from hybrid attributes.

 Measure (%)
Data &
Classifier

Pd

Pf

Pr

schmate-html LR 99 9 98
faqforge-html LR 91 6 92
utopia-html LR 88 3 88

phorum-html LR 44 1 67
cutesite-html LR 35 6 54

myadmin-html LR 80 1 89
schmate-sql LR 93 30 93
faqforge-sql LR 88 4 94
phorum-sql LR 40 1 67
cutesite-sql LR 86 18 86

Overall average LR 74 8 83

Fig. 3. Classification results of XSS and SQLI vulnerability predictors built
from static analysis attributes.

types of LR models over the 10 data sets. The tests show that
the improvements of recall and precision were statistically
significant at a 95% level, though only the increase in recall is
interesting from a practical standpoint.

We can conclude that dynamic analysis attributes contribute
to significantly improving the accuracy of vulnerability
predictors. As these attributes are designed to store the
information about potentially correct and incorrect input
validation and sanitization procedures implemented in the
program, these results support H1.

D. Unsupervised Vulnerability Prediction
Regarding H2, we evaluated a clustering model learnt from

our proposed hybrid attributes.
Cluster analysis: Unlike classification methods, cluster

analysis works in the absence of class labels for training
instances. But its predictive capability would be expected to be
inherently lower due to the absence of supervision. Like
Portnoy et al.’s unsupervised intrusion detection study [17], the
performance of our cluster analysis here should depend on the
following two assumptions: (1) non-vulnerable sinks are much
more frequent than vulnerable sinks and (2) vulnerable sinks
have different characteristics from non-vulnerable sinks. If
these two assumptions are met and H2 is true, vulnerable sinks
would be clustered together as outliers in terms of hybrid
attribute values, which could then be detected by cluster
analysis.

Because there is no need to label instances, unsupervised
learning, such as cluster analysis, is expected to be much less
expensive than building classifiers for vulnerability prediction.

We evaluated k-means clustering algorithm applied to our
proposed hybrid attributes. k-means is a simple and often
effective partitioning algorithm. Given an input k, it partitions a
set of instances into k clusters in such a way that similarity
among instances is maximized within the same clusters and
minimized across the different clusters. For similarity
measurement, standard distance functions can be used. For our
experiments, we used the Euclidean distance function. Further
details about the algorithm are provided in [9].

Parameter estimation: As clustering only groups instances
based on their similarities, some parameters must be defined to
label the clusters as Vulnerable or Not-Vulnerable. The
problem here is “Given a set of clusters produced by a
clustering algorithm, what are the best rules (parameters) to
single out clusters that contain a large proportion of
vulnerable sinks?”. In Portnoy et al.’s clustering-based
intrusion detection study [17], a parameter N=15% was used as
the percentage of the largest clusters that would be labeled as
normal as it was found to optimize their results.

For our clustering-based vulnerability prediction study, we
used a parameter %Normal. It defines the minimum size (in
terms of percentage of instances) of clusters that would be
labeled as Not-Vulnerable. For example, if %Normal=10, the
clusters containing more than 10% of data would be labeled as
Not-Vulnerable. As required by k-means algorithm, we also
needed to determine a parameter k that indicates the number of
clusters to be produced by k-means.

We determined the two parameters by performing
experiments that optimize results on the test subjects used in
our initial work [2, 16]. The resulting parameters, k=4 and
%Normal=12, were then consistently used throughout this
evaluation.

Result: More than 40% of sinks in schmate-html, faqforge-
html, schmate-sql, faqforge-sql, and cutesite-sql are vulnerable
sinks (see %Vuln. in Table 3). These data sets clearly violate
the first assumption (stated above) as they contain many
vulnerabilities. We expect low predictive power from our
clustering models for such data sets. Consequently, we
separated the data sets which meet our assumptions from the
ones that violate the assumptions, and performed separate
evaluations. The results on the former data sets are shown in
Fig. 4 and the results on the latter sets are shown in Fig. 5.

As shown in Fig. 4, the k-mean’s detection rate is very
good, especially on utopia-html and phorum-sql data sets. But
its average precision is half that of the supervised models
above. This is directly caused by the inherent weakness of the
unsupervised learning scheme. It is also affected by different
trade-offs between detection rates and false alarms. The trade-
offs mainly result from the parameter %Normal. With a high
value of %Normal we label more clusters as Vulnerable and
reduce precision. Tuning such a parameter must be done in
context based on available resources for vulnerability
detections.

As expected, as shown in Fig. 5, cluster analyses on data
sets which violate our first assumption result in very low
detection rates because many or all of the vulnerable sinks did
not appear as outliers (in terms of hybrid attribute values) to
our clustering model. Pr was also undefined for some data sets
as both pd and pf were null.

