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Abstract

Time-of-Flight (ToF) cameras are known to be cost-efficient 3-D sensing
systems capable of providing full scene depth information at a high frame
rate. Among many other advantages, ToF cameras are able to provide
distance information regardless of the illumination conditions and with no
texture dependency, which makes them very suitable for computer vision
and robotic applications where reliable distance measurements are required.
However, the resolution of the given depth maps is far below the resolution
given by standard 2-D video cameras which, indeed, restricts the use of ToF
cameras in real applications such as those for safety and surveillance. In
this thesis, we therefore investigate how to enhance the resolution of ToF
data and how to reduce the noise level within distance measurements. To
that end, we propose to combine 2-D and ToF data using a low-level data
fusion approach that enhances the low-resolution depth maps up to the

same resolution as their corresponding 2-D images.

Low-level data fusion requires the data to be fused to be accurately aligned.
Therefore, the first part of this thesis proposes a real-time mapping proce-
dure for data matching. The challenge addressed thereby is to cope with
the distance-dependent disparity in an efficient way. To that end, a set of
look-up tables for an array of disparities is pre-computed. Then, the map-
ping is performed through an iterative algorithm that selects pixel by pixel
the look-up table that corresponds to the distance measurement of the pixel
to be mapped. The experimental results of this part show that in addition
to being straightforward and easy to compute, our proposed data matching

approach is highly accurate.

The second part of this thesis presents a unified multi-lateral filter for real-
time low-resolution depth map enhancement. We propose a unified multi-

lateral filter that in addition to adaptively considering 2-D grayscale images



and depth data as guidance information, accounts for the inaccuracy of
the position of depth edges due to the low-resolution of ToF depth maps.
Consequently, unwanted artefacts such as texture copying and edge blurring
are almost entirely eliminated. Moreover, the proposed filter is configurable
to behave as most of the alternative depth enhancement methods based
upon a bilateral filter. Using a convolution-based formulation and data
quantization and downsampling, the proposed filter has been effectively
and efficiently implemented for dynamic scenes in real-time applications.
The results show a significant qualitative improvement on our own recorded
sequences as well as on the Middlebury dataset, outperforming alternative

depth enhancement solutions.

Finally, we propose two extensions to improve the quality of the enhanced
depth maps. Edge blurring increases when considering grayscale images
instead of the original coloured ones. Although the generalization of our
filter to consider 3-colour channels is straightforward, the processing time
and memory demands prevent it from performing in real-time. We therefore
propose a new 1-D colour model whose representation is equivalent to, but
more compact than, the 3-D HCL conical representation. It consists in
gathering all the hue, chroma and luminance information in one component,
namely, the cumulative spiral angle, where the spirals in question are defined
as a sampling of the solid HCL cone. The results show that, in addition to
preserving the perceptual properties of the HCL colour representation, using
the proposed colour model leads to a solution that is more accurate than
when using grayscale images. The second extension focuses on enhancing
the frame rate of the hybrid ToF multi-camera rig up to the frame rate of
the coupled 2-D camera. To that end, we predict new low-resolution depth
maps using the flow information estimated from each pair of 2-D frames.
Then, we enhance such predicted depth maps by using our proposed multi-
lateral filter. In the end, we provide video frame rate depth maps that
present more accurate depth measurements and a significant reduction of
the global noise level. Furthermore, we note that the concepts presented
herein are not only intended to enhance the depth information given by ToF

cameras, as they also apply to other 3-D sensing modalities.
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Notation

In this thesis, matrices are denoted by boldface, uppercase letters, M, and vectors are
denoted by boldface, lowercase letters, v. Scalars are denoted by italic letters, e.g., x,

K, a. The following mathematical notation will be used:

M-t the inverse of a matrix M

M the mean of a matrix M

VM the gradient of a matrix M

M, the downsampling of matrix M

Ix the identity matrix of dimension K by K
vl the transpose of a vector v

v the Euclidean norm of a vector v

1vilp the p—norm of a vector v

T — 00 means z tends to infinity

|z] the largest previous integer of x

Eﬁ; the vector from a to b

a®b the cross correlation of functions a and b
a=b means a is equivalent to b

a=b means a is congruent to b

a<<b means a is much smaller than b

arg min the minimizing argument
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Chapter 1

Introduction

The discipline of computer vision has undergone a thorough revolution in the last
decades, making possible the realisation of intelligent automated applications in a vast
range of areas, such as industry automation, surveillance and security, medical imag-
ing, gaming, automotive safety or robotics. The goal of many researchers is to build
a system that is able to autonomously operate and interact with the real world, being
able to recognise objects, identify targets, or take accurate decisions in real-time. In
order to address such a challenge, a fundamental step concerns scene understanding
in which computer vision plays a big role. Images are the raw material of computer
vision processes for such scene understanding, and can take many forms, such as views
from multiple cameras as well as multi-dimensional data from the combination of dif-
ferent vision technologies. Indeed, the use of multiple cameras or multi-view systems
that share at least part of their field of view, allows for depth estimation [SAB107].
Depth information is highly valuable as it enables the perception of the world in three
dimensions (3-D), facilitating image processing processes such as the recognition of an
object within the scene [OLK"04]. In general, depth information is derived by stereop-
sis, an analogy to human’s perception of depth where scene features are projected onto
two slightly displaced cameras to obtain depth from triangulation [FL04, SAB*07].
Unfortunately, depth estimation through triangulation methods requires to solve the
well-known but still challenging correspondence problem [HZ03, SS02].

With the ongoing progress in technology, new emerging depth sensing devices
based on the Time-of-Flight (ToF) principle [LS01] (Section 1.2.1) are becoming avail-
able [FAT11, KBKL09]. While first ToF-based devices for 3-D measuring [HK92], such
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as light detection and ranging (LIDAR) scanners, were expensive and bulky, the devel-
opment of the novel so-called demodulation lock-in pixels [SSVH95] allowed to build
a new ToF-based device, the ToF camera. In contrast to stereo vision systems, ToF
cameras simultaneously provide intensity and depth information for every pixel at a
high frame rate. Indeed, such ToF cameras promise to be an alternative to other
3-D sensing systems such as stereo vision systems, laser scanners or structured light
systems [FAT10]. Nevertheless, the downside of this promising technology is the low
resolution of these cameras which is much lower than the resolution given by alternative
3-D sensing systems. Besides, the acquired depth measurements are highly contami-
nated by noise [FB07].

The aim of this thesis is to enhance the quality of the data acquired by ToF cam-
eras; namely, to increase their resolution as well as to reduce the noise within depth
measurements. To that end, we propose to combine the depth data with the data
recorded by a standard 2-D video camera coupled to the ToF camera in a hybrid ToF
multi-camera rig. This sensor fusion will exploit the advantages of both 2-D and ToF
cameras while avoiding their individual drawbacks. The objective is to improve the
quality of depth data by considering industrial requirements for real-world safety and
security applications, specifically, robustness to noise, accuracy, and reduced memory
and time consumptions.

In what follows, we describe different techniques for depth measurement highlighting
their advantages as well as their drawbacks. Then, we introduce the ToF camera which
provides full-scene depth distance based on the ToF principle. We also introduce the
concept of sensor fusion to address the drawbacks of ToF cameras. Finally, we present

the objectives and challenges of this thesis as well as their outline and contributions.

1.1 Depth measurement techniques

In general, computer vision applications are based on the optical sensing of the world
in order to recognise, classify, and identify objects or people or take decisions based
on their behaviour or activities in a delimited area [YMHO6], i.e., the main reception
of a building, the checking area of an airport or the subway, to name a few. Many

applications require a high accuracy and performance when taking decisions and thus,
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the data to be processed must be consistent, precise and accurate, i.e., it has to be of
good quality.

Depth information is a quantifiable measure that enables 3-D perception of the
observed scene, yielding to more robust computer vision applications. Consequently, a
vast number of 2-D camera-based approaches for depth sensing, with their own benefits,
drawbacks and costs, have been proposed over the past years [Bla04, SAB107], e.g.,
depth-from-focus/defocus [NN94, RCM04|, depth-from-motion [DW93], depth-from-
shading [Wan08], stereo imaging [SK98] or structured light [SFPL10].

Depth measurement techniques can be divided into two main groups depending on
the technology they use, namely contact and non-contact techniques. Contact tech-
niques are intended to reconstruct a 3-D model of the scanned object with very high
accuracy. However, these scanners are out of the scope of our work as they require phys-
ical contact with the object being scanned; which is not feasible for many applications
and impractical to survey a delimited area. Therefore, most 2-D camera-based applica-
tions belong to non-contact techniques, where the most important concepts fall under
active or passive triangulation methods [FAT11]. In general, triangulation methods
involve two sensors with at least one being a 2-D camera. We talk about passive trian-
gulation when the depth sensing system is composed of two 2-D cameras as we detail in
Section 1.1.1. In this case, depth measurements result from solving the correspondence
problem between the reflected ambient radiation within the scene. In contrast, active
triangulation refers to systems where one of the sensors is replaced by an emitter that
emits some kind of radiation, e.g., light (projector, laser) [TV98] (see Section 1.1.2). In
this case, depth measurements result from detecting the reflection of the emitted light.

In what follows, we describe the two depth sensing approaches, passive and active.

1.1.1 Passive sensing

Depth measurement techniques based on triangulation, estimate the distance at which
a point P is located in the scene from its projections, p; and p,, on each of the
camera reference frames, as shown in Figure 1.1. The classic implementation of passive
triangulation is the approach of stereopsis or stereo vision [VT86], which reproduces
the human stereo vision by using a camera rig of two standard 2-D video cameras. The
two reference frames of the individual cameras are not co-centric, ¢.e., the two cameras

(left and right) are displaced with respect to each other by a distance between the
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Figure 1.1: Passive sensing using a stereo system setup. The location of a point P in
space is estimated from its projections p; and p, on the lenses of the left and right cameras,
respectively [HZ03].

centres of projection, O; and O,., respectively. This distance is known as the baseline
b of the stereo system and limits the working depth range. The wider the baseline, the
deeper the working depth range. The distance Z at which the point P is located with
respect to the baseline b is obtained from the similar triangles p;Pp, and O;PO,. such
that

b+x—x b

=g (1.1)

where x; and x, are the coordinates of the projections p; and p, with respect to the
principal points ¢; and ¢,, and f is the common focal length. Solving (1.1) for Z, we
obtain

where p = x, — x;, the binocular disparity, measures the difference in retinal position
between the corresponding points in the two images. In stereo systems, the disparity
leads to the estimation of the distance Z. However, this requires the detection of the
projections p; and p, which relates to the well-known correspondence problem [SS02],
which is typically performed by feature matching or correlation analysis and thus, nu-
merically demanding and suffering from shadow effects or texture patterns. In contrast,
we tackle the opposite case by the use of the ToF camera as it provides the distance at

which each point is located within the given depth maps. This allows us to estimate the
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disparity for each of the ToF camera pixels, which simplifies the mapping by avoiding

demanding operations such as feature matching and image correlation (see Section 3.2).

1.1.2 Active sensing

In contrast to passive triangulation approaches, active systems based on laser or struc-
tured light techniques [SFPL10] reduce the dependency on texture to deal with feature-
correspondence pairs. In this case, one of the cameras in the setup of Figure 1.1 is
replaced by an emitter that projects a pattern to the scene. By doing so, the viewing
camera is able to distinguish the projected pattern from the rest of elements, regardless
of their texture. Thus, the projected pattern generates a group of features that may
be detected in the recorded intensity image. However, and despite the efforts in re-
designing the illumination patterns [GAVN11], disadvantages arise when the projected
pattern is too weak compared to the background light, e.g., sun light, which happens
either if the object is too far away from the sensor, or if the background light is too
intensive.

Regardless whether the sensing system is passive or active, triangulation methods
can be quite time consuming as they have to cope either with the correspondence
problem or to process several encoded illumination patterns, respectively. Besides, the
working depth range in triangulation techniques is linked to the baseline between the
two cameras or camera plus light source which may introduce non desired effects such
as occlusion or shadowing in wide baseline systems.

Conversely, ToF cameras cope with these issues as they allow for depth perception
based on the Time-of-Flight principle [LSO01]. In a nutshell, the ToF principle consists
of measuring the time the light emitted by the active sensor needs to reach the surface
being scanned and receiving its reflection. Since the velocity of the propagation of light
is known, the distance between the sensor and the surface can be estimated from the

travelling time. In the following, we present the ToF camera and its working principle.

1.2 Time-of-Flight cameras

ToF cameras are capable to provide full-scene depth information at a high frame rate.
Two different techniques allow the measurement of the time of flight; pulse detec-

tion, where distance directly amounts from the time of flight of a discrete pulse; and
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amplitude-modulated continuous-wave, where distance is given by the shift in phase
between an emitted modulated signal and its reflection [HK92]. Although there ex-
ist ToF camera prototypes based on pulse detection techniques, such as the ZCam
by 3DV Systems (assets sold to Microsoft in 2009) or the ToF camera line devel-
oped by the Fraunhofer Institute of Microelectronic Circuits and Systems [Frall] and
TriDiCam [Trill], most of the ToF cameras in the market (see Figure 1.2) are based
on amplitude-modulated continuous-wave techniques. This is mainly due to the high
detection accuracy required to determine the exact time delay of the discrete pulse for
pulse detection in ToF devices. In contrast, continuous modulated systems are tech-
nically less demanding, i.e., they require a lower power of light source and they avoid
photodetectors with a fast electronic shutter. However, due to the periodicity of the
modulated signal, the range of the measurements is limited. Lange et al. [LSBL00] and
Oggier et al. [OLK104] describe in detail the physical limitations of depth measurement
devices based on such a continuous modulated wave.

We focus on ToF cameras based on an array of demodulation pixels, concretely
demodulation lock-in pixels [SSVH95]. In that case, the full scene is illuminated by a
modulated signal. Then, each pixel demodulates the reflected light by the scene and
recovers the original wave. The difference in phase between the emitted and the re-
ceived signal is proportional to the distance between the ToF camera and the object
being scanned. Therefore, ToF cameras built on these sensors are not only compact
and cost-efficient, but also capable of estimating full scene range data in a fast way.
Unlike classical techniques for depth sensing, ToF cameras do not rely on mechani-
cal setups, like laser scanners or expensive computations, as in stereo vision, making
them very attractive and compact for interactive or real-time applications [FAT10]. In
the following, we present the working principle of continuous modulation based ToF
cameras and briefly discuss common ToF camera drawbacks in order to motivate our

work.

1.2.1 Working principle

As illustrated in Figure 1.3, ToF cameras based on demodulation lock-in pix-
els [SSVH95] provide distance measurements from the difference in phase between

emitted and received modulated near-infrared (NIR) signals.  The amplitude and
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(b) Efector (¢) CamCube (d) SR4000
3D

(e) C70 (f) D-IMager (g) DS311 (h) ARTTS

Figure 1.2: Active ToF camera brands (as of 2011). (a) 3D MLI Sensor " by IEE S.A.
(56 pixels x 61 pixels ). (b) Efector 3D image sensor by ifm electronic (64 pixels X
48 pixels ). (¢) PMD]vision]® CamCube by PMDTechnologies (200 pixels x 200 pixels ).
(d) SwissRanger  SR4000 by MESA Imaging (176 pixels x 144 pixels ). (e) Fotonic C70
by Fotonic (160 pixels x 120 pixels )). (f) D-IMager by Panasonic (160 pixels x 120 pixels
). (g) DepthSense  DS311 by Softkinect (160 pixels x 120 pixels ). (h) ARTTS camera
prototype.

phase of the incoming modulated signal can be retrieved by synchronously demodu-
lating the investigated signal within the detector [LSO01]. To that end, the cross cor-
relation between the received modulated signal r(¢) of amplitude a and phase ¢, and
the emitted modulated signal s(t) is performed. The phase of the received modulated
signal can be determined by taking the measurement of the cross correlation function
at selectively chosen temporal positions or phases. Although other periodic functions
can be considered, we assume a sinusoidal formulation for the signals s(t) and r(t) as

in [HK92, LSO, OLK*04], i.e.,
s(t) =1+ cos(wt), (1.3)

and

r(t) = h + a cos(wt — ¢), (1.4)
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Figure 1.3: The principle of continuous modulation based ToF cameras [Linl0].

with w = 27 f,,, the angular modulation frequency with f,, the modulation frequency.
h is the background light plus the non-modulated part of the incident signal, illustrated

in Figure 1.4. We calculate the cross correlation ¢(7) function as follows

clr) = r(r) @ () =

t

r(t) - s(t+ 7)dt, (1.5)

L5

where ® denotes the cross correlation. By doing so, the cross correlation sample ¢(7)
n (1.5) amounts to
co(t)=h+ %COS(WT + ¢). (1.6)

From (1.6), three or more samples per modulated period T' are needed in order to un-
ambiguously determine the phase ¢ and the amplitude a of the incident signal [Cre88],
as well as its offset h. To that end, we use the so-called four-taps technique in
which four samples ¢(7;),k = 0,...,3, are taken at four subsequent time intervals
T = k- T/4 = k/4f,, within a modulated period T, as illustrated in Figure 1.4b.

As a result,

¢ = arctan< (ﬁ) (1.7)

o = ng (m))2 + (e(r) — e(r2))?, (1.8)

L) +eln )ZC( ) + e(rs) (1.9)

The reasons to choose four samples instead of three are to improve robustness against
noise, to enable a highly symmetric design of the sensor, to ensure that the phase is

insensitive to quadratic non-linearities in detection, and to simplify the formulae for the
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(b) Cross correlation ¢(7) between r(t) and s(t).

