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Abstract

Time-of-Flight (ToF) cameras are known to be cost-efficient 3-D sensing

systems capable of providing full scene depth information at a high frame

rate. Among many other advantages, ToF cameras are able to provide

distance information regardless of the illumination conditions and with no

texture dependency, which makes them very suitable for computer vision

and robotic applications where reliable distance measurements are required.

However, the resolution of the given depth maps is far below the resolution

given by standard 2-D video cameras which, indeed, restricts the use of ToF

cameras in real applications such as those for safety and surveillance. In

this thesis, we therefore investigate how to enhance the resolution of ToF

data and how to reduce the noise level within distance measurements. To

that end, we propose to combine 2-D and ToF data using a low-level data

fusion approach that enhances the low-resolution depth maps up to the

same resolution as their corresponding 2-D images.

Low-level data fusion requires the data to be fused to be accurately aligned.

Therefore, the first part of this thesis proposes a real-time mapping proce-

dure for data matching. The challenge addressed thereby is to cope with

the distance-dependent disparity in an efficient way. To that end, a set of

look-up tables for an array of disparities is pre-computed. Then, the map-

ping is performed through an iterative algorithm that selects pixel by pixel

the look-up table that corresponds to the distance measurement of the pixel

to be mapped. The experimental results of this part show that in addition

to being straightforward and easy to compute, our proposed data matching

approach is highly accurate.

The second part of this thesis presents a unified multi-lateral filter for real-

time low-resolution depth map enhancement. We propose a unified multi-

lateral filter that in addition to adaptively considering 2-D grayscale images



and depth data as guidance information, accounts for the inaccuracy of

the position of depth edges due to the low-resolution of ToF depth maps.

Consequently, unwanted artefacts such as texture copying and edge blurring

are almost entirely eliminated. Moreover, the proposed filter is configurable

to behave as most of the alternative depth enhancement methods based

upon a bilateral filter. Using a convolution-based formulation and data

quantization and downsampling, the proposed filter has been effectively

and efficiently implemented for dynamic scenes in real-time applications.

The results show a significant qualitative improvement on our own recorded

sequences as well as on the Middlebury dataset, outperforming alternative

depth enhancement solutions.

Finally, we propose two extensions to improve the quality of the enhanced

depth maps. Edge blurring increases when considering grayscale images

instead of the original coloured ones. Although the generalization of our

filter to consider 3-colour channels is straightforward, the processing time

and memory demands prevent it from performing in real-time. We therefore

propose a new 1-D colour model whose representation is equivalent to, but

more compact than, the 3-D HCL conical representation. It consists in

gathering all the hue, chroma and luminance information in one component,

namely, the cumulative spiral angle, where the spirals in question are defined

as a sampling of the solid HCL cone. The results show that, in addition to

preserving the perceptual properties of the HCL colour representation, using

the proposed colour model leads to a solution that is more accurate than

when using grayscale images. The second extension focuses on enhancing

the frame rate of the hybrid ToF multi-camera rig up to the frame rate of

the coupled 2-D camera. To that end, we predict new low-resolution depth

maps using the flow information estimated from each pair of 2-D frames.

Then, we enhance such predicted depth maps by using our proposed multi-

lateral filter. In the end, we provide video frame rate depth maps that

present more accurate depth measurements and a significant reduction of

the global noise level. Furthermore, we note that the concepts presented

herein are not only intended to enhance the depth information given by ToF

cameras, as they also apply to other 3-D sensing modalities.
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Notation

In this thesis, matrices are denoted by boldface, uppercase letters, M, and vectors are

denoted by boldface, lowercase letters, v. Scalars are denoted by italic letters, e.g., x,

K, α. The following mathematical notation will be used:

M−1 the inverse of a matrix M

M the mean of a matrix M

∇M the gradient of a matrix M

M↓ the downsampling of matrix M

IK the identity matrix of dimension K by K

vT the transpose of a vector v

|v| the Euclidean norm of a vector v

‖v‖p the p−norm of a vector v

x→∞ means x tends to infinity

bxc the largest previous integer of x
−→
ab the vector from a to b

a⊗ b the cross correlation of functions a and b

a ≡ b means a is equivalent to b

a ∼= b means a is congruent to b

a << b means a is much smaller than b

arg min the minimizing argument
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Chapter 1

Introduction

The discipline of computer vision has undergone a thorough revolution in the last

decades, making possible the realisation of intelligent automated applications in a vast

range of areas, such as industry automation, surveillance and security, medical imag-

ing, gaming, automotive safety or robotics. The goal of many researchers is to build

a system that is able to autonomously operate and interact with the real world, being

able to recognise objects, identify targets, or take accurate decisions in real-time. In

order to address such a challenge, a fundamental step concerns scene understanding

in which computer vision plays a big role. Images are the raw material of computer

vision processes for such scene understanding, and can take many forms, such as views

from multiple cameras as well as multi-dimensional data from the combination of dif-

ferent vision technologies. Indeed, the use of multiple cameras or multi-view systems

that share at least part of their field of view, allows for depth estimation [SAB+07].

Depth information is highly valuable as it enables the perception of the world in three

dimensions (3-D), facilitating image processing processes such as the recognition of an

object within the scene [OLK+04]. In general, depth information is derived by stereop-

sis, an analogy to human’s perception of depth where scene features are projected onto

two slightly displaced cameras to obtain depth from triangulation [FL04, SAB+07].

Unfortunately, depth estimation through triangulation methods requires to solve the

well-known but still challenging correspondence problem [HZ03, SS02].

With the ongoing progress in technology, new emerging depth sensing devices

based on the Time-of-Flight (ToF) principle [LS01] (Section 1.2.1) are becoming avail-

able [FAT11, KBKL09]. While first ToF-based devices for 3-D measuring [HK92], such

1



1. INTRODUCTION

as light detection and ranging (LIDAR) scanners, were expensive and bulky, the devel-

opment of the novel so-called demodulation lock-in pixels [SSVH95] allowed to build

a new ToF-based device, the ToF camera. In contrast to stereo vision systems, ToF

cameras simultaneously provide intensity and depth information for every pixel at a

high frame rate. Indeed, such ToF cameras promise to be an alternative to other

3-D sensing systems such as stereo vision systems, laser scanners or structured light

systems [FAT10]. Nevertheless, the downside of this promising technology is the low

resolution of these cameras which is much lower than the resolution given by alternative

3-D sensing systems. Besides, the acquired depth measurements are highly contami-

nated by noise [FB07].

The aim of this thesis is to enhance the quality of the data acquired by ToF cam-

eras; namely, to increase their resolution as well as to reduce the noise within depth

measurements. To that end, we propose to combine the depth data with the data

recorded by a standard 2-D video camera coupled to the ToF camera in a hybrid ToF

multi-camera rig. This sensor fusion will exploit the advantages of both 2-D and ToF

cameras while avoiding their individual drawbacks. The objective is to improve the

quality of depth data by considering industrial requirements for real-world safety and

security applications, specifically, robustness to noise, accuracy, and reduced memory

and time consumptions.

In what follows, we describe different techniques for depth measurement highlighting

their advantages as well as their drawbacks. Then, we introduce the ToF camera which

provides full-scene depth distance based on the ToF principle. We also introduce the

concept of sensor fusion to address the drawbacks of ToF cameras. Finally, we present

the objectives and challenges of this thesis as well as their outline and contributions.

1.1 Depth measurement techniques

In general, computer vision applications are based on the optical sensing of the world

in order to recognise, classify, and identify objects or people or take decisions based

on their behaviour or activities in a delimited area [YMH06], i.e., the main reception

of a building, the checking area of an airport or the subway, to name a few. Many

applications require a high accuracy and performance when taking decisions and thus,

2
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the data to be processed must be consistent, precise and accurate, i.e., it has to be of

good quality.

Depth information is a quantifiable measure that enables 3-D perception of the

observed scene, yielding to more robust computer vision applications. Consequently, a

vast number of 2-D camera-based approaches for depth sensing, with their own benefits,

drawbacks and costs, have been proposed over the past years [Bla04, SAB+07], e.g.,

depth-from-focus/defocus [NN94, RCM04], depth-from-motion [DW93], depth-from-

shading [Wan08], stereo imaging [SK98] or structured light [SFPL10].

Depth measurement techniques can be divided into two main groups depending on

the technology they use, namely contact and non-contact techniques. Contact tech-

niques are intended to reconstruct a 3-D model of the scanned object with very high

accuracy. However, these scanners are out of the scope of our work as they require phys-

ical contact with the object being scanned; which is not feasible for many applications

and impractical to survey a delimited area. Therefore, most 2-D camera-based applica-

tions belong to non-contact techniques, where the most important concepts fall under

active or passive triangulation methods [FAT11]. In general, triangulation methods

involve two sensors with at least one being a 2-D camera. We talk about passive trian-

gulation when the depth sensing system is composed of two 2-D cameras as we detail in

Section 1.1.1. In this case, depth measurements result from solving the correspondence

problem between the reflected ambient radiation within the scene. In contrast, active

triangulation refers to systems where one of the sensors is replaced by an emitter that

emits some kind of radiation, e.g., light (projector, laser) [TV98] (see Section 1.1.2). In

this case, depth measurements result from detecting the reflection of the emitted light.

In what follows, we describe the two depth sensing approaches, passive and active.

1.1.1 Passive sensing

Depth measurement techniques based on triangulation, estimate the distance at which

a point P is located in the scene from its projections, pl and pr, on each of the

camera reference frames, as shown in Figure 1.1. The classic implementation of passive

triangulation is the approach of stereopsis or stereo vision [VT86], which reproduces

the human stereo vision by using a camera rig of two standard 2-D video cameras. The

two reference frames of the individual cameras are not co-centric, i.e., the two cameras

(left and right) are displaced with respect to each other by a distance between the
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Figure 1.1: Passive sensing using a stereo system setup. The location of a point P in

space is estimated from its projections pl and pr on the lenses of the left and right cameras,

respectively [HZ03].

centres of projection, Ol and Or, respectively. This distance is known as the baseline

b of the stereo system and limits the working depth range. The wider the baseline, the

deeper the working depth range. The distance Z at which the point P is located with

respect to the baseline b is obtained from the similar triangles plPpr and OlPOr such

that
b+ xl − xr
Z − f

=
b

Z
, (1.1)

where xl and xr are the coordinates of the projections pl and pr with respect to the

principal points cl and cr, and f is the common focal length. Solving (1.1) for Z, we

obtain

Z = f
b

ρ
, (1.2)

where ρ = xr − xl, the binocular disparity, measures the difference in retinal position

between the corresponding points in the two images. In stereo systems, the disparity

leads to the estimation of the distance Z. However, this requires the detection of the

projections pl and pr which relates to the well-known correspondence problem [SS02],

which is typically performed by feature matching or correlation analysis and thus, nu-

merically demanding and suffering from shadow effects or texture patterns. In contrast,

we tackle the opposite case by the use of the ToF camera as it provides the distance at

which each point is located within the given depth maps. This allows us to estimate the
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1.2 Time-of-Flight cameras

disparity for each of the ToF camera pixels, which simplifies the mapping by avoiding

demanding operations such as feature matching and image correlation (see Section 3.2).

1.1.2 Active sensing

In contrast to passive triangulation approaches, active systems based on laser or struc-

tured light techniques [SFPL10] reduce the dependency on texture to deal with feature-

correspondence pairs. In this case, one of the cameras in the setup of Figure 1.1 is

replaced by an emitter that projects a pattern to the scene. By doing so, the viewing

camera is able to distinguish the projected pattern from the rest of elements, regardless

of their texture. Thus, the projected pattern generates a group of features that may

be detected in the recorded intensity image. However, and despite the efforts in re-

designing the illumination patterns [GAVN11], disadvantages arise when the projected

pattern is too weak compared to the background light, e.g., sun light, which happens

either if the object is too far away from the sensor, or if the background light is too

intensive.

Regardless whether the sensing system is passive or active, triangulation methods

can be quite time consuming as they have to cope either with the correspondence

problem or to process several encoded illumination patterns, respectively. Besides, the

working depth range in triangulation techniques is linked to the baseline between the

two cameras or camera plus light source which may introduce non desired effects such

as occlusion or shadowing in wide baseline systems.

Conversely, ToF cameras cope with these issues as they allow for depth perception

based on the Time-of-Flight principle [LS01]. In a nutshell, the ToF principle consists

of measuring the time the light emitted by the active sensor needs to reach the surface

being scanned and receiving its reflection. Since the velocity of the propagation of light

is known, the distance between the sensor and the surface can be estimated from the

travelling time. In the following, we present the ToF camera and its working principle.

1.2 Time-of-Flight cameras

ToF cameras are capable to provide full-scene depth information at a high frame rate.

Two different techniques allow the measurement of the time of flight; pulse detec-

tion, where distance directly amounts from the time of flight of a discrete pulse; and

5



1. INTRODUCTION

amplitude-modulated continuous-wave, where distance is given by the shift in phase

between an emitted modulated signal and its reflection [HK92]. Although there ex-

ist ToF camera prototypes based on pulse detection techniques, such as the ZCam

by 3DV Systems (assets sold to Microsoft in 2009) or the ToF camera line devel-

oped by the Fraunhofer Institute of Microelectronic Circuits and Systems [Fra11] and

TriDiCam [Tri11], most of the ToF cameras in the market (see Figure 1.2) are based

on amplitude-modulated continuous-wave techniques. This is mainly due to the high

detection accuracy required to determine the exact time delay of the discrete pulse for

pulse detection in ToF devices. In contrast, continuous modulated systems are tech-

nically less demanding, i.e., they require a lower power of light source and they avoid

photodetectors with a fast electronic shutter. However, due to the periodicity of the

modulated signal, the range of the measurements is limited. Lange et al. [LSBL00] and

Oggier et al. [OLK+04] describe in detail the physical limitations of depth measurement

devices based on such a continuous modulated wave.

We focus on ToF cameras based on an array of demodulation pixels, concretely

demodulation lock-in pixels [SSVH95]. In that case, the full scene is illuminated by a

modulated signal. Then, each pixel demodulates the reflected light by the scene and

recovers the original wave. The difference in phase between the emitted and the re-

ceived signal is proportional to the distance between the ToF camera and the object

being scanned. Therefore, ToF cameras built on these sensors are not only compact

and cost-efficient, but also capable of estimating full scene range data in a fast way.

Unlike classical techniques for depth sensing, ToF cameras do not rely on mechani-

cal setups, like laser scanners or expensive computations, as in stereo vision, making

them very attractive and compact for interactive or real-time applications [FAT10]. In

the following, we present the working principle of continuous modulation based ToF

cameras and briefly discuss common ToF camera drawbacks in order to motivate our

work.

1.2.1 Working principle

As illustrated in Figure 1.3, ToF cameras based on demodulation lock-in pix-

els [SSVH95] provide distance measurements from the difference in phase between

emitted and received modulated near-infrared (NIR) signals. The amplitude and
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1.2 Time-of-Flight cameras

(a) 3D MLI Sensor
TM

(b) Efector

3D

(c) CamCube (d) SR4000

(e) C70 (f) D-IMager (g) DS311 (h) ARTTS

Figure 1.2: Active ToF camera brands (as of 2011). (a) 3D MLI Sensor
TM

by IEE S.A.

(56 pixels × 61 pixels ). (b) Efector 3D image sensor by ifm electronic (64 pixels ×
48 pixels ). (c) PMD[vision] R©CamCube by PMDTechnologies (200 pixels × 200 pixels ).

(d) SwissRanger
TM

SR4000 by MESA Imaging (176 pixels × 144 pixels ). (e) Fotonic C70

by Fotonic (160 pixels × 120 pixels )). (f) D-IMager by Panasonic (160 pixels × 120 pixels

)). (g) DepthSense
TM

DS311 by Softkinect (160 pixels × 120 pixels ). (h) ARTTS camera

prototype.

phase of the incoming modulated signal can be retrieved by synchronously demodu-

lating the investigated signal within the detector [LS01]. To that end, the cross cor-

relation between the received modulated signal r(t) of amplitude a and phase φ, and

the emitted modulated signal s(t) is performed. The phase of the received modulated

signal can be determined by taking the measurement of the cross correlation function

at selectively chosen temporal positions or phases. Although other periodic functions

can be considered, we assume a sinusoidal formulation for the signals s(t) and r(t) as

in [HK92, LS01, OLK+04], i.e.,

s(t) = 1 + cos(ωt), (1.3)

and

r(t) = h+ a cos(ωt− φ), (1.4)

7



1. INTRODUCTION

Figure 1.3: The principle of continuous modulation based ToF cameras [Lin10].

with ω = 2πfm the angular modulation frequency with fm the modulation frequency.

h is the background light plus the non-modulated part of the incident signal, illustrated

in Figure 1.4. We calculate the cross correlation c(τ) function as follows

c(τ) = r(τ)⊗ s(τ) =
1

T

T∫
t=0

r(t) · s(t+ τ) dt, (1.5)

where ⊗ denotes the cross correlation. By doing so, the cross correlation sample c(τ)

in (1.5) amounts to

c(τ) = h+
a

2
cos(ωτ + φ). (1.6)

From (1.6), three or more samples per modulated period T are needed in order to un-

ambiguously determine the phase φ and the amplitude a of the incident signal [Cre88],

as well as its offset h. To that end, we use the so-called four-taps technique in

which four samples c(τk), k = 0, ..., 3, are taken at four subsequent time intervals

τk = k · T/4 = k/4fm within a modulated period T , as illustrated in Figure 1.4b.

As a result,

φ = arctan

(
c(τ3)− c(τ1)

c(τ0)− c(τ2)

)
, (1.7)

a =
1

2

√(
c(τ3)− c(τ1)

)2
+
(
c(τ0)− c(τ2)

)2
, (1.8)

h =
c(τ0) + c(τ1) + c(τ2) + c(τ3)

4
. (1.9)

The reasons to choose four samples instead of three are to improve robustness against

noise, to enable a highly symmetric design of the sensor, to ensure that the phase is

insensitive to quadratic non-linearities in detection, and to simplify the formulae for the
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1.2 Time-of-Flight cameras

(a) Emitted s(t) and received r(t) modulated signals.

(b) Cross correlation c(τ) between r(t) and s(t).

Figure 1.4: ToF measurement principle. Four selectively chosen samples (c(τk), k =

0, ..., 3) are taken within a modulated period T in order to determine the phase φ, amplitude

a, and offset h of the received modulated signal r(t) [SSVH95].

phase φ, the amplitude a, and the offset h. The distance measurements d are obtained

from

d =
L

2π
· φ, (1.10)

with c ≡ 3 · 108 m/s the speed of light and L the working range or non-ambiguity

distance range of the ToF camera, given by [LS01]

L =
c

2fm
. (1.11)

The factor 1/2 in (1.10) and in (1.11) is due to the fact that light travels twice the

distance between the camera and the sensed object, as depicted in Figure 1.3. The ToF
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camera is actually an image sensor whose size corresponds to the camera resolution

(m × n), as illustrated in Figure 1.3. Hence, each single pixel constituting the image

sensor is identified by the pixel position (i, j), where i indicates the row and j indicates

the column. Each pixel measures a distance dij obtained using (1.10). As a result,

the ToF camera provides a distance image or depth map D defined as D = [dij ]m×n,

the matrix of all the elements dij . In the same way, an amplitude image A defined

as A = [aij ]m×n is obtained using (1.8). Indeed, this amplitude image allows us to

calibrate the ToF camera, as we detail in Section 2.4.

1.2.2 Drawbacks of ToF cameras

In addition to simultaneously provide full-scene depth information at a high frame rate,

the recent advances in industrializing and producing economic, compact, robust to illu-

mination changes and light ToF cameras are starting to have an impact on commercial

applications [FAT10, KBKL09]. However, ToF cameras and specially the industrial

ones (see Figures 1.2a and 1.2b), cannot yet attain the resolution and precision of al-

ternative 3-D sensing systems, such as laser scanners or stereo systems. Indeed, two

main drawbacks are currently restricting the use of ToF cameras in a wide range of

computer vision and robotics applications; namely, the noise within depth measure-

ments and the low resolution of the given depth maps. In the following we give more

details of these drawbacks.

1.2.2.1 Noise within depth measurements

In Section 1.2.1, we have presented the theory related to the working principle of

continuous modulated ToF cameras. However, in practise, in order to reduce the effect

of noise, the cross correlation c(τ) in (1.5) is integrated over nT . As a result, one

obtains four samples c̃(τk) = n · c(τk), which are proportional to the number of periods

integrated over. In the following we assume that these samples are expressed in units

of number of photoelectrons. When considering c̃(τk) in (1.7) instead of c(τk), the

measured phase φ remains the same, i.e.,

φ = arctan

(
c̃(τ3)− c̃(τ1)

c̃(τ0)− c̃(τ2)

)
, (1.12)
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while the amplitude a in (1.8) and the offset h in (1.9) become proportional to n as

follows

ã =
1

2

√(
c̃(τ3)− c̃(τ1)

)2
+
(
c̃(τ0)− c̃(τ2)

)2
= n · a, (1.13)

h̃ =
c̃(τ0) + c̃(τ1) + c̃(τ2) + c̃(τ3)

4
= n · h, (1.14)

and expressed in units of number of photoelectrons.

The main sources of noise within the distance measurements d (see (1.10)) in con-

tinuous modulated ToF cameras are electronic noise ne, dark noise nt and photon shot

noise np [LS01]. Electronic noise is a random fluctuation which is characteristic of

all electronic circuits such as analog to digital converters. Dark noise summarizes ad-

ditional photodetector noise sources such as thermal noise, i.e., random fluctuations

due to changes of temperature. Photon shot noise is due to the photon character of

light. The generation of a given number of photoelectrons in a fixed interval of time

occurs randomly with a known average rate and independently of time. Therefore,

the photon shot noise np can be modelled by a Poisson distribution where the num-

ber of observed photoelectrons fluctuates about its mean with a standard deviation

σc̃(τk) =
√
c̃(τk), k = 0, ..., 3. We note that the number of observed photoelectrons

is large which leads to the approximation of the Poisson distribution by an additive

Gaussian distribution of mean zero and with the same standard deviation σc̃(τk), i.e.,

np → N
(
0, σ2

c̃(τk)

)
. Similarly, the electronic noise ne may also generate or vary the

number of photoelectrons while converting from analog to digital. In the same way, the

thermal noise nt also varies the number of photoelectrons by the excited photoelectrons

due to the variations in temperature. They both can be modelled as additive Gaussian

noises with mean zero, and variances σ2
e and σ2

t , respectively.

The noisy cross correlation samples c̃n(τk) may thus be modelled as follows

c̃n(τk) = c̃(τk) + ntotal, with ntotal = np + ne + nt. (1.15)

Since both electronic noise and thermal noise are also independent and uncorrelated,

the total variance of the noise equals to the sum of the variances of the photon shot

noise, the electronic noise, and the thermal noise, i.e., σ2
total = σ2

p+σ2
e+σ2

t , respectively.

In [LSBL00], Lange applies the rules of error propagation to (1.12) in order to

determine the error on the phase φ, also considered to be the standard deviation σφ
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of the noise on φ. Following the same rules, we determine the standard deviation σφ

taking into account all sources of noise, as detailed in Appendix B. We find

σφ =

√√√√ 3∑
k=0

(
∂φ

∂c̃(τk)

)2

· σ2
total . (1.16)

Considering (1.16) for the four samples c̃(τk), k = 0, ..., 3, taken at four subsequent time

intervals τk = k · T/4 = k/4fm within a modulated period T , we find the uncertainty

σd on the measured distance de = d±σd. Below is the final simplified expression of σd,

σd =
L√
2π
·

√
h̃+ σ2

e + σ2
t

2ã
, (1.17)

with h̃ = ã+ b̃, the number of photoelectrons from the emitted active light (amplitude)

plus the background light, respectively. We note that Lange refers to σ2
e as a num-

ber of pseudo electrons, that he defines as an increment or decrement of the number

of electrons due to the rounding when converting from analog to digital. We observe

in (1.17) that the fluctuation within distance measurements is inversely proportional

to the number of photoelectrons within the amplitude of the signal in the case where

the number of photoelectrons from the background light b̃ and from the error due to

electronic noise and thermal noise, are smaller compared to the number of photoelec-

trons within the amplitude ã. That is, σd is proportional to 1/
√
ã. In addition, the

amplitude ã is proportional to the power density of the light in the scene [BW99]. Thus,

according to the inverse square law, the power density of the light in the scene decays

at a rate proportional to 1/d2 due to the active illumination.