From the results in Fig. 4, we can conclude that, if certain
assumptions are met, cluster analysis on unlabeled instances
using hybrid attributes can help accurately predict
vulnerabilities, thus supporting H2.

 Measure (%)
Data

Pd

Pf

Pr

utopia-html 100 13 65
phorum-html 56 11 16
cutesite-html 70 20 41
myadmin-html 55 8 33
phorum-sql 100 7 38
Average 76 12 39

Fig. 4. k-means clustering analysis results on the data sets which meet the
assumptions.

 Measure (%)
Data

Pd

Pf

Pr

schmate-html 9 0 100
faqforge-html 26 0 100
schmate-sql 3 32 29
faqforge-sql 0 0 undefined
cutesite-sql 0 0 undefined
Average 8 6 undefined

Fig. 5. k-means clustering analysis results on the data sets which violate the
assumptions.

E. Threats to Validity
Our data only reflects the known vulnerabilities that are

reported in vulnerability databases. Hence, our vulnerability
predictions based on classifiers do not account for
undiscovered vulnerabilities.

The application of cluster analysis is limited by the two
assumptions stated above. In our experiments, clustering-based
prediction models could accurately isolate vulnerabilities in the
data sets which satisfy those assumptions. However, it is
unclear how frequently these assumptions hold in practice
across systems and types of vulnerabilities. Further, we
estimated two parameters (k and %Normal) driving the
accuracy of cluster analysis based on our experience with
preliminary experiments. We used the same two parameters for
all the data sets. The parameters worked well for our context
but may not generalize well elsewhere. But as most of our test
subjects such as PhpMyAdmin are widely-used, real-world
applications, we believe that the above threats do not
significantly affect our results although tuning the parameters
may be required for some applications.

The use of different or more data preprocessing activities
may also alter our results. For example, during our preliminary
experiments, we tested the data sets with and without PCA (see
Section 4.2). Results without PCA were significantly inferior to
results with PCA for the majority of data sets though no
significant differences were observed for some.

Different classification and clustering algorithms could
result in different results. In our experiments, we used two very
different classification algorithms which are statistical-based
and network-based, respectively. We also tried other classifiers
like C4.5 and naïve bayes, but the average results were similar.
We have not tried another algorithm for clustering-based
prediction, but we expect similar results if similar parameters
(i.e., k and %Normal) are used.

Like all other empirical studies, our results are limited to
the applied data mining processes, the test subjects, and the
experimental setup used. One good solution to refute, prove, or
improve our results is to replicate the experiments with new
test subjects and probably with further data mining strategies.
This can be easily done since we have clearly defined our
methods and setup, and we also provide the data used in the
experiments and the data collection tool on our web site [7].

V. RELATED WORK
Our work applies data mining for the prediction of

vulnerabilities in web applications. Hence, its related work falls
into three categories: defect prediction, vulnerability prediction,
and vulnerability detection.

Defect prediction: Data mining models used by our
approach are similar to those used in many defect prediction
studies [12, 13, 14, 15, 25]. In these studies, defect predictors
are generally built from static code attributes such as object-
oriented design attributes [12], LOC counts and code
complexity attributes [14, 15] because static attributes can be
cheaply and consistently collected across many systems [15].
However, it was quickly realized that such attributes can only
provide limited accuracy [13, 15, 25]. Arisholm et al. [13] and

Nagappan et al. [25] reported that process attributes (e.g.,
developer experience and fault history) could significantly
improve prediction models. On the other hand, as process
attributes are difficult to measure and measurements are often
inconsistent, Menzies et al. [15] showed that static code
attributes can still be effective if predictors are tuned to user-
specific goals.

In contrast to defect prediction studies, our study targets
security vulnerabilities in web applications. Since these studies
show that there is no universal set of attributes, we define
specific attributes targeted at predicting vulnerabilities based
on automated and scalable static and dynamic analysis.

Vulnerability prediction: Shin et al. [23] used code
complexity, code churn, and developer activity attributes to
predict vulnerable programs. They achieved 80% recall and
25% false alarm rate. Their assumption was that, the more
complex the code, the higher the chances of vulnerability. But
from our observations, many of the vulnerabilities arise from
simple code and, if a program does not employ any input
validation and sanitization routines, it would be simpler but
nevertheless contain many vulnerabilities.

Walden et al. [24] investigated correlations between the
security resource indicator (SRI) and the numbers of
vulnerabilities in PHP web applications. SRI is derived from
publicly available security information such as past
vulnerabilities, secure development guidelines, and security
implications regarding system configurations. Neuhaus et al.
[26] also predicted vulnerabilities in software components from
the past vulnerability information, and the imports and function
calls attributes. Their work is based on the concept that
components which contain imports and function calls that are
similar to known vulnerable components are likely to be
vulnerable as well. They achieved 45% recall and 70%
precision.