Figure 1.4: ToF measurement principle. Four selectively chosen samples (¢(73),k =
0,...,3) are taken within a modulated period T in order to determine the phase ¢, amplitude
a, and offset h of the received modulated signal r(¢) [SSVH95].

phase ¢, the amplitude a, and the offset h. The distance measurements d are obtained

from

L
d= "9, (1.10)

with ¢ = 3 - 10% m/s the speed of light and L the working range or non-ambiguity
distance range of the ToF camera, given by [LS01]

e
2fm

The factor 1/2 in (1.10) and in (1.11) is due to the fact that light travels twice the

(1.11)

distance between the camera and the sensed object, as depicted in Figure 1.3. The ToF
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camera is actually an image sensor whose size corresponds to the camera resolution
(m x n), as illustrated in Figure 1.3. Hence, each single pixel constituting the image
sensor is identified by the pixel position (i, j), where 7 indicates the row and j indicates
the column. Each pixel measures a distance d;; obtained using (1.10). As a result,
the ToF camera provides a distance image or depth map D defined as D = [d;;]mxn,
the matrix of all the elements d;;. In the same way, an amplitude image A defined
as A = [ajjlmxn 1s obtained using (1.8). Indeed, this amplitude image allows us to

calibrate the ToF camera, as we detail in Section 2.4.

1.2.2 Drawbacks of ToF cameras

In addition to simultaneously provide full-scene depth information at a high frame rate,
the recent advances in industrializing and producing economic, compact, robust to illu-
mination changes and light ToF cameras are starting to have an impact on commercial
applications [FAT10, KBKL09]. However, ToF cameras and specially the industrial
ones (see Figures 1.2a and 1.2b), cannot yet attain the resolution and precision of al-
ternative 3-D sensing systems, such as laser scanners or stereo systems. Indeed, two
main drawbacks are currently restricting the use of ToF cameras in a wide range of
computer vision and robotics applications; namely, the noise within depth measure-
ments and the low resolution of the given depth maps. In the following we give more

details of these drawbacks.

1.2.2.1 Noise within depth measurements

In Section 1.2.1, we have presented the theory related to the working principle of
continuous modulated ToF cameras. However, in practise, in order to reduce the effect
of noise, the cross correlation ¢(7) in (1.5) is integrated over n7'. As a result, one
obtains four samples ¢(7i) = n - ¢(7x), which are proportional to the number of periods
integrated over. In the following we assume that these samples are expressed in units
of number of photoelectrons. When considering é(7) in (1.7) instead of c¢(7y), the

measured phase ¢ remains the same, i.e.,

¢ = arctan<é(73)_é(ﬁ)> , (1.12)

¢(m0) — &(72)

10
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while the amplitude a in (1.8) and the offset h in (1.9) become proportional to n as

follows

"t (&ro) — &(r2))* =n-a, (1.13)

=
Il
Il
3
=

(1.14)

and expressed in units of number of photoelectrons.

The main sources of noise within the distance measurements d (see (1.10)) in con-
tinuous modulated ToF cameras are electronic noise n., dark noise n; and photon shot
noise n, [LS01]. Electronic noise is a random fluctuation which is characteristic of
all electronic circuits such as analog to digital converters. Dark noise summarizes ad-
ditional photodetector noise sources such as thermal noise, i.e., random fluctuations
due to changes of temperature. Photon shot noise is due to the photon character of
light. The generation of a given number of photoelectrons in a fixed interval of time
occurs randomly with a known average rate and independently of time. Therefore,
the photon shot noise n, can be modelled by a Poisson distribution where the num-
ber of observed photoelectrons fluctuates about its mean with a standard deviation
Ta(r,) = \/ﬁ,k = 0,...,3. We note that the number of observed photoelectrons
is large which leads to the approximation of the Poisson distribution by an additive
Gaussian distribution of mean zero and with the same standard deviation oy, ), i.e.,
ny — N(O,ag(m)). Similarly, the electronic noise n. may also generate or vary the
number of photoelectrons while converting from analog to digital. In the same way, the
thermal noise n; also varies the number of photoelectrons by the excited photoelectrons
due to the variations in temperature. They both can be modelled as additive Gaussian
noises with mean zero, and variances o2 and o7, respectively.

The noisy cross correlation samples é,(7) may thus be modelled as follows
En(Tr) = €(Tk) + Ntotal,  With nyerar = np + ne + 1y (1.15)

Since both electronic noise and thermal noise are also independent and uncorrelated,
the total variance of the noise equals to the sum of the variances of the photon shot
noise, the electronic noise, and the thermal noise, i.e., U?Oml = oﬁ—i—a?—kaf , respectively.

In [LSBLO0], Lange applies the rules of error propagation to (1.12) in order to

determine the error on the phase ¢, also considered to be the standard deviation oy

11
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of the noise on ¢. Following the same rules, we determine the standard deviation oy

taking into account all sources of noise, as detailed in Appendix B. We find

S (52) (1.16)

k=0

Considering (1.16) for the four samples é(7), k = 0, ..., 3, taken at four subsequent time
intervals 7, = k- T/4 = k/4f,, within a modulated period T, we find the uncertainty

o4 on the measured distance d. = d £+ 04. Below is the final simplified expression of oy,

I \h+o?+to?
: ! (1.17)

NG 24 ’

with i = @+ b, the number of photoelectrons from the emitted active light (amplitude)

Oq =

plus the background light, respectively. We note that Lange refers to o2 as a num-
ber of pseudo electrons, that he defines as an increment or decrement of the number
of electrons due to the rounding when converting from analog to digital. We observe
in (1.17) that the fluctuation within distance measurements is inversely proportional
to the number of photoelectrons within the amplitude of the signal in the case where
the number of photoelectrons from the background light b and from the error due to
electronic noise and thermal noise, are smaller compared to the number of photoelec-
trons within the amplitude . That is, o4 is proportional to 1/4/a. In addition, the
amplitude a is proportional to the power density of the light in the scene [BW99]. Thus,
according to the inverse square law, the power density of the light in the scene decays
at a rate proportional to 1/d? due to the active illumination.

We also remark that in the case of low amplitudes @ where background light b is
not present (no sun light influence), the electronic noise becomes dominant. In this
case, ToF camera prototypes based on digital phase demodulation using single-photon
synchronous detection (SPSD) are expected to perform better [NFKT08, SPST07] than
current ToF cameras based on amplitude-modulated continuous-wave. An SPSD image
sensor is based on single-photon avalanche diodes (SPADs) [NRBCO05] rather than the
CCD/CMOS photogates used by lock-in pixels [SSVH95]. In this case, the analog
accumulating diffusion used by lock-in pixels is replaced by a digital counter. As a
result, SPSD ToF cameras are considered to be virtually free of electronic noise at
signal detection and demodulation as they do not use any analog processing or analog-

to-digital conversion.

12



1.2 Time-of-Flight cameras

Furthermore, we see in (1.17) that o4 is directly linked to the non-ambiguity range
of distance L. Thus, in order to obtain accurate and robust depth measurements, the
modulation frequency f,,, has to be chosen as high as possible. However, the current
limitations of technology allow to modulate a signal around 20 MHz. Therefore, if we
set f, = 20 MHz in (1.11), the non-ambiguity range of distance is L = 7.5 m, which
corresponds to the working range of most of the continuous modulated ToF cameras.
In the case where the application requires a higher range distance, the reference signal
s(t) can be modulated at a smaller frequency; however, the influence of noise will be

higher according to (1.17).

1.2.2.2 Resolution of depth maps

In addition to the noise influence within the depth measurements, the given depth
maps suffer from a low resolution compared to the data given by alternative 3-D sens-
ing systems. Moreover, this resolution problem is even more prominent in industrial
ToF cameras as a compromise for their higher robustness to ambient conditions, e.g.,
larger working temperature range and higher reliability under sun lighting. We note
that the noticeable difference between the resolution of a 2-D camera and the resolution
of a ToF camera is directly linked to the physical difference in the dimensions of the
imager. Indeed, the ToF imager used to be up to 10 times bigger than the imager of
a 2-D camera. This is due to all the electronics that surround a ToF pixel in order to
cope with the distance measurement, i.e., wiring to read the four samples or electronics
to demodulate the incident signal (see Section 1.2.1). We note that there exist some
“high-resolution” ToF cameras such as those intended for research purposes, e.g., the
PMD[vision|®CamCube, the SwissRanger  SR4000 or the ARTTS prototype (Fig-
ures 1.2¢,1.2d,1.2h, respectively), indoor applications in constrained environments, e.g.,
the Fotonic C70, the D-IMager or the DepthSenseTMDS311 (Figures 1.2e,1.2f,1.2g, re-
spectively) or 3-D sensing devices intended for gaming applications such as Microsoft’s
Kinect camera [LMW™'11]. However, in contrast to all these devices, ToF cameras
that are used for automotive applications or applications in industrial automation have
resolutions lower than (64 pixels x 64 pixels). Therefore, in applications where the
limited resolution of a ToF camera is critical, a very promising strategy is sensor fu-
sion [GBQ108, ZWY'10]. To summarize, the concept is to combine ToF data with data
provided by other sensors, usually 2-D cameras [FBK10]. Indeed, some first attempts

13
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in ToF and 2-D data fusion have shown promising dense depth maps, outperforming,

in some cases, alternative 3-D sensing systems [CBTT08, YYDNO07].

1.3 Sensor fusion

Sensor fusion is a strategy that combines the data provided by similar or disparate
sensors such that the resulting fused data is in general better, i.e., more accurate, less
noisy and more precise than the data acquired by a single sensor. As discussed in
Section 1.2.2, the resolution of ToF cameras is far below the resolution of standard 2-D
video cameras. Therefore, in applications where the ToF camera resolution is critical,
we can resort to sensor fusion approaches and complement the ToF camera with a 2-D
camera.

The goal of this thesis is to combine the raw data provided by each of the cameras
that constitute a hybrid ToF multi-camera rig in order to enhance the quality of the
low-resolution ToF data. In computer vision, fusion processes are often categorized
as low, intermediate, or high level fusion, depending on the processing stage at which
fusion takes place.

Within this thesis, we talk about low-level fusion, also called data fusion, in contrast
to higher fusion levels in which the fusion deals with post-processed data (feature or
decision fusion). Over the last years, there have been some attempts for ToF data en-
hancement by means of data fusion. The application of Markov Random Fields (MRFs)
to cope with the problem of enhancing ToF data by considering both ToF and 2-D data
was first presented by Diebel et al. [DT05]. In contrast to MRFs-based approaches,
data fusion based upon a bilateral filter, an edge-preserving image filter [TM98], en-
ables a real-time data fusion. Indeed, recent contributions [GAM*11b, GAM™11a]
have proven to outperform triangulation-based techniques (Section 1.1). Thus, we fo-
cus on depth enhancement methods that couple a single 2-D camera with a single
ToF camera in contrast to other approaches that combine several 2-D and ToF cam-
eras [KH10, KTD 09, KS06, STDTO08] for dense 3-D reconstruction.

Intermediate-level fusion, also known as feature-level fusion, combines different fea-
tures such as edges, corners, lines or texture parameters, determined from several raw
data sources. In [GBQT08], Gloud et al. combine 2-D features extracted from data

recorded by a high resolution video camera and 3-D features from data acquired by a
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laser range scanner in order to deal with the problem of object detection and recog-
nition for a robotic system. Another example of feature fusion is given by Natroshvili
et al. in [NSST08] where they profit of the high frame rate of a ToF camera to deter-
mine coarse features that serve a CMOS camera as an input to realize a finer object
detection, segmentation and classification for real-time pedestrian detection.
High-level fusion, also known as decision-level fusion, performs as a function of the
confidence resulting from different processes. In this sense, high-level fusion approaches
cope with advanced intelligent systems for path-planning and obstacle avoidance, han-
dling robot position uncertainty or other related problems [LS99]. Another field where
the application of those methods demonstrate a sequence of significant advantages is
in automotive applications, i.e., assistance systems for driving, autonomous vehicles or

object recognition in road environments [FPAT07, GAVAOS].

1.4 Objectives and challenges

The present thesis is intended to overcome the limitations of ToF cameras and especially
industrialized ToF cameras such as the 3D MLI Sensor (see Figure 1.2a). To that
end, we propose to attach a supplemental imaging sensor to the ToF camera. As a
result, we obtain raw images from different modalities which allows for low-level data
fusion.

Within this thesis, we first couple an industrialized ToF camera with a standard 2-D
video camera in a hybrid ToF multi-camera rig. Next, we combine the raw data given
by each of the cameras in a low-level data fusion approach where the 2-D images help
to enhance the ToF data. By doing so, we exploit the advantages of each of the cameras
that constitute the multi-camera rig while avoiding their individual drawbacks. As a
result, the quality of the data given by the ToF camera is significantly improved. The
aim of this thesis is to enable the use of ToF cameras in computer vision or robotics
applications beyond their current limitations.

The first challenge relates to the alignment of the data given by each of the cameras
in our hybrid ToF multi-camera rig prototype (see Figure 1.2a). Any low-level data
fusion approach requires the data to be fused to match pixel to pixel, which is far from
a trivial task for most real-world data and scenarios. Indeed, most of the approaches for

depth enhancement address the data matching process within an off-line pre-processing
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step where the data is undistorted and rectified to be pixel aligned. This, in turn,
restricts the use of such a hybrid ToF multi-camera rig for dynamic scenes, where real-
time is a requirement. We note that mapping the distance measurements from the ToF
camera onto the 2-D camera is a straightforward procedure which would result in the
assignment of a colour value to each of the (low-resolution) ToF pixels. To that end,
one can resort to commonly used 3-D warping techniques [LH10a, IMNT10, ZWY *10]
as discussed in Section 3.3. However, within this thesis we want to tackle just the
opposite case. We want to assign to each of the high-resolution 2-D pixels an accurate
distance value. In this case, we need to map each 2-D pixel onto the corresponding
ToF pixel, which is not straightforward if one has to take into account the distance
dependency of the disparity. Furthermore, such dependency on the distance requires
to recompute the whole mapping procedure for each recorded frame and thus, it makes

the real-time implementation quite challenging.

Once the data from each camera matches pixel to pixel, we focus on the data fusion
approach to enhance the quality of the low-resolution depth maps. There exists a
number of data fusion approaches [CBTTO08, DT05, YYDNO7] that yield to satisfactory
dense depth maps. However, two main artefacts in low-level data fusion motivate our
work; namely, texture copying and edge blurring within the enhanced depth maps.
The coarse combination of depth and intensity data may lead to erroneously copy 2-D
texture into actually smooth depth geometries within the depth map [CBTTO08|. Edge
blurring is the second artefact which results from the misalignment between 2-D and
depth edges, mainly driven by the huge difference of resolutions, or because depth
edges have no corresponding edges in the 2-D guidance image, i.e., in situations where
objects on either side of a depth discontinuity have a similar colour [CBTTO08]. Hence,
our second challenge is to overcome these artefacts by developing appropriate filtering

techniques.

In addition, industrial requirements for real-world applications are addressed, which
implies an easy and transparent adaptability of the methods and an implementation

capable to perform in real-time.
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1.5 Outline and contributions

This section gives the outline of the thesis, highlights the contributions, and provides
references to the articles where the results were (or will be) presented. The main body

of the thesis is separated into three parts as detailed below:
e Part I: Data Alignment

The first part of this thesis deals with the alignment of data for further low-level
data fusion purposes. Chapter 2 introduces the perspective or pinhole camera model,
i.e., the basis to formulate the relationship between the real world and the camera. This
formulation involves the knowledge of the camera within the world, i.e., its orientation
and position with respect to a known world reference (extrinsic camera parameters) as
well as the knowledge of the camera itself, i.e., its own characteristics (intrinsic camera
parameters). Another intrinsic parameter to consider is the distortion produced by
the lens of the camera. After defining the relationship between reality and images, we
present the hybrid ToF multi-camera rig and its components. We conclude Chapter 2
by proposing a practical calibration method that in addition to estimating the multi-
camera rig parameters with high accuracy, is feasible for a hybrid ToF multi-camera
rig calibration in a mass production line. Chapter 3 focuses on the alignment of the
data delivered by each of the cameras in the test rig. After fulfilling the calibration
process, the data is undistorted and ready to be aligned. In this chapter, we propose
a novel alignment approach that assigns to each 2-D pixel its corresponding depth
value. In addition, the method considers the distance-dependent disparity due to the
displacement between the two cameras in the test rig. Our contribution achieves a
real-time data acquisition and alignment, facilitating further fusion steps. The results

of this part have previously been published in (or submitted as) the following articles:

x F. Garcia, D. Aouada, B. Mirbach, and B. Ottersten. Distance-Dependent Map-
ping for Hybrid ToF Multi-Camera Rig. IEEE Journal of Selected Topics in

Signal Processing. Accepted for publication with mandatory minor revisions.

x F. Garcia, D. Aouada, B. Mirbach, T. Solignac, and B. Ottersten. Real-time
Hybrid ToF multi-camera Rig Fusion System for Depth Map Enhancement.
IEEE Computer Society Conference on Computer Vision and Pattern Recognition

Workshops (CVPRW), 1-8. June 2011.