We also remark that in the case of low amplitudes ã where background light b̃ is

not present (no sun light influence), the electronic noise becomes dominant. In this

case, ToF camera prototypes based on digital phase demodulation using single-photon

synchronous detection (SPSD) are expected to perform better [NFK+08, SPS+07] than

current ToF cameras based on amplitude-modulated continuous-wave. An SPSD image

sensor is based on single-photon avalanche diodes (SPADs) [NRBC05] rather than the

CCD/CMOS photogates used by lock-in pixels [SSVH95]. In this case, the analog

accumulating diffusion used by lock-in pixels is replaced by a digital counter. As a

result, SPSD ToF cameras are considered to be virtually free of electronic noise at

signal detection and demodulation as they do not use any analog processing or analog-

to-digital conversion.
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Furthermore, we see in (1.17) that σd is directly linked to the non-ambiguity range

of distance L. Thus, in order to obtain accurate and robust depth measurements, the

modulation frequency fm has to be chosen as high as possible. However, the current

limitations of technology allow to modulate a signal around 20 MHz. Therefore, if we

set fm = 20 MHz in (1.11), the non-ambiguity range of distance is L = 7.5 m, which

corresponds to the working range of most of the continuous modulated ToF cameras.

In the case where the application requires a higher range distance, the reference signal

s(t) can be modulated at a smaller frequency; however, the influence of noise will be

higher according to (1.17).

1.2.2.2 Resolution of depth maps

In addition to the noise influence within the depth measurements, the given depth

maps suffer from a low resolution compared to the data given by alternative 3-D sens-

ing systems. Moreover, this resolution problem is even more prominent in industrial

ToF cameras as a compromise for their higher robustness to ambient conditions, e.g.,

larger working temperature range and higher reliability under sun lighting. We note

that the noticeable difference between the resolution of a 2-D camera and the resolution

of a ToF camera is directly linked to the physical difference in the dimensions of the

imager. Indeed, the ToF imager used to be up to 10 times bigger than the imager of

a 2-D camera. This is due to all the electronics that surround a ToF pixel in order to

cope with the distance measurement, i.e., wiring to read the four samples or electronics

to demodulate the incident signal (see Section 1.2.1). We note that there exist some

“high-resolution” ToF cameras such as those intended for research purposes, e.g., the

PMD[vision] R©CamCube, the SwissRanger
TM

SR4000 or the ARTTS prototype (Fig-

ures 1.2c,1.2d,1.2h, respectively), indoor applications in constrained environments, e.g.,

the Fotonic C70, the D-IMager or the DepthSense
TM

DS311 (Figures 1.2e,1.2f,1.2g, re-

spectively) or 3-D sensing devices intended for gaming applications such as Microsoft’s

Kinect camera [LMW+11]. However, in contrast to all these devices, ToF cameras

that are used for automotive applications or applications in industrial automation have

resolutions lower than (64 pixels × 64 pixels). Therefore, in applications where the

limited resolution of a ToF camera is critical, a very promising strategy is sensor fu-

sion [GBQ+08, ZWY+10]. To summarize, the concept is to combine ToF data with data

provided by other sensors, usually 2-D cameras [FBK10]. Indeed, some first attempts
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in ToF and 2-D data fusion have shown promising dense depth maps, outperforming,

in some cases, alternative 3-D sensing systems [CBTT08, YYDN07].

1.3 Sensor fusion

Sensor fusion is a strategy that combines the data provided by similar or disparate

sensors such that the resulting fused data is in general better, i.e., more accurate, less

noisy and more precise than the data acquired by a single sensor. As discussed in

Section 1.2.2, the resolution of ToF cameras is far below the resolution of standard 2-D

video cameras. Therefore, in applications where the ToF camera resolution is critical,

we can resort to sensor fusion approaches and complement the ToF camera with a 2-D

camera.

The goal of this thesis is to combine the raw data provided by each of the cameras

that constitute a hybrid ToF multi-camera rig in order to enhance the quality of the

low-resolution ToF data. In computer vision, fusion processes are often categorized

as low, intermediate, or high level fusion, depending on the processing stage at which

fusion takes place.

Within this thesis, we talk about low-level fusion, also called data fusion, in contrast

to higher fusion levels in which the fusion deals with post-processed data (feature or

decision fusion). Over the last years, there have been some attempts for ToF data en-

hancement by means of data fusion. The application of Markov Random Fields (MRFs)

to cope with the problem of enhancing ToF data by considering both ToF and 2-D data

was first presented by Diebel et al. [DT05]. In contrast to MRFs-based approaches,

data fusion based upon a bilateral filter, an edge-preserving image filter [TM98], en-

ables a real-time data fusion. Indeed, recent contributions [GAM+11b, GAM+11a]

have proven to outperform triangulation-based techniques (Section 1.1). Thus, we fo-

cus on depth enhancement methods that couple a single 2-D camera with a single

ToF camera in contrast to other approaches that combine several 2-D and ToF cam-

eras [KH10, KTD+09, KS06, STDT08] for dense 3-D reconstruction.

Intermediate-level fusion, also known as feature-level fusion, combines different fea-

tures such as edges, corners, lines or texture parameters, determined from several raw

data sources. In [GBQ+08], Gloud et al. combine 2-D features extracted from data

recorded by a high resolution video camera and 3-D features from data acquired by a
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laser range scanner in order to deal with the problem of object detection and recog-

nition for a robotic system. Another example of feature fusion is given by Natroshvili

et al. in [NSS+08] where they profit of the high frame rate of a ToF camera to deter-

mine coarse features that serve a CMOS camera as an input to realize a finer object

detection, segmentation and classification for real-time pedestrian detection.

High-level fusion, also known as decision-level fusion, performs as a function of the

confidence resulting from different processes. In this sense, high-level fusion approaches

cope with advanced intelligent systems for path-planning and obstacle avoidance, han-

dling robot position uncertainty or other related problems [LS99]. Another field where

the application of those methods demonstrate a sequence of significant advantages is

in automotive applications, i.e., assistance systems for driving, autonomous vehicles or

object recognition in road environments [FPA+07, GAVA08].

1.4 Objectives and challenges

The present thesis is intended to overcome the limitations of ToF cameras and especially

industrialized ToF cameras such as the 3D MLI Sensor
TM

(see Figure 1.2a). To that

end, we propose to attach a supplemental imaging sensor to the ToF camera. As a

result, we obtain raw images from different modalities which allows for low-level data

fusion.

Within this thesis, we first couple an industrialized ToF camera with a standard 2-D

video camera in a hybrid ToF multi-camera rig. Next, we combine the raw data given

by each of the cameras in a low-level data fusion approach where the 2-D images help

to enhance the ToF data. By doing so, we exploit the advantages of each of the cameras

that constitute the multi-camera rig while avoiding their individual drawbacks. As a

result, the quality of the data given by the ToF camera is significantly improved. The

aim of this thesis is to enable the use of ToF cameras in computer vision or robotics

applications beyond their current limitations.

The first challenge relates to the alignment of the data given by each of the cameras

in our hybrid ToF multi-camera rig prototype (see Figure 1.2a). Any low-level data

fusion approach requires the data to be fused to match pixel to pixel, which is far from

a trivial task for most real-world data and scenarios. Indeed, most of the approaches for

depth enhancement address the data matching process within an off-line pre-processing
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step where the data is undistorted and rectified to be pixel aligned. This, in turn,

restricts the use of such a hybrid ToF multi-camera rig for dynamic scenes, where real-

time is a requirement. We note that mapping the distance measurements from the ToF

camera onto the 2-D camera is a straightforward procedure which would result in the

assignment of a colour value to each of the (low-resolution) ToF pixels. To that end,

one can resort to commonly used 3-D warping techniques [LH10a, IMN+10, ZWY+10]

as discussed in Section 3.3. However, within this thesis we want to tackle just the

opposite case. We want to assign to each of the high-resolution 2-D pixels an accurate

distance value. In this case, we need to map each 2-D pixel onto the corresponding

ToF pixel, which is not straightforward if one has to take into account the distance

dependency of the disparity. Furthermore, such dependency on the distance requires

to recompute the whole mapping procedure for each recorded frame and thus, it makes

the real-time implementation quite challenging.

Once the data from each camera matches pixel to pixel, we focus on the data fusion

approach to enhance the quality of the low-resolution depth maps. There exists a

number of data fusion approaches [CBTT08, DT05, YYDN07] that yield to satisfactory

dense depth maps. However, two main artefacts in low-level data fusion motivate our

work; namely, texture copying and edge blurring within the enhanced depth maps.

The coarse combination of depth and intensity data may lead to erroneously copy 2-D

texture into actually smooth depth geometries within the depth map [CBTT08]. Edge

blurring is the second artefact which results from the misalignment between 2-D and

depth edges, mainly driven by the huge difference of resolutions, or because depth

edges have no corresponding edges in the 2-D guidance image, i.e., in situations where

objects on either side of a depth discontinuity have a similar colour [CBTT08]. Hence,

our second challenge is to overcome these artefacts by developing appropriate filtering

techniques.

In addition, industrial requirements for real-world applications are addressed, which

implies an easy and transparent adaptability of the methods and an implementation

capable to perform in real-time.
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1.5 Outline and contributions

This section gives the outline of the thesis, highlights the contributions, and provides

references to the articles where the results were (or will be) presented. The main body

of the thesis is separated into three parts as detailed below:

• Part I: Data Alignment

The first part of this thesis deals with the alignment of data for further low-level

data fusion purposes. Chapter 2 introduces the perspective or pinhole camera model,

i.e., the basis to formulate the relationship between the real world and the camera. This

formulation involves the knowledge of the camera within the world, i.e., its orientation

and position with respect to a known world reference (extrinsic camera parameters) as

well as the knowledge of the camera itself, i.e., its own characteristics (intrinsic camera

parameters). Another intrinsic parameter to consider is the distortion produced by

the lens of the camera. After defining the relationship between reality and images, we

present the hybrid ToF multi-camera rig and its components. We conclude Chapter 2

by proposing a practical calibration method that in addition to estimating the multi-

camera rig parameters with high accuracy, is feasible for a hybrid ToF multi-camera

rig calibration in a mass production line. Chapter 3 focuses on the alignment of the

data delivered by each of the cameras in the test rig. After fulfilling the calibration

process, the data is undistorted and ready to be aligned. In this chapter, we propose

a novel alignment approach that assigns to each 2-D pixel its corresponding depth

value. In addition, the method considers the distance-dependent disparity due to the

displacement between the two cameras in the test rig. Our contribution achieves a

real-time data acquisition and alignment, facilitating further fusion steps. The results

of this part have previously been published in (or submitted as) the following articles:

∗ F. Garcia, D. Aouada, B. Mirbach, and B. Ottersten. Distance-Dependent Map-

ping for Hybrid ToF Multi-Camera Rig. IEEE Journal of Selected Topics in

Signal Processing. Accepted for publication with mandatory minor revisions.

∗ F. Garcia, D. Aouada, B. Mirbach, T. Solignac, and B. Ottersten. Real-time

Hybrid ToF multi-camera Rig Fusion System for Depth Map Enhancement.

IEEE Computer Society Conference on Computer Vision and Pattern Recognition

Workshops (CVPRW), 1-8. June 2011.
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∗ F. Garcia and B. Mirbach. Range Image Pixel Matching Method. PCT-patent

application under priority of following Patent application in Luxembourg. Ref.

P-IEE-292/LU. Application No. 91 745 of 15 October 2010.

• Part II: Data Fusion

The second part tackles the core of this thesis, the fusion of the raw data acquired by

each of the cameras in the hybrid ToF multi-camera rig in order to enhance the quality

of the ToF data. Chapter 4 covers state-of-the-art low-level data fusion approaches

for depth enhancement. This chapter describes the different strategies to enhance low-

resolution depth maps by considering additional 2-D information. Chapter 5 presents

the proposed approaches to enhance the quality of low-resolution ToF data. Our main

contribution is a filter that accounts for the reliability within the depth measurements

while considering 2-D edges. Consequently, unwanted but common artefacts in state-of-

the-art filtering techniques such as texture copying and edge blurring get almost entirely

eliminated. The filter is extended with a new factor that increases the accuracy of the

depth measurements within smooth regions in the scene. Furthermore, taking into

account the industry requirements, we propose an effectively and efficiently algorithm

for real-time applications. Chapter 6 quantifies the proposed approaches against state-

of-the-art methods and shows the experimental results. The results of this part have

previously been published in (or submitted as) the following articles:

∗ F. Garcia, D. Aouada, B. Mirbach, and B. Ottersten. Unified Multi-Lateral Filter

for Real-Time Depth Enhancement. IEEE Transactions on Pattern Analysis and

Machine Intelligence (TPAMI). Submitted.

∗ F. Garcia, D. Aouada, B. Mirbach, T. Solignac, and B. Ottersten. A New Multi-

lateral Filter for Real-Time Depth Enhancement. IEEE International Conference

on Advanced Video and Signal-Based Surveillance (AVSS). September 2011.

∗ F. Garcia, B. Mirbach, B. Ottersten, F. Grandidier, and A. Cuesta. Pixel

Weighted Average Strategy for Depth Sensor Data Fusion. IEEE International

Conference on Image Processing (ICIP), 2805-2808. September 2010.
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• Part III: Extensions

The last part proposes two different extensions for our fusion approach. Chapter 7

copes with the edge blurring artefact. Although edge blurring is almost eliminated

when using the proposed data fusion approach, there are some cases where it still ap-

pears. Such cases are due to the fact that there are depth edges without a corresponding

2-D edge. Thus, depth edges cannot be accordingly adjusted. This can occur in sit-

uations where foreground and background objects in the scene have a similar colour.

In that case, the segmentation of these objects in 2-D becomes intricate as no edges

help to distinguish the objects. However, edge blurring intensifies as soon as we con-

sider grayscale images when fusing, instead of the original coloured ones. Many image

processing algorithms as well as the one we propose in this thesis, consider grayscale

images as input data. By doing so, system requirements such as low processing time

and memory constraints can be overcome. The downside is that the probabilities of

having the same intensity value in both foreground and background objects increases

while transforming from colour to grayscale, as many colours get collapsed to the same

intensity value. Therefore, in this chapter we propose to reduce the complexity of pro-

cessing three channels by compactly storing the same information in only one channel.

Thus, we show that much better results can be obtained by replacing grayscale images

by images transformed into our new 1-D colour space in which the same information

as in the non-transformed image is preserved without losses. Chapter 8 presents an

extension of the filter that increases the frame rate of the ToF camera. Until now, the

goal was the enhancement of the quality of a given low-resolution depth map. However,

there are security and safety applications that in addition to this data quality enhance-

ment also require a high frame rate. ToF cameras are known to be fast but still slow

compared to standard 2-D video cameras. Therefore, we propose an extension that

estimates the motion between the 2-D camera frames, compensates the motion on the

low-resolution depth maps and enhances their quality using the proposed data fusion

filter. The results of this part have previously been published in (or submitted as) the

following articles:

∗ F. Garcia, D. Aouada, B. Mirbach, and B. Ottersten. Spatio-Temporal ToF Data

Enhancement by Fusion. IEEE International Conference on Image Processing

(ICIP). September 2012.
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∗ F. Garcia, D. Aouada, B. Mirbach, and B. Ottersten. A new 1-D colour model

and its application to image filtering. IEEE International Symposium on Image

and Signal Processing and Analysis (ISPA). September 2011. Best Student Paper

Award.

∗ F. Garcia, D. Aouada, B. Mirbach, and B. Ottersten. Spiral colour model: Re-

duction from 3-D to 2-D. IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP), 1305-1308. May 2011.

Chapter 9 concludes the thesis, and elaborates on possible lines for future research.
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Chapter 2

System model

In this chapter we introduce the basis to understand the relationship between the scene

and the data given by each of the cameras in the hybrid ToF multi-camera rig. Although

the geometry of a camera as well as the parameters that relate the coordinates of a point

in the scene to a single or multiple viewing cameras are well known by the computer

vision community, we have considered appropriate to describe them for completeness

and consistency when introducing our system model. We refer the reader to textbooks

such as Multiple View Geometry in Computer Vision from Hartley et al. [HZ03] or

Introductory Techniques for 3-D Computer Vision from Trucco et al. [TV98] for further

details. Then, we detail the system model we have considered to evaluate our concepts,

which is composed of a 2-D video camera and an industrialized ToF camera, i.e., a

hybrid ToF multi-camera rig. Finally, we propose a practical full-system calibration

approach in order to determine the system parameters.

2.1 Camera geometry and single view geometry

This section presents the geometry of a single camera and describes the projection from

the scene space onto the image frame of the viewing camera.

2.1.1 Perspective camera model

The simplest model of a camera in computer vision and computer graphics is the

perspective or pinhole camera model in which all optical distortions are neglected. It

is based on the principle of collinearity, where each point in the scene is projected on
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2. SYSTEM MODEL

Figure 2.1: The perspective or pinhole camera model.

the image frame by a straight line passing through the optical centre [TV98], as shown

in Figure 2.1. The distance between the optical centre and the image frame is usually

referred to as the focal length f of the pinhole camera while the point where the optical

axis of the camera intersects the image frame corresponds to the principal point whose

coordinates are [cx, cy, f ]T (we define [·]T as the transpose of a matrix or a vector). If

we consider a point P = [X,Y, Z]T in the scene, its projection on the camera image

frame p = [x, y, z]T are expressed as

x = f
X

Z
, (2.1)

y = f
Y

Z
, (2.2)

and

z = f. (2.3)

Nevertheless, these perspective projections require some knowledge of the geometry

of the camera which is given by the intrinsic camera parameters, usually determined

within the system calibration process.

2.1.2 Intrinsic camera parameters

In general, the data recorded by a camera is related to its own reference frame, usually

called the camera reference frame. We refer to a point in the scene P whose coordinates

are related to the camera reference frame as Pc = [Xc, Yc, Zc]
T (see Figure 2.1). Images,

however, are generally specified as pixel arrays with their origin in the upper-left corner.

Thus, the point coordinates need to be transformed or mapped from the camera frame
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2.1 Camera geometry and single view geometry

to the image frame. This in turn, requires the knowledge of the intrinsic camera

parameters that characterize the optical, geometric and digital characteristics of the

viewing camera. These parameters are the effective size of the pixel or pixel pitch

(in µm) (δx, δy), the pixel coordinates of the principal point (cx, cy) relative to the upper-

left corner, and the focal length f [HZ03, TV98]. By considering these parameters, the

expressions in (2.1) and (2.2) can be generalized to

p = K ·Pc ⇔

 x
y
z

 = K ·

 Xc

Yc
Zc

 , (2.4)

with K the matrix of intrinsic parameters defined as follows

K = KsKf =

 δ−1
x 0 cx
0 δ−1

y cy
0 0 1

 f 0 0
0 f 0
0 0 1

 =

 δ−1
x f 0 cx
0 δ−1

x f cy
0 0 1

 , (2.5)

where f is the focal length, δx and δy are the effective horizontal, and respectively

vertical pixel size, and (cx, cy) is the position of the optical axis or principal point in

the image (all units are in millimetres). Thus, from (2.4), the x, y, and z coordinates

of p are

x = δ−1
x fXc + cxZc, (2.6)

y = δ−1
y fYc + cyZc, (2.7)

z = Zc. (2.8)

Expressions in (2.1) and (2.2) result from dividing (2.6) by (2.8) and (2.7) by (2.8),

respectively, i.e., homogeneous coordinates where the z coordinate is equal to 1. We

note that in the pinhole camera the principal point (cx, cy) is assumed to be the centre

of the sensor, i.e., (0, 0).

Nevertheless, the pinhole camera model is only an approximation of the real cam-

era projection that simplifies the mathematical formulation of the relationship between

objects in the scene and their image coordinates. In practise, real cameras differ from

the pinhole camera model insofar as they use lenses that introduce geometrical distor-

tion to the image coordinates. For most applications, therefore, the pinhole model is

a basis that is extended with some corrections for the systematically distorted image

coordinates.
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2.1.3 Image distortion

In most computer vision applications, there are mainly two types of distortions that

are modelled in order to be corrected; namely, the radial distortion and the tangential

distortion. The former distortion is characterized by a symmetric displacement along

the radial direction from the principal point. A negative displacement decreases the

image magnification resulting in a visual effect similar to mapping the image around

a sphere (or barrel), i.e., barrel distortion (Figure 2.2a). A positive displacement in-

creases the image magnification resulting in a visible effect where lines that do not

go through the centre of the image are bent inwards, towards the centre of the im-

age, i.e., pincushion distortion (Figure2.2b). In contrast, the tangential distortion is

generally caused by improper lens alignment due to inaccuracies during the camera

assembling [HS97, WCH92]. In this case, the visual effect is a decentering of the im-

age. Although both types of distortions can be modelled and corrected, the tangential

distortion is usually neglected when camera-lenses are assembled by the camera man-

ufacturer. The radial distortion can be approximated by

x = x̃(1 + k1r
2 + k2r

4 + ...) (2.9)

and

y = ỹ(1 + k1r
2 + k2r

4 + ...), (2.10)

where ki, i = 1, 2, ..., are the coefficients for the radial distortion [HS97]. Thus, the

expressions in (2.1) and (2.2) are replaced by (2.9) and (2.10), respectively. In this case,

the coordinates x and y are the non-observable, distortion-free image coordinates. The

(a) Simulation of a

barrel distortion.

(b) Simulation of a

pincushion distortion.

Figure 2.2: Effect of radial distortions [Lin10, WCH92].
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2.1 Camera geometry and single view geometry

coordinates x̃ and ỹ are the corresponding distorted coordinates, and r2 = x̃2 + ỹ2. In

the case of standard lenses, one or two coefficients (k1, k2) are enough to compensate

for the radial distortion. However, a higher order is needed in case of wide angle lenses,

e.g., 90◦, where radial distortion can be 30% of the image radius. The expression of

the tangential distortion is often written in the following form

x = 2p1x̃ỹ + p2(r2 + 2x̃2) (2.11)

and

y = p1(r2 + 2ỹ2) + 2p2x̃ỹ, (2.12)

where p1 and p2 are coefficients for the tangential distortion [HS97]. We recall that the

tangential distortion is due to improper lens alignment which is in general neglected.

Indeed, its contribution is much lower than the contribution of the radial distortion.

2.1.4 Extrinsic camera parameters

The relationship between the coordinates of a point Pc in the camera reference frame

and its coordinates in the image frame is given by (2.4). However, in most computer

vision applications, the point coordinates must be related to a known reference frame,

the so-called world reference frame, to which we refer with the subscript w. In general,

the camera reference frame does not coincide with the world reference frame. Therefore,

it is usually necessary to first map the 3-D points related to the world reference frame,

onto the camera reference frame. To that end, a typical choice for describing the

transformation between the camera reference frame and the world reference frame is

to use a 3-D translation vector t = [tx, ty, tz]
T, which describes the relative positions

between the origins of both reference frames, and a 3 × 3 rotation matrix R, which

defines the orientation between the two reference frames [HZ03, TV98]. Thus, the

relationship between the coordinates of a point P from the world frame to the camera

frame, Pw and Pc respectively, is

Pc = R
[
Pw − t

]
, (2.13)

with

R =

 r11 r12 r13

r21 r22 r23

r31 r32 r33

 . (2.14)
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Definition 1 The camera extrinsic parameters are the elements of the translation

vector t, and the elements of the rotation matrix R, which specify the transformation

between the camera reference frame and the world reference frame [TV98].