These existing vulnerability prediction approaches
generally target software components. By contrast, our method
targets specific program statements for vulnerability prediction.
The other difference is that we use code attributes that
characterize input validation and sanitization routines.

Vulnerability detection: Jovanovic et al. [3] and Xie and
Aiken [4] showed that many XSS and SQLI vulnerabilities can
be detected by static program analysis techniques. They
identify various input sources and sensitive sinks, and
determine whether any input data is used in those sinks without
passing through sanity checks. In general, such static taint
tracking approaches are effective but not efficient as they
generate many false alarms.

To improve precision, Fu and Li [27] and Wassermann and
Su [28] approximated the string values that may appear at
sensitive sinks by using symbolic execution and string analysis
techniques. More recent approaches incorporate dynamic
analysis techniques, such as concolic execution [11, 29] and
model checking [30]. These approaches reason about various
paths in the program that lead to sensitive sinks and attempt to
generate test cases that are likely to be attack vectors. All these
approaches reduce false alarm rates. But symbolic, concolic,
and model checking techniques often lead to a path explosion

problem. It is difficult to reason about all the paths in the
program when the program contains many branches and loops.
Further, the performance of these approaches also depends very
much on the capabilities of their underlying model checkers or
string constraint solvers in handling a myriad of string
operations offered by programming languages.

By contrast, although our approach also requires dynamic
analysis, this is done at the function level. It does not require
string solving and reasoning of (potentially infinite) program
paths like concolic execution and model checking techniques.

However, symbolic, concolic, and model checking
approaches could possibly yield high precision rates which
may never be matched by data mining methods. Thus, our
objective is not to provide a replacement for such techniques
but rather to provide a complementary approach to use when
they are not applicable or in combination with them. One
could, for example, first to gather vulnerability predictions on
code sections using data mining and then focus on the code
sections with predicted vulnerabilities using any of the more
precise techniques mentioned above. Thereafter, ideally, the
confirmed vulnerabilities should be removed by manual
auditing or by using automated vulnerability removal
techniques such as the ones proposed in [21, 22].

VI. CONCLUSION
The goal of this paper is to aid security auditing and testing

by providing probabilistic alerts about potentially vulnerable
code statements. We propose attributes, based on hybrid static
and dynamic code analysis, which characterize input validation
and sanitization code patterns for predicting vulnerabilities
related to SQL injection and cross site scripting. Given a
security-sensitive program statement, we collect the hybrid
attributes by classifying the nodes from its data dependency
graph. Static analysis is used to classify nodes that have
unambiguous security-related purposes. Dynamic analysis is
used to classify nodes that invoke user-defined or language
built-in string replacement/matching functions since
classification of such nodes by static analysis could be
imprecise.

We evaluated if these hybrid attributes can be used to build
effective vulnerability predictors, using both supervised and
unsupervised learning methods. The latter have, in practice, the
advantage of not requiring labeled training data (with known
vulnerabilities) but may be significantly less accurate. In the
experiments on six PHP web applications, we first showed that
the hybrid attributes can accurately predict vulnerabilities (90%
recall and 85% precision on average for logistic regression).
We also observed that dynamic analysis helped achieve much
better accuracy than static analysis alone, thus justifying its
application. Last but not least, when meeting certain
assumptions, cluster analysis showed to be a reasonably
accurate, unsupervised learning method when no labeled data is
available for training (76% recall and 39% precision on
average). But since it is not nearly as accurate as supervised
learning, it should be considered as a trade-off between data
collection cost and accuracy.

To generalize our current results, we hope that researchers
will replicate our experiment, possibly using the data and tool
we posted online. We also intend to conduct more experiments
with industrial applications. While we believe that the proposed
approach can be a useful and complementary solution to
existing vulnerability detection and removal approaches,
studies should be carried out first to determine the feasibility
and usefulness of integrating multiple approaches (i.e.,
prediction+detection+removal).

REFERENCES
[1] OWASP. “The open web application security project,”

http://www.owasp.org, accessed January 2012.

[2] L. K. Shar and H. B. K. Tan, “Mining input sanitization patterns
for predicting SQL injection and cross site scripting
vulnerabilities,” in International Conference on Software
Engineering, 2012, pp. 1293-1296.

[3] N. Jovanovic, C. Kruegel, and E. Kirda, “Pixy: a static analysis
tool for detecting web application vulnerabilities,” in IEEE
Symposium on Security and Privacy, 2006, pp. 258-263.

[4] Y. Xie and A. Aiken, “Static detection of security vulnerabilities
in scripting languages,” in USENIX Security Symposium, 2006,
pp. 179-192.

[5] SourceForge. http://www.sourceforge.net, accessed March 2012.

[6] CVE. http://cve.mitre.org, accessed March 2012.