17



1. INTRODUCTION

x F. Garcia and B. Mirbach. Range Image Pixel Matching Method. PCT-patent
application under priority of following Patent application in Luzembourg. Ref.
P-IEE-292/LU. Application No. 91 745 of 15 October 2010.

e Part II: Data Fusion

The second part tackles the core of this thesis, the fusion of the raw data acquired by
each of the cameras in the hybrid ToF multi-camera rig in order to enhance the quality
of the ToF data. Chapter 4 covers state-of-the-art low-level data fusion approaches
for depth enhancement. This chapter describes the different strategies to enhance low-
resolution depth maps by considering additional 2-D information. Chapter 5 presents
the proposed approaches to enhance the quality of low-resolution ToF data. Our main
contribution is a filter that accounts for the reliability within the depth measurements
while considering 2-D edges. Consequently, unwanted but common artefacts in state-of-
the-art filtering techniques such as texture copying and edge blurring get almost entirely
eliminated. The filter is extended with a new factor that increases the accuracy of the
depth measurements within smooth regions in the scene. Furthermore, taking into
account the industry requirements, we propose an effectively and efficiently algorithm
for real-time applications. Chapter 6 quantifies the proposed approaches against state-
of-the-art methods and shows the experimental results. The results of this part have

previously been published in (or submitted as) the following articles:

x F. Garcia, D. Aouada, B. Mirbach, and B. Ottersten. Unified Multi-Lateral Filter
for Real-Time Depth Enhancement. IEEE Transactions on Pattern Analysis and
Machine Intelligence (TPAMI). Submitted.

x F. Garcia, D. Aouada, B. Mirbach, T. Solignac, and B. Ottersten. A New Multi-
lateral Filter for Real-Time Depth Enhancement. IEEFE International Conference
on Advanced Video and Signal-Based Surveillance (AVSS). September 2011.

x F. Garcia, B. Mirbach, B. Ottersten, F. Grandidier, and A. Cuesta. Pixel
Weighted Average Strategy for Depth Sensor Data Fusion. IEEE International
Conference on Image Processing (ICIP), 2805-2808. September 2010.
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e Part III: Extensions

The last part proposes two different extensions for our fusion approach. Chapter 7
copes with the edge blurring artefact. Although edge blurring is almost eliminated
when using the proposed data fusion approach, there are some cases where it still ap-
pears. Such cases are due to the fact that there are depth edges without a corresponding
2-D edge. Thus, depth edges cannot be accordingly adjusted. This can occur in sit-
uations where foreground and background objects in the scene have a similar colour.
In that case, the segmentation of these objects in 2-D becomes intricate as no edges
help to distinguish the objects. However, edge blurring intensifies as soon as we con-
sider grayscale images when fusing, instead of the original coloured ones. Many image
processing algorithms as well as the one we propose in this thesis, consider grayscale
images as input data. By doing so, system requirements such as low processing time
and memory constraints can be overcome. The downside is that the probabilities of
having the same intensity value in both foreground and background objects increases
while transforming from colour to grayscale, as many colours get collapsed to the same
intensity value. Therefore, in this chapter we propose to reduce the complexity of pro-
cessing three channels by compactly storing the same information in only one channel.
Thus, we show that much better results can be obtained by replacing grayscale images
by images transformed into our new 1-D colour space in which the same information
as in the non-transformed image is preserved without losses. Chapter 8 presents an
extension of the filter that increases the frame rate of the ToF camera. Until now, the
goal was the enhancement of the quality of a given low-resolution depth map. However,
there are security and safety applications that in addition to this data quality enhance-
ment also require a high frame rate. ToF cameras are known to be fast but still slow
compared to standard 2-D video cameras. Therefore, we propose an extension that
estimates the motion between the 2-D camera frames, compensates the motion on the
low-resolution depth maps and enhances their quality using the proposed data fusion
filter. The results of this part have previously been published in (or submitted as) the

following articles:

x F. Garcia, D. Aouada, B. Mirbach, and B. Ottersten. Spatio-Temporal ToF Data
Enhancement by Fusion. IFEFE International Conference on Image Processing

(ICIP). September 2012.
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x F. Garcia, D. Aouada, B. Mirbach, and B. Ottersten. A new 1-D colour model
and its application to image filtering. IEEE International Symposium on Image
and Signal Processing and Analysis (ISPA ). September 2011. Best Student Paper
Award.

x F. Garcia, D. Aouada, B. Mirbach, and B. Ottersten. Spiral colour model: Re-
duction from 3-D to 2-D. IEFEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), 1305-1308. May 2011.

Chapter 9 concludes the thesis, and elaborates on possible lines for future research.
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Chapter 2

System model

In this chapter we introduce the basis to understand the relationship between the scene
and the data given by each of the cameras in the hybrid ToF multi-camera rig. Although
the geometry of a camera as well as the parameters that relate the coordinates of a point
in the scene to a single or multiple viewing cameras are well known by the computer
vision community, we have considered appropriate to describe them for completeness
and consistency when introducing our system model. We refer the reader to textbooks
such as Multiple View Geometry in Computer Vision from Hartley et al. [HZ03] or
Introductory Techniques for 3-D Computer Vision from Trucco et al. [TV98] for further
details. Then, we detail the system model we have considered to evaluate our concepts,
which is composed of a 2-D video camera and an industrialized ToF camera, i.e., a
hybrid ToF multi-camera rig. Finally, we propose a practical full-system calibration

approach in order to determine the system parameters.

2.1 Camera geometry and single view geometry

This section presents the geometry of a single camera and describes the projection from
the scene space onto the image frame of the viewing camera.
2.1.1 Perspective camera model

The simplest model of a camera in computer vision and computer graphics is the
perspective or pinhole camera model in which all optical distortions are neglected. It

is based on the principle of collinearity, where each point in the scene is projected on
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2. SYSTEM MODEL

principal
point [cx,c},ﬂT
image frame ~ }.-7
pinhole

’?

focal length f

Figure 2.1: The perspective or pinhole camera model.

the image frame by a straight line passing through the optical centre [TV98], as shown
in Figure 2.1. The distance between the optical centre and the image frame is usually
referred to as the focal length f of the pinhole camera while the point where the optical
axis of the camera intersects the image frame corresponds to the principal point whose
coordinates are [c, ¢y, f]T (we define []T as the transpose of a matrix or a vector). If

we consider a point P = [X,Y, Z]T in the scene, its projection on the camera image

frame p = [z,y, z]T are expressed as
X
= f— 2.1
=12 (2.1)
Y
= f— 2.2
y=1r7 (2.2)
and
z=f. (2.3)

Nevertheless, these perspective projections require some knowledge of the geometry
of the camera which is given by the intrinsic camera parameters, usually determined

within the system calibration process.

2.1.2 Intrinsic camera parameters

In general, the data recorded by a camera is related to its own reference frame, usually
called the camera reference frame. We refer to a point in the scene P whose coordinates
are related to the camera reference frame as P, = [X., Y, Z.]T (see Figure 2.1). Images,
however, are generally specified as pixel arrays with their origin in the upper-left corner.

Thus, the point coordinates need to be transformed or mapped from the camera frame
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2.1 Camera geometry and single view geometry

to the image frame. This in turn, requires the knowledge of the intrinsic camera
parameters that characterize the optical, geometric and digital characteristics of the
viewing camera. These parameters are the effective size of the pixel or pixel pitch
(in pm) (04, 6y), the pixel coordinates of the principal point (cz, ¢,) relative to the upper-
left corner, and the focal length f [HZ03, TV98]. By considering these parameters, the

expressions in (2.1) and (2.2) can be generalized to

T X,
p=K-P.e |y |=K | Y |, (2.4)
z Ze

with K the matrix of intrinsic parameters defined as follows

10 e f 0 0 S0 e
K=KK¢=| 0 4,' ¢ 0 f 0= 0 &M ¢ |, (2.5)
0 0 1 0 0 1 0 0 1

where f is the focal length, 6, and J, are the effective horizontal, and respectively
vertical pixel size, and (cg, ¢,) is the position of the optical axis or principal point in

the image (all units are in millimetres). Thus, from (2.4), the z, y, and z coordinates

of p are
r = 6;1ch + cp e, (2.6)
y = 6, fYo+ ey Ze, (2.7)
z = Z. (2.8)

Expressions in (2.1) and (2.2) result from dividing (2.6) by (2.8) and (2.7) by (2.8),
respectively, i.e., homogeneous coordinates where the z coordinate is equal to 1. We
note that in the pinhole camera the principal point (c,,c,) is assumed to be the centre
of the sensor, i.e., (0,0).

Nevertheless, the pinhole camera model is only an approximation of the real cam-
era projection that simplifies the mathematical formulation of the relationship between
objects in the scene and their image coordinates. In practise, real cameras differ from
the pinhole camera model insofar as they use lenses that introduce geometrical distor-
tion to the image coordinates. For most applications, therefore, the pinhole model is
a basis that is extended with some corrections for the systematically distorted image

coordinates.

25



2. SYSTEM MODEL

2.1.3 Image distortion

In most computer vision applications, there are mainly two types of distortions that
are modelled in order to be corrected; namely, the radial distortion and the tangential
distortion. The former distortion is characterized by a symmetric displacement along
the radial direction from the principal point. A negative displacement decreases the
image magnification resulting in a visual effect similar to mapping the image around
a sphere (or barrel), i.e., barrel distortion (Figure 2.2a). A positive displacement in-
creases the image magnification resulting in a visible effect where lines that do not
go through the centre of the image are bent inwards, towards the centre of the im-
age, i.e., pincushion distortion (Figure2.2b). In contrast, the tangential distortion is
generally caused by improper lens alignment due to inaccuracies during the camera
assembling [HS97, WCH92]. In this case, the visual effect is a decentering of the im-
age. Although both types of distortions can be modelled and corrected, the tangential
distortion is usually neglected when camera-lenses are assembled by the camera man-

ufacturer. The radial distortion can be approximated by

x=F(1+kyr? 4 kort + ) (2.9)
and

y=G(L+ ki’ + kor' + ), (2.10)

where k;, i = 1,2,..., are the coefficients for the radial distortion [HS97]. Thus, the
expressions in (2.1) and (2.2) are replaced by (2.9) and (2.10), respectively. In this case,

the coordinates x and y are the non-observable, distortion-free image coordinates. The

(a) Simulation of a (b) Simulation of a

barrel distortion. pincushion distortion.

Figure 2.2: Effect of radial distortions [Lin10, WCH92].
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2.1 Camera geometry and single view geometry

coordinates & and § are the corresponding distorted coordinates, and 72 = &2 + §2. In
the case of standard lenses, one or two coefficients (k1, k2) are enough to compensate
for the radial distortion. However, a higher order is needed in case of wide angle lenses,
e.g., 90°, where radial distortion can be 30% of the image radius. The expression of

the tangential distortion is often written in the following form
& = 2p1 g + po(r? 4 282) (2.11)

and

y = p1(r* +25%) + 2p227, (2.12)

where p; and po are coefficients for the tangential distortion [HS97]. We recall that the
tangential distortion is due to improper lens alignment which is in general neglected.

Indeed, its contribution is much lower than the contribution of the radial distortion.

2.1.4 Extrinsic camera parameters

The relationship between the coordinates of a point P, in the camera reference frame
and its coordinates in the image frame is given by (2.4). However, in most computer
vision applications, the point coordinates must be related to a known reference frame,
the so-called world reference frame, to which we refer with the subscript w. In general,
the camera reference frame does not coincide with the world reference frame. Therefore,
it is usually necessary to first map the 3-D points related to the world reference frame,
onto the camera reference frame. To that end, a typical choice for describing the
transformation between the camera reference frame and the world reference frame is
to use a 3-D translation vector t = [tx,ty,tz}T, which describes the relative positions
between the origins of both reference frames, and a 3 x 3 rotation matrix R, which
defines the orientation between the two reference frames [HZ03, TV98]. Thus, the
relationship between the coordinates of a point P from the world frame to the camera

frame, P,, and P, respectively, is
P, = R[Pw - t], (2.13)
with
11 T2 T13

R = T21 T922 T93 . (2.14)
31 T32 733
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2. SYSTEM MODEL

Definition 1 The camera extrinsic parameters are the elements of the translation
vector t, and the elements of the rotation matrix R, which specify the transformation

between the camera reference frame and the world reference frame [TV98].

Once the extrinsic and the intrinsic camera parameters are determined, the rela-
tionship of a point P from the world reference frame P,, to the image reference frame

p is given, using (2.4) and (2.13), by

p:K-R[Pw—t}, (2.15)

with p = [z,y, 2]T. The image coordinates in pixels, i.e., p’ = [u, v, 1]T are given by:

{u:z/z = u=uz/Z,

v=yle = v=y/Z (2.16)

as z = Z. from (2.8). We note that p = Z. - p’. From (2.4) and (2.16), and consider-

ing (2.5), the image coordinates (u,v) are defined as

(2.17)

u=08;"f5 + e,
v= 5y_1f%+cy.

2.2 Two-view geometry

This section covers the geometry of two perspective views. In Section 2.1, we have
presented the model of a single viewing camera and the relationship between the coor-
dinates of a point in the scene and its image coordinates. In the following, we present
the relationship between the image coordinates of a point in two viewing cameras, i.e.,
the relative extrinsic parameters. We recall that our two-view geometry is composed of

a 2-D video camera and an industrialized ToF camera, i.e., a hybrid ToF multi-camera

rig.
2.2.1 Relative extrinsic parameters

Whereas the extrinsic parameters introduced in Section 2.1.4 describe the position
and orientation of the viewing camera with respect to the world reference frame, the
relative extrinsic parameters describe the location and orientation between the cameras
in the two-view geometry. Similarly to the extrinsic parameters, the relative extrinsic

parameters are a translation vector t’, that describes the relative positions between
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2.2 Two-view geometry

the origins of both camera frames, and a (3 x 3) rotation matrix R/, that defines the
orientation between the two camera frames [HZ03].

The relative extrinsic parameters relate the projections of a point P,, in space on
the two image frames. We refer to the 2-D camera reference frame as A and to the
ToF camera reference frame as B. Thus, following (2.15), the projection of a point in

the scene P,, on the 2-D camera image frame is

Pa=Ku Ry (Py —tyg). (2.18)
Similarly, the projection of P,, on the ToF camera image frame is

P = Kz -Rg - (Py —t3). (2.19)

The subscripts A and B indicate that the subscripted parameter relates to the 2-D and
ToF camera, respectively. Solving (2.18) and (2.19) for P,,, we end with the following

relationship

K} pa=Ru -R3 (K3 ps+Rs-ts —Rg tg). (2.20)
If the intrinsic parameters of both cameras K4 and K3 are known, (2.20) amounts to
Ps=Ry -Rj - (Pg+Rgp -ty —Rg-ty) (2.21)

using (2.4). Hence, the relative extrinsic parameters that relate P4 and Py are
R’ =Ry, -R3, (2.22)

and

t'=Rgp -tz —Rp -ty =Rg - (ts —tx). (2.23)

Finally, by replacing (2.22) and (2.23) in (2.21) we obtain
P,=R (Pg+t). (2.24)

In Section 2.4.2 we detail how to estimate R’ and t'.
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2.3 Hybrid ToF multi-camera rig

In the following, we introduce the two hybrid ToF multi-camera rig prototypes that have
been used to evaluate our concepts. The major part of the experiments was obtained
using a first test rig prototype that integrates a 3D MLI SensorTMprototype from IEE
S.A. [IEE11] and a Flea®2 CCD Camera from Point Grey Research, Inc. [Poill], shown
in Figure 2.3c. This first prototype couples the two cameras with a narrow baseline of
36 mm, which corresponds to the minimum baseline allowed by the dimensions of the
cameras. We decided to fill the lens mount of the Flea®2 camera by 5 mm in order to
convert it from C-mount to a CS-mount lens!. This enabled us to use the same lens in
both cameras and thus, to share the same intrinsic parameters (Section 2.1.2), which

are easier to determine from the 2-D camera due to its higher resolution.

(b) (¢) Hybrid ToF multi-camera rig prototype

Figure 2.3: Former hybrid ToF multi-camera rig prototype and its components:
(a) Flea®2 CCD Camera from Point Grey Research, Inc. [Poill]. (b) 3D MLI
Sensor  prototype from IEE S.A. [IEE11].

Once first results on depth enhancement were validated, a second ToF multi-camera
rig prototype was built. This second test rig prototype integrates an IEE S.A. indus-
trialized ToF camera, the 3D MLI SensorTM, and a Dragonfly®2 CCD Camera from
Point Grey Research, Inc. The 2-D camera was changed because the Dragonfly®2 has

! A C-mount is a type of lens mount that has a flange focal distance of 25.4 mm (1 inch) diameter,
and is otherwise identical to the CS-mount (12.50 mm, 0.492 inches).
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2.4 Proposed system calibration

a remote head that facilitates its integration within the 3D MLI SensorTl\/[housing7 as
shown in Figure 2.4c. However, the larger dimensions of the 3D MLI SensorTMhousing
restrict the minimum baseline to 65 mm, which makes the handling of the distance-
dependent disparity more challenging (Section 3.1). In contrast to its prototype, the
industrialized 3D MLI Sensor " does not allow to change the lens. Thus, it is possible to
use the intrinsic camera parameters accurately determined during the serial production

by IEE S.A. The specifications of each camera are reported in Appendix A.

P

(b) (c) Hybrid ToF multi-camera rig prototype

Figure 2.4: Second hybrid ToF multi-camera rig prototype and its components: (a)
Dragonfly®2 CCD Camera from Point Grey Research, Inc. (b) 3D MLI Sensor " from
IEE S.A.

2.4 Proposed system calibration

In order to complete the data alignment process, both intrinsic camera parameters as
well as the relative extrinsic parameters that relate the camera position and orientation
to each other have to be determined. To that end, a first calibration step of the hybrid
ToF multi-camera rig must be done. This classical first step in computer vision allows
to correct or rectify the raw distorted images [TV98] which will enable data matching.