Once the extrinsic and the intrinsic camera parameters are determined, the rela-

tionship of a point P from the world reference frame Pw to the image reference frame

p is given, using (2.4) and (2.13), by

p = K ·R
[
Pw − t

]
, (2.15)

with p = [x, y, z]T. The image coordinates in pixels, i.e., p′ = [u, v, 1]T are given by:{
u = x/z ⇒ u = x/Zc,
v = y/z ⇒ v = y/Zc,

(2.16)

as z = Zc from (2.8). We note that p = Zc · p′. From (2.4) and (2.16), and consider-

ing (2.5), the image coordinates (u, v) are defined as{
u = δ−1

x f XcZc + cx,

v = δ−1
y f YCZc + cy.

(2.17)

2.2 Two-view geometry

This section covers the geometry of two perspective views. In Section 2.1, we have

presented the model of a single viewing camera and the relationship between the coor-

dinates of a point in the scene and its image coordinates. In the following, we present

the relationship between the image coordinates of a point in two viewing cameras, i.e.,

the relative extrinsic parameters. We recall that our two-view geometry is composed of

a 2-D video camera and an industrialized ToF camera, i.e., a hybrid ToF multi-camera

rig.

2.2.1 Relative extrinsic parameters

Whereas the extrinsic parameters introduced in Section 2.1.4 describe the position

and orientation of the viewing camera with respect to the world reference frame, the

relative extrinsic parameters describe the location and orientation between the cameras

in the two-view geometry. Similarly to the extrinsic parameters, the relative extrinsic

parameters are a translation vector t′, that describes the relative positions between
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the origins of both camera frames, and a (3 × 3) rotation matrix R′, that defines the

orientation between the two camera frames [HZ03].

The relative extrinsic parameters relate the projections of a point Pw in space on

the two image frames. We refer to the 2-D camera reference frame as A and to the

ToF camera reference frame as B. Thus, following (2.15), the projection of a point in

the scene Pw on the 2-D camera image frame is

pA = KA ·RA · (Pw − tA). (2.18)

Similarly, the projection of Pw on the ToF camera image frame is

pB = KB ·RB · (Pw − tB). (2.19)

The subscripts A and B indicate that the subscripted parameter relates to the 2-D and

ToF camera, respectively. Solving (2.18) and (2.19) for Pw, we end with the following

relationship

K-1
A · pA = RA ·R-1

B · (K-1
B · pB + RB · tB −RB · tA). (2.20)

If the intrinsic parameters of both cameras KA and KB are known, (2.20) amounts to

PA = RA ·R-1
B · (PB + RB · tB −RB · tA) (2.21)

using (2.4). Hence, the relative extrinsic parameters that relate PA and PB are

R′ = RA ·R-1
B , (2.22)

and

t′ = RB · tB −RB · tA = RB · (tB − tA). (2.23)

Finally, by replacing (2.22) and (2.23) in (2.21) we obtain

PA = R′ · (PB + t′). (2.24)

In Section 2.4.2 we detail how to estimate R′ and t′.
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2.3 Hybrid ToF multi-camera rig

In the following, we introduce the two hybrid ToF multi-camera rig prototypes that have

been used to evaluate our concepts. The major part of the experiments was obtained

using a first test rig prototype that integrates a 3D MLI Sensor
TM

prototype from IEE

S.A. [IEE11] and a Flea R©2 CCD Camera from Point Grey Research, Inc. [Poi11], shown

in Figure 2.3c. This first prototype couples the two cameras with a narrow baseline of

36 mm, which corresponds to the minimum baseline allowed by the dimensions of the

cameras. We decided to fill the lens mount of the Flea R©2 camera by 5 mm in order to

convert it from C-mount to a CS-mount lens1. This enabled us to use the same lens in

both cameras and thus, to share the same intrinsic parameters (Section 2.1.2), which

are easier to determine from the 2-D camera due to its higher resolution.

(a)

(b) (c) Hybrid ToF multi-camera rig prototype

Figure 2.3: Former hybrid ToF multi-camera rig prototype and its components:

(a) Flea R©2 CCD Camera from Point Grey Research, Inc. [Poi11]. (b) 3D MLI

Sensor
TM

prototype from IEE S.A. [IEE11].

Once first results on depth enhancement were validated, a second ToF multi-camera

rig prototype was built. This second test rig prototype integrates an IEE S.A. indus-

trialized ToF camera, the 3D MLI Sensor
TM

, and a Dragonfly R©2 CCD Camera from

Point Grey Research, Inc. The 2-D camera was changed because the Dragonfly R©2 has

1A C-mount is a type of lens mount that has a flange focal distance of 25.4 mm (1 inch) diameter,

and is otherwise identical to the CS-mount (12.50 mm, 0.492 inches).
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a remote head that facilitates its integration within the 3D MLI Sensor
TM

housing, as

shown in Figure 2.4c. However, the larger dimensions of the 3D MLI Sensor
TM

housing

restrict the minimum baseline to 65 mm, which makes the handling of the distance-

dependent disparity more challenging (Section 3.1). In contrast to its prototype, the

industrialized 3D MLI Sensor
TM

does not allow to change the lens. Thus, it is possible to

use the intrinsic camera parameters accurately determined during the serial production

by IEE S.A. The specifications of each camera are reported in Appendix A.

(a)

(b) (c) Hybrid ToF multi-camera rig prototype

Figure 2.4: Second hybrid ToF multi-camera rig prototype and its components: (a)

Dragonfly R©2 CCD Camera from Point Grey Research, Inc. (b) 3D MLI Sensor
TM

from

IEE S.A.

2.4 Proposed system calibration

In order to complete the data alignment process, both intrinsic camera parameters as

well as the relative extrinsic parameters that relate the camera position and orientation

to each other have to be determined. To that end, a first calibration step of the hybrid

ToF multi-camera rig must be done. This classical first step in computer vision allows

to correct or rectify the raw distorted images [TV98] which will enable data matching.

In order to determine the 2-D camera parameters, one can resort to classical cali-

bration tools such as Bouguet’s toolbox for Matlab [Bou09] or image processing tools

such as those included in Intel’s computer vision library OpenCV [BK08]. Although

new insights have been proposed in [LKR08], the research on ToF camera calibration
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is not yet extensive, and the same 2-D calibration approaches are applied on ToF cam-

eras. These calibration approaches are suitable when calibrating “high-resolution” ToF

cameras such as those intended for research purposes (see Figure 1.2c and Figure 1.2d),

but the same approaches are not suitable for lower resolution images such as those

provided by industrialized ToF cameras (see Figure 1.2a and Figure 1.2b). Moreover,

these calibration methods are time consuming.

In the following, we propose an alternative approach to standard calibration meth-

ods [HS97, Tsa87, Zha00] that allows to estimate the system parameters, i.e., intrinsic

and relative extrinsic camera parameters, under industrial time and accuracy require-

ments.

2.4.1 Estimation of the intrinsic camera parameters

The current literature in ToF camera calibration does not tackle the lateral calibration,

i.e., the estimation of the intrinsic and extrinsic camera parameters. Instead, research

focuses on the depth calibration, which consists of improving the accuracy and reducing

the noise level on the given depth measurements [FH08, KI07, Lin10]. The limitations,

i.e., low resolution and high noise level within depth measurements, of our industrialized

ToF camera as well as the industrial requirements motivated us to investigate a practical

calibration approach to estimate the intrinsic ToF camera parameters. We note that

the same approach also applies to the 2-D camera. According to Tsai [Tsa87], a co-

planar set of control points is sufficient to determine the intrinsic camera parameters.

We therefore assume a planar calibration pattern with a known orientation. We refer

to this calibration method over multi-view calibration techniques [Bou09, Zha00] which

search for a global optimum of both extrinsic and intrinsic parameters. Since the low

resolution of ToF cameras only allows for the detection of a few features or control

points per acquisition, by fixing the extrinsic parameters we make the solution for the

intrinsics more stable, which is crucial for our system calibration. If the plane that

contains the control points is parallel to the image frame, the Z coordinate is equal for

all control points and known. The X and Y coordinates are also assumed to be known

but up to an offset λx and λy with respect to the unknown principal point (cx, cy).

Hence, (2.9) and (2.10) take the following form, respectively,

X = λx + c0x̃+ c1x̃r
2 + c2x̃r

4 + . . . (2.25)
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and

Y = λy + c0ỹ + c1ỹr
2 + c2ỹr

4 + . . . , (2.26)

with

c0 =
Z

f
, ci =

Z

f
ki, i = 1, 2, . . . . (2.27)

Equations (2.25) and (2.26) are two overdetermined linear equations that can be solved

for unknown parameters c0, c1, c2, . . . by least square regression. This can be achieved by

solving either of the two equations. Thereby, the following points should be considered.

1. Solving (2.25) or (2.26) requires the knowledge of the principal point (cx, cy). We

propose to use, in turn, the least square regression for the parameters to determine

also the principal point. This can be simply achieved by varying (cx, cy) till the

residual of the regression is minimal.

2. The proposed method assumes a calibration board perfectly parallel to the image

plane. In order to verify the robustness of the calibration against a non-perfect

alignment of the calibration board, a simulation of a tilted board has been per-

formed at various angles. The result for an assumed 90◦ optics with 30% distortion

showed that at a tilt of 5◦, the distortion is still correctly determined with a suffi-

cient accuracy of 0.3%, while the determined principal point has been shifted by

1% of the imager size due to the tilt. We note that a non-accurate principle point

is, for our purpose, not critical as these deviations will be corrected in the sub-

sequent calibration steps, i.e., the estimation of the relative extrinsic parameters

proposed in Section 2.4.2.

3. Equation (2.27) allows to determine the focal length whenever the distance Z is

known. As the precision with which Z is known is limited, one can maximise

the accuracy by taking measurements at a very large distance compared to the

focal length (and the board accordingly large) or taking measurements at several

distances.

We found that for calibrating the 2-D camera, two sets of co-linear control points (e.g.,

along the x and y axes) are sufficient to determine the distortion parameters and also,

an accurate principal point.

We point out that our calibration procedure does not require special tools. The

ToF calibration pattern must contain circular targets, large enough to be distinguished
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2. SYSTEM MODEL

(a) 2-D camera calibration pattern. (b) ToF camera calibration pattern.

Figure 2.5: Calibration patterns used to estimate the intrinsic and relative extrinsic

camera parameters.

in the low-resolution amplitude image. We remind the reader that in addition to the

depth map D, ToF cameras also provide an amplitude image A that results from (1.8)

and which can be considered as a grayscale intensity image for calibration together with

the 2-D image I given by the 2-D camera. Figure 2.5 shows the calibration patterns to

estimate each camera’s intrinsic parameters.

2.4.2 Estimation of the relative extrinsic parameters

From [RZFM92], the determination of the relative extrinsic parameters introduced in

Section 2.2.1, i.e., the rotation matrix R′ and the translation vector t′ that relate each

camera to each other, requires four correspondence points with no three points collinear

on either plane. The more correspondence points we consider, the more accurate will

be the determination of the relative extrinsic parameters since inaccuracies due to the

detection of the correspondence points will be compensate. To that end, we use the

same ToF calibration pattern shown in Figure 2.5b as it allows to estimate up to 20

correspondence points. The correspondence points correspond to the centroid of each

dot in the image, which are determined with sub-pixel accuracy, only limited by the

image resolution as shown in Figure 2.6b and Figure 2.6d. Nevertheless, our case

differs from common stereo vision calibration approaches due to the knowledge of the

ZB coordinate of the projections of the correspondence points on the ToF camera frame.

According to (2.17), the image coordinates pA and pB of the correspondence points

on the 2-D I and ToF amplitude A images, respectively, are determined up to a scale
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factor, i.e.,

pA =

 uA · ZA

vA · ZA

ZA

 = ZA ·

 uA
vA
1

 , (2.28)

and

pB =

 uB · ZB

vB · ZB

ZB

 = ZB ·

 uB
vB
1

 , (2.29)

where ZB is known as it is given by the ToF depth map D. Let denote p′A = [uA, vA, 1]T

and p′B = [uB, vB, 1]T the image coordinates of the correspondence points on the 2-D I

and ToF amplitude A images, respectively. From (2.24) and replacing PA and PB by

their definition in (2.4), we obtain

K-1
ApA = R′(K-1

BpB + t′) ⇒ K-1
AZAp′A = R′(K-1

BZBp′B + t′). (2.30)

Finding the value for p′A in (2.30), we obtain

p′A =
ZB

ZA

KAR′K-1
B

[
p′B +

KB

ZB

t′
]
, (2.31)

where (KB/ZB)t′ corresponds to the disparity ρ correction applied to the correspon-

dence point coordinates p′B. t′ = [tx, ty, tz]
T is the vectorial baseline b between the

cameras. We note that (2.31) is the generalization of the known disparity expression

in (1.2) obtained by assuming that both cameras have the same intrinsic parameters

KA = KB and setting R′ to identity, i.e., assuming that the two cameras are equally

oriented.

We remark that the two cameras in the camera rig are coplanar, thus tz = 0. Let

denote p′′B as the correspondence point coordinates corrected by the disparity shift,

thus

p′′B =

 uB
vB
1

+
1

ZB

 δ−1
x,BfB 0 cx,B

0 δ−1
y,BfB cy,B

0 0 1

 tx
ty
0

 =

 uB
vB
1

+

 δ−1
x,BfB · tx/ZB

δ−1
y,BfB · ty/ZB

0

 .
(2.32)

By replacing (2.32) in (2.31) we obtain

p′A =
ZB

ZA

KAR′K-1
Bp′′B =

ZB

ZA

Hp′′B, (2.33)

with H being the so-called homography that relates the image coordinates p′A with the

ones corrected by the disparity shift p′′B, defined in (2.32). We note that in our case,
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the homography H corresponds to an affine transformation since the z coordinate of

p′A and p′′B is 1, i.e.,

H =

 h11 h12 h13

h21 h22 h23

0 0 1

 . (2.34)

Thus, only 3 correspondence points are needed to determine H in contrast to the

4 correspondence points needed to estimate a full projective transformation with 9

unknowns. Also, we compensate possible inaccuracies due to the intrinsic camera

parameters determined in Section 2.4.1 when determining the affine transformation

H. We assume the ratio ZB/ZA to be constant as ZA and ZB are the same for all

correspondence points on each camera image frame A and B, respectively. The possible

error when determining the focal length of the ToF camera fB can be neglected as

fB << ZB when correcting the disparity in (2.32). We also note that in the ideal case,

i.e., where the two cameras are equally oriented and only shifted by the baseline, the

affine transformation H would correspond to a (3× 3) identity matrix I3.

(a) (b)

(c) (d)

Figure 2.6: ToF calibration pattern images recorded by the 2-D and the ToF camera, (a)

and (c) respectively, to estimate the relative extrinsic parameters. The centroid operator

detects with sub-pixel accuracy the centroid of each target, shown in red in (b) and (d).
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2.4 Proposed system calibration

To summarize, our calibration approach determines the intrinsic camera parameters

of each camera in the rig by using a single acquisition of the calibration patterns shown

in Figure 2.5. We assume the calibration patterns to be located parallel to each camera

image frame and at a known distance along the optical axis. In order to determine the

relative extrinsic parameters, we just need three correspondence points to determine

the homography that relates pixel coordinates from one camera to the other. The same

pattern to determine the intrinsic camera parameters of the ToF camera can be used.

In the following, we present some experimental results that quantify and qualify our

practical calibration approach.

2.4.3 Experimental results

We note that the experiments have been performed using the data recorded by the

second hybrid ToF multi-camera rig prototype introduced in Section 2.3. The speci-

fications of the cameras that constitute the second hybrid ToF multi-camera rig such

as pixel size δ or pixel resolution can be found in the Appendix A. In the following,

we focus on the practicability and accuracy of our concept and we compare our results

with the ones obtained by the commonly used Bouguet’s calibration toolbox [Bou09].

Our calibration approach requires first the calibration pattern to be installed par-

allel to the camera image frame and second to fix the distance at which the pattern

is located with respect to the camera. By accomplishing these constraints, the in-

trinsic camera parameters are directly determined from one input image as shown in

Figure 2.7a. In contrast, Bouguet’s technique searches for a global optimum of both

intrinsic and extrinsic camera parameters, which requires a minimum of two input im-

ages with different orientations of the calibration pattern, as shown in Figure 2.7b, and

is thus time consuming. As shown in Figure 2.8, in addition to the intrinsic camera

parameters, Bouguet’s technique also determines the external camera parameters that

relate each acquisition of the calibration pattern with the viewing camera. The figure

shows how the multiple acquisitions in Figure 2.7b are oriented and located with respect

to the viewing camera reference frame Oc (depicted by a red pyramid). In contrast, our

concept can be automated for a mass calibration process as only one image acquisition

with a known position and orientation is required.

We next compare the results obtained with our calibration concept with the results

obtained using Bouguet’s toolbox. Figure 2.9 shows the 2-D calibration pattern in Fig-
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(a) (b)

Figure 2.7: Input image(s) to estimate the 2-D intrinsic camera parameters. (a)

Single image used in our calibration approach. (b) Multiple acquisitions required for

Bouguet’s [Bou09] calibration.

ure 2.7a undistorted using our approach (Figure 2.9a) and undistorted using Bouguet’s

calibration toolbox (Figure 2.9b). We determine the coordinates of the centroid of each

dot and we overlap them together with the ground truth grid of centroids, depicted

in black crosses (+) in Figure 2.10. We evaluate the accuracy of each technique by

measuring how much off the undistorted centroids are from the ground truth. In our

case, the maximum distance between a centroid and its ground truth coordinates is

6.92 pixels while using Bouguet’s calibration toolbox is 10.75 pixels. The mean dis-

tance between all pairs of centroids and ground truth coordinates is 2.10 pixels while

using Bouguet’s toolbox is 2.38 pixels. We have seen that our calibration approach is

able to correct the distortion introduced by our optical lenses. It thus, enables to esti-

mate the relationship between both cameras. In addition and for this concrete setup,

our estimated parameters are more accurate than the ones estimated with Bouguet’s

calibration toolbox.

With regards to the relative extrinsic parameters, their accuracy is linked to the

accuracy with which the centroid of each control point from the relative calibration pat-

tern has been estimated (see Figure 2.6b and Figure 2.6d). In the case where a control

point appears as only one pixel, the centroid will be the image coordinates of this pixel
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2.4 Proposed system calibration

Figure 2.8: Orientation and location (extrinsic parameters) of the multiple calibration

pattern acquisitions in Figure 2.7b estimated with Bouguet’s toolbox for Matlab [Bou09].

and therefore will induce a discretization error in the interval [−δ/2, δ/2]. Assuming

that the discretization error is statistically equally distributed over that interval, one

can easily calculate the Root Mean Square Error (RMSE) to be ∆ = δ/
√

12. When a

dot appears as a blob of N pixels, one obtains a RMSE of

∆ =
1√

12N
δ, (2.35)

which is then more accurate than when using edges, i.e., ∆ = δ/2. The relative

calibration pattern is located at a distance of 1530 mm from the sensing system and

roughly positioned in the centre of the FOV (see Figure 2.6c). In addition, we consider

the 20 control points in order to obtain a maximum accuracy. Thereby, we take as

reference the positions detected in the 2-D image I. In the ToF amplitude image A, the

average size of the detected dots is 7.7 pixels, yielding, according to (2.35), a sub-pixel

accuracy of the centroid of ∆x = 7.1 µm and ∆y = 5.1 µm. We note that the pixel

size of the ToF camera is δx = 68 µm and δy = 49 µm. The RMSE of the centroid

coordinates after relating the centroid coordinates in A with the centroid coordinates

in I is 5.4 µm in the x direction and 7.9 µm in the y direction.

We can confirm that our centroid operator achieves an accuracy of the same order

as the one given by (2.35), which is clearly better than the low resolution of the ToF

camera and close to 1 pixel of the 2-D camera resolution, which is (7.4 µm × 7.4 µm).
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(a) (b)

Figure 2.9: Undistorted 2-D calibration pattern in Figure 2.7a using (a) our approach

and (b) Bouguet’s calibration toolbox.

Figure 2.10: Overlapping of the dot centroids after undistorting using our approach (*)

and Bouguet’s approach (x) onto the ground truth centroids (+).
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Chapter 3

Data matching

In this chapter, we propose an original framework to align the data recorded by each

of the cameras that constitute the hybrid ToF multi-camera rig. We first introduce the

problem of disparity due to the displacement between the camera centres. Then, we

present a unified reference frame where the recorded data by each of the cameras will

be mapped in order to be pixel aligned. We propose a real-time implementation by an

iterative algorithm that considers associative arrays, i.e., look-up tables, that relates

non-mapped and mapped image coordinates. Finally, we present some experimental

results to quantify the accuracy between mapped image coordinates. We note that our

method is not only intended to map the data from low-resolution ToF cameras but

conceptually applies also to other 3-D sensing modalities such as the recently emerging

laser scanners, i.e., the ibeo LUX [Ibe11] or the Eco Scan FX8 [Nip11] whose resolutions

are also far below the resolutions of standard 2-D cameras.

3.1 Distance-dependent disparity

In general, the two reference frames of each individual camera constituting a hybrid ToF

multi-camera rig are not co-centric, i.e., the centres of projection of each camera are

displaced by a baseline b, similarly to the stereo vision system presented in Figure 1.1.

Indeed, in this case one of the two 2-D cameras is replaced by a ToF camera. Thus,

the projections of a point P in space onto each camera image frame and with respect

to each camera’s principal point, also differs by the binocular disparity introduced in

Section 1.1 and generalized to our setup in Section 2.4.2. We remark that we referred
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to each camera’s reference frame as A for the 2-D camera and B for the ToF camera

in Section 2.2.1. In stereo vision systems, the disparity leads to the estimation of

the distance Z at which the point P is located in the scene (see Figure 1.1) [TV98].

However, this requires finding the feature-correspondence pairs that in general result

from the solution of the correspondence problem [HZ03, TV98]. In contrast, in our case

the problem is reversed. The ToF camera measures the distance at which the point P

is located with respect to its reference frame B, i.e., ZB and thus, allows to estimate

the disparity ρ(ZB) for each of the ToF camera pixels, as discussed in Section 2.4.2.

We note that the relationship between the ZB measurements and the disparity

ρ(ZB) causes a dependency on the scene. Therefore, it has to be recalculated whenever

the scene changes, which is typically the case for every frame of data acquisition, and

for each ToF camera pixel as it is not constant for all pixel locations. By differentiating

disparity ρ(ZB) in (1.2) with respect to the distance ZB, we define the absolute disparity

variation ∆ρ(ZB) as a function of the absolute depth variation ∆ZB, and obtain

∆ρ(ZB) = fBb
∆ZB

Z2
B

, (3.1)

where fB is the focal length of the ToF camera and b the baseline between the cam-

era centres. We note that only in situations where the depth variation of the ob-

ject in the scene ∆ZB is small enough compared to the squared distance Z2
B from

the object to the system, the disparity ρ(ZB) can be assumed as constant and thus,

included in a simple projective transformation for all recorded frames. Actually,

this scenario is commonly used in research efforts that integrate non-industrial ToF

cameras such as the SwissRanger
TM

ToF camera, in their ToF multi-camera rig (Fig-

ure 1.2d) [CBTT08, KCTT08, KTD+09]. In this case, the rather small field of view

provided by the SwissRanger
TM

camera, i.e., 47.5◦ × 39.6◦, forces such systems to be

installed at a relatively large distance from the object. As a consequence, these systems

can still function while neglecting the distance-dependent disparity, which is not the

case for the majority of ToF cameras, which require the variation of disparity to be

taken into account. In what follows we propose to solve this problem by defining a new

matching procedure that exploits the distance-dependent disparity. As a result, any

ToF camera available on the market can be integrated in a hybrid ToF multi-camera

rig intended for low-level data fusion regardless of its specifications.