[7] PhpMiner. http://sharlwinkhin.com/phpminer.html.

[8] J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The program
dependence graph and its use in optimization,” ACM
Transactions on Programming Languages and Systems, vol. 9,
pp. 319-349, 1987.

[9] I. H. Witten and E. Frank, Data Mining, 2nd ed., Morgan
Kaufmann, 2005.

[10] RSnake. http://ha.ckers.org, accessed March 2012.

[11] K. Jayaraman, D. Harvison, V. Ganesh, and A. Kieżun, “jFuzz:
a concolic whitebox fuzzer for Java,” in NASA Formal Methods
Symposium, 2009, pp. 121-125.

[12] L. C. Briand, J. Wüst, J. W. Daly, and D. V. Porter, “Exploring
the relationships between design measures and software quality
in object-oriented systems,” Journal of Systems and Software,
vol. 51 (3), pp. 245-273, 2000.

[13] E. Arisholm, L. C. Briand, and E. B. Johannessen, “A systematic
and comprehensive investigation of methods to build and
evaluate fault prediction models,” Journal of Systems and
Software, vol. 83 (1), pp. 2–17. 2010.

[14] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch,
“Benchmarking classification models for software defect
prediction: a proposed framework and novel findings,” IEEE
Transactions on Software Engineering, vol. 34 (4), pp. 485-496,
2008.

[15] T. Menzies, Z. Milton, B. Turhan, B. Cukic, Y. Jiang, and A.
Bener, “Defect prediction from static code features: current
results, limitations, new approaches,” Automated Software
Engineering, vol. 17 (4), pp. 375-407, 2010.

[16] L. K. Shar and H. B. K. Tan, “Predicting common web
application vulnerabilities from input validation and sanitization
code patterns,” in IEEE/ACM International Conference on
Automated Software Engineering, 2012, in press.

[17] L. Portnoy, E. Eskin, and S. Stolfo, “Intrusion detection with
unlabeled data using clustering,” in ACM CSS Workshop on
Data Mining Applied to Security, 2001.

[18] S. Thamaraiselvi, R. Srivathsan, J. Imayavendhan, R.
Muthuregunathan, and S. Siddharth, “Combining naive-bayesian
classifier and genetic clustering for effective anomaly based
intrusion detection,” Lecture Notes in Computer Science, vol.
5908, pp. 455-462, 2009.

[19] S. Palmer, Web Application Vulnerabilities: Detect, Exploit,
Prevent, Syngress, 2007.

[20] J. Demšar, “Statistical comparisons of classifiers over multiple
data sets,” Journal of Machine Learning Research, vol. 7, pp. 1-
30, 2006.

[21] S. Thomas, L. Williams, and T. Xie, “On automated prepared
statement generation to remove SQL injection vulnerabilities,”
Information and Software Technology, vol. 51 (3), pp. 589-598,
2009.

[22] L. K. Shar and H. B. K. Tan, “Automated removal of cross site
scripting vulnerabilities in web applications,” Information and
Software Technology, vol. 54 (5), pp. 467-478, 2012.

[23] Y. Shin, A. Meneely, L. Williams, and J. A. Osborne,
“Evaluating complexity, code churn, and developer activity
metrics as indicators of software vulnerabilities,” IEEE
Transactions on Software Engineering, vol. 37 (6), pp. 772-787,
2011.

[24] J. Walden, M. Doyle, G. A. Welch, and M. Whelan, “Security of
open source web applications,” in International Symposium on
Empirical Software Engineering and Measurement, 2009, pp.
545-553.

[25] N. Nagappan, T. Ball, and B. Murphy, “Using historical in-
process and product metrics for early estimation of software
failures,” in International Symposium on Software Reliability
Engineering, 2006, pp. 62-74.

[26] S. Neuhaus, T. Zimmermann, C. Holler, and A. Zeller,
“Predicting vulnerable software components,” in ACM
Conference on Computer and Communications Security, 2007,
pp. 529-540.

[27] X. Fu and C.-C. Li, “A string constraint solver for detecting web
application vulnerability,” in International Conference on
Software Engineering and Knowledge Engineering, 2010, pp.
535–542.

[28] G. Wassermann and Z. Su, “Sound and precise analysis of web
applications for injection vulnerabilities,” In ACM SIGPLAN
Conference on Programming Language Design and
Implementation, 2007, pp. 32-41.

[29] A. Kieżun, P. J. Guo, K. Jayaraman, and M. D. Ernst,
“Automatic creation of SQL injection and cross-site scripting
attacks,” in International Conference on Software Engineering,
2009, pp. 199-209.

[30] M. Martin and M. S. Lam, “Automatic generation of XSS and
SQL injection attacks with goal-directed model checking,” in
USENIX Security Symposium, 2008, pp. 31-43.