In order to determine the 2-D camera parameters, one can resort to classical cali-
bration tools such as Bouguet’s toolbox for Matlab [Bou09] or image processing tools
such as those included in Intel’s computer vision library OpenCV [BKO08]. Although

new insights have been proposed in [LKRO08], the research on ToF camera calibration
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2. SYSTEM MODEL

is not yet extensive, and the same 2-D calibration approaches are applied on ToF cam-
eras. These calibration approaches are suitable when calibrating “high-resolution” ToF
cameras such as those intended for research purposes (see Figure 1.2¢ and Figure 1.2d),
but the same approaches are not suitable for lower resolution images such as those
provided by industrialized ToF cameras (see Figure 1.2a and Figure 1.2b). Moreover,
these calibration methods are time consuming.

In the following, we propose an alternative approach to standard calibration meth-
ods [HS97, Tsa87, Zha00] that allows to estimate the system parameters, i.e., intrinsic
and relative extrinsic camera parameters, under industrial time and accuracy require-

ments.

2.4.1 Estimation of the intrinsic camera parameters

The current literature in ToF camera calibration does not tackle the lateral calibration,
i.e., the estimation of the intrinsic and extrinsic camera parameters. Instead, research
focuses on the depth calibration, which consists of improving the accuracy and reducing
the noise level on the given depth measurements [FH08, KI07, Lin10]. The limitations,
i.e., low resolution and high noise level within depth measurements, of our industrialized
ToF camera as well as the industrial requirements motivated us to investigate a practical
calibration approach to estimate the intrinsic ToF camera parameters. We note that
the same approach also applies to the 2-D camera. According to Tsai [Tsa87], a co-
planar set of control points is sufficient to determine the intrinsic camera parameters.
We therefore assume a planar calibration pattern with a known orientation. We refer
to this calibration method over multi-view calibration techniques [Bou09, Zha00] which
search for a global optimum of both extrinsic and intrinsic parameters. Since the low
resolution of ToF cameras only allows for the detection of a few features or control
points per acquisition, by fixing the extrinsic parameters we make the solution for the
intrinsics more stable, which is crucial for our system calibration. If the plane that
contains the control points is parallel to the image frame, the Z coordinate is equal for
all control points and known. The X and Y coordinates are also assumed to be known
but up to an offset A\, and A, with respect to the unknown principal point (c;,cy).

Hence, (2.9) and (2.10) take the following form, respectively,

X =My + coF + 131 4+ co@rt + ... (2.25)
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and
Y =X\ +cof + cgr® +eagrt + ... (2.26)
with
Z Z )
60:?, C; = ?kl, 221,2,.... (2.27)

Equations (2.25) and (2.26) are two overdetermined linear equations that can be solved
for unknown parameters cg, c1, ca, . . . by least square regression. This can be achieved by

solving either of the two equations. Thereby, the following points should be considered.

1. Solving (2.25) or (2.26) requires the knowledge of the principal point (¢, ¢,). We
propose to use, in turn, the least square regression for the parameters to determine
also the principal point. This can be simply achieved by varying (c;, c,) till the

residual of the regression is minimal.

2. The proposed method assumes a calibration board perfectly parallel to the image
plane. In order to verify the robustness of the calibration against a non-perfect
alignment of the calibration board, a simulation of a tilted board has been per-
formed at various angles. The result for an assumed 90° optics with 30% distortion
showed that at a tilt of 5°, the distortion is still correctly determined with a suffi-
cient accuracy of 0.3%, while the determined principal point has been shifted by
1% of the imager size due to the tilt. We note that a non-accurate principle point
is, for our purpose, not critical as these deviations will be corrected in the sub-
sequent calibration steps, i.e., the estimation of the relative extrinsic parameters

proposed in Section 2.4.2.

3. Equation (2.27) allows to determine the focal length whenever the distance Z is
known. As the precision with which Z is known is limited, one can maximise
the accuracy by taking measurements at a very large distance compared to the
focal length (and the board accordingly large) or taking measurements at several

distances.

We found that for calibrating the 2-D camera, two sets of co-linear control points (e.g.,
along the x and y axes) are sufficient to determine the distortion parameters and also,
an accurate principal point.

We point out that our calibration procedure does not require special tools. The

ToF calibration pattern must contain circular targets, large enough to be distinguished
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(a) 2-D camera calibration pattern. (b) ToF camera calibration pattern.

Figure 2.5: Calibration patterns used to estimate the intrinsic and relative extrinsic

camera paramet ers.

in the low-resolution amplitude image. We remind the reader that in addition to the
depth map D, ToF cameras also provide an amplitude image A that results from (1.8)
and which can be considered as a grayscale intensity image for calibration together with
the 2-D image I given by the 2-D camera. Figure 2.5 shows the calibration patterns to

estimate each camera’s intrinsic parameters.

2.4.2 Estimation of the relative extrinsic parameters

From [RZFM92], the determination of the relative extrinsic parameters introduced in
Section 2.2.1, i.e., the rotation matrix R’ and the translation vector t’ that relate each
camera to each other, requires four correspondence points with no three points collinear
on either plane. The more correspondence points we consider, the more accurate will
be the determination of the relative extrinsic parameters since inaccuracies due to the
detection of the correspondence points will be compensate. To that end, we use the
same ToF calibration pattern shown in Figure 2.5b as it allows to estimate up to 20
correspondence points. The correspondence points correspond to the centroid of each
dot in the image, which are determined with sub-pixel accuracy, only limited by the
image resolution as shown in Figure 2.6b and Figure 2.6d. Nevertheless, our case
differs from common stereo vision calibration approaches due to the knowledge of the
Zp coordinate of the projections of the correspondence points on the ToF camera frame.
According to (2.17), the image coordinates py and pg of the correspondence points

on the 2-D I and ToF amplitude A images, respectively, are determined up to a scale
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factor, i.e.,
[ g Za | [ uy ]
PA= | va-Zuy | =Za- | va |, (2.28)
L Za | L1
and ) } ) )
ug - Zg ug
ps= | vg-Zp | =Zp-| vs |, (2.29)
Z: N L 1]

where Zg is known as it is given by the ToF depth map D. Let denote p/; = [ux,v4, 17T
and py = [us, vs, 1]T the image coordinates of the correspondence points on the 2-D I
and ToF amplitude A images, respectively. From (2.24) and replacing P4 and Py by

their definition in (2.4), we obtain
Kipa=R/(Kzps+t) = Kj;Zsp) =R (K5Zspy+1t). (2.30)
Finding the value for p/; in (2.30), we obtain

z K
Pl = CKAR'KG [ph + 2t (2.31)
ZA Zp

where (Kg/Z3)t' corresponds to the disparity p correction applied to the correspon-
dence point coordinates pf. t' = [t;,t,,t.]T is the vectorial baseline b between the
cameras. We note that (2.31) is the generalization of the known disparity expression
in (1.2) obtained by assuming that both cameras have the same intrinsic parameters
K, = Kg and setting R’ to identity, 7.e., assuming that the two cameras are equally
oriented.

We remark that the two cameras in the camera rig are coplanar, thus ¢, = 0. Let
denote p¥, as the correspondence point coordinates corrected by the disparity shift,

thus

. usp 1 6;131?’3 0 Ce,B ty Up (5;.13 fs- tx/ZB
Pg=| vs |+ ng 0 5y,BfB Cy, B ty | = | vs |+ 5;3 fs- ty/ZB
1 0 0 1 0 1 0
(2.32)
By replacing (2.32) in (2.31) we obtain
Zg - Zg
pi = - K4R'’K;p; = —-Hpj, (2.33)
A ZA

with H being the so-called homography that relates the image coordinates p’; with the
ones corrected by the disparity shift p/,, defined in (2.32). We note that in our case,
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the homography H corresponds to an affine transformation since the z coordinate of

p/y and pJ is 1, i.e.,

hi1 hi2 his
H= hot hoo hog | . (234)
0 0 1

Thus, only 3 correspondence points are needed to determine H in contrast to the
4 correspondence points needed to estimate a full projective transformation with 9
unknowns. Also, we compensate possible inaccuracies due to the intrinsic camera
parameters determined in Section 2.4.1 when determining the affine transformation
H. We assume the ratio Z3/Z,4 to be constant as Z, and Zp are the same for all
correspondence points on each camera image frame A and B, respectively. The possible
error when determining the focal length of the ToF camera fg can be neglected as
fB << Zg when correcting the disparity in (2.32). We also note that in the ideal case,
i.e., where the two cameras are equally oriented and only shifted by the baseline, the

affine transformation H would correspond to a (3 x 3) identity matrix Is.

(b)

(©) (d)

Figure 2.6: ToF calibration pattern images recorded by the 2-D and the ToF camera, (a)
and (c) respectively, to estimate the relative extrinsic parameters. The centroid operator
detects with sub-pixel accuracy the centroid of each target, shown in red in (b) and (d).
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To summarize, our calibration approach determines the intrinsic camera parameters
of each camera in the rig by using a single acquisition of the calibration patterns shown
in Figure 2.5. We assume the calibration patterns to be located parallel to each camera
image frame and at a known distance along the optical axis. In order to determine the
relative extrinsic parameters, we just need three correspondence points to determine
the homography that relates pixel coordinates from one camera to the other. The same
pattern to determine the intrinsic camera parameters of the ToF camera can be used.
In the following, we present some experimental results that quantify and qualify our

practical calibration approach.

2.4.3 Experimental results

We note that the experiments have been performed using the data recorded by the
second hybrid ToF multi-camera rig prototype introduced in Section 2.3. The speci-
fications of the cameras that constitute the second hybrid ToF multi-camera rig such
as pixel size § or pixel resolution can be found in the Appendix A. In the following,
we focus on the practicability and accuracy of our concept and we compare our results
with the ones obtained by the commonly used Bouguet’s calibration toolbox [Bou09].

Our calibration approach requires first the calibration pattern to be installed par-
allel to the camera image frame and second to fix the distance at which the pattern
is located with respect to the camera. By accomplishing these constraints, the in-
trinsic camera parameters are directly determined from one input image as shown in
Figure 2.7a. In contrast, Bouguet’s technique searches for a global optimum of both
intrinsic and extrinsic camera parameters, which requires a minimum of two input im-
ages with different orientations of the calibration pattern, as shown in Figure 2.7b, and
is thus time consuming. As shown in Figure 2.8, in addition to the intrinsic camera
parameters, Bouguet’s technique also determines the external camera parameters that
relate each acquisition of the calibration pattern with the viewing camera. The figure
shows how the multiple acquisitions in Figure 2.7b are oriented and located with respect
to the viewing camera reference frame O, (depicted by a red pyramid). In contrast, our
concept can be automated for a mass calibration process as only one image acquisition
with a known position and orientation is required.

We next compare the results obtained with our calibration concept with the results

obtained using Bouguet’s toolbox. Figure 2.9 shows the 2-D calibration pattern in Fig-
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(a) (b)
Figure 2.7: Input image(s) to estimate the 2-D intrinsic camera parameters. (a)

Single image used in our calibration approach. (b) Multiple acquisitions required for
Bouguet’s [Bou09] calibration.

ure 2.7a undistorted using our approach (Figure 2.9a) and undistorted using Bouguet’s
calibration toolbox (Figure 2.9b). We determine the coordinates of the centroid of each
dot and we overlap them together with the ground truth grid of centroids, depicted
in black crosses (+) in Figure 2.10. We evaluate the accuracy of each technique by
measuring how much off the undistorted centroids are from the ground truth. In our
case, the maximum distance between a centroid and its ground truth coordinates is
6.92 pixels while using Bouguet’s calibration toolbox is 10.75 pixels. The mean dis-
tance between all pairs of centroids and ground truth coordinates is 2.10 pixels while
using Bouguet’s toolbox is 2.38 pixels. We have seen that our calibration approach is
able to correct the distortion introduced by our optical lenses. It thus, enables to esti-
mate the relationship between both cameras. In addition and for this concrete setup,
our estimated parameters are more accurate than the ones estimated with Bouguet’s
calibration toolbox.

With regards to the relative extrinsic parameters, their accuracy is linked to the
accuracy with which the centroid of each control point from the relative calibration pat-
tern has been estimated (see Figure 2.6b and Figure 2.6d). In the case where a control

point appears as only one pixel, the centroid will be the image coordinates of this pixel
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2500
2000
1500
1000

600

5004 IO

-1000

-1600

-1000

Figure 2.8: Orientation and location (extrinsic parameters) of the multiple calibration
pattern acquisitions in Figure 2.7b estimated with Bouguet’s toolbox for Matlab [Bou09].

and therefore will induce a discretization error in the interval [—0/2,6/2]. Assuming
that the discretization error is statistically equally distributed over that interval, one
can easily calculate the Root Mean Square Error (RMSE) to be A = §/4/12. When a
dot appears as a blob of N pixels, one obtains a RMSE of

1
A= s, 2.35
V12N (2.35)

which is then more accurate than when using edges, i.e., A = §/2. The relative

calibration pattern is located at a distance of 1530 mm from the sensing system and
roughly positioned in the centre of the FOV (see Figure 2.6¢). In addition, we consider
the 20 control points in order to obtain a maximum accuracy. Thereby, we take as
reference the positions detected in the 2-D image 1. In the ToF amplitude image A, the
average size of the detected dots is 7.7 pixels, yielding, according to (2.35), a sub-pixel
accuracy of the centroid of A; = 7.1 yum and Ay, = 5.1 um. We note that the pixel
size of the ToF camera is ¢, = 68 ym and §, = 49 ym. The RMSE of the centroid
coordinates after relating the centroid coordinates in A with the centroid coordinates
in I'is 5.4 pm in the z direction and 7.9 pm in the y direction.

We can confirm that our centroid operator achieves an accuracy of the same order
as the one given by (2.35), which is clearly better than the low resolution of the ToF

camera and close to 1 pixel of the 2-D camera resolution, which is (7.4 ym x 7.4 um).
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2. SYSTEM MODEL

Undistorted 2-D calibration pattern in Figure 2.7a using (a) our approach

Figure 2.9

and (b) Bouguet’s calibration toolbox.
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and Bouguet’s approach (x) onto the ground truth centroids (+).
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Chapter 3

Data matching

In this chapter, we propose an original framework to align the data recorded by each
of the cameras that constitute the hybrid ToF multi-camera rig. We first introduce the
problem of disparity due to the displacement between the camera centres. Then, we
present a unified reference frame where the recorded data by each of the cameras will
be mapped in order to be pixel aligned. We propose a real-time implementation by an
iterative algorithm that considers associative arrays, i.e., look-up tables, that relates
non-mapped and mapped image coordinates. Finally, we present some experimental
results to quantify the accuracy between mapped image coordinates. We note that our
method is not only intended to map the data from low-resolution ToF cameras but
conceptually applies also to other 3-D sensing modalities such as the recently emerging
laser scanners, i.e., the ibeo LUX [Ibell] or the Eco Scan FX8 [Nip11] whose resolutions

are also far below the resolutions of standard 2-D cameras.

3.1 Distance-dependent disparity

In general, the two reference frames of each individual camera constituting a hybrid ToF
multi-camera rig are not co-centric, i.e., the centres of projection of each camera are
displaced by a baseline b, similarly to the stereo vision system presented in Figure 1.1.
Indeed, in this case one of the two 2-D cameras is replaced by a ToF camera. Thus,
the projections of a point P in space onto each camera image frame and with respect
to each camera’s principal point, also differs by the binocular disparity introduced in

Section 1.1 and generalized to our setup in Section 2.4.2. We remark that we referred
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3. DATA MATCHING

to each camera’s reference frame as A for the 2-D camera and B for the ToF camera
in Section 2.2.1. In stereo vision systems, the disparity leads to the estimation of
the distance Z at which the point P is located in the scene (see Figure 1.1) [TV98].
However, this requires finding the feature-correspondence pairs that in general result
from the solution of the correspondence problem [HZ03, TV98]. In contrast, in our case
the problem is reversed. The ToF camera measures the distance at which the point P
is located with respect to its reference frame B, i.e., Zg and thus, allows to estimate
the disparity p(Zg) for each of the ToF camera pixels, as discussed in Section 2.4.2.
We note that the relationship between the Zp measurements and the disparity
p(Z3) causes a dependency on the scene. Therefore, it has to be recalculated whenever
the scene changes, which is typically the case for every frame of data acquisition, and
for each ToF camera pixel as it is not constant for all pixel locations. By differentiating
disparity p(Zgz) in (1.2) with respect to the distance Zg, we define the absolute disparity
variation Ap(Zgz) as a function of the absolute depth variation AZz, and obtain

AZg

Aols) = Jab (3.1)

where fg is the focal length of the ToF camera and b the baseline between the cam-
era centres. We note that only in situations where the depth variation of the ob-
ject in the scene AZgp is small enough compared to the squared distance Z% from
the object to the system, the disparity p(Zg) can be assumed as constant and thus,
included in a simple projective transformation for all recorded frames. Actually,
this scenario is commonly used in research efforts that integrate non-industrial ToF
cameras such as the SwissRangerTMToF camera, in their ToF multi-camera rig (Fig-
ure 1.2d) [CBTT08, KCTT08, KTD"09]. In this case, the rather small field of view
provided by the SwissRangerTMcamera, i.e., 47.5° x 39.6°, forces such systems to be
installed at a relatively large distance from the object. As a consequence, these systems
can still function while neglecting the distance-dependent disparity, which is not the
case for the majority of ToF cameras, which require the variation of disparity to be
taken into account. In what follows we propose to solve this problem by defining a new
matching procedure that exploits the distance-dependent disparity. As a result, any
ToF camera available on the market can be integrated in a hybrid ToF multi-camera

rig intended for low-level data fusion regardless of its specifications.
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3.2 Unified reference frame

3.2 Unified reference frame

A hybrid ToF multi-camera rig provides multi-modal data. Thus, a 2-D image I related
to the reference frame A and a pair of depth D and amplitude A images related to the
reference frame B are delivered. We denote the image coordinates of a point in image I
as (uIA, v}l). Accordingly, the image coordinates of a point in images D or A are denoted
as (ug, UBD ). We remark that these image coordinates have been distortion corrected
from (2.9) and (2.10) by using the intrinsic camera parameters estimated during the
calibration process (see Section 2.4). To achieve the low-level data matching required for
data fusion, we proceed by transforming these image coordinates to a unified reference
frame C, which is the basis for the data matching (or warping) described in Section 3.3.
This transformation will allow to establish a mapping of the data recorded by each

camera to a unique coordinate grid on C, where the mapped images are pixel aligned,

and ready to be fused.