42



3.2 Unified reference frame

3.2 Unified reference frame

A hybrid ToF multi-camera rig provides multi-modal data. Thus, a 2-D image I related

to the reference frame A and a pair of depth D and amplitude A images related to the

reference frame B are delivered. We denote the image coordinates of a point in image I

as (uIA, v
I
A). Accordingly, the image coordinates of a point in images D or A are denoted

as (uDB , v
D
B ). We remark that these image coordinates have been distortion corrected

from (2.9) and (2.10) by using the intrinsic camera parameters estimated during the

calibration process (see Section 2.4). To achieve the low-level data matching required for

data fusion, we proceed by transforming these image coordinates to a unified reference

frame C, which is the basis for the data matching (or warping) described in Section 3.3.

This transformation will allow to establish a mapping of the data recorded by each

camera to a unique coordinate grid on C, where the mapped images are pixel aligned,

and ready to be fused.

3.2.1 Choice of the unified reference frame

The image coordinates p′A = [uIA, v
I
A, 1]T of a point PA = [XA, YA, ZA]T related to

the 2-D camera reference frame A are transformed to the unified reference frame C

using (2.31), i.e.,

p′C =
ZA

ZC

KCRACK
-1
A

[
p′A +

KA

ZA

tAC

]
, (3.2)

with RAC and tAC the rotation matrix and translation vector from the reference frame A

to the reference frame C, respectively. Since the image transformation in (3.2) requires

the knowledge of the coordinate ZA, we choose the unified reference frame C to be

co-centric to the 2-D camera reference frame A, i.e., tAC = [0, 0, 0]T. Hence, (3.2)

amounts to

p′C = KCRACK
-1
Ap′A =: HAC · p′A, (3.3)

with HAC a plane-to-plane transformation or projective transformation from reference

frame A to reference frame C. Similarly, the transformation of the image coordinates

of a point p′B, related to the ToF camera reference frame B, to the unified reference

frame C is analogous. Using (2.31), we find

p′C =
ZB

ZC

KCRBCK
-1
B

[
p′B +

KB

ZB

tBC

]
=
ZB

ZC

HBC

[
p′B +

KB

ZB

tBC

]
, (3.4)
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where RBC and tBC are the rotation matrix and the translation vector from the reference

frame B to the reference frame C, respectively. HBC is the projective transformation

from reference frame B to reference frame C. We note that in this case the distance ZB

is known as it results from

ZB = D(uDB , v
D
B ) · fB

d(uDB , v
D
B )
, (3.5)

with

d(uDB , v
D
B ) =

√
f2
B +

(
δx,B(uDB − cx,B)

)2
+
(
δy,B(vDB − cy,B)

)2
. (3.6)

Since each pixel in D corresponds to a radial measurement, the conversion in (3.5) is

therefore necessary to obtain the distance ZB that relates to each pixel (uDB , v
D
B ) in

D. This in turn allows the transformation of the image coordinates from the reference

frame B to the reference frame C.

3.2.2 Distance-dependent disparity shift

The transformation of the image coordinates in (3.4) consists of two steps. The first

step concerns the binocular disparity shift, i.e.,

p′′B =
ZB

ZB − tz

[
p′B +

KB

ZB

tBC

]
, (3.7)

followed by the the projective transformation p′C = ZB/ZC · HBCp
′′
B. The factor

ZB/(ZB− tz) (tz is the third component of the vector tBC = [tx, ty, tz]
T) in (3.7) makes

p′′B to be in homogeneous coordinates, i.e., p′′B = [u′DB , v
′D
B , 1]T. For our setup, we may

neglect tz, i.e., tz ≈ 0 since the two cameras in the hybrid ToF multi-camera rig are

chosen to be co-planar, i.e., the rotation matrix RBC is a rotation in two dimensions

and ZB = ZC, that is, HBC can be approximated by an affine transformation. As a

result, (3.7) simplifies to

p′′B =

 u′DB
v′DB
1

 =

 uDB
vDB
1

+
1

ZB

 δ−1
x,BfB 0 cx,B

0 δ−1
y,BfB cy,B

0 0 1

 tx
ty
0


=

 uDB
vDB
1

+

 δ−1
x,BfB · tx/ZB

δ−1
y,BfB · ty/ZB

0

 =

 uDB
vDB
1

+
fB
ZB

 tx/δx,B
ty/δy,B

0


=:

 uDB
vDB
1

+

 ρx(ZB)
ρy(ZB)

0

 =

 uDB
vDB
1

+
fB
ZB

 bx,B
by,B

0

 , (3.8)
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which corresponds to p′B plus the binocular disparity introduced in (1.2). The possible

error when determining the focal length fB of the ToF camera can be neglected as

fB << ZB when correcting the disparity in (3.8). The binocular disparity in (3.8) is

decomposed into two components as ρ(ZB) = ρx(ZB) ·~ex+ρy(ZB) ·~ey, where ~ex and ~ey

are respectively the unit vectors along the x and y axes of the ToF reference frame B.

We note that the order of the two previous steps can be exchanged by multiplying

in (3.4) the transformation HBC inside the disparity shift, i.e.,

p′C =
ZB

ZC

HBCp
′
B +

KCRBC

ZC

tBC =: p′′C +
KC

ZC

t′BC, (3.9)

with the baseline t′BC = [t′x, t
′
y, t
′
z]

T measured from the reference frame C and p′B being

transformed to p′′C by HBC. Analogously to (3.7), (3.9) simplifies to

p′C =

 uDC
vDC
1

 =

 u′DC
v′DC
1

+
1

ZB

 δ−1
x,CfC 0 cx,C

0 δ−1
y,CfC cy,C

0 0 1

 t′x
t′y
0


=

 u′DC
v′DC
1

+

 δ−1
x,CfC · t

′
x/ZB

δ−1
y,CfC · t

′
y/ZB

0

 =:

 u′DC
v′DC
1

+

 ρx(ZB)
ρy(ZB)

0


=

 u′DC
v′DC
1

+
fC
ZB

 bx,C
by,C
0

 . (3.10)

We see from (3.10) that image coordinates p′B are first transformed to p′′C and then the

disparity is computed using the intrinsic parameters in C and the distance ZB given by

the ToF camera. The values of the depth map D are, however, not invariant under this

disparity shift, but may be recomputed according to (see equations (3.5) and (3.6))

D′(u′
D
B , v

′D
B ) = ZB ·

d(u′DB , v
′D
B )

fB
, (3.11)

where (u′DB , v
′D
B ) are the image coordinates shifted by the disparity, according to (3.8).

3.3 Mapping procedure for data matching

Data matching results from mapping the images I and D′ on a common grid of pix-

els related to the reference frame C, where the mapped images will be pixel aligned.
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Let us consider I to be the 2-D image of (M pixels × N pixels) with image coordi-

nates {(uIA,mn, vIA,mn), m = 1, . . . ,M ; n = 1, . . . , N}. Similarly, we consider D′ to

be the disparity shifted depth map of (K pixels × L pixels) with image coordinates

{(u′DB,kl, v′
D
B,kl), k = 1, . . . ,K; l = 1, . . . , L}. Due to the transformation to the common

grid, these image coordinates become {(uIC,mn, vIC,mn), m = 1, . . . ,M ; n = 1, . . . , N}
and {(uDC,kl, vDC,kl), k = 1, . . . ,K; l = 1, . . . , L}, respectively. We define such a common

mesh grid as Ψ = {(pij , qij), i = 1, . . . ,M ; j = 1, . . . , N}, where the pair (pij , qij)

represents the location of the image pixel corresponding to the row index i and the

column index j. We set the grid Ψ to be of the same resolution (M × N) as the

2-D camera. There is, however, no restriction regarding the resolution of the resulting

mapped images. Our choice of M and N in this paper is motivated by the low-level

data fusion, which is intended for enhancing the ToF depth map up to the same 2-D

camera resolution. In general, state-of-the-art approaches that deal with the mapping

of images to a common grid intended for data matching are based on forward warp-

ing [DNN+11, LH10b]. Thus, each mapped image coordinate from I and D are assigned

to the nearest pixel of the common grid. However, in most of the cases, the resolution

of the depth map D is far below the resolution of the 2-D image I, i.e., K << M and

L << M , as illustrated in Figure 3.1a. As a result, the warping of such a depth map

D onto the common grid presents a large number of missing depth pixels. In other

words, forward warping generates a sparse number of warped depth pixels, as shown in

Figure 3.2a. In contrast, we propose a back warping approach in which we determine

for each pixel (pij , qij) on the common grid, the nearest pixel (uIC,mn, v
I
C,mn) on the

image I after being transformed onto C, as illustrated in Figure3.1b. Similarly, we de-

termine for each pixel (pij , qij) the nearest pixel (uDC,kl, v
D
C,kl). As a result, our mapped

images, IC and DC are perfectly aligned with a major advantage of DC being a dense

depth map. Indeed, we show in Figure 3.2b a comparison of the deth maps obtained

using a forward mapping and our proposed counterpart; that could be referred to as

backward warping. The two techniques are overall equivalent. Our proposed approach

has however one clear advantage. It provides a dense depth map while the forward

warping provides a very sparse depth map. As a result if there is a requirement for

depth map downsampling, which is common for a real-time implementation, the down-

sampled sparse depth map becomes unusable. We claim therefore that our proposed

backward warping is more appropriate for real-time applications.
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(a) (b)

Figure 3.1: Image coordinate transformation. (a) Shown are the transformed 2-D image

coordinates (uIC, v
I
C) depicted as ’+’, the transformed ToF image coordinates (u′

D
C , v

′D
C ) de-

picted as ’×’, and the mesh grid Ψ coordinates (p, q). (b) Detail of the mapping procedure.

It is apparent that a certain ToF pixel (k, l) will be mapped to several mesh grid pixels

(i, j). Reference frames A, B, and C are depicted in blue, red, and green, respectively.

(a) Forward warping (b) Proposed backward warping

Figure 3.2: Comparison of the sparse depth map points obtained by forward warping

(a) and the dense depth map obtained using our method, i.e., backward warping (a). We

refer the reader to the electronic version of the paper in order to better appreciate the

differences between the forward and backward warping result.

3.3.1 2-D camera LUT

The relationship between the raw images and the mapped ones can be represented by

an array that associates each pixel coordinates in the unified reference frame C to a

unique pixel in A and B, as illustrated in Figure3.3. This associative array or look-up

table (LUT) can be computed off-line in order to reduce the complexity of the mapping

procedure to a single indexing operation and leading to real-time implementation.

We define the mapping (i, j) 7→ (m,n) = LAC(i, j), as LAC(i, j) =

arg min(m,n) ‖(pij , qij) − (uIC,mn, v
I
C,mn)‖2. The stored LUT LAC allows to gener-

ate the new mapped image as follows IC(i, j) = I
(
LAC(i, j)

)
, for all i, j.
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Figure 3.3: The look-up tables LAC and LBC associate each pixel coordinates in C to a

unique pixel in A and B, respectively.

3.3.2 ToF camera LUT

The same procedure as the one presented for determining the 2-D camera LUT ap-

plies for the ToF camera LUT that we refer to as LBC. Thus, we place the same

mesh grid Ψ onto the disparity corrected and transformed image coordinates (uDC , v
D
C )

and we perform a nearest neighbour search to determine the pixel (k, l) from D′ with

the position (uDC , v
D
C ) nearest to (pij , qij). The mapped depth map DC results from

DC(i, j) = D
(
LBC(i, j)

)
, for all (i, j). We note that the mapping described by this

mesh grid also upsamples the mapped image coordinates to the 2-D camera resolution

(M ×N). We did not consider other interpolation techniques such as linear or bilinear

interpolation because they may generate unwanted artefacts when applied on ToF data

due to their characteristics such as incorrect measurements at large distances. These

pixel values must not be considered in an interpolation, but require a special treatment.

Also, real distances within the edges in the scene should not be interpolated. At the

end of the mapping process, both resulting images IC and DC generated from their re-

spective LAC and LBC LUTs are pixel aligned. Nevertheless, LBC that generates DC is

distance-dependent. Due to the disparity shift presented in Section 3.2.2, the resulting

LBC LUT depends on the depth map information and thus on the scene configuration.

The easiest way to deal with this dependence would be computing the LBC LUT for
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3.4 Real-time implementation

each recorded ToF frame; however, this implies a high computational time, and conse-

quently, it will not be viable if real-time performance is required. Indeed, the off-line

computation of a single LBC is close to 15 minutes using Matlab for Windows on the

system we have used to run our experimental results.

3.4 Real-time implementation

In order to achieve real-time performance on dynamic scenes, we propose to consider

an array {LBC,k}, k = 0, . . . ,K − 1, of LUTs where each LUT LBC,k tackles a different

disparity ρk(ZB), corresponding to a plane at a fixed distance Zk = fC · |b|/k to the

system. We choose the discrete disparities as multiples of the pixel size in the mapped

depth map DC, i.e., ρk = sbk, k = 0, . . . ,K − 1 where sb = b/|b| is the unit vector of

the baseline shift. Dividing the Z range of the ToF camera into K intervals [ζk+1, ζk]

around Zk with

ζ0 = ∞

ζk = f · |b|
(k − 1

2)
, k = 1, . . . ,K, (3.12)

one finds that for each pixel of the ToF camera with a Z value in the interval [ζk+1, ζk],

the disparity equals ρk(ZB), with an error less than δ/2, i.e., half the size of a pixel in

the mapped depth map DC, as shown in Figure 3.4. The maximum binocular disparity

is given by the minimum Z−measurement range of the ToF camera, Zmin (the minimum

Z value in the setup). The number K of different disparities to be considered is given by

K ≥ f · |b|Zmin
+ 1

2 . The mapping is then performed by the iterative Algorithm 3.1, where

Z denotes the image of ZB values calculated from the depth map D using (3.5). This

mapping procedure allows the low-resolution depth map D to be mapped in real-time

to a depth map DC, where each pixel matches a pixel in the already mapped IC image.

In the occlusion handling block, we check if the condition Z ∈ [ζk+1, ζk] is fulfilled. If

not, the selected pixel is labelled as occluded.

Although we achieve a high performance within the mapping procedure, the memory

required to store the K LUTs is considerable, being a problem to deal with in case of

real embedded applications. To that end, we propose a procedure to reduce the memory

requirements intended for hybrid ToF multi-camera systems with their cameras almost

co-planar. In this case, we proceed by considering the transformation HBC inside the
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3. DATA MATCHING

Figure 3.4: Z range of the ToF camera divided into K intervals [Zk+1, Zk] defined by

equidistant disparity values ρk(ZB) = k × ρ. Within each interval, the disparity ρ varies

less than 1 pixel size δ.

disparity shift, as discussed in Section 3.2.2 (see (3.10)). In our case, the x axes of the

camera reference frames are chosen to be parallel to the baseline between the cameras,

i.e., b = [bx, 0, 0]T, and thus the disparity shift extends in the x direction of the image

frame. The disparity differs by exactly one pixel in x direction when calculated at two

different distances Zk and Zk+1. The corresponding two LUTs are then related via

LBC,k+1(i, j) = LBC,k(i, j − s) with s = sign(b) = ±1 being the sign of the baseline

shift with respect to the x axis, i.e., indicating on which side of the ToF camera

the 2-D camera is positioned with respect to the x axis of the unified reference frame.

Consequently, it is sufficient to store a single LUT LBC,0 calculated on an extended mesh

grid Ψ of size M × (N + k), which defines all K LUTs via LBC,k(i, j) = LBC,0(i, j− sk)

with i = 1, . . . ,M , j = 1 . . . , N , and k = 0, . . . ,K − 1. Unlike the distance image D,

the Z image needs to be recalculated by the same projective transformation resulting

in a new Z′ image (see (3.5)). We proceed by using the Algorithm 3.2, where ZC is

the resulting matrix of ZB coordinates on the common coordinate grid in the unified

reference frame. The latter allows to calculate a radial distance image DC using (3.11)

for the coordinates of the common coordinate grid.
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3.4 Real-time implementation

Algorithm 3.1 Mapping algorithm

for i = 1 to N do

for j = 1 to M do

k = K

{Search Zk interval}
while (k > 0) and (Z(LBC,k(i, j)) > ζk) do

k ← k − 1

end while

{Occlusion handling}
if (k < K) and (Z(LBC,k(i, j)) < ζk+1) then

k ← k + 1

end if

{Mapping}
DC(i, j) = D′(LBC,k(i, j))

end for

end for

Algorithm 3.2 Optimized mapping algorithm

for i = 1 to N do

for j = 1 to M do

k = K

{Search Zk interval}
while (k > 0) and (Z′(LBC,0(i, j − sk)) > ζk) do

k ← k − 1

end while

{Occlusion handling}
if (k < K) and (Z′(LBC,0(i, j − sk)) < ζk+1) then

k ← k + 1

end if

{Mapping}
ZC(i, j) = Z′(LBC,0(i, j − sk))

end for

end for
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3.5 Experimental results

In order to analyse the data mapping step, we have considered six different test cases

in which we recorded the calibration pattern displaced around the FOV of the sensing

system, and at different depths and orientations (see Figure 3.5). We first quantify

our proposed approach against to a common mapping using a simple projective trans-

formation, i.e., a plane-to-plane transformation or 2-D homography. To that end, we

focus on the four first test cases where the recorded pattern is always located parallel to

the sensing system. In Table 3.1, the two first rows report the RMSE of the centroids

of the mapped control points using a 2-D homography. As expected, the use of a 2-D

homography performs better if the distance at which it has been computed coincides

with the distance at which the control points are located (see the first four test cases

in the second row of Table 3.1). However, if we use a unique homography for these test

cases, the matching error increases as soon as we vary the depth at which the pattern

is located (see the first four test cases in the first row of Table 3.1). In general cases

where the pattern is arbitrary located and oriented in front of the sensing system (see

test cases 5 and 6 in Figure 3.5 and the last two columns of Table 3.1), the use of a

plane-to-plane transformation reports an error much bigger than using the proposed

approach. Indeed, the proposed data mapping approach presents an accuracy up to one

2-D pixel, which is caused by the approximation, given in (3.12), of Zk by the interval

[ζk+1, ζk]. We note that the errors reported in Table 3.1 also include the inaccuracies

introduced by the centroid estimation and the calibration step, which correspond to

1 pixel according to the 2-D camera pixel size (see Section 2.4.3). Thus, the evalua-

tion results for our mapping method show a consistent error of about 2 mapped image

pixels, or less if we take into account the error due to the centroid operator. This obser-

vation confirms that the proposed method accurately adapts to the distance-dependent

disparity explained in Section 3.1. The last row of Table 3.1 reports the error when

considering the most common or general approach for data mapping, i.e., using a full

3-D projection (with no approximations). By using this 3-D projection, the mapped

centroids are matching with more accuracy than by using the proposed approach. How-

ever, the loss in accuracy is worth a significant gain in speed. We note that the mean

in seconds for computing this 3-D projection for a single frame is 782.67, while using
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Table 3.1: Data matching error for the six test cases. The table compares the RMSE (in

pixels) over 20 control points, separately computed for x and y pixel coordinates, between

our mapping procedure and the mapping using first a simple projective transformation

(two first rows) and a 3-D transformation without approximations (last row).

Test cases 1 2 3 4 5 6

RMSE using a unique x 7.52 1.67 3.66 1.33 2.59 3.75

proj. transf. (z = 1.5 m) y 1.45 1.26 1.23 1.88 1.42 1.57

RMSE using a computed proj. x 1.29 1.31 1.87 1.33 3.52 3.90

transf. for each test case y 1.48 1.26 1.22 1.88 1.42 1.69

RMSE using the proposed x 2.14 1.45 1.69 1.56 1.47 2.04

mapping procedure y 1.40 1.27 1.37 1.84 1.43 1.72

RMSE using a 3-D x 1.58 1.37 1.51 1.42 1.48 2.00

projection y 1.43 1.25 1.21 1.79 1.35 1.76

the proposed approach only 0.54 seconds are required for the whole mapping procedure

(in Matlab).
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

(u) (v) (w) (x)

Figure 3.5: Test cases for data matching. 1st row: test case 1, z = 0.7 m. 2nd row: test

case 2, z = 1.5 m. 3rd row: test case 3, z = 1.0 m. 4th row: test case 4, z = 1.5 m. 5th

row: test case 5, z ∈ [0.9, 1.5] m. 6th row: test case 6, z ∈ [0.8, 1.5] m. 1st column: 2-D

acquisitions. 2nd column: ToF acquisitions. 3rd column: 2-D mapped. 4th column: ToF

mapped. 54
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Chapter 4

Depth enhancement by filtering

This chapter is an overview of the filtering techniques intended for the enhancement

of low-resolution ToF depth maps by means of data fusion with high-resolution 2-D

images. Different filtering techniques that combine low-resolution depth maps with ac-

curately aligned high-resolution 2-D images have been proposed during the last decade.

Among the early results for low-resolution data fusion, the application of Markov ran-

dom fields (MRFs) to the fusion of ToF and 2-D data was proposed by Diebel et

al. [DT05], and extended by Gloud et al. [GBQ+08]. Despite their promising results,

the evaluation of depth enhancement methods based upon an MRF is in general compu-

tationally intensive and thus not suitable if real-time processing is a requirement. Yang

et al. [YYDN07] presented an alternative depth enhancement method based upon a cost

volume in which the final depth map was estimated through a different refinement mod-

ule. Another approach is used in methods based upon a bilateral filter [Ela02, TM98].

These approaches achieve similar results to those based upon an MRF or iterative

methods with a major advantage of a faster computation time. This motivates us to

focus on the bilateral filtering techniques as real applications usually require fast per-

formance. Therefore, we first introduce the bilateral filter and later, we present the

most relevant bilateral filter based techniques for low-resolution depth enhancement.

4.1 Background: Bilateral filtering

The bilateral filter was first introduced by Tomasi et al. [TM98] as an alternative to

iterative approaches for image noise removal such as anisotropic diffusion, weighted
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4. DEPTH ENHANCEMENT BY FILTERING

least squares, and robust estimation [Ela02]. This non-iterative filter formulation is a

weighted average of the local neighbourhood samples, where the weights are computed

based on spatial and radiometric distances between the centre of the considered sample

and the neighbouring samples. Thus, its kernel is decomposed into a spatial weighting

term fS(·) that applies to the pixel position p, and a range weighting term fI(·) that

applies to the pixel value I(q). The filtering process locally adapts the kernel as follows

J1(p) =

∑
q∈N(p) fS(p,q)fI

(
I(p), I(q)

)
I(q)∑

q∈N(p) fS(p,q)fI
(
I(p), I(q)

) , (4.1)

where N(p) is the neighbourhood at the pixel indexed by the position vector p =

(i, j)T , with i and j indicating the row, respectively column corresponding to the pixel

position. The weighting functions fS(·) and fI(·) are generally chosen to be Gaussian

functions with standard deviations σS and σI, respectively. The resulting filtered image

J1 is a smoothed version of I, that presents less discontinuities and a significantly

reduced noise level, i.e., I is smoothed while its edges are preserved, as illustrated in

Figure 4.1. Thus, the bilateral filter is a non-linear filter that adapts its kernel to the

data to be filtered (see Figure 4.1e) and consequently makes real-time processing quite

challenging. However, recent implementation techniques for bilateral filtering based on

data downsampling [PD09], data quantization [Por08, YTA09] or, adapting the block

size to the data to be filtered [WFH+10], have shown that real-time performance on

high-resolution 2-D images is feasible.

4.2 State-of-the-art depth enhancement filters

As presented in Section 4.1, the bilateral filter combines a spatial weighting term fS(·)
based on the pixel position p with its corresponding range weighting term fI(·) based

(a) Input im-

age I

(b) Spatial

weighting fS(·)
(c) Range

weighting fI(·)
(d) Weight

fS(·)fI(·)
(e) Output im-

age J1

Figure 4.1: Bilateral filtering. The kernel is applied on the central pixel [DD02].
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on the pixel value I(q). As a result, the filtered image J1 preserves much more detail

given by the range weighting term, e.g., edges from the input image I. Based on this

working principle, different filtering techniques have been proposed for different data

enhancement purposes, such as image denoising by combining flash/no-flash image

pairs [PAH+04], i.e., the range weighting term applies to a flashed image while filtering

the no-flashed image pair, or depth enhancement by combining ToF and 2-D data. We

remark that in cases where the filter considers different data sources, the data to be

filtered has to be correctly aligned and thus every pixel matching to and from each

image pair. To that end, we refer the reader to Chapter 3 where we detail how to align

a low-resolution depth map with its corresponding high-resolution 2-D image. From

now on and for the sake of simplicity, we will refer to the aligned data IC and DC as I

and D, respectively.

4.2.1 Joint Bilateral Upsampling

Kopf et al. presented in [KCLU07] the Joint Bilateral Upsampling (JBU) filter, a

modification of the bilateral filter expression in (4.1) that considers two different data

sources within the kernel of the filter. This way, it becomes possible to compute a

solution for image analysis and enhancement tasks, such as tone mapping or colour-

ization through a downsampled version of the data. This idea was also applied for

depth map enhancement in the context of real-time matting as presented by Crabb et

al. [CTPD08]. The JBU filter enhances an aligned depth map D to the higher resolution

of its correspondence 2-D guidance image I, as follows

J2(p) =

∑
q∈N(p) fS(p,q)fI

(
I(p), I(q)

)
D(q)∑

q∈N(p) fS(p,q)fI
(
I(p), I(q)

) . (4.2)

As in (4.1), the resulting depth map J2 is an enhanced version of D with the same

resolution as the 2-D guidance image, as shown in Figure 4.2. Nevertheless, according

to the bilateral filter principle, the fundamental heuristic assumptions about the rela-

tionship between depth and intensity data, i.e., a difference between intensity values

indicates a jump in depth, may lead to erroneous copying of 2-D texture into actually

smooth geometries within the depth map (see blue arrow in Figure 4.2c). Figure 4.2c

also shows a second unwanted artefact known as edge blurring (see green arrow in Fig-

ure 4.2c) that appears along depth edges that have no corresponding edges in the 2-D
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4. DEPTH ENHANCEMENT BY FILTERING

(a) 2-D guidance image I (b) Depth map D (c) Enhanced depth map

using JBU J2

Figure 4.2: Depth map enhancement using the JBU filter. The arrows in (c) indicate

unwanted artefacts, i.e., blue and green arrows indicate texture copying and edge blurring,

respectively.

image, i.e., in situations where objects on either side of a depth discontinuity have a

similar colour. In most of the cases, this is due to the transformation from the original

coloured image to its grayscale version (see Chapter 7). Edge blurring also occurs due

to the misalignment between the data to be filtered, i.e., data does not perfectly match.

Despite the undesired artefacts obtained from the direct application of the JBU filter

for low-level data fusion, this filter has been used as a basis for the next multi-lateral

filters for depth enhancement as developed below.

4.2.2 Colour and depth joint bilateral filter

Kim et al. [KCKA10] presented a straightforward extension of the JBU filter to slightly

reduce the JBU’s texture copying and edge blurring artefacts. In addition to the range

weighting term fI(·) that applies to the 2-D guidance image, they propose to use an

additional range weighting factor fD(·) that applies to the depth measurements as

follows

J3(p)=

∑
q∈N(p)

fS(p,q)fI
(
I(p),I(q)

)
fD
(
D(p),D(q)

)
D(q)

∑
q∈N(p)

fS(p,q)fI
(
I(p),I(q)

)
fD
(
D(p),D(q)

) . (4.3)

This way, in case of depth discontinuities, the texture copying artefact is reduced

whereas the erroneous depth values along depth edges are not corrected.
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4.2 State-of-the-art depth enhancement filters

4.2.3 Noise-Aware Filter for Depth Upsampling

Chan et al. proposed in [CBTT08] an improved version of the JBU filter that preserves

the benefits of using the JBU filter and prevents artefacts in those areas where JBU

is likely to cause erroneous texture copying. This filter is referred to as Noise-Aware

Filter for Depth Upsampling (NAFDU). The NAFDU strategy also relies on depth

information. In contrast to the previous filter, where the depth information was directly

taken into account within the filter kernel, the NAFDU filter splits each data source

contribution as follows

J4(p) =

∑
q∈N(p) fS(p,q)

[
α
(
∆Ω(p)

)
fI
(
I(p), I(q)

)
+∑

q∈N(p) fS(p,q)
[
α
(
∆Ω(p)

)
fI
(
I(p), I(q)

)
+(

1− α
(
∆Ω(p)

))
fD(D

(
p),D(q)

)]
D(q)(

1− α
(
∆Ω(p)

))
fD(D

(
p),D(q)

)] , (4.4)

where α(·) is the blending function that decides how each data source contribution,

from the 2-D image and depth data, must be considered. A high weight α makes the

filter behave like the original JBU filter whereas a low weight α makes it behave like

the standard bilateral filter, i.e., both spatial and range weighting terms are applied

to the same data source D without considering the 2-D image I. Intuitively, NAFDU

tries to preserve the benefits of JBU except in the areas that are geometrically smooth

but heavily contaminated with random noise within the distance measurements. The

blending function is defined as α
(
Ω(p)

)
= 1/

(
1 + eε·(Ω(p)−τ)

)
, with Ω(p) the difference

between the maximum and minimum measured depth value in the pixel neighbourhood

N(p). Parameters ε and τ control at what min-max difference the blending interval

shall be centred. The downside of this method is that those values must be manually

tuned. Besides, the NAFDU expression corresponds to a weighted average of two non

normalized kernels, which makes the contribution of each of the kernels inconsistent

and inaccurate. In addition, it leads to a more complex real-time implementation.
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Chapter 5

Proposed depth enhancement

techniques

In this chapter we propose two adaptive multi-lateral filters to overcome the draw-

backs of the alternative depth enhancement techniques presented in Section 4.2. Our

proposed techniques are based on the JBU filter and are extended by a new factor

that considers the low reliability of depth measurements along the low-resolution depth

map edges. Our former contribution enhances low-resolution depth maps relying on

2-D data as guidance information. Consequently, whereas edge blurring is almost elim-

inated, texture copying may still appear within geometrically smooth regions, i.e.,

within non-abrupt changes on surfaces. In order to entirely remove texture copying, we

propose a second technique that in addition to adaptively considering 2-D information,

also considers depth data as guidance information. Moreover, this latter contribution

can be configured in order to behave as most of the existing multi-lateral filters for

depth enhancement based upon a bilateral filter. Furthermore, both of the proposed

filters may be effectively and efficiently implemented for dynamic scenes and thus, for

real-time applications.

5.1 Pixel Weighted Average Strategy

Adjusting the right distance measurement along real depth edges without mismatching

with texture is quite challenging. We proposed in [GMO+10] an alternative improve-

ment of the JBU filter, that we refer to as the Pixel Weighted Average Strategy (PWAS)
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filter. This filter copes well with inaccurate edge values. In contrast to most of depth

enhancement methods proposed in the literature, the PWAS filter contains an addi-

tional factor Q(·) to the kernel in (4.2), named credibility map. It assigns a reliability

weight to each depth map value as a function of the scene’s geometry. By so doing,

depth measurements that are considered to be unreliable are replaced by reliable values

in their neighbourhood and adjusted to the 2-D guidance image. The PWAS filter takes

the following form

J5(p) =

∑
q∈N(p) fS(p,q)fI

(
I(p), I(q)

)
Q(q)D(q)∑

q∈N(p) fS(p,q)fI
(
I(p), I(q)

)
Q(q)

. (5.1)

Similarly to the filters presented in Section 4.2, the weighting functions fS(·) and fI(·)
are taken to be Gaussian functions with standard deviations σS and σI, respectively.

5.1.1 Credibility map Q

Due to the low spatial resolution provided by ToF cameras, a measured pixel can

cover both foreground and background from the scene at the same time, resulting in

low accuracy depth measurements along depth edges. In addition, the position of an

edge within a depth map is defined with the accuracy of this low spatial resolution.

Therefore, in most of the cases it does not coincide with the position of its corresponding

2-D edge, as shown in Figure. 5.1. Consequently, this misalignment introduces edge

blurring artefacts as described in Section 4.2.1. The introduction of the new factor

Q(·) allows us to explicitly account for the unreliability of the depth measurements

along the edges. This credibility map Q(·) is computed directly from the real data

and requires no manual parameter tuning. Indeed, Q(·) is defined as a Gaussian kernel

applied on the low-resolution depth map such that Q = fQ(−|∇D|), fQ(·) being the

Gaussian function with standard deviation σQ. A low credibility map weight indicates

an unreliable depth measurement whereas a high credibility map weight indicates a

reliable depth measurement. In summary, the credibility map boundaries define in

which areas the depth measurements are unreliable and are thus adjusted according to

the 2-D guidance image. Figure 5.2 shows an example of the credibility map considering

the depth map in Figure 5.1b. This term enables the reduction of texture copying and

edge blurring since range values along depth discontinuities are given less weight by

the credibility map as shown in Figure 5.3. However, the edge blurring effect may still

appear when a real depth edge has no corresponding edge in the guidance image.
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(a) 2-D guidance image.

(b) Depth map. (c) Plot of the selected pixels (marked with

a blue line) from (a) and (b).

Figure 5.1: Inaccuracy of depth measurements within edge pixels. Due to the difference

in resolution, edges in (a) and (b) may not match each other.

Figure 5.2: Credibility map of the raw depth map in Figure 5.1b where a weight of 1

indicates a reliable depth measurement. Depth discontinuities are set to zero.

5.2 Unified Multi-Lateral filter

As presented in Section 5.1, our PWAS filter overcomes the edge blurring artefact due

to the misalignment between 2-D and depth edges by using the credibility map (see

Section 5.1.1). Thus, we correctly addressed the depth values along depth edges out-

performing the alternative depth enhancement techniques presented in Section 4.2, as

shown in Chapter 6. However, the range weighting term fD(·) within the PWAS kernel

only applies to the 2-D information. As a result, this may cause texture copying in

regions that actually are geometrically smooth with, in general, reliable depth mea-

surements (see Figure 5.4a). Instead, we propose to define two separate normalized
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(a) Depth enhancement us-

ing JBU J2

(b) Depth enhancement us-

ing PWAS J5

Figure 5.3: Comparison between JBU and PWAS filtering. The green arrow indicates

edge blurring, which is almost entirely removed in (b) by using the credibility map in

Figure 5.2.

kernels with each one considering a different data source, 2-D and depth information,

respectively. The decision on which kernel the filter has to consider is directly given

by the reliability weight of the pixel to be filtered. We therefore propose the Unified

Multi-Lateral (UML) filter whose main benefit is the increase of the accuracy of the

depth measurements within smooth regions, as shown in Figure 5.4b. The UML filter

takes the form of

J7(p) =
(
1− β(p)

)
· J5(p) + β(p) · J6(p), (5.2)

where β = Q, the blending function to weight the contribution of the pixel to be

filtered from each individual data source. J6(p) is the filtered range value at pixel p

given by a modified PWAS filter with a range weighting term that applies to the depth

information D, i.e.,

J6(p) =

∑
q∈N(p) fS(p,q)fD

(
D(p),D(q)

)
Q(q)D(q)∑

q∈N(p) fS(p,q)fD
(
D(p),D(q)

)
Q(q)

. (5.3)

5.2.1 Filter parametrization

We chose the weighting functions fS(·), fI(·), fD(·), and fQ(·) to be Gaussian func-

tions with standard deviations σS, σI, σD, and σQ, respectively. The reason is mainly

because Gaussian functions can be computed at constant time [Der93]. We notice that

these standard deviations are data-dependent and thus cannot be fixed to a unique
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5.2 Unified Multi-Lateral filter

(a) Depth enhancement us-

ing PWAS J5

(b) Depth enhancement us-

ing UML J7

Figure 5.4: Comparison between PWAS and UML filtering. The blue arrow indicates

texture copying, which is almost entirely removed by using the UML filter.

value. However, we herein define how to automatically set standard deviations to ade-

quate values for each weighting function. The standard deviation σS must be at least

as large as the depth edge resolution which is, in fact, the width of the credibility

map boundaries. This value usually coincides with the scale factor between the low-

resolution depth map D and the high-resolution 2-D guidance image I. We set the

values of σI and σD to the mean of the 2-D image gradient ∇I and to the mean of the

depth map gradient ∇D, respectively. The value of σQ is directly related to the noise

level within the depth data discussed in Section 1.2.2.1.

5.2.2 Limit cases

The filter expression presented in (5.2) allows different filter configurations in order to

make it behave as other multi-lateral filters for depth enhancement from the literature.

To that end, the blending function β(·) has to be considered as a data source flag that

can be enabled or disabled in order to consider either the depth map or the 2-D image

as a guidance information, respectively. Another parameter to be configurable is the

standard deviation of the credibility map σQ. By making it tend to infinity σQ →∞,

the credibility map becomes constant and equal to one for all pixel values. In that case,

there is no credibility map contribution. Then, our multi-lateral filter can be configured

to behave like a:

• bilateral filter. We may set the data source flag β(·) = 1 and σQ →∞ to neglect

the credibility map contribution.
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• JBU fitler. We may set the data source flag β(·) = 0 and σQ →∞.

• PWAS filter. We may set the data source flag β(·) = 0. The remaining part

in (5.2) coincides with the PWAS filter.

In contrast to the NAFDU filter, our proposed multi-lateral filter is a weighted

average of two normalized kernels. Thus, each kernel in (5.2) provides a consistent

contribution. Making our filter behave like the NAFDU filter implies a normalization

factor that is too complex and thus out of the scope of this thesis. With regards to

the new joint bilateral filter, it is clear that there is no possible configuration of our

multi-lateral filter that derives the same filter expression. Nevertheless, we already

discussed, in Section 4.2.2, the limitations of applying the depth measurements in such

a straightforward way.

5.3 Real-time implementation

In order to ensure that the UML filter maintains a high computational efficiency for

real-time applications, we adopted the bilateral filter implementation proposed by Yang

et al. [YTA09]. They presented a fast bilateral filter implementation that enables the

real-time computation of the filter in (4.1). They showed that their fast implementa-

tion outperforms state-of-the-art methods for accuracy, speed and memory consump-

tion [PD09, Por08]. In what follows, we adapted Yang et al.’s implementation to our

proposed UML filter.

5.3.1 Range data quantization

Similarly to [YTA09], we quantify the range of the 2-D intensity values and depth

measurements, i.e., Ik = sI · k, and Dl = sD · l, with k = 0, ...,K and l = 0, ..., L.

sI and sD are the 2-D and depth quantization factors; thus (sI × K) and (sD × L)

are equal or larger than the maximum 2-D intensity values and depth measurements,

respectively. Then, inserting in (5.1) and (5.3) the quantized levels Ik and Dl for I(p),

respectively D(p), one obtains for each level a filtered range image

J5(p, Ik) =

∑
q∈N(p) fS(p,q)fI

(
Ik, I(q)

)
Q(q)D(q)∑

q∈N(p) fS(p,q)fI
(
Ik, I(q)

)
Q(q)

, (5.4)
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and

J6(p, Dl) =

∑
q∈N(p) fS(p,q)fD

(
Dl,D(q)

)
Q(q)D(q)∑

q∈N(p) fS(p,q)fD
(
Dl,D(q)

)
Q(q)

. (5.5)

We define four mappings, i.e., EIk(·) and F Ik(·), for a quantized intensity value at the

pixel position p such that:

EIk : q 7−→ fI
(
Ik, I(q)

)
·Q(q)·D(q), (5.6)

F Ik : q 7−→ fI
(
Ik, I(q)

)
·Q(q) (5.7)

and GDl(·) and HDl(·) for a quantized depth measurement at the pixel position p, such

that:

GDl : q 7−→ fD
(
Dl,D(q)

)
·Q(q)·D(q), (5.8)

HDl : q 7−→ fD
(
Dl,D(q)

)
·Q(q). (5.9)

We may then rewrite (5.4) and (5.5) as follows:

J5(p, Ik) =

∑
q∈N(p) fS(p,q)·EIk(q)∑
q∈N(p) fS(p,q)·F Ik(q)

, (5.10)

and

J6(p, Dl) =

∑
q∈N(p) fS(p,q)·GDl(q)∑
q∈N(p) fS(p,q)·HDl(q)

. (5.11)

We note that fS(p,q) is a function of the difference (p−q). Hence we may write (5.10)

and (5.11) as:

J5(p, Ik) =

(
fS ⊗ EIk

)
(p)(

fS ⊗ F Ik
)
(p)

, (5.12)

and

J6(p, Dl) =

(
fS ⊗GDl

)
(p)(

fS ⊗HDl
)
(p)

, (5.13)

where ⊗ denotes the convolution between functions. The filtered value J5

(
p, I(p)

)
results from a linear interpolation of the filtered range images J5(p, ·) obtained for the

different levels at position p and intensity value I(p) between Ik and Ik+1, i.e.,

J5

(
p, I(p)

)
=interpolate

(
J5(p, ·), I(p)

)
=

1

sI

((
Ik+1−I(p)

)
J5(p,Ik+1)+(

I(p)−Ik
)
J5(p,Ik)

)
. (5.14)
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The same applies to J6(p, Dl); thus from a linear interpolation between Dl and Dl+1:

J6

(
p,D(p)

)
=interpolate

(
J6(p, ·),D(p)

)
=

1

sD

((
Dl+1−D(p)

)
J6(p,Dl+1)+(

D(p)−Dl

)
J6(p,Dl)

)
. (5.15)

Finally, the enhanced depth map J7 results from (5.2) considering (5.14) and (5.15).

5.3.2 Data downsampling

In addition to the range quantization presented in Section 5.3.1, one can ensure a good

memory and speed performance by downsampling the data to be filtered. According

to the study that Paris et al. conducted in [PD09], the sampling of the input data

does not introduce significant errors. The same strategy applies to the UML filter

presented in Section 5.2. To that end, we downsample the input data, i.e., I↓ =

downsample(I, λ) and D↓ = downsample(D, λ), with λ being the scale factor. The

downsampled credibility map Q↓ is then computed over a downsampled depth map D↓,

i.e., Q↓ = fQ(−|∇D↓|). We apply equations (5.4)-(5.13) using I↓ and D↓, resulting

in low-resolution filtered images J5↓ and J6↓. Formally, the values J5

(
p, I(p)

)
and

J6

(
p, I(p)

)
of the high-resolution filtered depth maps can be obtained by spatially

interpolating the low-resolution filtered images, i.e.,

J5

(
p, I(p)

)
= interpolate

(
J5↓
(
·, I(p)

)
,p/λ

)
(5.16)

and

J6

(
p,D(p)

)
= interpolate

(
J6↓
(
·,D(p)

)
,p/λ

)
. (5.17)

Notice that for this bi-linear (i.e., four point) interpolation, the low resolution filtered

images J5↓ and J6↓ would have to be computed for each value I(p) and D(p) of the high

resolution input images. At this point, we combine both the linear range interpolation

and the bi-linear spatial interpolation to a tri-linear (i.e., eight point) interpolation as

follows:

J5

(
p, I(p)

)
= interpolate

(
J5↓(·, ·),p/λ, I(p)

)
, (5.18)

and

J6

(
p,D(p)

)
= interpolate

(
J6↓(·, ·),p/λ,D(p)

)
. (5.19)
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Thereby, J5↓(·, ·) and J6↓(·, ·) is the set of low resolution filtered images calculated

for the different levels Ik and Dl, respectively. The final output of the UML filter is

then obtained according to (5.2) by superposing the two filter outputs in (5.18), (5.19)

using the credibility map Q that defines a pixel-dependent weight for each of the two

contributions.

We address a further optimization of the proposed real-time implementation by

weighting the superposition on a low-resolution level before the interpolation. Thus,

the tri-linear interpolation in (5.19) of J6 is approximated by a bi-linear spatial inter-

polation of a single low resolution filtered image J6↓ = J6↓(·,D↓(·)). This is possible

in the case where the resolution of the original depth map is smaller than the resolu-

tion of the downsampled depth map D↓. Then, the values of D(p) and Q(p) may be

approximated by the nearest pixel in the low versions of the maps. This interpolation

formula for J7 takes the following form:

J7(p) =interpolate
(
Q↓(·)J5↓(·, ·),p/λ, I(p)

)
+

interpolate
((

1−Q↓(·)
)
J6↓
(
·,D↓(p)

)
,p/λ

)
. (5.20)

The main benefit of this implementation is, apart from some run-time optimization, the

fact that no high resolution image except the 2-D image I has to be kept in memory.

In order to avoid filtering artefacts due to the data quantization and sampling in-

troduced above, the standard deviations σI, σD, and σS may be chosen greater than sI,

sD, and sS, respectively. Otherwise, the approximation may be poor, i.e., numerically

unstable. According to the above mappings (see equations (5.7) and (5.9)), the noise

due to quantization only affects the range mapping functions, i.e., F Ik and HDl , and

both the intensity values of the 2-D image I(q) as well as the depth measurements of

the depth map D(q) are preserved.

5.3.3 Special treatment of background pixels

Background pixels are those pixels in the imager that have not been able to estimate a

distance measurement. These pixels are identified during the generation of the provided

depth map and set to a defined value. In the case of IEE’s ToF camera (see Section 2.3),

background pixels are equal to the maximum reachable distance, i.e., 7500 mm. How-

ever, this constant value will differ depending on the camera manufacturer.
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Background pixels must be identified and treated separately during the filtering

process in order to avoid considering their default value as a real measurement. Other-

wise, non valid distance measurements would appear within the enhanced depth map.

To that end, we compute a relative background weight Wbg for each pixel p within

the enhanced depth map by integrating the spatial kernel over all background pixels,

respectively over all pixels as follows

Wbg(p) =

∑
q∈Nbg(p) fS(p,q)Q(q)B(q)∑

q∈N(p) fS(p,q)Q(q)
, (5.21)

where Nbg(p) is the neighbourhood of background pixels and B is a mask of the same

resolution as the depth map D to be filtered where only those pixels that correspond

to background pixels in D are set to 1. Non-background pixels are set to 0. Thus, the

resulting value within the enhanced depth map for the selected pixel p will be directly

set to the defined background pixel value in the case where Wbg(p) ≥ 0.5. Instead,

the filtered value is computed according to (5.1) and (5.3), taking however, only the

foreground pixels into account.
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Chapter 6

Experimental results

This chapter analyses four main aspects of our UML filter. We first quantify the

improvement achieved on the final depth maps resulting from the low-level data fusion

process as compared to the original raw depth maps delivered by the ToF camera alone.

To that end, we evaluate the dimensions of a box under different setup configurations,

i.e., we set the box at different locations within the field of view of the system and we

repeat the experiments at different depths. Then, we quantify the UML filter against

state-of-the-art low-level filtering solutions. In that case, we consider our own recorded

sequences as well as various scenes from the Middelbury dataset [Mid11]. Then, we

check the filter response against noise, and we end with a runtime analysis using the

filter implementation proposed in Section 5.3.