3.2.1 Choice of the unified reference frame

The image coordinates p/; = [ufq,v}q, 1]T of a point Py = [X4, Yy, Z4]T related to

the 2-D camera reference frame A are transformed to the unified reference frame C
using (2.31), i.e.,

pe = ?@‘KGRAGK;% P+ IZ%A@ : (3.2)
with R 4e and t4e the rotation matrix and translation vector from the reference frame A
to the reference frame C, respectively. Since the image transformation in (3.2) requires
the knowledge of the coordinate Z,, we choose the unified reference frame C to be
co-centric to the 2-D camera reference frame A, i.e., tge = [0,0,0]T. Hence, (3.2)

amounts to
pe = KeRueKp) = Hac - Py, (3.3)

with Hye a plane-to-plane transformation or projective transformation from reference
frame A to reference frame €. Similarly, the transformation of the image coordinates
of a point pl, related to the ToF camera reference frame B, to the unified reference

frame C is analogous. Using (2.31), we find

Zg .
pe = ZKCRBGKBI pi + ——tae

KB :| ZB
Z3

K3
_ %y { LBy 4
7, 1B Py + Z5 t2¢) (3.4)

43



3. DATA MATCHING

where Rge and tge are the rotation matrix and the translation vector from the reference
frame B to the reference frame C, respectively. Hge is the projective transformation
from reference frame B to reference frame €. We note that in this case the distance Zg

is known as it results from

/s
Z3 = D(ug,v8) - —5 5+ (3.5)
d(ug, vg)
with
D ,D 2 D 2 D 2
d(ug,vg) = \/fg + (5:6,3(“3 - Cx,B)) + (%ﬁ(”% - Cy,B)) : (3.6)
Since each pixel in D corresponds to a radial measurement, the conversion in (3.5) is

therefore necessary to obtain the distance Zgp that relates to each pixel (u% ,UBD ) in

D. This in turn allows the transformation of the image coordinates from the reference

frame B to the reference frame C.

3.2.2 Distance-dependent disparity shift

The transformation of the image coordinates in (3.4) consists of two steps. The first

step concerns the binocular disparity shift, i.e.,
Zg

3.7
— (3.7)

Kz
Py = ]

[P’B + Ztﬁe
followed by the the projective transformation p,, = Zg/Ze - Haepf. The factor
Z3/(Zs —t;) (t, is the third component of the vector tze = [ts, ty, t.]T) in (3.7) makes
pY, to be in homogeneous coordinates, i.e., pj, = [u’g, v’g, 1]T. For our setup, we may
neglect t,, i.e., t, =~ 0 since the two cameras in the hybrid ToF multi-camera rig are
chosen to be co-planar, i.e., the rotation matrix Rge is a rotation in two dimensions
and Zg = Ze, that is, Hge can be approximated by an affine transformation. As a

result, (3.7) simplifies to

1 [ ulg u‘l]? 1 555_713f3 ? Cz,B te |

1 1 b 0 0 1 0 |

[ ul 0y 53 ta)Zs ul I te/0z3 |
= | vp |+ | 6 pfa-ty/Zs | =| v5 |+ T ty/dys

! 0 1 0

U% pz(Zp) u% bz,B
_|.B z = | oD |48 | 4 3.8
=t | vy || opy(Zs) | = vy |+ bys | (3.8)
1 0 1 10
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3.3 Mapping procedure for data matching

which corresponds to p/; plus the binocular disparity introduced in (1.2). The possible
error when determining the focal length fg of the ToF camera can be neglected as
fs << Zp when correcting the disparity in (3.8). The binocular disparity in (3.8) is
decomposed into two components as p(Zg) = pz(Z3) - €+ py(Zz) - €,, where €, and €,
are respectively the unit vectors along the z and y axes of the ToF reference frame B.

We note that the order of the two previous steps can be exchanged by multiplying
in (3.4) the transformation Hge inside the disparity shift, i.e.,

B KeRge Ke
4 tg@ =: p,é + Zt%@, (39)

with the baseline tfo = [t} ], t.]" measured from the reference frame € and p being

transformed to pi by Hge. Analogously to (3.7), (3.9) simplifies to

Pe = | vg = v/e + ng 0 5;ef€ Cy,@ t/y
1 1 0 1 0
I U’E ] 5;313fe'75':c/293 u’g pz(Z3)
=] e |+ 51;ef8 ty/Zy | = v'e |t py(Zs)
L 1 0 1 0
[ e ] fe br.c
| 1 ] 0

We see from (3.10) that image coordinates pg, are first transformed to pj and then the
disparity is computed using the intrinsic parameters in € and the distance Zg given by
the ToF camera. The values of the depth map D are, however, not invariant under this
disparity shift, but may be recomputed according to (see equations (3.5) and (3.6))

d(u','5)

fz

D' (up,v'g) = Zs - (3.11)

where (u/%,v'}) are the image coordinates shifted by the disparity, according to (3.8).

3.3 Mapping procedure for data matching

Data matching results from mapping the images I and D’ on a common grid of pix-

els related to the reference frame C, where the mapped images will be pixel aligned.

45



3. DATA MATCHING

Let us consider I to be the 2-D image of (M pixels x N pixels) with image coordi-
nates {(ui?mn,vi’mn), m=1,...,M;n = 1,...,N}. Similarly, we consider D’ to
be the disparity shifted depth map of (K pixels x L pixels) with image coordinates
{(u'® V', D), k=1,...,K;l=1,...,L}. Due to the transformation to the common
grid, these image coordinates become {(ué,mn,vamn), m=1,...,M;n=1,...,N}
and {(ue > Ve kl) k=1,...,K;1l=1,..., L}, respectively. We define such a common
mesh grid as ¥ = {(pij,qij),i =1,....M;j = 1,...,N}, where the pair (pi;,¢ij)
represents the location of the image pixel corresponding to the row index ¢ and the
column index j. We set the grid ¥ to be of the same resolution (M x N) as the
2-D camera. There is, however, no restriction regarding the resolution of the resulting
mapped images. Our choice of M and NN in this paper is motivated by the low-level
data fusion, which is intended for enhancing the ToF depth map up to the same 2-D
camera resolution. In general, state-of-the-art approaches that deal with the mapping
of images to a common grid intended for data matching are based on forward warp-
ing [DNN*11, LH10b]. Thus, each mapped image coordinate from I and D are assigned
to the nearest pixel of the common grid. However, in most of the cases, the resolution
of the depth map D is far below the resolution of the 2-D image I, i.e., K << M and
L << M, as illustrated in Figure 3.1a. As a result, the warping of such a depth map
D onto the common grid presents a large number of missing depth pixels. In other
words, forward warping generates a sparse number of warped depth pixels, as shown in
Figure 3.2a. In contrast, we propose a back warping approach in which we determine
for each pixel (pij,q¢ij) on the common grid, the nearest pixel (uémn,vémn) on the
image I after being transformed onto C, as illustrated in Figure3.1b. Similarly, we de-
termine for each pixel (p;j, ¢i;) the nearest pixel (ugkl, vgkl). As a result, our mapped
images, Ie and D¢ are perfectly aligned with a major advantage of De being a dense
depth map. Indeed, we show in Figure 3.2b a comparison of the deth maps obtained
using a forward mapping and our proposed counterpart; that could be referred to as
backward warping. The two techniques are overall equivalent. Our proposed approach
has however one clear advantage. It provides a dense depth map while the forward
warping provides a very sparse depth map. As a result if there is a requirement for
depth map downsampling, which is common for a real-time implementation, the down-
sampled sparse depth map becomes unusable. We claim therefore that our proposed

backward warping is more appropriate for real-time applications.
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3.3 Mapping procedure for data matching
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Figure 3.1: Image coordinate transformation. (a) Shown are the transformed 2-D image
coordinates (uf, vl) depicted as '+, the transformed ToF image coordinates (u’ 1@), v ]c?) de-
picted as *x’, and the mesh grid ¥ coordinates (p, q). (b) Detail of the mapping procedure.
It is apparent that a certain ToF pixel (k,!) will be mapped to several mesh grid pixels
(,7). Reference frames A, B, and C are depicted in blue, red, and green, respectively.
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Figure 3.2: Comparison of the sparse depth map points obtained by forward warping
(a) and the dense depth map obtained using our method, i.e., backward warping (a). We
refer the reader to the electronic version of the paper in order to better appreciate the
differences between the forward and backward warping result.

3.3.1 2-D camera LUT

The relationship between the raw images and the mapped ones can be represented by
an array that associates each pixel coordinates in the unified reference frame C to a
unique pixel in A and B, as illustrated in Figure3.3. This associative array or look-up
table (LUT) can be computed off-line in order to reduce the complexity of the mapping
procedure to a single indexing operation and leading to real-time implementation.

We define the mapping (i,5) — (m,n) = Lye(i,j5), as Lge(i,7) =
arg min,, ) [|(pij» ¢ij) — (ué’mn, vémn)Hg The stored LUT Lgye allows to gener-

ate the new mapped image as follows Ie(i,7) = I(LAe(i,j)), for all 4, j.
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Ie/De J

Figure 3.3: The look-up tables L e and Lge associate each pixel coordinates in € to a

unique pixel in A and B, respectively.

3.3.2 ToF camera LUT

The same procedure as the one presented for determining the 2-D camera LUT ap-
plies for the ToF camera LUT that we refer to as Lge. Thus, we place the same
mesh grid ¥ onto the disparity corrected and transformed image coordinates (u]é), v(]?)
and we perform a nearest neighbour search to determine the pixel (k,[) from D’ with
the position (u]é),vg) nearest to (p;j,¢ij). The mapped depth map De results from
De(i,j) = D(L'B@(i,j)), for all (i,7). We note that the mapping described by this
mesh grid also upsamples the mapped image coordinates to the 2-D camera resolution
(M x N). We did not consider other interpolation techniques such as linear or bilinear
interpolation because they may generate unwanted artefacts when applied on ToF data
due to their characteristics such as incorrect measurements at large distances. These
pixel values must not be considered in an interpolation, but require a special treatment.
Also, real distances within the edges in the scene should not be interpolated. At the
end of the mapping process, both resulting images I¢ and D¢ generated from their re-
spective Lge and Lge LUTs are pixel aligned. Nevertheless, Lge that generates De is
distance-dependent. Due to the disparity shift presented in Section 3.2.2, the resulting

Lge LUT depends on the depth map information and thus on the scene configuration.

The easiest way to deal with this dependence would be computing the Lge LUT for
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3.4 Real-time implementation

each recorded ToF frame; however, this implies a high computational time, and conse-
quently, it will not be viable if real-time performance is required. Indeed, the off-line
computation of a single Lpe is close to 15 minutes using Matlab for Windows on the

system we have used to run our experimental results.

3.4 Real-time implementation

In order to achieve real-time performance on dynamic scenes, we propose to consider
an array {Lgei}, k=0,..., K —1, of LUTs where each LUT Lge, tackles a different
disparity pr(Zp), corresponding to a plane at a fixed distance Z; = fe - |b|/k to the
system. We choose the discrete disparities as multiples of the pixel size in the mapped
depth map De, i.e., pp = spk,k = 0,..., K — 1 where s, = b/|b| is the unit vector of
the baseline shift. Dividing the Z range of the ToF camera into K intervals [(x1, (k]

around Z; with

(o = o

G = fo

(k—3)

one finds that for each pixel of the ToF camera with a Z value in the interval [(1, (k]

k=1,....K, (3.12)

the disparity equals pg(Zg), with an error less than §/2, i.e., half the size of a pixel in
the mapped depth map D¢, as shown in Figure 3.4. The maximum binocular disparity
is given by the minimum Z—measurement range of the ToF camera, Z,,;, (the minimum
Z value in the setup). The number K of different disparities to be considered is given by
K>f. % + % The mapping is then performed by the iterative Algorithm 3.1, where
Z denotes the image of Zp values calculated from the depth map D using (3.5). This
mapping procedure allows the low-resolution depth map D to be mapped in real-time
to a depth map D¢, where each pixel matches a pixel in the already mapped Ie image.
In the occlusion handling block, we check if the condition Z € [(x41, (x| is fulfilled. If
not, the selected pixel is labelled as occluded.

Although we achieve a high performance within the mapping procedure, the memory
required to store the K LUTs is considerable, being a problem to deal with in case of
real embedded applications. To that end, we propose a procedure to reduce the memory
requirements intended for hybrid ToF multi-camera systems with their cameras almost

co-planar. In this case, we proceed by considering the transformation Hge inside the
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pkﬂ

Disparity o

Py

Z C,H—I Z, gl( 2

k1 3 k-1

Figure 3.4: Z range of the ToF camera divided into K intervals [Zyy1, Zy] defined by
equidistant disparity values pi(Zs) = k x p. Within each interval, the disparity p varies

less than 1 pixel size 4.

disparity shift, as discussed in Section 3.2.2 (see (3.10)). In our case, the x axes of the
camera reference frames are chosen to be parallel to the baseline between the cameras,
i.e., b =1[bg,0, O]T, and thus the disparity shift extends in the x direction of the image
frame. The disparity differs by exactly one pixel in  direction when calculated at two
different distances Zj and Zj.q1. The corresponding two LUTSs are then related via
Lyek+1(1,7) = Laex(i,j — s) with s = sign(b) = £1 being the sign of the baseline
shift with respect to the x axis, i.e., indicating on which side of the ToF camera
the 2-D camera is positioned with respect to the x axis of the unified reference frame.
Consequently, it is sufficient to store a single LUT Lge o calculated on an extended mesh
grid W of size M x (N + k), which defines all K LUTSs via Lge (4, j) = Lzeo(i,j — sk)
with:i=1,....M,35=1...,N,and k =0,...,K — 1. Unlike the distance image D,
the Z image needs to be recalculated by the same projective transformation resulting
in a new Z’ image (see (3.5)). We proceed by using the Algorithm 3.2, where Ze is
the resulting matrix of Z3 coordinates on the common coordinate grid in the unified
reference frame. The latter allows to calculate a radial distance image De using (3.11)

for the coordinates of the common coordinate grid.
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3.4 Real-time implementation

Algorithm 3.1 Mapping algorithm
for : =1 to N do
for j =1to M do
k=K
{Search Z interval}
while (k> 0) and (Z(Lge(i,j)) > () do
k+—Fk—-1

end while

{Occlusion handling}
if (k<K) and (Z(Lgex(,7)) < C(pt1) then
k<«k+1
end if
{Mapping}
De(i,j) = D'(Le (i, 4))
end for

end for

Algorithm 3.2 Optimized mapping algorithm
for : =1 to N do
for j =1toM do
k=K
{Search Z, interval}
while (k> 0) and (Z'(Lgeo(,5 — sk)) > () do
k+—k—-1

end while

{Occlusion handling}
if (k<K) and (Z'(Lgeo(i,j— sk)) < (x41) then
k<k+1
end if
{Mapping}
Ze(i,j) = Z'(Leo(i, j — sk))
end for

end for
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3.5 Experimental results

In order to analyse the data mapping step, we have considered six different test cases
in which we recorded the calibration pattern displaced around the FOV of the sensing
system, and at different depths and orientations (see Figure 3.5). We first quantify
our proposed approach against to a common mapping using a simple projective trans-
formation, i.e., a plane-to-plane transformation or 2-D homography. To that end, we
focus on the four first test cases where the recorded pattern is always located parallel to
the sensing system. In Table 3.1, the two first rows report the RMSE of the centroids
of the mapped control points using a 2-D homography. As expected, the use of a 2-D
homography performs better if the distance at which it has been computed coincides
with the distance at which the control points are located (see the first four test cases
in the second row of Table 3.1). However, if we use a unique homography for these test
cases, the matching error increases as soon as we vary the depth at which the pattern
is located (see the first four test cases in the first row of Table 3.1). In general cases
where the pattern is arbitrary located and oriented in front of the sensing system (see
test cases 5 and 6 in Figure 3.5 and the last two columns of Table 3.1), the use of a
plane-to-plane transformation reports an error much bigger than using the proposed
approach. Indeed, the proposed data mapping approach presents an accuracy up to one
2-D pixel, which is caused by the approximation, given in (3.12), of Zj by the interval
[Ck+1,Ck]- We note that the errors reported in Table 3.1 also include the inaccuracies
introduced by the centroid estimation and the calibration step, which correspond to
1 pixel according to the 2-D camera pixel size (see Section 2.4.3). Thus, the evalua-
tion results for our mapping method show a consistent error of about 2 mapped image
pixels, or less if we take into account the error due to the centroid operator. This obser-
vation confirms that the proposed method accurately adapts to the distance-dependent
disparity explained in Section 3.1. The last row of Table 3.1 reports the error when
considering the most common or general approach for data mapping, i.e., using a full
3-D projection (with no approximations). By using this 3-D projection, the mapped
centroids are matching with more accuracy than by using the proposed approach. How-
ever, the loss in accuracy is worth a significant gain in speed. We note that the mean

in seconds for computing this 3-D projection for a single frame is 782.67, while using
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3.5 Experimental results

Table 3.1: Data matching error for the six test cases. The table compares the RMSE (in
pixels) over 20 control points, separately computed for x and y pixel coordinates, between
our mapping procedure and the mapping using first a simple projective transformation
(two first rows) and a 3-D transformation without approximations (last row).