6.1 Quantification of depth map enhancement

We start the assessment of our method with a quantitative comparison between the

raw depth map acquired by the ToF camera and the enhanced depth map resulting

from the low-level data fusion process proposed in Chapter 5. To that end, we have

used the camera rig described in Section 2.3 previously calibrated using the proposed

calibration approach in Section 2.4 and frame-synchronised. We first recorded a box

with known dimensions (see Figure 6.1) and from 8 different setup configurations, i.e.,

we displaced the box along the x, y, and z axes with respect to the hybrid ToF multi-

camera rig. Each sequence contains a total of 20 frames. For the given setup, the pixel

size is roughly (16 mm × 25 mm) for the 3D MLI Sensor
TM

and (2.8 mm × 2.8 mm)
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Figure 6.1: Dimensions of the selected box for the experimental test; width = 350 mm,

height = 175 mm, and depth = 330 mm.

for the Flea R©2 camera. We obtain the box dimensions by fitting a rectangle to the

box area that has been previously segmented using a depth threshold. From Table 6.1

we notice that the measured box dimensions are much more accurate while considering

the enhanced depth maps. Indeed, the accuracy for the lateral dimensions, i.e., length

and width, are on average 1.3 mm when considering the enhanced depth maps, which

corresponds to half the pixel resolution on the Flea R©2 camera. In contrast, the accuracy

when considering the raw depth maps is only 12 mm. The filling ratio of the fitted box

has increased accordingly. This demonstrates that depth edges have been accurately

adjusted according to the guidance image resolution. Regarding the accuracy of the

height measurement of the box, which is not related to the pixel resolution but to the

noise within the distance measurements, we observe that has increased by a factor of 3.

Indeed, the error due to the noise within distance measurements (see Section 1.2.2.1) is

compensate when filtering, thanks to the nature of the bilateral filtering in which our

Table 6.1: Quantitative comparison of the box dimensions measured from the raw and

the enhanced depth maps (units are in millimetres). Shown are the mean of the measured

dimensions and accuracy taken over the 8 box configurations.

Box dimensions

Raw depth map Enhanced depth map

Mean Mean Mean Mean

Measure Accuracy Measure Accuracy

Width 350 360 11.7 349 1.4

Height 175 187 12.2 177 4.2

Depth 330 324 6.3 330 1.2

Filling ratio 100% 98.50% 1.50% 99.72% 0.28%
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filters are based (see Section 4.1).

(a) 2-D guidance image.

(b) Credibility map.

(c) 3-D plot of a raw depth map.

(d) 3-D plot of an enhanced depth map. (e) Plot of the slice cut

Figure 6.2: Comparison between the raw and the enhanced depth maps. The dotted red

lines in the right correspond to the selected depth threshold values.

In order to compute the dimensions of the box, we have considered the best depth

threshold that segments the surface of the box. However, the selection of the best

depth threshold value is far from a trivial task. Indeed, a slight variation on the

depth threshold value may significantly affect the computed box dimensions. Note
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the difference along the left depth edge in the plot of the section in Figure 6.2c when

considering a depth threshold value of 750 mm or 810 mm. In contrast and from the

credibility map contribution (see Figure 6.2b), the misaligned depth edges from the

raw depth maps are accurately adjusted resulting in enhanced depth maps that allow a

larger tolerance while selecting the depth threshold value (see Figure 6.2d). Table 6.2

reports the dimensions of the test box when considering different depth threshold values.

Table 6.2: Robustness against depth threshold selection (units are in millimetres). Shown

are the mean values of the measured dimensions taken over the 8 box configurations and

their variation (std) with the threshold value.

Depth threshold
Std

750 780 810 840 870

Width 345 346 346 347 347 0.8

Enhanced Height 178 178 178 178 177 3.2

depth map Depth 327 328 328 329 329 1.0

Filling ratio 99.90% 99.68% 99.73% 99.61% 99.65% 0.04%

Width 356 363 363 362 362 3.0

Raw Height 189 188 188 187 185 1.4

depth map Depth 323 324 324 327 334 4.5

Filling ratio 97.76% 99.31% 99.31% 98.89% 98.73% 0.63%

6.2 Comparison to alternative filters

6.2.1 Comparison using recorded data

We perform a qualitative comparison of the proposed UML filter against the JBU and

the PWAS filters employing real data. Thereby, we have also varied the sigma spatial σS

to demonstrate the influence of these filter settings. From Figure 6.3, we clearly see the

contribution of each filter, i.e., the JBU, the PWAS and the UML filter. Regarding the

JBU filter, we notice that the higher the sigma spatial σS, the better the depth edges are

adjusted. However, a large σS makes texture copying appear, as shown in Figure 6.3f.

The texture copying artefact can be almost eliminated by setting a smaller σS value,

as shown in Figure 6.3d. However, the edge blurring artefact appears due to the 2-D
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6.2 Comparison to alternative filters

(a) 2-D guidance image (b) Depth map (c) Credibility map

(d) JBU (σS = 5) (e) JBU (σS = 10) (f) JBU (σS = 15)

(g) PWAS (σS = 5) (h) PWAS (σS = 10) (i) PWAS (σS = 15)

(j) UML (σS = 5) (k) UML (σS = 10) (l) UML (σS = 15)

Figure 6.3: Depth enhancement filtering comparison based on the sigma spatial σS value.

and depth edge misalignment problem discussed in Figure 5.1. Thus, it is necessary to

tune the σS value to minimize both edge blurring and texture copying artefacts. The

PWAS filter tackles the edge blurring artefact and significantly reduces the texture

copying artefact (see Figure 6.3g, Figure 6.3h, and Figure 6.3i). However, texture

copying can remain since σS has to be chosen large enough to cover the credibility map

boundaries (see Figure 6.3c). Instead, the UML filter (see Figure 6.3j, Figure 6.3k, and
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Figure 6.3l) perfectly copes with texture copying and edge blurring artefacts providing

accurate enhanced depth maps.

Figure 6.4 shows the final depth map for two real scenarios in addition to the input

data to be filtered, i.e., the high-resolution 2-D image, the low-resolution depth map

and the credibility map. First, one recognizes that our adaptive filter enhances the

low-resolution depth maps from (56 pixels × 61 pixels) to the VGA-resolution of the

coupled 2-D image. Also, the noise level has been greatly reduced. From the credibility

map, depth edges weighted with a lower value, i.e., closer to 0, are accurately adjusted

to the ones in the guidance image. Hence, resolving details like the fingers of the

person in Figure 6.4g and Figure 6.4h, that are not resolved in the raw depth map.

Figure 6.5 compares a detailed region of our enhanced depth maps with the ones given

by the JBU and the PWAS filters. In the first example one recognizes the edge blurring

within the contour of the hand when filtering with JBU, which is drastically reduced

for both the PWAS and the UML filter. Although PWAS performance is not improved

when adjusting depth edges, depth accuracy for pixels with a high credibility weight

is increased by maintaining smooth regions. Also, Figure 6.5 shows an example where

the black belt of the person has the same (black) colour as the background. Contrary

to the JBU and PWAS responses, our adaptive filter correctly addresses that situation,

as shown in Figure 6.5f.

6.2.2 Comparison using the Middelbury dataset

In order to quantify the accuracy of our method against the alternative filtering so-

lutions, we employ the Teddy, Art, Books, and Moebius scenes from the Middlebury

dataset [Mid11]. Each scene contains an intensity image and its corresponding dis-

parity map, from which we have generated a depth map as a ground truth using the

also provided system specifications. We simulate the low-resolution depth map to be

enhanced by downsampling (at different sampling rates) the ground truth depth map.

Figure 6.6 shows an example of the Teddy and the Art scenes where the ground truth

depth maps were downsampled by a factor of nine. As also occurs in the real data

examples, the UML filter enhances the downsampled depth map to the intensity image

resolution. Figure 6.7 shows a zoomed area where we can observe the same differences

between the different filters applied on the real data examples shown in Figure 6.5.

The JBU filter shows a strong edge blurring where the grey image contrast is low,
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(a) 2-D guidance image (b) 2-D guidance image

(c) Low-resolution depth map (d) Low-resolution depth map

(e) Credibility map (f) Credibility map

(g) Enhanced depth map (h) Enhanced depth map

Figure 6.4: Depth map enhancement applying the UML filter onto our own recorded

sequences.
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(a) JBU (b) PWAS (c) UML

(d) JBU (e) PWAS (f) UML

Figure 6.5: Visual comparison of enhanced depth maps using different depth enhancement

filters.

e.g., around the teddy’s ears, marked as red rectangles in Figure 6.7c. In addition to

strongly reducing this artefact, our adaptive filter also removes the texture copying

effect inside the teddy’s head (see the green marked rectangle in Figure 6.7c), which

remains in both JBU and PWAS final depth maps. Figure 6.8 shows an example of the

limitations of the UML filter. This scene contains really small objects (in the regions

indicated by red rectangles in Figure 6.8c) that are tackled as outliers. This occurs

because the credibility map gives a low weight to these objects and consequently their

value is replaced by the neighbourhood pixel values. Exactly the same occurs when

filtering using PWAS. However, on the larger surfaces in the scene (see areas inside the

green rectangles in Figure 6.8c), the resulting depth values of the UML filter are much

more accurate than those of JBU and thus, on average, a better performance can be

expected.

Although the root mean square error (RMSE) is a frequently-used measure to quan-

tify the visibility of errors between a treated image and a reference image, we use an

alternative complementary framework for quality assessment based on the degradation
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6.2 Comparison to alternative filters

(a) 2-D guidance image (b) 2-D guidance image

(c) Downsampled (9x) depth map (d) Downsampled (9x) depth map

(e) Credibility map (f) Credibility map

(g) Enhanced depth map (h) Enhanced depth map

Figure 6.6: Depth map enhancement employing the Teddy and the Art scenes, 1st and

2nd rows respectively.

81



6. EXPERIMENTAL RESULTS

(a) Ground truth (b) Downsampled (9x) (c) Intensity image

(d) JBU output, SSIM:

62.62

(e) PWAS output, SSIM:

69.14

(f) UML output, SSIM:

69.95

Figure 6.7: Visual filtering output comparison employing the Teddy scene.

(a) Ground truth (b) Downsampled (9x) (c) Intensity image

(d) JBU output, SSIM:

44.01

(e) PWAS output, SSIM:

49.95

(f) UML output, SSIM:

50.13

Figure 6.8: Visual filtering output comparison employing the Art scene.
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of structural information, the Structural SIMilarity (SSIM) Index [ZBSS04]. Table 6.3

reports the SSIM measure that quantifies our method against alternative depth en-

hancement solutions. We can observe that under a global error measure, the UML

filter performs at least as well as the PWAS filter. The only case where the UML filter

does not outperform the JBU is in the Art scene with a downsampling rate of 3. This

occurs due to the suppressed small details in the scene as discussed above. For higher

downsampling rates, the performance is, however, superior to JBU.

Table 6.3: Quantitative comparison using the SSIM measure (100 corresponds to a perfect

matching with the ground truth).

Downsampled JBU PWAS UML

3x 97.65 97.71 97.81

Teddy 5x 96.29 96.80 96.90

9x 93.47 94.57 94.79

3x 96.57 96.65 96.71

Moebius 5x 94.67 94.68 94.75

9x 90.75 90.96 91.45

3x 96.89 97.44 97.46

Books 5x 95.59 96.11 96.13

9x 92.51 93.01 93.59

3x 92.96 91.52 91.59

Art 5x 88.42 88.07 88.21

9x 81.09 83.28 83.42

6.3 Robustness to noise

The main sources of noise that affect to the given distance measurements, as described

in Section 1.2.2.1, generally provoke random variations within the provided depth maps,

as shown in Figure 6.4c and Figure 6.4d. We thus want to quantify how the UML

filter behaves against different noise levels. Due to the active illumination of ToF

cameras, the noise level increases according to the measured distance, as discussed

in Section 1.2.2.1. Therefore we simulate this behaviour by adding Gaussian noise

with a standard deviation linearly dependent on the distance measurement [LS01]. We

used the Teddy scene downsampled by a factor of 5 and with a noise of ±100 mm
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at the maximum distance (8976 mm). The results in the graph from Figure 6.9 were

obtained by a Monte Carlo simulation over 100 times, which gave us an accuracy of

±1.2 × 10−3, ±2.2 × 10−4, and ±2.2 × 10−4 for the JBU, the PWAS, and the UML

filter, respectively. Within individual executions only the last digit varies. Then, from

Figure 6.9 we note that the UML filter is more robust to noise than both JBU and

PWAS filters independently of the added noise level.

Figure 6.9: JBU, PWAS, and UML filter response against Gaussian noise of ±100 mm

at the maximum distance (8976 mm).

6.4 Runtime analysis

We next present a runtime analysis to validate that the implementation proposed in

Section 5.3 enables real-time applications. We ran the tests to estimate the time con-

sumption on an Intel Core 2 Solo processor SU3500 (1.4 GHz, 800 MHz FSB) with an

integrated graphic card Intel GMA 4500MHD. The filter was implemented in C lan-

guage and the tests have been performed on our own recorded scenes, enhancing from

(56 pixels × 61 pixels) to VGA-resolution. Table 6.4 reports the seconds per filtered

frame calculated over 1000 iterations. Also, we have sampled the input data by a factor

of 3x, 5x, 9x, and 17x. With the latter sampling factor, the filtering process only takes

0.08 seconds per frame. In addition, we have quantified the corresponding induced

error to each sampling rate. Table 6.5 reports the SSIM measure considering the non

downsampled case as a reference, and the final depth maps for each sampling rate. We

notice that a sampling factor of 9x or 17x drastically reduces the time consumption

without inducing a significant error in the final depth map. As a consequence, data

84



6.4 Runtime analysis

Table 6.4: Run-time analysis for the tested input data sampling rates (units are in

seconds; average over 1000 iterations).

Sampling JBU PWAS UML

1x 1.88 1.89 13.59

3x 0.49 0.50 3.17

5x 0.13 0.13 0.65

9x 0.06 0.06 0.18

17x 0.05 0.05 0.08

sampling enables a real-time depth enhancement despite being restricted by the ToF

camera frame rate of 10 fps.

Table 6.5: SSIM measure depending on the input data sampling.

Sampling JBU PWAS UML

3x 95.78 99.71 99.85

5x 95.46 99.51 99.65

9x 94.89 98.80 98.86

17x 92.25 95.11 95.17
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Chapter 7

Colour representation for edge

blurring avoidance

Unlike the alternative techniques for depth enhancement presented in Section 4.2, our

proposed filtering techniques in Chapter 5 cope very well with the edge blurring artefact

due to the misalignment between 2-D and depth edges. However, edge blurring can

still appear when depth edges have no corresponding 2-D edge. This occurs when

background and foreground objects have a similar colour. Thus, depth edges cannot be

accordingly adjusted to any reference edge yielding to edge blurring. This situation can

occur in many scenarios but we notice that in general it is due to the transformation

from the original coloured images to their grayscale version. Although the results can be

more accurate when considering the full colour information, most systems are restricted

to use a grayscale converted image to accomplish with the processing time and memory

constraints, mainly if real-time is a requirement. A grayscale image is defined as a linear

combination of the red, green, and blue channels in the RGB space. This combination

leads to a non-unique representation of the true colours, which may cause objects having

a different colour to be represented with the same grayscale value. As a result, a more

accurate processing of images requires the use of their true colours, and using three

components. Indeed, most filtering techniques have their definitions extended to three

channels. Paris et al. tested several alternatives on a colour image [PD09]. They first

filtered an RGB image as three independent channels. Despite a correlation between

the three channels, they showed that edges may be smoothed in one channel while

they are preserved in another channel. This consequently induces incoherent results

89



7. COLOUR REPRESENTATION FOR EDGE BLURRING
AVOIDANCE

between channels. They then tested reducing these inconsistencies, that resulted in

bleeding effect, by processing the R, G, and B channels altogether. The downside of

this approach was, however, a longer computational time required for processing. The

same authors tested filtering images in the CIE-Lab space [KA00], which is known to be

perceptually meaningful. Indeed, this solved the colour-bleeding problem but not the

demanding computation time. In this chapter, we propose to reduce the complexity of

processing 3 channels by compactly storing the same information in only one channel.

To that end, we exploit the geometrical structure of 3-D conical colour spaces and

show how to accurately define one parameter to represent the solid HCL conical colour

space [SM05]. We equip this representation with an associated colour similarity measure

inspired from the cylindrical distance used for cylindrical and conic colour spaces such

as HSV/HSL [SM05, GW02, ST97]. In addition, the proposed colour model represents a

novel colour ordering that might be useful in the context of colour morphology [Ang07].

Indeed, morphological colour operators, i.e., morphological filters such as opening and

closing or morphological centre, can be adapted to the proposed colour ordering for

further image processing such as image denoising. We note that our work is not only

related to data compression from 3-D to 1-D [VD10] but deals also with a colour

codification for an efficient subsequent processing.

7.1 Background: Transformation from RGB to HCL

The objective of this work is to define a colour model that is almost as reduced as the

grayscale representation, but preserving all the colour information contained in 3-D

spaces. In other words, we want to define a model that is in one dimension, and that

is still reversible from and to the RGB colour cube (see Figure 7.1a). In addition, our

colour model should also bring in a perceptual meaning. This last property will be im-

portant when computing the distance between colours for pattern recognition purposes.

To that end, we base our work on the conic HCL model shown in Figure 7.1(c) [SM05].

We define in what follows the HCL model and relate it to the RGB cube as it will be

a transition step in converting our proposed model to RGB space and vice versa. The

projection of the RGB cube onto a regular hexagon Ψ in the chromaticiy plane defines

the chroma C and hue H related to R, G, and B (Figure 7.1b). Let p′ be the projec-

tion of a point p in the RGB cube on Ψ and o be the origin of Ψ. Geometrically, the
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(a) (b)

(c) (d)

Figure 7.1: (a) Cubic RGB model projected onto a regular hexagon in the chromaticity

plane. From (b) to (d), warping from hexagons into circles. (c) Conic HCL model.

chroma component c along C, of p, is the length of
−→
op′ relative to the maximal radius

of Ψ passing through p′. The hue component h corresponds to the angle formed by
−→
op′

and
−→
or′, where r′ is the projection of the red colour r = (1, 0, 0) on Ψ. The luminance

component l is equal to ||
−→
pp′||. This is equivalent to c = m1−m2 and l = 1

2(m1 +m2),

where m1 = max(r, g, b), and m2 = min(r, g, b), and

h =


undefined if c = 0,
π
3 (g−bc mod 6) if m1 = r,
π
3 ( b−rc + 2) if m1 = g,
π
3 ( r−gc + 4) if m1 = b.

(7.1)

In what follows, we propose an approximation of the HCL space that only requires

two parameters for colour description. There are alternative methods such as the

proposed by Vahdat et al. [VD10], that describe the colour information by two or even

one parameter. However, these methods are mainly related to data compression or

codification and thus it is necessary to uncompress or decode the data to treat it.
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Figure 7.2: Chromaticity disk approximation with a spiral.

7.2 Proposed spiral model

We propose to describe the colour information contained in the HCL (hue, chroma,

luminance) conic space by approximating the cone using two parameters, θ and l,

instead of using the three coordinates (h, c, l). We thus keep the luminance value l, and

rewrite c and h as functions of a new variable θ. Our key idea is to approximate the

chromaticity disk with a spiral, as shown in Figure 7.2. Specifically, we choose to use

an Archimedean spiral [Loc67] whose radial distance is defined as

r(θ) := a · θ, (7.2)

where a = 1
2π is a constant defining the distance between successive turns, and θ is the

polar angle of the spiral, such that θ ∈ [0, 2πK], K being the total number of turns. We

approximate the chromaticity disk by fitting the spiral to it, such that

h(θ) = θ + 2πk, (7.3)

where k ∈ {0, 1, · · · ,K}, and the C − axis is uniformly sampled into (K + 1) values ck,

with a step equal to a. We note that ck is dependent on the hue h, or equivalently of

the angle θ. Thus we define ck(θ) as

ck(θ) = r
(
h(θ)

)
+ a · k. (7.4)

We then save the luminance value l, and rewrite h and c as functions of a new variable

θ such that

θ = h− 2π round

(
K · c− h

2π

)
. (7.5)
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By setting the spiral extremities as the starting point (c0, h0) = (0, 0), and ending point

(cmax, hmax) = (1, 0), and by replacing these values in (7.2) and (7.3), we find a = 1/K.

In the continuous case, i.e., K→∞, we may write

c = r(θ) =
θ

2πK
⇒ θ = 2πK · c. (7.6)

Replacing (7.6) in (7.3), we find

k = round

(
K · c− h

2π

)
, (7.7)

with round(·) being a rounding function that assigns the nearest integer value to k. We

may now define the transformation from (c, h) to θ as follows:

θ = h− 2π round

(
K · c− h

2π

)
. (7.8)

The inverse transformation from θ to (c, h) is fully defined by (7.2), (7.3), and (7.10),

with k = round
(
θ−θ mod (2π)

2π

)
. Next step is the conversion from the recovered c and

h values to the initial (r, g, b). We compute an intermediate value x = c(1 − |( 3
πh)

mod 2− 1|) to be applied to the following system of equations

(r′, g′, b′) =



(0, 0, 0) if h is undefined,
(c, x, 0) if 0 ≤ h < π

3 ,
(x, c, 0) if π

3 ≤ h <
2π
3 ,

(0, c, x) if 2π
3 ≤ h < π,

(0, x, c) if π ≤ h < 4π
3 ,

(x, 0, c) if 4π
3 ≤ h <

5π
3 ,

(c, 0, x) if 5π
3 ≤ h < 2π.

(7.9)

To obtain the point p = (r, g, b) from q = (r′, g′, b′), we translate q in the R, G,

and B directions by the minimal distance m2 defined in Section 7.1, i.e., (r, g, b) =

(r′ +m2, g
′ +m2, b

′ +m2).

We note that the values of m2 may be stored when extracting c from (r, g, b), or

equivalently from m2 = (l − 1
2c) (see Section 7.1).

7.3 Proposed 1-D colour model

In order to include the luminance parameter in the definition of the spiral model in

(7.8), we propose to uniformly sample the luminance axis into (KL + 1) values ln. We

thus have

ln =
n

KL
, (7.10)
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Figure 7.3: Approximation of the HCL cone by a set of spirals.

where n ∈ {0, 1, · · · ,KL}. At each luminance level ln, we define a spiral of radius

r(θn) = a · θn, with θn ∈ [0, 2πn]. In other words, for larger sections of the cone, we

impose a larger number of spiral turns, as shown in Figure 7.3. In order to keep a

single parametrization of all the KL spirals, we need to relate all of them to the same

parameter. To that end, for a point on the spiral at the level ln, we introduce the

cumulative angle (CA) ζ as

ζ = ζn−1 + θ, (7.11)

with

ζn−1 =
n−1∑
i=0

2π · i = n(n− 1) · π. (7.12)

We note that ζn−1 is the CA of the spirals at level ln−1. The colour model proposed

in (7.11), that we call CA model, reduces the HCL space to a 1-D representation by

a single parameter ζ. We also notice that the CA model is reversible from and to the

original HCL space and consequently to all colour spaces that can be converted from

and to HCL, such as RGB. To do so, one simply needs to follow two steps; first to

retrieve l or its approximation ln, and second find the pair (h, c) at the corresponding

level. By definition, we find that

ζn−1 ≤ ζ < ζn =⇒ l ≈ ln and θ = ζ − ζn−1. (7.13)

94



7.4 Application to depth map filtering

By solving the two inequalities in (7.13), we find an analytic expression for n avoiding

a search among the intervals [ζn−1, ζn[. As an intermediary step, we get:

(
−1 +

√
1 + 4

π ζ

2

)
< n ≤

(
1 +

√
1 + 4

π ζ

2

)
. (7.14)

Given that n ∈ N, we find

n =

⌊
1

2

√
1 +

4

π
ζ +

1

2

⌋
, (7.15)

and from (7.10) we obtain ln. bxc indicates the floor function that maps a real number

x to the largest integer not greater than x. To obtain the pair (h, c), we simply need to

follow the same steps presented in Section 7.2 using the θ angle from (7.11). We finally

get the following result
h ∼= ζ mod 2π,

c = 1
2πK

⌊
1
2

√
1 + 4

π ζ + 1
2

⌋ ⌊
1
2

√
1 + 4

π ζ −
1
2

⌋
,

l = 1
KL
·
⌊

1
2

√
1 + 4

π ζ + 1
2

⌋
.