Test cases 1 2 3 4 5 6

7.52 | 1.67 | 3.66 | 1.33 | 2.59 | 3.75
1.45 | 1.26 | 1.23 | 1.88 | 1.42 | 1.57
1.29 | 1.31 | 1.87 | 1.33 | 3.52 | 3.90
1.48 | 1.26 | 1.22 | 1.88 | 1.42 | 1.69
2.14 | 1.45 | 1.69 | 1.56 | 1.47 | 2.04
1.40 | 1.27 | 1.37 | 1.84 | 1.43 | 1.72
1.58 | 1.37 | 1.51 | 1.42 | 1.48 | 2.00
143 | 1.25|1.21|1.79 | 1.35 | 1.76

RMSE using a unique
proj. transf. (z = 1.5 m)

RMSE using a computed proj.
transf. for each test case
RMSE using the proposed
mapping procedure
RMSE using a 3-D

projection

e ORI 'R 8w 8

the proposed approach only 0.54 seconds are required for the whole mapping procedure
(in Matlab).
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(b) (c) (d)

™)

2nd

Figure 3.5: Test cases for data matching. 1%¢ row: test case 1, z = 0.7 m. row: test

case 2, z = 1.5 m. 3" row: test case 3, z = 1.0 m. 4*" row: test case 4, z = 1.5 m. 5'"
row: test case 5, z € [0.9,1.5] m. 6" row: test case 6, z € [0.8,1.5] m. 1! column: 2-D

4th

acquisitions. 2"¢ column: ToF acquisitions. 37¢ column: 2-D mapped. column: ToF

mapped. 54
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Chapter 4

Depth enhancement by filtering

This chapter is an overview of the filtering techniques intended for the enhancement
of low-resolution ToF depth maps by means of data fusion with high-resolution 2-D
images. Different filtering techniques that combine low-resolution depth maps with ac-
curately aligned high-resolution 2-D images have been proposed during the last decade.
Among the early results for low-resolution data fusion, the application of Markov ran-
dom fields (MRFs) to the fusion of ToF and 2-D data was proposed by Diebel et
al. [DT05], and extended by Gloud et al. [GBQ'08]. Despite their promising results,
the evaluation of depth enhancement methods based upon an MRF is in general compu-
tationally intensive and thus not suitable if real-time processing is a requirement. Yang
et al. [YYDNO7] presented an alternative depth enhancement method based upon a cost
volume in which the final depth map was estimated through a different refinement mod-
ule. Another approach is used in methods based upon a bilateral filter [Ela02, TM98].
These approaches achieve similar results to those based upon an MRF or iterative
methods with a major advantage of a faster computation time. This motivates us to
focus on the bilateral filtering techniques as real applications usually require fast per-
formance. Therefore, we first introduce the bilateral filter and later, we present the

most relevant bilateral filter based techniques for low-resolution depth enhancement.

4.1 Background: Bilateral filtering

The bilateral filter was first introduced by Tomasi et al. [TM98] as an alternative to

iterative approaches for image noise removal such as anisotropic diffusion, weighted
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4. DEPTH ENHANCEMENT BY FILTERING

least squares, and robust estimation [Ela02]. This non-iterative filter formulation is a
weighted average of the local neighbourhood samples, where the weights are computed
based on spatial and radiometric distances between the centre of the considered sample
and the neighbouring samples. Thus, its kernel is decomposed into a spatial weighting
term fg(-) that applies to the pixel position p, and a range weighting term fi(-) that
applies to the pixel value I(q). The filtering process locally adapts the kernel as follows

Yqen(p) fs(P: @) fi(I(p), I(a))I(a)
Y qen(p) fs@ @) fi(I(p), L(q))

where N(p) is the neighbourhood at the pixel indexed by the position vector p =
(i,7)"
position. The weighting functions fg(-) and fi(-) are generally chosen to be Gaussian

Ji(p) = (4.1)

, with ¢ and j indicating the row, respectively column corresponding to the pixel

functions with standard deviations og and oy, respectively. The resulting filtered image
J1 is a smoothed version of I, that presents less discontinuities and a significantly
reduced noise level, i.e., I is smoothed while its edges are preserved, as illustrated in
Figure 4.1. Thus, the bilateral filter is a non-linear filter that adapts its kernel to the
data to be filtered (see Figure 4.1e) and consequently makes real-time processing quite
challenging. However, recent implementation techniques for bilateral filtering based on
data downsampling [PD09], data quantization [Por08, YTA(09] or, adapting the block
size to the data to be filtered [WFH™10], have shown that real-time performance on

high-resolution 2-D images is feasible.

4.2 State-of-the-art depth enhancement filters

As presented in Section 4.1, the bilateral filter combines a spatial weighting term fg(+)

based on the pixel position p with its corresponding range weighting term fj(-) based

(a) Input im- (b) Spatial (c) Range (d) Weight (e) Output im-
age I weighting fs(-) weighting f1(-) fs()fi() age J1

Figure 4.1: Bilateral filtering. The kernel is applied on the central pixel [DD02].
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4.2 State-of-the-art depth enhancement filters

on the pixel value I(q). As a result, the filtered image J; preserves much more detail
given by the range weighting term, e.g., edges from the input image I. Based on this
working principle, different filtering techniques have been proposed for different data
enhancement purposes, such as image denoising by combining flash/no-flash image
pairs [PAH104], i.e., the range weighting term applies to a flashed image while filtering
the no-flashed image pair, or depth enhancement by combining ToF and 2-D data. We
remark that in cases where the filter considers different data sources, the data to be
filtered has to be correctly aligned and thus every pixel matching to and from each
image pair. To that end, we refer the reader to Chapter 3 where we detail how to align
a low-resolution depth map with its corresponding high-resolution 2-D image. From
now on and for the sake of simplicity, we will refer to the aligned data Ie and D¢ as 1

and D, respectively.

4.2.1 Joint Bilateral Upsampling

Kopf et al. presented in [KCLUQ7] the Joint Bilateral Upsampling (JBU) filter, a
modification of the bilateral filter expression in (4.1) that considers two different data
sources within the kernel of the filter. This way, it becomes possible to compute a
solution for image analysis and enhancement tasks, such as tone mapping or colour-
ization through a downsampled version of the data. This idea was also applied for
depth map enhancement in the context of real-time matting as presented by Crabb et
al. [CTPDO08]. The JBU filter enhances an aligned depth map D to the higher resolution

of its correspondence 2-D guidance image I, as follows

_ Ygentp) fs(@,a) fi(I(p). I(q))D(q)
) = e (D) 1) (42)

As in (4.1), the resulting depth map J2 is an enhanced version of D with the same
resolution as the 2-D guidance image, as shown in Figure 4.2. Nevertheless, according
to the bilateral filter principle, the fundamental heuristic assumptions about the rela-
tionship between depth and intensity data, i.e., a difference between intensity values
indicates a jump in depth, may lead to erroneous copying of 2-D texture into actually
smooth geometries within the depth map (see blue arrow in Figure 4.2¢). Figure 4.2¢c
also shows a second unwanted artefact known as edge blurring (see green arrow in Fig-

ure 4.2c) that appears along depth edges that have no corresponding edges in the 2-D
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4. DEPTH ENHANCEMENT BY FILTERING

(a) 2-D guidance image I (b) Depth map D (c¢) Enhanced depth map
using JBU J2

Figure 4.2: Depth map enhancement using the JBU filter. The arrows in (c¢) indicate
unwanted artefacts, i.e., blue and green arrows indicate texture copying and edge blurring,

respectively.

image, i.e., in situations where objects on either side of a depth discontinuity have a
similar colour. In most of the cases, this is due to the transformation from the original
coloured image to its grayscale version (see Chapter 7). Edge blurring also occurs due
to the misalignment between the data to be filtered, i.e., data does not perfectly match.
Despite the undesired artefacts obtained from the direct application of the JBU filter
for low-level data fusion, this filter has been used as a basis for the next multi-lateral

filters for depth enhancement as developed below.

4.2.2 Colour and depth joint bilateral filter

Kim et al. [KCKA10] presented a straightforward extension of the JBU filter to slightly
reduce the JBU’s texture copying and edge blurring artefacts. In addition to the range
weighting term fy(-) that applies to the 2-D guidance image, they propose to use an
additional range weighting factor fp(-) that applies to the depth measurements as
follows

> fs(p.)fiI(p).I(@) fo(D(p),D(a)D(q)

J3(p)= 2@ . 4.3
(P > fsp.a)fi(1(p).1(a)) fo(D(p).D(q)) ()

qeN(p)

This way, in case of depth discontinuities, the texture copying artefact is reduced

whereas the erroneous depth values along depth edges are not corrected.
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4.2 State-of-the-art depth enhancement filters

4.2.3 Noise-Aware Filter for Depth Upsampling

Chan et al. proposed in [CBTTO08] an improved version of the JBU filter that preserves
the benefits of using the JBU filter and prevents artefacts in those areas where JBU
is likely to cause erroneous texture copying. This filter is referred to as Noise-Aware
Filter for Depth Upsampling (NAFDU). The NAFDU strategy also relies on depth
information. In contrast to the previous filter, where the depth information was directly
taken into account within the filter kernel, the NAFDU filter splits each data source

contribution as follows

ZqEN(p) fS (p7 q
quN(p) fs (p7 q

)[o

)a(A

(1= a(a2m))) /o p), (q))]D(q)
(1= a(a2())) /o(D(p). D())]

Ja(p) =

, (4.4)

where a(-) is the blending function that decides how each data source contribution,
from the 2-D image and depth data, must be considered. A high weight o makes the
filter behave like the original JBU filter whereas a low weight « makes it behave like
the standard bilateral filter, i.e., both spatial and range weighting terms are applied
to the same data source D without considering the 2-D image I. Intuitively, NAFDU
tries to preserve the benefits of JBU except in the areas that are geometrically smooth
but heavily contaminated with random noise within the distance measurements. The
blending function is defined as a(Q(p)) =1/(1+ ee'(Q(p)_T)), with Q(p) the difference
between the maximum and minimum measured depth value in the pixel neighbourhood
N(p). Parameters ¢ and 7 control at what min-max difference the blending interval
shall be centred. The downside of this method is that those values must be manually
tuned. Besides, the NAFDU expression corresponds to a weighted average of two non
normalized kernels, which makes the contribution of each of the kernels inconsistent

and inaccurate. In addition, it leads to a more complex real-time implementation.
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Chapter 5

Proposed depth enhancement

techniques

In this chapter we propose two adaptive multi-lateral filters to overcome the draw-
backs of the alternative depth enhancement techniques presented in Section 4.2. Our
proposed techniques are based on the JBU filter and are extended by a new factor
that considers the low reliability of depth measurements along the low-resolution depth
map edges. Our former contribution enhances low-resolution depth maps relying on
2-D data as guidance information. Consequently, whereas edge blurring is almost elim-
inated, texture copying may still appear within geometrically smooth regions, i.e.,
within non-abrupt changes on surfaces. In order to entirely remove texture copying, we
propose a second technique that in addition to adaptively considering 2-D information,
also considers depth data as guidance information. Moreover, this latter contribution
can be configured in order to behave as most of the existing multi-lateral filters for
depth enhancement based upon a bilateral filter. Furthermore, both of the proposed
filters may be effectively and efficiently implemented for dynamic scenes and thus, for

real-time applications.

5.1 Pixel Weighted Average Strategy

Adjusting the right distance measurement along real depth edges without mismatching
with texture is quite challenging. We proposed in [GMO™10] an alternative improve-

ment of the JBU filter, that we refer to as the Pixel Weighted Average Strategy (PWAS)
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5. PROPOSED DEPTH ENHANCEMENT TECHNIQUES

filter. This filter copes well with inaccurate edge values. In contrast to most of depth
enhancement methods proposed in the literature, the PWAS filter contains an addi-
tional factor Q(-) to the kernel in (4.2), named credibility map. It assigns a reliability
weight to each depth map value as a function of the scene’s geometry. By so doing,
depth measurements that are considered to be unreliable are replaced by reliable values
in their neighbourhood and adjusted to the 2-D guidance image. The PWAS filter takes

the following form

Yaen(p) fs(P: @) fi(I(p), I(a)) Q(a)D(q)
Y qen(p) s @) fi(I(p),1(a))Qa)

Similarly to the filters presented in Section 4.2, the weighting functions fg(-) and fi(-)

Js(p) =

(5.1)

are taken to be Gaussian functions with standard deviations og and oy, respectively.

5.1.1 Credibility map Q

Due to the low spatial resolution provided by ToF cameras, a measured pixel can
cover both foreground and background from the scene at the same time, resulting in
low accuracy depth measurements along depth edges. In addition, the position of an
edge within a depth map is defined with the accuracy of this low spatial resolution.
Therefore, in most of the cases it does not coincide with the position of its corresponding
2-D edge, as shown in Figure. 5.1. Consequently, this misalignment introduces edge
blurring artefacts as described in Section 4.2.1. The introduction of the new factor
Q(-) allows us to explicitly account for the unreliability of the depth measurements
along the edges. This credibility map Q(-) is computed directly from the real data
and requires no manual parameter tuning. Indeed, Q(-) is defined as a Gaussian kernel
applied on the low-resolution depth map such that Q = fq(—|VD|), fq(-) being the
Gaussian function with standard deviation oq. A low credibility map weight indicates
an unreliable depth measurement whereas a high credibility map weight indicates a
reliable depth measurement. In summary, the credibility map boundaries define in
which areas the depth measurements are unreliable and are thus adjusted according to
the 2-D guidance image. Figure 5.2 shows an example of the credibility map considering
the depth map in Figure 5.1b. This term enables the reduction of texture copying and
edge blurring since range values along depth discontinuities are given less weight by
the credibility map as shown in Figure 5.3. However, the edge blurring effect may still

appear when a real depth edge has no corresponding edge in the guidance image.
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Intensity value

1500

1000

Depth measurement

5%00 220 340

(b) Depth map. (c) Plot of the selected pixels (marked with
a blue line) from (a) and (b).

Figure 5.1: Inaccuracy of depth measurements within edge pixels. Due to the difference

in resolution, edges in (a) and (b) may not match each other.

Figure 5.2: Credibility map of the raw depth map in Figure 5.1b where a weight of 1
indicates a reliable depth measurement. Depth discontinuities are set to zero.

5.2 Unified Multi-Lateral filter

As presented in Section 5.1, our PWAS filter overcomes the edge blurring artefact due
to the misalignment between 2-D and depth edges by using the credibility map (see
Section 5.1.1). Thus, we correctly addressed the depth values along depth edges out-
performing the alternative depth enhancement techniques presented in Section 4.2, as
shown in Chapter 6. However, the range weighting term fp(-) within the PWAS kernel
only applies to the 2-D information. As a result, this may cause texture copying in
regions that actually are geometrically smooth with, in general, reliable depth mea-

surements (see Figure 5.4a). Instead, we propose to define two separate normalized
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(a) Depth enhancement us- (b) Depth enhancement us-
ing JBU J2 ing PWAS Js

Figure 5.3: Comparison between JBU and PWAS filtering. The green arrow indicates
edge blurring, which is almost entirely removed in (b) by using the credibility map in

Figure 5.2.

kernels with each one considering a different data source, 2-D and depth information,
respectively. The decision on which kernel the filter has to consider is directly given
by the reliability weight of the pixel to be filtered. We therefore propose the Unified
Multi-Lateral (UML) filter whose main benefit is the increase of the accuracy of the
depth measurements within smooth regions, as shown in Figure 5.4b. The UML filter

takes the form of
Jz(p) = (1 - B(p)) - Is(p) + B(p) - J6(p), (5.2)

where § = Q, the blending function to weight the contribution of the pixel to be
filtered from each individual data source. Jg(p) is the filtered range value at pixel p
given by a modified PWAS filter with a range weighting term that applies to the depth

information D, i.e.,

> qen(p) fs(P,a)fo (D(p), D(a)) Q(a)D(q)
Yqen(p) s, @) fp(D(p),D(a))Qa)

Je(p) = (5:3)

5.2.1 Filter parametrization

We chose the weighting functions fs(-), fi(-), fp(-), and fq(:) to be Gaussian func-
tions with standard deviations og, o1, op, and oq, respectively. The reason is mainly
because Gaussian functions can be computed at constant time [Der93]. We notice that

these standard deviations are data-dependent and thus cannot be fixed to a unique
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(a) Depth enhancement us- (b) Depth enhancement us-
ing PWAS Js ing UML Jr

Figure 5.4: Comparison between PWAS and UML filtering. The blue arrow indicates
texture copying, which is almost entirely removed by using the UML filter.

value. However, we herein define how to automatically set standard deviations to ade-
quate values for each weighting function. The standard deviation og must be at least
as large as the depth edge resolution which is, in fact, the width of the credibility
map boundaries. This value usually coincides with the scale factor between the low-
resolution depth map D and the high-resolution 2-D guidance image I. We set the
values of o1 and op to the mean of the 2-D image gradient VI and to the mean of the
depth map gradient VD, respectively. The value of oq is directly related to the noise
level within the depth data discussed in Section 1.2.2.1.

5.2.2 Limit cases

The filter expression presented in (5.2) allows different filter configurations in order to
make it behave as other multi-lateral filters for depth enhancement from the literature.
To that end, the blending function 5(-) has to be considered as a data source flag that
can be enabled or disabled in order to consider either the depth map or the 2-D image
as a guidance information, respectively. Another parameter to be configurable is the
standard deviation of the credibility map oq. By making it tend to infinity oq — oo,
the credibility map becomes constant and equal to one for all pixel values. In that case,
there is no credibility map contribution. Then, our multi-lateral filter can be configured

to behave like a:

e bilateral filter. We may set the data source flag 5(-) = 1 and g — oo to neglect

the credibility map contribution.
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e JBU fitler. We may set the data source flag 3(-) = 0 and oq — oc.

e PWAS filter. We may set the data source flag 5(-) = 0. The remaining part
in (5.2) coincides with the PWAS filter.