(7.16)

With equations (7.16) at hand, we fully defined a bijective transformation from (h, c, l)

to ζ. This means that the CA representation encodes in one channel all the information

contained in three channels with an easy way to back-transform. Such a model gives

the possibility to apply the same algorithms used with grayscale images on full color

information, but without extending the algorithms to 3 channels. We illustrate this by

using the CA model for depth map filtering.

7.4 Application to depth map filtering

We consider as an application example the PWAS filter presented in Section 5.1. We

recall that the term fI
(
I(p), I(q)

)
in (5.1) corresponds to a Gaussian function with

standard deviations σI which in fact is the distance between two image intensity values,

I(p) and I(q), i.e., GI

(
d(I(p), I(q))

)
. In the standard case of grayscale images, this

distance d(·, ·) is Euclidean. In order to avoid edge blurring due to the grayscale

conversion, we propose to represent the 2-D image I using the proposed CA model

instead. We hence need to replace d with a new distance dCA between two values
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ζp = I(p) and ζq = I(q). We define dCA as an approximation of the cylindrical

distance dcyl commonly used on the HCL space and defined as [SM05]

dcyl(ζp, ζq) =

√
(∆l)2 + (∆c)2 + 4 · cp · cq · sin2

(∆h

2

)
, (7.17)

where cp and cq are chrominance values corresponding to ζp and ζq, respectively. We

simplify this distance for our model by considering a normalized value ∆ζ instead of

the first term ∆l. The normalization factor a1 is such that we achieve a total distance

of one between the two reference colours black and white, where all the other terms

become zero. Thus, we find a1 = 1
KL(KL+1)(π+1) . In addition, we consider the L1 norm,

and define dCA as:

dCA(ζp, ζq) = a1 |∆ζ|+ |∆c|+ 2 · √cp · cq
sin

(∆ζ

2

) .
Although the above expression is relatively complex due to computing chrominance

values from (7.16), it is a first step towards defining a better distance dCA in terms of

performance. Indeed, the evaluation of dCA is currently restricting the use of the CA

model for our depth enhancement purposes.

7.5 Experimental results

We start by a global evaluation of the CA model by testing 100 different coloured

images of objects from the Amsterdam Library of Object Images (ALOI) [Alo11]. These

images are in the RGB space. We transform them to the proposed CA colour model by

following the steps presented in Section 7.2 and Section 7.3. Figure 7.4 plots the root

mean square error (RMSE) between the original RGB images and the recovered ones

for K and KL varying from 0 to 255. We see that the error drops whenever KL is less

than K, which means that a very sparse sampling of the luminance component can be

sufficient for an accurate representation. Moreover, as soon as K reaches approximately

100, the error approaches zero. While this number may vary depending on the nature

of the images, it clearly does not need to be set greater than 255, as the intensity of

digital images falls between 0 and 255. We proceed by evaluating the performance

of the PWAS filter presented in Section 5.1, when filtering considering grayscale or

CA encoded images. We use data from the Middlebury stereo dataset [Mid11]. Each

selected scene is represented by a 2-D RGB image and the corresponding depth map.
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Figure 7.4: RMSE between 100 images from the ALOI database and their CA transformed

versions.

We downsample the original depth maps by a factor of 8 in order to use them as

low-resolution depth maps inputs (D in (5.1)) (see Figure 7.5). After the filtering

process, we compare the resulting enhanced depth maps with the original ones by

using the structural similarity index (SSIM) [WBSS04]. Table 7.1 reports the computed

SSIM values, where 1 means that the enhanced depth map perfectly coincides with the

original one. Note that the PWAS filter always performs better when considering CA

images. This significant improvement is well illustrated in Figure 7.6 where we zoomed

on a region from the Teddy scene. Figure 7.6 also illustrates the enhanced depth

map using the 2-D guidance image with different colour representations, similarly to

experiments in [PD09]. Edge blurring and texture copying are clearly visible when

considering a grayscale image (Figure 7.6d). These artefacts are significantly reduced

when filtering using RGB images, but colour bleeding is another artefact that remains

due to filtering the 3 channels independently (Figure 7.6e). If one filters all channels

together (Figure 7.6f), then some bleeding still occurs. Instead, filtering using an HCL

image achieves satisfactory results (Figure 7.6g), which are similar to those obtained

from filtering using the proposed CA image (Figure 7.6h).

Table 7.1: SSIM comparison for the four scenes shown in Figure 7.5 (1 corresponds to a

perfect matching).

Venus Cones Art Barn

SSIM for Grayscale 0.974 0.835 0.837 0.948

SSIM for CA model 0.989 0.888 0.873 0.974
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

Figure 7.5: Comparison between PWAS filtering considering grayscale and CA images.

1st row: RGB images. 2nd row: Grayscale images. 3th row: Downsampled input depth

maps. 4th row.: Enhanced depth maps using grayscale images (σs = 10, σd = 0.02). 5th

row: Enhanced depth maps using CA images (σs = 10, σd = 0.1). 1st col.: Venus scene.

2nd col.: Cones scene. 3rd cool.: Art scene. 4th col.: Barn scene.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7.6: Detail of a region from the Teddy scene. (a) RGB image. (b) Grayscale

image. (c) Ground truth depth map. (d) PWAS output using the grayscale image (b).

(e) PWAS output using “per-channel RGB image” (a). (f) PWAS output using the RGB

image (a). (g) PWAS output using the HCL image. (h) PWAS output using the CA image.
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Chapter 8

Depth map enhancement over

time

This chapter proposes an extension of the filtering techniques proposed in Chapter 5 in

order to increase the frame rate of the hybrid ToF multi-camera rig, i.e., to increase its

resolution in time. ToF cameras are known by their capability to provide depth infor-

mation at a high frame rate. However, this frame rate is usually lower than the frame

rate of standard 2-D video cameras, which is even more prominent in industrialized

ToF cameras. As a result, computer vision applications such as the identification of

a moving object (or multiple objects) over time, become intricate or even impossible.

In Chapter 5 we enhance the spatial resolution of ToF cameras by combining the ToF

data with the 2-D data given by a coupled 2-D camera into a hybrid ToF multi-camera

rig. In this chapter, we want to take advantage of the same setup in order to enhance

the depth information over time. To that end, we propose to estimate the motion

between each pair of 2-D camera frames and use it to compensate the motion in the

low-resolution depth maps. As a result, we predict new low-resolution depth maps

corresponding in time to the considered 2-D frames. The final enhanced depth video

results from the fusion between the predicted depth maps and their corresponding 2-D

frames by using one of the proposed filters in Chapter 5. In the following, we briefly

describe how to estimate the motion between consecutive 2-D frames. Then, we present

our concept to generate enhanced depth maps at the highest available frame rate of

the hybrid ToF multi-camera rig, i.e., the 2-D camera frame rate.
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8.1 Background, related work, and problem statement

Motion estimation is still a key problem in computer vision that involves the relation-

ship of correspondences between video frames along time. To cope with this problem,

a wide number of strategies can be found in the literature, starting from the first ap-

proaches proposed by Horn and Schunck [HS81] as well as Lucas and Kanade [LK81],

to more recent concepts overcoming drawbacks of previous approaches, such as ro-

bust statistics [BA91, BA96], coarse-to-fine strategies [Ana89, MP98], non-linearised

models [AWS00, NE86], or spatio-temporal approaches [Nag90, BA91, WS01], among

others. Within this thesis we do not propose a new solution to the problem of motion

estimation since current strategies based on optical flow [BB95] can be used for our

purpose with promising results. The reason we consider motion estimation techniques

based on optical flow is because we need to estimate a dense motion field between a

pair of two consecutive 2-D frames. Therefore, the motion field obtained from motion

estimation techniques based on feature tracking [ST94] that consider the trajectory of

salient image points (features) over frame series is not sufficient.

The literature in depth enhancement over time is not yet extensive. Choi et

al. [CMHS09] proposed to use a slightly modified NAFDU filter [CBTT08] to tackle the

spatial resolution problem for a given low-resolution depth map. Regarding the tem-

poral resolution problem, they proposed to interpolate depth maps according to their

corresponding 2-D frames, as they assume the frame rate of 2-D cameras to be higher

than that of the ToF camera. To that end, they used the motion given by a Full-search

Block Matching Algorithm (FBMA) between the previous and the next 2-D frames.

The final enhanced depth video is the result of filtering the interpolated depth maps

and their corresponding 2-D frames. The same authors proposed in [CMS10, CMKS10]

to reduce the temporal fluctuation problem by filtering where they start by simultane-

ously filtering several depth and 2-D image pairs in order to preserve depth consistency

within static regions in the scene. Kim et al. [KCKA10] proposed to enhance the spa-

tial resolution of a given depth map by minimizing the unmatched boundary problem

between depth and 2-D image pairs using joint bilateral upsampling (JBU) [KCLU07],

in addition to a boundary refinement to reduce the edge blurring artefact by using

linear interpolation with a color segment set. In addition, they minimized temporal
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depth flickering artefacts on stationary objects, i.e., they preserved depth consistency

using the motion between two consecutive frames.

We proposed in [GAMO12] to extend our previous work on spatial domain Time-

of-Flight (ToF) data enhancement to the temporal domain. Similarly to the aforemen-

tioned approaches, we also assume the frame rate of the 2-D camera to be higher than

that of the ToF camera. Our aim is to predict the missing low-resolution depth maps

by using the motion between consecutive 2-D frames. The resulting enhanced depth

video will result from filtering such predicted depth maps and their corresponding 2-D

frames using the UML filter (see Section 5.2).

For our purpose and to estimate the motion between video frames, we have con-

sidered the work proposed by Brox et al. [BBPW04] which combines several of the

aforementioned motion estimation approaches with a consistent numerical approxima-

tion yielding to an excellent performance. In [BBPW04], Brox et al. propose a high

accuracy optical flow estimation based on an energy formulation. For two given con-

secutive frames Ii and Ii−1, taken at times i and i − 1, respectively, the grey value at

a pixel position pi = (u, v)T is assumed invariant to displacement, i.e.,

Ii(pi) = Ii−1(pi −wi), (8.1)

with wi = (ũ, ṽ)T being the investigated displacement vector of the pixel pi between

the frames Ii and Ii−1. In order to overcome the high sensitivity to slight changes in

brightness from this first assumption, the gradient of a grey value image is considered

to be invariant to displacement, i.e.,

∇Ii(pi) = ∇Ii−1(pi −wi), (8.2)

where ∇ = (∂u, ∂v)
T denotes the spatial gradient. The global deviations are minimized

due to the grey and gradient constancy assumptions, and are measured by the following

energy function

Edata(wi) =

∫
Ω

Γ
(
|Ii−1(pi −wi)− Ii(pi)|2 + γ|∇Ii−1(pi −wi)−∇Ii(pi)|2

)
dpi, (8.3)

with Ω ⊂ R2 being the image space and γ being a weight between both assumptions.

Γ(s2) =
√

s2 + ε2, ε = 0.001 is the robust norm to reduce the influence of outliers. How-

ever, these two assumptions operate locally without considering neighbouring pixels.
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Therefore, the smoothness of the flow field is introduced as

Esmooth(wi) =

∫
Ω

Γ
(
|∇ũ|2 + |∇ṽ|2

)
dpi. (8.4)

The total energy is the weighted sum between (8.3) and (8.4),

E(wi) = Edata(wi) + αEsmooth(wi), (8.5)

with α > 0 being a regularisation parameter. Finally, in the case of large pixel dis-

placements between video frames, multi-scale ideas were considered; starting from a

coarse, smoothed version of the problem and finishing with a multi-resolution strategy.

In [BBPW04], Brox et al. proposed the estimation of a high accuracy optical flow by

minimizing the non-linear energy function defined in (8.5). The resulting motion vector

wi accomplishes that Ii(pi) = Ii−1(pi−1) with

pi−1 = pi −wi = g(pi), (8.6)

and assuming a translational motion. We note that the function g(·) gives the flow

between any pair of two consecutive frames. Then, no subscript is needed as it only

depends on its argument. We also note that the subscript i in a pixel position pi or

motion vector wi is to relate the frame Ii and not their pixel position within the image.

In [ST06], Sand et al. combined the minimization of Brox et al. with the regularization

of the estimated flow proposed by Xiao et al. in [XCS+06]. In what follows, we have

considered Sand et al’s motion estimation algorithm and used its Matlab implementa-

tion provided by Chari [Vis11]. We note that the better the motion estimation is, the

more accurate will be the enhanced depth map. In the following, we present how to

compensate the estimated dense optical flow in the given low-resolution depth maps in

order to generate enhanced depth maps at the 2-D camera frame rate.

8.2 Proposed motion cumulation

We now investigate the problem of depth resolution enhancement over time. That is,

we are in the case of a sequence of 2-D frames Ii taken at a frame rate 1/τI, where

the subscript i ∈ N, indicates the ith frame taken at time (i × τI). We consider the

corresponding sequence of ToF frames Dnκ, n ∈ N, taken at a frame rate of 1/τD,

such that the period τD is multiple of τI, i.e., τD = κ · τI. Indeed, during a time
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period τD, the 2-D camera provides κ frames while the ToF camera provides a single

one. We refer to the depth maps Dnκ as ToF keyframes and to their corresponding

frame-synchronised 2-D images Inκ as 2-D keyframes. We recall that our objective is

to increase the hybrid ToF multi-camera rig resolution over time. To that end, we

first estimate the motion vectors wnκ+i between every consecutive 2-D frames Inκ+i

and Inκ+i+1, 0 ≤ i < κ using the optical flow based approach presented in Section 8.1.

Then, we use the estimated motion vectors to predict the missing ToF frames between

every consecutive ToF keyframes Dnκ and D(n+1)κ. For the sake of simplicity, we

formulate our concept for the first period τD, i.e., n = 0.

(a) Cumulative forward motion estimation.

(b) Cumulative backward motion estimation.

Figure 8.1: Proposed cumulative motion estimation techniques.

In (8.6), we have introduced the function g(·) that relates the pixel positions between

two consecutive frames. However, in general we want to relate pixel positions between

non-consecutive frames. Indeed, we want to relate the pixel position of pi on the current
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8. DEPTH MAP ENHANCEMENT OVER TIME

image frame Ii, 0 < i < κ with its corresponding pixel position on the keyframe I0.

We therefore propose a cumulative forward motion estimation approach and define it

as the cumulation of the estimated motion between each pair of 2-D frames starting

from the current 2-D frame Ii until the 2-D keyframe I0, as illustrated in Figure 8.1a.

In Appendix C.1, we show and prove by induction that

p0 = gi(pi), where gi = g ◦ ... ◦ g︸ ︷︷ ︸
i times

, (8.7)

where ◦ is the combination of functions, and i ∈ N∗ being the number of frames between

the current frame Ii and the keyframe I0. The predicted depth map D́i, where ‘´’

denotes forward-predicted frame, results from using the estimated cumulative forward

motion between the current frame Ii and the keyframe I0, on the ToF keyframe D0 as

follows

D́i(pi) = D0

(
gi(pi)

)
, (8.8)

for all pixel positions pi. The final enhanced depth video results from the fusion between

the predicted depth frames D́i and their corresponding 2-D frames Ii by using one of

the filtering techniques proposed in Chapter 5. We thus end up with a depth map J́i,

enhanced both in time and space.

Nevertheless, we realize that the edge blurring artefact (see Section 4.2.1) appears

within the enhanced depth maps J́i that are closer in time to their next ToF keyframe

Dκ than to their precedent ToF keyframe D0, from which they have been predicted

(compare Figure 8.2n and Figure 8.2f). The reason is due to the large displacement in

both time and space between the frame Ii and its preceding keyframe I0. We therefore

propose a cumulative backward motion estimation in which in contrast to the cumulative

forward motion estimation approach, the predicted depth maps result from the next

ToF keyframe Dκ, as illustrated in Figure 8.1b. Thus, in this case, the estimated

motion vector wi accomplishes that Ii(pi) = Ii+1(pi+1) with

pi+1 = pi + wi = h(pi). (8.9)

In Appendix C.2 we also prove by induction that pκ = hi(pκ−i). Thus, the predicted

depth map D̀i, where ‘`’ denotes backward-predicted frame, follows as

D̀i(pi) = Dκ

(
hi(pκ−i)

)
. (8.10)
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Enhanced depth maps that result from considering forward-predicted depth maps

D́i are more accurate the closer they are to the precedent ToF keyframe D0. Instead,

enhanced depth maps that result from considering backward-predicted depth maps D̀i

are more accurate the closer they are to the next ToF keyframe Dκ (compare Figure 8.2o

with Figure 8.2g). We therefore propose to linearly combine the forward-predicted

and backward-predicted low-resolution depth frames, and define a bidirectional motion

estimation, as follows

D̂i =
κ− i
κ
· D́i +

i

κ
· D̀i, (8.11)

where ‘ˆ’ denotes bidirectionally predicted frame. Enhanced depth maps that result

from considering bidirectional motion estimation are expected to present a major ad-

vantage of reducing the noise within depth measurements between consecutive ToF

frames D0 and Dκ [CMKS10, FZY10, KCKA10]; hence, preserving depth consistency

and reducing the temporal fluctuation problem. In addition, enhanced depth maps from

such a combination are more accurate and less noisy than when considering depth maps

resulting from a single directional motion estimation. It is, however, important to note

that both backward and bidirectional approaches require the next ToF keyframe and

thus impose a higher latency. Next, we quantify the final enhanced depth maps when

considering forward motion estimation, backward motion estimation, and bidirectional

motion estimation.

8.3 Experimental results

In the following, we present some experimental results computed on a real sequence of

a hand moving through the scene. The sequence has been recorded using the second

hybrid ToF multi-camera rig presented in Section 2.3 and has the same frame rate of

the ToF camera. In order to quantify our concept for depth video enhancement, we

assume the frame rate of the 2-D camera to be four times higher than the frame rate

of the ToF camera, i.e., κ = 4. That is, three low-resolution depth maps are replaced

every four 2-D frames by the predicted low-resolution depth maps. In order to quantify

the performance of our proposed method we compute the peak signal-to-noise ratio

(PSNR) as well as the structural similarity (SSIM) index between the enhanced depth

maps resulting from filtering using the predicted depth maps and the enhanced depth

maps resulting from filtering using the neglected depth maps, i.e., the ground truth.
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Figure 8.2 shows an experiment where enhanced depth maps using the UML filter

have been predicted from forward motion estimation (1st column), backward motion

estimation (2nd column), and bidirectional motion estimation (3rd column). From now

on and for the sake of simplicity, we refer to the output of the UML filter given by (5.2)

as J instead of J7. It can be observed that forward-predicted depth maps are visually

better the closer they are to J0, the enhanced depth map using the precedent ToF

keyframe D0. Instead, the backward-predicted depth maps are better the closer they

are to Jκ, the enhanced depth map that results form the next ToF keyframe Dκ. Thus,

the combination of both strategies gives better results as reported in Table 8.1. In-

deed, Table 8.1 quantifies the predicted enhanced depth maps with their corresponding

ground truth, i.e., the enhanced depth maps that result from filtering the pair of Inκ

and Dnκ given by the camera rig. From the table, we can observe that the predicted

depth enhancement frames from bidirectional motion are more similar to the ground

truth than considering either forward or backward motion.

Table 8.1: Quantification of forward-predicted, backward-predicted and bidirectional-

predicted enhanced depth maps.

Forward Backward Bidirectional

Frame PSNR SSIM PSNR SSIM PSNR SSIM

Ĵ1 53.72 0.98 46.69 0.97 54.97 0.99

Ĵ2 53.41 0.98 48.88 0.97 54.26 0.98

Ĵ3 49.17 0.98 51.50 0.98 52.93 0.99

We next quantify the robustness to the noise within distance measurements dis-

cussed in Section 1.2.2.1. Thus, we add Gaussian noise with a standard deviation

linearly dependent on the distance measurement. In Figure 8.3 and Figure 8.4 we

present the PSNR and the SSIM index responses, respectively, of the proposed depth

maps prediction strategies obtained over 50 Monte Carlo runs. The graphs confirm that

the forward strategy performs better when predicting frames closer to the precedent

keyframe while the backward strategy performs better the closer the predicted frame

is to the next keyframe. In contrast, the bidirectional strategy outperforms any pre-

dicted frame. However, the runtime is doubled as both forward and backward motion

estimation have to be computed and combined.
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(a) 2-D keyframe

I0

(b) Ground truth

J0

(c) Ground truth

J0

(d) Ground truth

J0

(e) I1 (f) Forward-

predicted J́1

(g) Backward-

predicted J̀1

(h) Bidirectional-

predicted Ĵ1

(i) I2 (j) Forward-

predicted J́2

(k) Backward-

predicted J̀2

(l) Bidirectional-

predicted Ĵ2

(m) I3 (n) Forward-

predicted J́3

(o) Backward-

predicted J̀3

(p) Bidirectional-

predicted Ĵ3

(q) 2-D keyframe

Iκ

(r) Ground truth

Jκ

(s) Ground truth

Jκ

(t) Ground truth

Jκ

Figure 8.2: Predicted enhanced depth maps. 1st column: 2-D frames. 2nd column:

Forward-predicted enhanced depth maps J́. 3rd column: Backward-predicted enhanced

depth maps J̀. 4th column: Bidirectional-predicted enhanced depth maps Ĵ.
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(a) J́1, J̀1, and Ĵ1.

(b) J́1, J̀1, and Ĵ1.

(c) J́1, J̀1, and Ĵ1.

Figure 8.3: PSNR responses against Gaussian noise using cumulative forward (B), back-

ward (C), and bidirectional (�) motion estimation approaches.
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8.3 Experimental results

(a) J́1, J̀1, and Ĵ1.

(b) J́1, J̀1, and Ĵ1.

(c) J́1, J̀1, and Ĵ1.

Figure 8.4: SSIM index responses against Gaussian noise using cumulative forward (B),

backward (C), and bidirectional (�) motion estimation approaches.
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Chapter 9

Conclusions

This thesis deals with the enhancement of depth data by means of low-level 3-D and

2-D data fusion. ToF cameras are cost-efficient and compact devices capable to provide

depth maps with distance information of the observed scene in a single shot. In addition,

due to the nature of their working principle, ToF cameras are able to provide distance

information regardless of illumination conditions and independently of the texture in

the scene, which makes them very attractive for many computer vision and robotic

applications. However, the resolution of the given depth maps is still far below the

resolution given by alternative 3-D sensing systems with an additional disadvantage

of being highly influenced by noise. Thus, we chose to combine an industrialized ToF

camera with a standard 2-D video camera in a hybrid ToF multi-camera rig in order

to enhance the ToF data and overcome the limitations of ToF cameras that currently

restrict their use in real applications such as those for safety and security. We presented

a low-level data fusion approach that combines the data given by each of the cameras in

the multi-camera rig and provides enhanced depth maps at the highest available frame

rate, i.e., the frame rate of the 2-D camera. The enhanced depth maps have the same

resolution as the images given by the 2-D camera and the distance measurements are

more accurate, i.e., the global noise level has been significantly reduced. As a result, the

work presented in this thesis facilitates computer vision processes to recognise, segment

or classify an object within the provided enhanced depth maps. In other words, our

work allows the use of such a hybrid ToF multi-camera rig for computer vision or

robotic applications where the use of industrialized ToF cameras was restricted due

to their limitations. We note that our concepts for ToF data enhancement consider
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industrial requirements for real-world applications, specifically, robustness to noise,

accuracy, and reduced memory and time consumptions. In addition, the concepts for

depth enhancement presented in this thesis are applicable to alternative 3-D sensing

systems such stereo vision or structured light systems, or laser scanners in combination

with a 2-D video camera. Thus, our methods apply either to recently emerging laser

scanners such as the ibeo LUX [Ibe11] or the Eco Scan FX8 [Nip11] or, to new gaming

devices such as Microsoft’s Kinect camera.

In the first part of this thesis we tackled the calibration of the hybrid ToF multi-

camera rig and the alignment of the recorded data to be further fused. We proposed a

practical calibration approach to estimate the intrinsic camera parameters of each of the

cameras that constitute the multi-camera rig as well as their relative extrinsic ones. In

addition to determining these parameters as accurate as the commonly used Bouguet’s

calibration toolbox [Bou09], our calibration approach can be automated for a mass

calibration process as only one image acquisition with a known position and orientation

is required. With the system parameters accurately determined, we proceeded with a

dedicated mapping procedure intended for data matching. This mapping is based on

projecting the image coordinates from each camera reference frame to a unified reference

frame where the projected data is pixel aligned. To that end, we had to deal with the

binocular disparity which is due to the baseline between the cameras in the camera rig.

We overcame the disparity problem by using the depth information acquired by the ToF

camera. However, since the disparity is distance dependent, the mapping process had to

be recomputed for each acquired depth map, making the real-time mapping intricate.

We addressed this challenge by accounting for disparity variations in the mapping

model. To that end, we precomputed a set of look-up tables for an array of disparities.

As a result, real-time is feasible by an iterative algorithm that selects pixel by pixel the

look-up table that corresponds to the distance measurement of the pixel to be mapped.

By using the optimal implementation discussed in Section 3.4 in which only one look-up

table must be precomputed, the alignment of a given depth map with its corresponding

2-D guidance image performs in only 2 milliseconds using our experimental setup.

Therefore, the proposed method is feasible for real-time applications under industrial

constraints. In addition, we showed that this proposed mapping is suitable for all

kinds of ToF cameras even with large fields of view and low resolutions. The final
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experimental results of this part showed an accurate pixel alignment that assists further

low-level data fusion techniques.

The second part of this thesis presented a new multi-lateral filter for low-level data

fusion in real-time, the so-called UML filter. The proposed filter overcomes many of

the drawbacks of existing fusion techniques, i.e., texture copying and edge blurring in

the enhanced depth maps. This is achieved by adding a new term in the kernel of the

filter, the so-called credibility map. The credibility map accounts for the misalignment

of edges between the data to be filtered by setting a low weight to the distance measure-

ments that belong to depth edge pixels. Even with the good accuracy of the previous

mapping process, this misalignment may appear due to the difference between the 2-D

and depth map resolutions. Hence, the UML filter enhances a low-resolution depth

map given by a ToF camera up to the image resolution given by the coupled 2-D video

camera in the hybrid ToF multi-camera rig. The generated dense depth maps pre-

sented more accurate measurements where the depth discontinuities were well defined

and adjusted to the 2-D guidance image. In addition, we increased the depth accuracy

in such areas that were geometrically smooth adjusting the right weights during the

filtering process. Regarding the global noise level, it was significantly reduced thanks

to the nature of the bilateral filter on which the UML filter is based. The experimen-

tal results of this part were conducted on our own recorded sequences as well as on

different scenes from the Middelbury dataset. We showed that our filter outperforms

previous fusion techniques, delivering better results even in the case where depth edges

have no corresponding 2-D edge in the guidance image. In addition, we proposed a

fast implementation inspired by the work of Yang et al. [YTA09] and following the

recommendations of Paris et al. [PD09] that enables real-time applications. Thus, in

a similar way than in [YTA09], we proposed to quantify the range of the data to be

filtered. As a result of this quantization our non-linear filter became a linear filter

where the convolution between the spatial and range weighting terms could be applied.

Considering the work of Paris et al. in [PD09], we also proposed to downsample the

data before filtering. As a result, we ensured a good memory and speed performance

without introducing significant errors. Finally, the final enhanced depth map results

from combining the linear range interpolation and the bi-linear spatial interpolation to

a tri-linear (i.e., eight point) interpolation.
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The last part of this thesis proposed two extensions of the filtering techniques pre-

sented in Part II. Due to restrictions in processing time and memory constraints, many

filtering techniques in computer vision applications consider grayscale images instead

of the original coloured ones. Although the generalization of our filter to colour images

is straightforward, the memory and computation time demands that result from the

processing of the 3-colour channels of a colour image, e.g., red, green, and blue chan-

nels in the case of an RGB image, prevent from a real-time implementation. However,

we noticed that when filtering using colour images, the edge blurring artefact is sig-

nificantly reduced. The reason is that different colours are not collapsed to the same

intensity value suppressing 2-D edges between objects in the scene. Hence, we have

proposed a new 1-D colour model, i.e., the cumulative angle model, that reduces the

dimensionality of the 3-D HCL representation to a unique dimension while preserving

original perceptual properties. We derived the cumulative angle model by sampling

the HCL cone in two dimensions using spirals. By using this new colour model, the

edge blurring artefact may only appear in the case where objects at different distances

share exactly the same colour. The second extension tackled the enhancement of the

hybrid ToF multi-camera rig resolution over time. We proposed to estimate the motion

between each pair of 2-D frames and to compensate it in the low-resolution depth maps.

The predicted low-resolution depth maps were then fused with their corresponding 2-D

frames by using the depth enhancement techniques presented in Chapter 5. As a re-

sult, the hybrid ToF multi-camera rig is capable to provide enhanced depth video where

computer vision processes can be applied to improve the robustness of real applications.

9.1 Future research directions

Due to the time constraints that cover the working plan of this project, there are a

list of points related to the work that can be further investigated. In the following, we

address some issues.

• Credibility map. Since we know that ToF cameras provide inaccurate depth

measurements within depth edges, we defined the credibility map as a weight

related to the gradient of the low-resolution depth maps such that a low credibility

weight indicates an unreliable depth measurement whereas a high credibility map

weight indicates a reliable depth measurement. However, more sophisticated
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ways to estimate the credibility map, such as the work proposed by Reynolds et

al. [RDP+11], can be considered although the computational complexity will be

increased.

• Cumulative angle colour model. Although we have proposed a new colour

model for filtering purposes, we have realised that the two sampling rates K and

KL are important parameters that need to be further investigated in order to

evaluate the extent of the colour data compression rate. On the other side, we

will work towards a simple and discriminative distance for the proposed model as

it is another open question important for real-time colour filtering.

• 3-D optical flow. Our last contribution relates the enhancement of the depth

information over time, i.e., increasing the frame rate of the enhanced depth data

delivered by the hybrid ToF multi-camera rig. To do so, we estimate the motion

between each pair of 2-D frames and we use it to predict new low-resolution depth

maps. The enhanced depth video results from the fusion between predicted depth

maps and their corresponding 2-D frames. However, we assume that the motion

in the scene is always parallel to the sensing system. As a future work, we would

like to consider an extra dimensionality and thus generalise our concept to any

possible motion within the scene. Therefore, an appropriate concept for 3-D

optical flow has to be investigated.

• The application of our depth enhancement techniques to other 3-D sensing modal-

ities.

– Stereo vision systems. Stereo vision systems reproduce the observed

scene from the triangulation of feature-correspondence pairs. As a result,

there are areas in the resulting depth map without distance information.

Thus, a registration process that interpolates between the estimated 3-D

points is required in order to obtain a dense depth map. Instead, we propose

to use our concepts and fuse the estimated 3-D points, without registration,

with one of the 2-D images acquired by the camera rig. To that end, we

need to investigate how to extend our concept to cope with unreliable areas

instead of only edges.
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– Structured light systems. The same idea of enhancing the 3-D informa-

tion proposed for stereo vision system applies to structured light systems.

In that case, the 3-D information may be combined with the 2-D image

given by the 2-D camera. A straightforward application would be the fusion

between the depth maps given by Microsoft’s Kinect camera and the 2-D

images given by its VGA camera. This solution would enhance the final

depth maps with more accurate depth edges and a significant reduction of

shadowing and occlusion artefacts.

– ToF scanner. New emerging ToF scanners, e.g., the ibeo LUX [Ibe11] or

the Eco Scan FX8 [Nip11] are able to generate low-resolution depth maps

with more precise distance measurements than current ToF cameras. How-

ever, these depth maps are generated successively point by point which yields

a known time delay between them. As a result, some motion artefacts can

be observed in the given depth map. We propose to investigate the exten-

sion and adaptation of our temporal enhancement technique to reduce these

motion artefacts. Then, the generated depth maps can be enhanced by using

our fusion filtering techniques.
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Appendix
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Appendix A

Hybrid ToF multi-camera rig

devices

This appendix reports the specifications of each of the cameras considered within our

hybrid ToF multi-camera rig prototypes.
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A.1 3D MLI Sensor
TM

Prototype

The 3D Modulated Light Intensity (MLI) Sensor
TM

prototype (Figure A.1) is a compact

ToF camera prototype fully manufactured by IEE S.A. [IEE11]. It is able to generate

3-D imaging without requiring additional cameras or specific processing. Due to the

ToF principle in which it is based on (Section 1.2.1), lighting conditions as well as

temperature do not influence to the generated depth measurements. Table A.1 presents

the main hardware specifications of the 3D MLI Sensor
TM

prototype.

Figure A.1: 3D MLI Sensor
TM

prototype from IEE S.A.

Table A.1: Hardware specifications of the 3D MLI Sensor
TM

prototype.

Imager technology Time-of-Flight (ToF)

Silicon process CMOS with CCD

Pixel resolution 61 pixels × 56 pixels

Pixel size δ 68 µm × 49 µm

Field of view (130◦ × 100◦) or CS-mount lenses

Lens mount CS-mount lenses

Frame rate Up to 10 Hz

Illumination type LED array

Ambient light 0 to full sunlight

Non ambiguity 7.5 m at 20 MHz modulation frequency

Distance accuracy ±2 cm at 1.5 m at 20 MHz modulation frequency

Operating temperature −20◦C to +50◦C full operation,

storage up to 110◦C

Housing dimensions (L×W×H) 104 mm ×54 mm×144 mm

Supply voltage 90 V-220 V to 12 V, 50 Hz to 60 Hz

Digital interface USB 2.0 full speed
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A.2 Flea R©2 CCD Camera

The Flea R©2 CCD Camera (Figure A.2) is an ultra-compact, cost effective, and versatile

2-D video camera for demanding imaging applications in industrial machine vision. It

is manufactured by Point Grey Research, Inc. [Poi11]. The main reason why we chose

this 2-D camera was first because it is commonly used by the research community in

computer vision and second because of its dimensions, that facilitated the attachment

with the 3D MLI Sensor
TM

prototype from IEE S.A. (Figure A.1). We selected the

FL2-03S2C model, since its resolution is sufficient (about ten times higher than the

IEE’s ToF camera) to evaluate our depth enhancement approaches. Table A.2 presents

the main hardware specifications of the Flea R©2 camera.

Figure A.2: Flea R©2 CCD Camera from Point Grey Research, Inc.

Table A.2: Hardware specifications of the Flea R©2 CCD Camera.

Specification FL2-03S2C

Image sensor model Sony progressive scan interline transfer CCD’s

with square pixels and global shutter, color

Maximum resolution 648 pixels × 488 pixels

Pixel size δ 7.4 µm × 7.4µm

Lens mount C-mount lenses

Maximum frame rate 80 frames per second (fps)

Operating temperature 0◦C to +45◦C

Housing dimensions (L×W×H) 29 mm ×29 mm×30 mm

Digital interface Bilingual 9-pin IEEE-1394b for camera control,

video data transmission, and power

123



A. HYBRID TOF MULTI-CAMERA RIG DEVICES

A.3 3D MLI Sensor
TM

In the same way as its prototype (Section A.1), the 3D Modulated Light Intensity

(MLI) Sensor
TM

(Figure A.3) is a sensing system that collects real-time distance images

of objects by means of infrared reflection. The main differences between the proto-

type and the serialized cameras are the housing dimensions, digital interface and other

features such as water proof or web interface. Table A.3 presents the main hardware

specifications of the 3D MLI Sensor
TM

.

Figure A.3: 3D MLI Sensor
TM

prototype from IEE S.A.

Table A.3: Hardware specifications of the 3D MLI Sensor
TM

.

Imager technology Time-of-Flight (ToF)

Silicon process CMOS with CCD

Pixel resolution 61 pixels × 56 pixels

Pixel size δ 68 µm × 49 µm

Field of view 130◦ × 100◦

Frame rate Up to 10 Hz

Illumination type LED with optimized diffuser

Ambient light 0 to full sunlight

Non ambiguity 7.5 m at 20 MHz modulation frequency

Distance accuracy ±2 cm at 1.5 m at 20 MHz modulation frequency

Operating temperature −20◦C to +50◦C full operation,

storage up to 110◦C

Housing dimensions (L×W×H) 150 mm ×180 mm×108mm

Supply voltage 24 V DC ±15%

Digital interface Ethernet
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A.4 Dragonfly R©2 CCD Camera

The Dragonfly R©2 CCD Camera (Figure A.4) presents similar features as the Flea R©2

CCD Camera (Section A.2). However, its remote head as well as the possibility of buy-

ing an OEM style board facilitated its integration within the 3D MLI Sensor
TM

housing.

Table A.4 presents the main hardware specifications of the Dragonfly R©2 camera.

Figure A.4: Dragonfly R©2 CCD Camera from Point Grey Research, Inc.

Table A.4: Hardware specifications of the Dragonfly R©2 CCD Camera.

Specification DR2-COL-XX

Image sensor model Sony progressive scan interline transfer CCD’s with

square pixels and global shutter, color

Maximum resolution 648 pixels × 488 pixels

Pixel size δ 7.4 µm × 7.4µm

Lens mount CS-mount lenses

Maximum frame rate 60 frames per second (fps)

Operating temperature 0◦C to +45◦C

Dimensions 64 mm ×51 mm (bare board without case or lens holder)

Digital interface 6-pin IEEE-1394 for camera control and

video data transmission
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Appendix B

Uncertainty of the measured

distance d

In this appendix we derive the expression of the uncertainty of a measured distance σd,

presented in (1.17). The uncertainty of a measured distance σd is proportional to the

uncertainty of the determined phase φ by a factor L/2π, from (1.10) and (1.16). Then,

σd =
L

2π
· σφ =

L

2π
·

√√√√ 3∑
k=0

(
∂φ

∂c̃(τk)

)2

· σ2
c̃(τk),total

=
L

2π
·

√√√√ 3∑
k=0

(
∂φ

∂c̃(τk)

)2

·
(
c̃(τk) + σ2

e + σ2
t

)
(B.1)
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with

3∑
k=0

(
∂φ

∂c̃(τk)

)2

·
(
c̃(τk) + σ2

e + σ2
t

)
=

(
−
(
c̃(τ3)− c̃(τ1)

)(
c̃(τ0)− c̃(τ2)

)2
+
(
c̃(τ3)− c̃(τ1)

)2
)2

·
(
c̃(τ0) + σ2

e + σ2
t

)
+

(
−
(
c̃(τ0)− c̃(τ2)

)(
c̃(τ0)− c̃(τ2)

)2
+
(
c̃(τ3)− c̃(τ1)

)2
)2

·
(
c̃(τ1) + σ2

e + σ2
t

)
+

( (
c̃(τ3)− c̃(τ1)

)(
c̃(τ0)− c̃(τ2)

)2
+
(
c̃(τ3)− c̃(τ1)

)2
)2

·
(
c̃(τ2) + σ2

e + σ2
t

)
+

( (
c̃(τ0)− c̃(τ2)

)(
c̃(τ0)− c̃(τ2)

)2(
c̃(τ3)− c̃(τ1)

)2
)2

·
(
c̃(τ3) + σ2

e + σ2
t

)
=

(
c̃(τ1) + c̃(τ3) + 2(σ2

e + σ2
t )
)
·
(
c̃(τ0)− c̃(τ2)

)2((
c̃(τ0)− c̃(τ2)

)2
+
(
c̃(τ3)− c̃(τ1)

)2)2

+

(
c̃(τ0) + c̃(τ2) + 2(σ2

e + σ2
t )
)
·
(
c̃(τ3)− c̃(τ1)

)2((
c̃(τ0)− c̃(τ2)

)2
+
(
c̃(τ3)− c̃(τ1)

)2)2 . (B.2)

From (1.6),

c̃(τ0) = h̃+
ã

2
cos(ωτ0 − φ) = h̃+

ã

2
cos(φ), (ωτ0 = 0),

c̃(τ1) = h̃+
ã

2
cos(ωτ1 − φ) = h̃+

ã

2
sin(φ), (ωτ1 = π/2),

c̃(τ2) = h̃+
ã

2
cos(ωτ2 − φ) = h̃− ã

2
cos(φ), (ωτ2 = π),

c̃(τ3) = h̃+
ã

2
cos(ωτ3 − φ) = h̃− ã

2
sin(φ), (ωτ3 = 3π/4). (B.3)

with τk = k · T/4. From (B.3) we see that c̃(τ0) + c̃(τ2) = c̃(τ1) + c̃(τ3), thus

3∑
k=0

(
∂φ

∂c̃(τk)

)2

·
(
c̃(τk) + σ2

e + σ2
t

)

=

(
c̃(τ1) + c̃(τ3) + 2(σ2

e + σ2
t )
)
·
((
c̃(τ0)− c̃(τ2)

)2
+
(
c̃(τ3)− c̃(τ1)

)2)((
c̃(τ0)− c̃(τ2)

)2
+
(
c̃(τ3)− c̃(τ1)

)2)2

=

(
c̃(τ1) + c̃(τ3) + 2(σ2

e + σ2
t )
)(

c̃(τ0)− c̃(τ2)
)2

+
(
c̃(τ3)− c̃(τ1)

)2 . (B.4)
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From (1.14) and assuming that c̃(τ0) + c̃(τ2) = c̃(τ1) + c̃(τ3),

h̃ =
c̃(τ0) + c̃(τ1) + c̃(τ2) + c̃(τ3)

4
=
c̃(τ0) + c̃(τ2)

2
. (B.5)

Finally, we determine σd by substituting (1.13), (B.4), and (B.5) in (B.1), i.e.,

σd =

√
2 · L
2π

·

√
h̃+ σ2

e + σ2
t

2ã
=

L√
2π
·

√
h̃+ σ2

e + σ2
t

2ã
. (B.6)

We note that the expression of σd in (B.6) differs from the one presented by

Lange [LSBL00] by a constant factor called the demodulation contrast, which depends

on the sensor characteristics, i.e., the way the demodulation is practically implemented.
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Appendix C

Proof of the proposed motion

cumulation

In this appendix we show and prove by induction the proposed cumulative forward and

backward motion estimation approaches.

C.1 Cumulative forward motion estimation

In (8.6), we have introduced the function g(pi+1) that relates the position of a pixel pi

on Ii with its corresponding position pi+1 on the consecutive frame Ii+1, as follows

pi = g(pi+1). (C.1)

In the following, we prove by induction that

pi = gn(pi+n), where gn = g ◦ ... ◦ g︸ ︷︷ ︸
n times

, (C.2)

and n ∈ N∗. From (C.1), we check that the case of n = 1 in (C.2) is true by definition.

We then assume that (C.2) is correct and we show that

pi = gn+1(pi+n+1). (C.3)

If we replace i by (i+ n) in (C.1), we obtain

pi+n = g(pi+n+1), (C.4)
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and by replacing (C.4) in (C.2), we find

pi = gn
(
g(pi+n+1)

)
= (gn ◦ g)(pi+n+1) = gn+1(pi+n+1). (C.5)

Hence, we have demonstrated that our assumption is correct. In the cumulative forward

motion estimation approach (Section 8.2), we refer to the index of the current frame n

as i, and to the frame with subscript i as the keyframe 0. Then, by replacing n by i

and i by 0 in (C.2), we obtain

p0 = gi(pi). (C.6)

C.2 Cumulative backward motion estimation

In (8.9), we have introduced the function h(pi−1) that relates the position of a pixel pi

on Ii with its corresponding position pi−1 on the immediately preceding frame Ii−1, as

follows

pi = h(pi−1). (C.7)

Following the same ideas as in Appendix C.1, we prove by induction that

pi = hn(pi−n), where hn = h ◦ ... ◦ h︸ ︷︷ ︸
n times

, (C.8)

and n ∈ N∗.

132



Bibliography

[Alo11] Amsterdam library of object images. http://staff.science.uva.nl/aloi, May

2011. 96

[Ana89] P. Anandan. A computational framework and an algorithm for the mea-

surement of visual motion. International Journal of Computer Vision,

2(3):283–310, January 1989. 102

[Ang07] J. Angulo. Morphological colour operators in totally ordered lattices based

on distances: Application to image filtering, enhancement and analysis.

in Computer Vision and Image Understanding, 107(2–3):56–73, 2007. 90

[AWS00] Luis Alvarez, Joachim Weickert, and Javier Sánchez. Reliable Estimation

of Dense Optical Flow Fields with Large Displacements. International

Journal of Computer Vision, 39:41–56, August 2000. 102

[BA91] M.J. Black and P. Anandan. Robust dynamic motion estimation over

time. In IEEE Computer Society Conference on Computer Vision and

Pattern Recognition (CVPR), pages 296–302, June 1991. 102

[BA96] Michael J. Black and P. Anandan. The robust estimation of multiple

motions: parametric and piecewise-smooth flow fields. Computer Vision

and Image Understanding, 63:75–104, January 1996. 102

[BB95] S. S. Beauchemin and J. L. Barron. The computation of optical flow.

ACM Comput. Surv., 27:433–466, September 1995. 102

[BBPW04] Thomas Brox, Andres Bruhn, Nils Papenberg, and Joachim Weickert.

High accuracy optical flow estimation based on a theory for warping. In

133



BIBLIOGRAPHY

In Proceedings of European Conference on Computer Vision (ECCV), vol-

ume 4, pages 25–36, May 2004. 103, 104

[BK08] Gary Bradski and Adrian Kaehler. Learning OpenCV: Computer Vision

with the OpenCV Library. O’Reilly Media, 1st edition, 2008. 31

[Bla04] Franois Blais. Review of 20 years of range sensor development. Journal

of Electronic Imaging, 13(1):231–243, January 2004. 3

[Bou09] Jean-Yves Bouguet. Camera calibration toolbox for matlab.

http://vision.caltech.edu/bouguetj/calib, November 2009. 31, 32, 37, 38,

39, 114

[BW99] Max Born and Emil Wolf. Principles of Optics. Cambridge University

Press, 7th edition, 1999. 12

[CBTT08] Derek Chan, Hylkea Buisman, Christian Theobalt, and Sebastian Thrun.

A noise-aware filter for real-time depth upsampling. In Workshop on

Multi-camera and Multi-modal Sensor Fusion Algorithms and Applications

(ECCVW), 2008. 14, 16, 42, 61, 102

[CMHS09] Jinwook Choi, Dongbo Min, Bumsub Ham, and Kwanghoon Sohn. Spatial

and temporal up-conversion technique for depth video. pages 3525–3528,

November 2009. 102

[CMKS10] Jinwook Choi, Dongbo Min, Donghyun Kim, and Kwanghoon Sohn. 3D

JBU based depth video filtering for temporal fluctuation reduction. In

IEEE International Conference on Image Processing (ICIP), pages 2777–

2780, September 2010. 102, 107

[CMS10] Jinwook Choi, Dongbo Min, and Kwanghoon Sohn. 2D-plus-depth based

resolution and frame-rate up-conversion technique for depth video. IEEE

Transactions on Consumer Electronics, 56(4):2489–2497, November 2010.

102

[Cre88] K Creath. Phase measurement interferometric techniques. 11:349–353,

1988. 8

134



BIBLIOGRAPHY

[CTPD08] Ryan Crabb, Colin Tracey, Akshaya Puranik, and James Davis. Real-time

foreground segmentation via range and color imaging. In IEEE Com-

puter Society Conference on Computer Vision and Pattern Recognition

(CVPR), pages 1–5, 2008. 59
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