In contrast to the NAFDU filter, our proposed multi-lateral filter is a weighted
average of two normalized kernels. Thus, each kernel in (5.2) provides a consistent
contribution. Making our filter behave like the NAFDU filter implies a normalization
factor that is too complex and thus out of the scope of this thesis. With regards to
the new joint bilateral filter, it is clear that there is no possible configuration of our
multi-lateral filter that derives the same filter expression. Nevertheless, we already
discussed, in Section 4.2.2, the limitations of applying the depth measurements in such

a straightforward way.

5.3 Real-time implementation

In order to ensure that the UML filter maintains a high computational efficiency for
real-time applications, we adopted the bilateral filter implementation proposed by Yang
et al. [YTAO09]. They presented a fast bilateral filter implementation that enables the
real-time computation of the filter in (4.1). They showed that their fast implementa-
tion outperforms state-of-the-art methods for accuracy, speed and memory consump-
tion [PD09, Por08]. In what follows, we adapted Yang et al.’s implementation to our
proposed UML filter.

5.3.1 Range data quantization

Similarly to [YTAO09], we quantify the range of the 2-D intensity values and depth
measurements, i.e., Iy = sy-k, and D; = sp -1, with k =0,.... K and [ = 0,..., L.
st and sp are the 2-D and depth quantization factors; thus (s; x K) and (sp x L)
are equal or larger than the maximum 2-D intensity values and depth measurements,
respectively. Then, inserting in (5.1) and (5.3) the quantized levels I}, and D; for I(p),

respectively D(p), one obtains for each level a filtered range image

> qen(p) fs(P, @) fi(Ix: 1(a)) Q(a)D(q)

Is(p, i) = Yaenp) (@ ) fi(ln (@) Q)

(5.4)
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and

> qenp) fs(P, @) fp (D1, D(a))Q(a)D(q)
ZqEN(p)fS(p7 )fD(Dla (a ))Q(Q)

We define four mappings, i.e., E(-) and F'*(-), for a quantized intensity value at the

JG(p7 Dl) =

(5.5)

pixel position p such that:

B g+ fi(Ix,I(q))- Q(q) - D(q), (5.6)
Fh: qr— fi(Ii. I(a)) Q(q) (5.7)

and GPi(-) and HP!(-) for a quantized depth measurement at the pixel position p, such
that:

GP':  q— fp(Di,D(a)) Q(a) D(q), (5.8)
P  q+— fp(D;,D(q))- Q(a). (5.9)

We may then rewrite (5.4) and (5.5) as follows:

Y qen(p) fs(P,a)- E™(q)

J =
s 1) =5 o Fs (0 @) Fi(a)

(5.10)

and

Pqen(p) fs(P.a)- GP(q)
> qen(p) fs(P,a) HPi(q)
We note that fs(p,q) is a function of the difference (p —q). Hence we may write (5.10)
and (5.11) as

Je(p, Dy) = (5.11)

(fs ® E'*)(p)
Js(p, Ix) = W (5.12)
and
Jo(p, D) = (s © G2 (p (5.13)

(fs ® HP)(p )
where ® denotes the convolution between functions. The filtered value Js (p,I(p))
results from a linear interpolation of the filtered range images Js(p, -) obtained for the

different levels at position p and intensity value I(p) between Ij and Ixy1, i.e.,

Js (p, I(p)) =interpolate (J5(p, s I(p))
:311 ((Ik+1 —1I(p))Is5(p,Tx1)+

(I(P)—Ik)Js(PJk))- (5.14)

69



5. PROPOSED DEPTH ENHANCEMENT TECHNIQUES

The same applies to Jg(p, D;); thus from a linear interpolation between D; and Dy :

Je(p,D(p)) =interpolate(J¢(p,-), D(p))

=2 (D4~ D) Jo(p.Dic) ¢
(D(p)—Dz)Je(p,Dz)>. (5.15)

Finally, the enhanced depth map Jr results from (5.2) considering (5.14) and (5.15).

5.3.2 Data downsampling

In addition to the range quantization presented in Section 5.3.1, one can ensure a good
memory and speed performance by downsampling the data to be filtered. According
to the study that Paris et al. conducted in [PD09], the sampling of the input data
does not introduce significant errors. The same strategy applies to the UML filter
presented in Section 5.2. To that end, we downsample the input data, i.e., I| =
downsample(I, ) and D) = downsample(D, ), with A being the scale factor. The
downsampled credibility map Q, is then computed over a downsampled depth map D,
i.e., Qp = fq(—|VDy|). We apply equations (5.4)-(5.13) using I} and D}, resulting
in low-resolution filtered images Js; and Jg|. Formally, the values Js (p,I(p)) and
Jg (p,I(p)) of the high-resolution filtered depth maps can be obtained by spatially

interpolating the low-resolution filtered images, i.e.,

Js (p, I(p)) = interpolate (Jm(-, I(p)) , p/)\) (5.16)

and
Je (p, D(p)) = interpolate <J6¢ (-, D(p)) , p/)\) . (5.17)

Notice that for this bi-linear (i.e., four point) interpolation, the low resolution filtered
images J5| and Jg; would have to be computed for each value I(p) and D(p) of the high
resolution input images. At this point, we combine both the linear range interpolation
and the bi-linear spatial interpolation to a tri-linear (i.e., eight point) interpolation as

follows:
Js (p, I(p)) = interpolate (J5¢(-, ), P/, I(p)) , (5.18)

and

Je(p,D(p)) = interpolate(Jg,(-,-), /A, D(p)). (5.19)
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Thereby, Js,(-,-) and Jg (-,-) is the set of low resolution filtered images calculated
for the different levels I, and D, respectively. The final output of the UML filter is
then obtained according to (5.2) by superposing the two filter outputs in (5.18), (5.19)
using the credibility map Q that defines a pixel-dependent weight for each of the two
contributions.

We address a further optimization of the proposed real-time implementation by
weighting the superposition on a low-resolution level before the interpolation. Thus,
the tri-linear interpolation in (5.19) of Jg is approximated by a bi-linear spatial inter-
polation of a single low resolution filtered image Jg; = Jg (-,D(-)). This is possible
in the case where the resolution of the original depth map is smaller than the resolu-
tion of the downsampled depth map D). Then, the values of D(p) and Q(p) may be
approximated by the nearest pixel in the low versions of the maps. This interpolation

formula for J7 takes the following form:

J7(p) :interp()late(Qi(‘)J5i(‘v ')7 p/>‘7 I(p))+
interpolate((l - Qi(-))J6¢(-,D¢(p)),p/>\). (5.20)

The main benefit of this implementation is, apart from some run-time optimization, the
fact that no high resolution image except the 2-D image I has to be kept in memory.
In order to avoid filtering artefacts due to the data quantization and sampling in-
troduced above, the standard deviations oy, op, and og may be chosen greater than sy,
sp, and sg, respectively. Otherwise, the approximation may be poor, i.e., numerically
unstable. According to the above mappings (see equations (5.7) and (5.9)), the noise
due to quantization only affects the range mapping functions, i.e., F'* and H?!, and
both the intensity values of the 2-D image I(q) as well as the depth measurements of

the depth map D(q) are preserved.

5.3.3 Special treatment of background pixels

Background pixels are those pixels in the imager that have not been able to estimate a
distance measurement. These pixels are identified during the generation of the provided
depth map and set to a defined value. In the case of IEE’s ToF camera (see Section 2.3),
background pixels are equal to the maximum reachable distance, i.e., 7500 mm. How-

ever, this constant value will differ depending on the camera manufacturer.
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Background pixels must be identified and treated separately during the filtering
process in order to avoid considering their default value as a real measurement. Other-
wise, non valid distance measurements would appear within the enhanced depth map.
To that end, we compute a relative background weight Wy, for each pixel p within
the enhanced depth map by integrating the spatial kernel over all background pixels,

respectively over all pixels as follows

2 aeNy, (p) f5(P:a)Q(a)B(q)

Whe(p) = Yaenp fs@a)Q(@)

(5.21)

where Ny, (p) is the neighbourhood of background pixels and B is a mask of the same
resolution as the depth map D to be filtered where only those pixels that correspond
to background pixels in D are set to 1. Non-background pixels are set to 0. Thus, the
resulting value within the enhanced depth map for the selected pixel p will be directly
set to the defined background pixel value in the case where Wyg(p) > 0.5. Instead,
the filtered value is computed according to (5.1) and (5.3), taking however, only the

foreground pixels into account.
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Chapter 6

Experimental results

This chapter analyses four main aspects of our UML filter. We first quantify the
improvement achieved on the final depth maps resulting from the low-level data fusion
process as compared to the original raw depth maps delivered by the ToF camera alone.
To that end, we evaluate the dimensions of a box under different setup configurations,
i.e., we set the box at different locations within the field of view of the system and we
repeat the experiments at different depths. Then, we quantify the UML filter against
state-of-the-art low-level filtering solutions. In that case, we consider our own recorded
sequences as well as various scenes from the Middelbury dataset [Mid11]. Then, we
check the filter response against noise, and we end with a runtime analysis using the

filter implementation proposed in Section 5.3.

6.1 Quantification of depth map enhancement

We start the assessment of our method with a quantitative comparison between the
raw depth map acquired by the ToF camera and the enhanced depth map resulting
from the low-level data fusion process proposed in Chapter 5. To that end, we have
used the camera rig described in Section 2.3 previously calibrated using the proposed
calibration approach in Section 2.4 and frame-synchronised. We first recorded a box
with known dimensions (see Figure 6.1) and from 8 different setup configurations, i.e.,
we displaced the box along the x, y, and 2z axes with respect to the hybrid ToF multi-
camera rig. Each sequence contains a total of 20 frames. For the given setup, the pixel

size is roughly (16 mm x 25 mm) for the 3D MLI Sensor  and (2.8 mm X 2.8 mm)
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330 111:1/

175 mm

350 mm

Figure 6.1: Dimensions of the selected box for the experimental test; width = 350 mm,
height = 175 mm, and depth = 330 mm.

for the Flea®2 camera. We obtain the box dimensions by fitting a rectangle to the
box area that has been previously segmented using a depth threshold. From Table 6.1
we notice that the measured box dimensions are much more accurate while considering
the enhanced depth maps. Indeed, the accuracy for the lateral dimensions, i.e., length
and width, are on average 1.3 mm when considering the enhanced depth maps, which
corresponds to half the pixel resolution on the Flea®2 camera. In contrast, the accuracy
when considering the raw depth maps is only 12 mm. The filling ratio of the fitted box
has increased accordingly. This demonstrates that depth edges have been accurately
adjusted according to the guidance image resolution. Regarding the accuracy of the
height measurement of the box, which is not related to the pixel resolution but to the
noise within the distance measurements, we observe that has increased by a factor of 3.
Indeed, the error due to the noise within distance measurements (see Section 1.2.2.1) is

compensate when filtering, thanks to the nature of the bilateral filtering in which our

Table 6.1: Quantitative comparison of the box dimensions measured from the raw and
the enhanced depth maps (units are in millimetres). Shown are the mean of the measured
dimensions and accuracy taken over the 8 box configurations.

Raw depth map Enhanced depth map
Box dimensions Mean Mean Mean Mean
Measure | Accuracy | Measure | Accuracy
Width 350 360 11.7 349 1.4
Height 175 187 12.2 177 4.2
Depth 330 324 6.3 330 1.2
Filling ratio 100% 98.50% 1.50% 99.72% 0.28%
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6.1 Quantification of depth map enhancement

filters are based (see Section 4.1).

(a) 2-D guidance image.
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Figure 6.2: Comparison between the raw and the enhanced depth maps. The dotted red

lines in the right correspond to the selected depth threshold values.

In order to compute the dimensions of the box, we have considered the best depth

threshold that segments the surface of the box. However, the selection of the best

depth threshold value is far from a trivial task.

depth threshold value may significantly affect the computed box dimensions.
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the difference along the left depth edge in the plot of the section in Figure 6.2c when
considering a depth threshold value of 750 mm or 810 mm. In contrast and from the
credibility map contribution (see Figure 6.2b), the misaligned depth edges from the
raw depth maps are accurately adjusted resulting in enhanced depth maps that allow a
larger tolerance while selecting the depth threshold value (see Figure 6.2d). Table 6.2

reports the dimensions of the test box when considering different depth threshold values.

Table 6.2: Robustness against depth threshold selection (units are in millimetres). Shown
are the mean values of the measured dimensions taken over the 8 box configurations and
their variation (std) with the threshold value.

Depth threshold Std
750 780 810 840 870

Width 345 346 346 347 347 0.8

Enhanced Height 178 178 178 178 177 3.2

depth map Depth 327 328 328 329 329 1.0
Filling ratio | 99.90% | 99.68% | 99.73% | 99.61% | 99.65% | 0.04%

Width 356 363 363 362 362 3.0

Raw Height 189 188 188 187 185 14

depth map Depth 323 324 324 327 334 4.5
Filling ratio | 97.76% | 99.31% | 99.31% | 98.89% | 98.73% | 0.63%

6.2 Comparison to alternative filters

6.2.1 Comparison using recorded data

We perform a qualitative comparison of the proposed UML filter against the JBU and
the PWAS filters employing real data. Thereby, we have also varied the sigma spatial og
to demonstrate the influence of these filter settings. From Figure 6.3, we clearly see the
contribution of each filter, i.e., the JBU, the PWAS and the UML filter. Regarding the
JBU filter, we notice that the higher the sigma spatial og, the better the depth edges are
adjusted. However, a large og makes texture copying appear, as shown in Figure 6.3f.
The texture copying artefact can be almost eliminated by setting a smaller og value,

as shown in Figure 6.3d. However, the edge blurring artefact appears due to the 2-D
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Figure 6.3: Depth enhancement filtering comparison based on the sigma spatial og value.

and depth edge misalignment problem discussed in Figure 5.1. Thus, it is necessary to
tune the og value to minimize both edge blurring and texture copying artefacts. The
PWAS filter tackles the edge blurring artefact and significantly reduces the texture
copying artefact (see Figure 6.3g, Figure 6.3h, and Figure 6.31). However, texture
copying can remain since og has to be chosen large enough to cover the credibility map

boundaries (see Figure 6.3c). Instead, the UML filter (see Figure 6.3j, Figure 6.3k, and
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Figure 6.31) perfectly copes with texture copying and edge blurring artefacts providing
accurate enhanced depth maps.

Figure 6.4 shows the final depth map for two real scenarios in addition to the input
data to be filtered, i.e., the high-resolution 2-D image, the low-resolution depth map
and the credibility map. First, one recognizes that our adaptive filter enhances the
low-resolution depth maps from (56 pixels x 61 pixels) to the VGA-resolution of the
coupled 2-D image. Also, the noise level has been greatly reduced. From the credibility
map, depth edges weighted with a lower value, i.e., closer to 0, are accurately adjusted
to the ones in the guidance image. Hence, resolving details like the fingers of the
person in Figure 6.4g and Figure 6.4h, that are not resolved in the raw depth map.
Figure 6.5 compares a detailed region of our enhanced depth maps with the ones given
by the JBU and the PWAS filters. In the first example one recognizes the edge blurring
within the contour of the hand when filtering with JBU, which is drastically reduced
for both the PWAS and the UML filter. Although PWAS performance is not improved
when adjusting depth edges, depth accuracy for pixels with a high credibility weight
is increased by maintaining smooth regions. Also, Figure 6.5 shows an example where
the black belt of the person has the same (black) colour as the background. Contrary
to the JBU and PWAS responses, our adaptive filter correctly addresses that situation,

as shown in Figure 6.5f.

6.2.2 Comparison using the Middelbury dataset

In order to quantify the accuracy of our method against the alternative filtering so-
lutions, we employ the Teddy, Art, Books, and Moebius scenes from the Middlebury
dataset [Mid11]. Each scene contains an intensity image and its corresponding dis-
parity map, from which we have generated a depth map as a ground truth using the
also provided system specifications. We simulate the low-resolution depth map to be
enhanced by downsampling (at different sampling rates) the ground truth depth map.
Figure 6.6 shows an example of the Teddy and the Art scenes where the ground truth
depth maps were downsampled by a factor of nine. As also occurs in the real data
examples, the UML filter enhances the downsampled depth map to the intensity image
resolution. Figure 6.7 shows a zoomed area where we can observe the same differences
between the different filters applied on the real data examples shown in Figure 6.5.

The JBU filter shows a strong edge blurring where the grey image contrast is low,
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(a) 2-D guidance image
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Figure 6.4: Depth map enhancement applying the UML filter onto our own recorded

sequences.
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(a) JBU (b) PWAS (c) UML

(d) JBU (e) PWAS (f) UML

Figure 6.5: Visual comparison of enhanced depth maps using different depth enhancement
filters.

e.g., around the teddy’s ears, marked as red rectangles in Figure 6.7c. In addition to
strongly reducing this artefact, our adaptive filter also removes the texture copying
effect inside the teddy’s head (see the green marked rectangle in Figure 6.7c), which
remains in both JBU and PWAS final depth maps. Figure 6.8 shows an example of the
limitations of the UML filter. This scene contains really small objects (in the regions
indicated by red rectangles in Figure 6.8c) that are tackled as outliers. This occurs
because the credibility map gives a low weight to these objects and consequently their
value is replaced by the neighbourhood pixel values. Exactly the same occurs when
filtering using PWAS. However, on the larger surfaces in the scene (see areas inside the
green rectangles in Figure 6.8¢), the resulting depth values of the UML filter are much
more accurate than those of JBU and thus, on average, a better performance can be
expected.

Although the root mean square error (RMSE) is a frequently-used measure to quan-
tify the visibility of errors between a treated image and a reference image, we use an

alternative complementary framework for quality assessment based on the degradation
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(a) 2-D guidance image (b) 2-D guidance image

(¢) Downsampled (9x) depth map

(e) Credibility map

W

(g) Enhanced depth map (h) Enhanced depth map

Figure 6.6: Depth map enhancement employing the Teddy and the Art scenes, 1%¢ and

274 rows respectively.
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(a) Ground truth (b) Downsampled (9x) (c) Intensity image

(d) JBU output, SSIM: (e) PWAS output, SSIM: (f) UML output, SSIM:
62.62 69.14 69.95

Figure 6.7: Visual filtering output comparison employing the Teddy scene.

(b) Downsampled (9x)

(d) JBU output, SSIM: (e) PWAS output, SSIM: (f) UML output, SSIM:
44.01 49.95 50.13

Figure 6.8: Visual filtering output comparison employing the Art scene.
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6.3 Robustness to noise

of structural information, the Structural SIMilarity (SSIM) Index [ZBSS04]. Table 6.3
reports the SSIM measure that quantifies our method against alternative depth en-
hancement solutions. We can observe that under a global error measure, the UML
filter performs at least as well as the PWAS filter. The only case where the UML filter
does not outperform the JBU is in the Art scene with a downsampling rate of 3. This
occurs due to the suppressed small details in the scene as discussed above. For higher

downsampling rates, the performance is, however, superior to JBU.

Table 6.3: Quantitative comparison using the SSIM measure (100 corresponds to a perfect
matching with the ground truth).

Downsampled | JBU | PWAS | UML

3x 97.65| 97.71 | 97.81

Teddy 5x 96.29 | 96.80 | 96.90
9x 93.47 | 94.57 | 94.79

3x 96.57 | 96.65 | 96.71

Moebius 5x 94.67 | 94.68 | 94.75
9x 90.75 | 90.96 | 91.45

3x 96.89 | 97.44 | 97.46

Books 5x 95.59 | 96.11 | 96.13
9x 92.51 | 93.01 | 93.59

3x 92.96 | 91.52 | 91.59

Art 5x 88.42 | 88.07 | 88.21
9x 81.09 | 83.28 | 83.42

6.3 Robustness to noise

The main sources of noise that affect to the given distance measurements, as described
in Section 1.2.2.1, generally provoke random variations within the provided depth maps,
as shown in Figure 6.4c and Figure 6.4d. We thus want to quantify how the UML
filter behaves against different noise levels. Due to the active illumination of ToF
cameras, the noise level increases according to the measured distance, as discussed
in Section 1.2.2.1. Therefore we simulate this behaviour by adding Gaussian noise
with a standard deviation linearly dependent on the distance measurement [LS01]. We

used the Teddy scene downsampled by a factor of 5 and with a noise of £100 mm
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at the maximum distance (8976 mm). The results in the graph from Figure 6.9 were
obtained by a Monte Carlo simulation over 100 times, which gave us an accuracy of
+1.2 x 1073, £2.2 x 1074, and £2.2 x 10~* for the JBU, the PWAS, and the UML
filter, respectively. Within individual executions only the last digit varies. Then, from
Figure 6.9 we note that the UML filter is more robust to noise than both JBU and
PWAS filters independently of the added noise level.

98 T T T
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Figure 6.9: JBU, PWAS, and UML filter response against Gaussian noise of £100 mm
at the maximum distance (8976 mm).

6.4 Runtime analysis

We next present a runtime analysis to validate that the implementation proposed in
Section 5.3 enables real-time applications. We ran the tests to estimate the time con-
sumption on an Intel Core 2 Solo processor SU3500 (1.4 GHz, 800 MHz FSB) with an
integrated graphic card Intel GMA 4500MHD. The filter was implemented in C lan-
guage and the tests have been performed on our own recorded scenes, enhancing from
(56 pixels x 61 pixels) to VGA-resolution. Table 6.4 reports the seconds per filtered
frame calculated over 1000 iterations. Also, we have sampled the input data by a factor
of 3x, 5x, 9x, and 17x. With the latter sampling factor, the filtering process only takes
0.08 seconds per frame. In addition, we have quantified the corresponding induced
error to each sampling rate. Table 6.5 reports the SSIM measure considering the non
downsampled case as a reference, and the final depth maps for each sampling rate. We
notice that a sampling factor of 9x or 17x drastically reduces the time consumption

without inducing a significant error in the final depth map. As a consequence, data
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Table 6.4: Run-time analysis for the tested input data sampling rates (units are in

seconds; average over 1000 iterations).

Sampling | JBU | PWAS | UML
1x 1.88 | 1.89 |13.59
3x 049 | 050 | 3.17
55’6 0.13 | 0.13 | 0.65
9x 0.06 | 0.06 | 0.18
17x 0.05 | 0.05 | 0.08

sampling enables a real-time depth enhancement despite being restricted by the ToF

camera frame rate of 10 fps.

Table 6.5: SSIM measure depending on the input data sampling.

Sampling | JBU | PWAS | UML
3x 95.78 | 99.71 |99.85
5x 95.46 | 99.51 | 99.65
9x 94.89 | 98.80 | 98.86
17x 92.25 | 95.11 | 95.17

85



6. EXPERIMENTAL RESULTS

86



Part 111

Extensions

87






Chapter 7

Colour representation for edge

blurring avoidance

Unlike the alternative techniques for depth enhancement presented in Section 4.2, our
proposed filtering techniques in Chapter 5 cope very well with the edge blurring artefact
due to the misalignment between 2-D and depth edges. However, edge blurring can
still appear when depth edges have no corresponding 2-D edge. This occurs when
background and foreground objects have a similar colour. Thus, depth edges cannot be
accordingly adjusted to any reference edge yielding to edge blurring. This situation can
occur in many scenarios but we notice that in general it is due to the transformation
from the original coloured images to their grayscale version. Although the results can be
more accurate when considering the full colour information, most systems are restricted
to use a grayscale converted image to accomplish with the processing time and memory
constraints, mainly if real-time is a requirement. A grayscale image is defined as a linear
combination of the red, green, and blue channels in the RGB space. This combination
leads to a non-unique representation of the true colours, which may cause objects having
a different colour to be represented with the same grayscale value. As a result, a more
accurate processing of images requires the use of their true colours, and using three
components. Indeed, most filtering techniques have their definitions extended to three
channels. Paris et al. tested several alternatives on a colour image [PD09]. They first
filtered an RGB image as three independent channels. Despite a correlation between
the three channels, they showed that edges may be smoothed in one channel while

they are preserved in another channel. This consequently induces incoherent results
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between channels. They then tested reducing these inconsistencies, that resulted in
bleeding effect, by processing the R, G, and B channels altogether. The downside of
this approach was, however, a longer computational time required for processing. The
same authors tested filtering images in the CIE-Lab space [KA00], which is known to be
perceptually meaningful. Indeed, this solved the colour-bleeding problem but not the
demanding computation time. In this chapter, we propose to reduce the complexity of
processing 3 channels by compactly storing the same information in only one channel.
To that end, we exploit the geometrical structure of 3-D conical colour spaces and
show how to accurately define one parameter to represent the solid HCL conical colour
space [SMO05]. We equip this representation with an associated colour similarity measure
inspired from the cylindrical distance used for cylindrical and conic colour spaces such
as HSV/HSL [SM05, GW02, ST97]. In addition, the proposed colour model represents a
novel colour ordering that might be useful in the context of colour morphology [Ang07].
Indeed, morphological colour operators, i.e., morphological filters such as opening and
closing or morphological centre, can be adapted to the proposed colour ordering for
further image processing such as image denoising. We note that our work is not only
related to data compression from 3-D to 1-D [VD10] but deals also with a colour

codification for an efficient subsequent processing.

7.1 Background: Transformation from RGB to HCL

The objective of this work is to define a colour model that is almost as reduced as the
grayscale representation, but preserving all the colour information contained in 3-D
spaces. In other words, we want to define a model that is in one dimension, and that
is still reversible from and to the RGB colour cube (see Figure 7.1a). In addition, our
colour model should also bring in a perceptual meaning. This last property will be im-
portant when computing the distance between colours for pattern recognition purposes.
To that end, we base our work on the conic HCL model shown in Figure 7.1(c) [SMO05].
We define in what follows the HCL model and relate it to the RGB cube as it will be
a transition step in converting our proposed model to RGB space and vice versa. The
projection of the RGB cube onto a regular hexagon ¥ in the chromaticiy plane defines
the chroma C and hue H related to R, G, and B (Figure 7.1b). Let p’ be the projec-
tion of a point p in the RGB cube on ¥ and o be the origin of ¥. Geometrically, the
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—_—

-

Figure 7.1: (a) Cubic RGB model projected onto a regular hexagon in the chromaticity

plane. From (b) to (d), warping from hexagons into circles. (¢) Conic HCL model.

chroma component ¢ along C, of p, is the length of Q relative to the maximal radius
of ¥ passing through p’. The hue component h corresponds to the angle formed by (?
and (;1?’ , where 1’ is the projection of the red colour r = (1,0,0) on ¥. The luminance
component [ is equal to ||}?| |. This is equivalent to ¢ = m; —mg and I = 5(mq +ma),

where my = max(r, g,b), and my = min(r, g,b), and

undefined if ¢=0,
T(9=b d 6) if mp=r

po— ) 3% mo L= 7.1
%(%4—2) if my =g, (7.1)
(19 4 4) it my =0

In what follows, we propose an approximation of the HCL space that only requires
two parameters for colour description. There are alternative methods such as the
proposed by Vahdat et al. [VD10], that describe the colour information by two or even
one parameter. However, these methods are mainly related to data compression or

codification and thus it is necessary to uncompress or decode the data to treat it.
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Figure 7.2: Chromaticity disk approximation with a spiral.

7.2 Proposed spiral model

We propose to describe the colour information contained in the HCL (hue, chroma,
luminance) conic space by approximating the cone using two parameters, 6 and I,
instead of using the three coordinates (h,c,l). We thus keep the luminance value [, and
rewrite ¢ and h as functions of a new variable §. Our key idea is to approximate the
chromaticity disk with a spiral, as shown in Figure 7.2. Specifically, we choose to use

an Archimedean spiral [Loc67] whose radial distance is defined as

r(f):=a-0, (7.2)

where a = % is a constant defining the distance between successive turns, and 6 is the
polar angle of the spiral, such that 0 € [0, 27K], K being the total number of turns. We

approximate the chromaticity disk by fitting the spiral to it, such that
h(0) = 0 + 27k, (7.3)

where k € {0,1,--- ,K}, and the C' — axis is uniformly sampled into (K 4 1) values ¢,
with a step equal to a. We note that ¢ is dependent on the hue h, or equivalently of

the angle 6. Thus we define ¢ () as
ck(0) =r(h(0)) +a- k. (7.4)

We then save the luminance value [, and rewrite A and c¢ as functions of a new variable

0 such that

h
0=h—-2 d{K-c——]. .
7T Toun < c 2ﬂ_> (7.5)
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7.3 Proposed 1-D colour model

By setting the spiral extremities as the starting point (co, ho) = (0,0), and ending point
(Cmax, hmax) = (1,0), and by replacing these values in (7.2) and (7.3), we find a = 1/K.
In the continuous case, i.e., K — 0o, we may write

0

c=r(0) K 0 =27K-¢ (7.6)
Replacing (7.6) in (7.3), we find
k = round (K e — h) , (7.7)
2m

with round(-) being a rounding function that assigns the nearest integer value to k. We
may now define the transformation from (c, h) to € as follows:

0 = h — 2w round <K-c—2};> : (7.8)
The inverse transformation from 6 to (¢, h) is fully defined by (7.2), (7.3), and (7.10),
with k& = round (Hn;iid(%)). Next step is the conversion from the recovered ¢ and
h values to the initial (r,g,b). We compute an intermediate value z = ¢(1 — |(2h)

mod 2 — 1|) to be applied to the following system of equations

((0,0,0) if h is undefined,
(c,z,0) if 0<h<Z,
(z,¢,0) if Z<h<?Z,
(g ) = 4 (Ocx) it E<h<n (7.9)
(0,z,¢) if ﬂ§h<4§,
(,0,¢) if 4 <h<3T
(c,0,x) if 2% <h<o2m

To obtain the point p = (r,9,b) from q = (r,¢',V'), we translate q in the R, G,
and B directions by the minimal distance mgy defined in Section 7.1, i.e., (r,g,b) =
(r' +ma, g + mao, b + ma).

We note that the values of mg may be stored when extracting ¢ from (r, g,b), or

equivalently from ms = (I — %¢) (see Section 7.1).

7.3 Proposed 1-D colour model

In order to include the luminance parameter in the definition of the spiral model in
(7.8), we propose to uniformly sample the luminance axis into (K| + 1) values [,,. We
thus have

Iy = — (7.10)
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24

Figure 7.3: Approximation of the HCL cone by a set of spirals.

where n € {0,1,--- ;K_}. At each luminance level [,,, we define a spiral of radius
r(0n) = a- 6y, with 6, € [0,27n]. In other words, for larger sections of the cone, we
impose a larger number of spiral turns, as shown in Figure 7.3. In order to keep a
single parametrization of all the K| spirals, we need to relate all of them to the same
parameter. To that end, for a point on the spiral at the level [,,, we introduce the

cumulative angle (CA) ¢ as

(=Cn1+9, (7.11)
with
n—1
(1= 2m-i=n(n—1)-m. (7.12)
=0

We note that (,_1 is the CA of the spirals at level [,,_1. The colour model proposed
in (7.11), that we call CA model, reduces the HCL space to a 1-D representation by
a single parameter (. We also notice that the CA model is reversible from and to the
original HCL space and consequently to all colour spaces that can be converted from
and to HCL, such as RGB. To do so, one simply needs to follow two steps; first to
retrieve [ or its approximation [,,, and second find the pair (h,c) at the corresponding

level. By definition, we find that

(-1 <( <G = I=xlyand 0 = ( — (1. (7'13)
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7.4 Application to depth map filtering

By solving the two inequalities in (7.13), we find an analytic expression for n avoiding

a search among the intervals [(,—_1,(,[. As an intermediary step, we get:

_ 4 4
( 1+w/1+ﬂg><n§<1+\/1+ﬂ<>. (7.14)

2 2

Given that n € N, we find
1 4 1
— | Z4/1+ 2 - 1
n {2 + WC + 2J , (7.15)

and from (7.10) we obtain [,,. |x| indicates the floor function that maps a real number
x to the largest integer not greater than x. To obtain the pair (h, ¢), we simply need to
follow the same steps presented in Section 7.2 using the 6 angle from (7.11). We finally
get the following result

h = (¢ mod 27,
c= ol |31+ s+ 3| |3 ir a4 (7.16)
£ i)

With equations (7.16) at hand, we fully defined a bijective transformation from (h, ¢, 1)

o~

to . This means that the CA representation encodes in one channel all the information
contained in three channels with an easy way to back-transform. Such a model gives
the possibility to apply the same algorithms used with grayscale images on full color
information, but without extending the algorithms to 3 channels. We illustrate this by

using the CA model for depth map filtering.

7.4 Application to depth map filtering

We consider as an application example the PWAS filter presented in Section 5.1. We
recall that the term fi(I(p),I(q)) in (5.1) corresponds to a Gaussian function with
standard deviations oy which in fact is the distance between two image intensity values,
I(p) and I(q), i.e., Gi(d(I(p),I(q))). In the standard case of grayscale images, this
distance d(-,-) is Euclidean. In order to avoid edge blurring due to the grayscale
conversion, we propose to represent the 2-D image I using the proposed CA model

instead. We hence need to replace d with a new distance d,, between two values
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(p = I(p) and (g = I(q). We define d,, as an approximation of the cylindrical
distance d.,; commonly used on the HCL space and defined as [SMO05]

i Ah
deyi(Cp, Cq) = \/(AZ)Q +(Ac)2 +4 - ¢p - cq - sin? (7)7 (7.17)
where cp and cq are chrominance values corresponding to (p and (g, respectively. We
simplify this distance for our model by considering a normalized value A( instead of
the first term Al. The normalization factor aj is such that we achieve a total distance
of one between the two reference colours black and white, where all the other terms

become zero. Thus, we find a; = KT

m. In addition, we consider the L; norm,

and define d,, as:

doa(Cpy Ca) = a1 [AC] +[Ac| +2- (/65 ¢q

sin <%) ‘ .

Although the above expression is relatively complex due to computing chrominance

values from (7.16), it is a first step towards defining a better distance d_, in terms of

CA
performance. Indeed, the evaluation of d, is currently restricting the use of the CA

model for our depth enhancement purposes.

7.5 Experimental results

We start by a global evaluation of the CA model by testing 100 different coloured
images of objects from the Amsterdam Library of Object Images (ALOI) [Alo11]. These
images are in the RGB space. We transform them to the proposed CA colour model by
following the steps presented in Section 7.2 and Section 7.3. Figure 7.4 plots the root
mean square error (RMSE) between the original RGB images and the recovered ones
for K and K varying from 0 to 255. We see that the error drops whenever K| is less
than K, which means that a very sparse sampling of the luminance component can be
sufficient for an accurate representation. Moreover, as soon as K reaches approximately
100, the error approaches zero. While this number may vary depending on the nature
of the images, it clearly does not need to be set greater than 255, as the intensity of
digital images falls between 0 and 255. We proceed by evaluating the performance
of the PWAS filter presented in Section 5.1, when filtering considering grayscale or
CA encoded images. We use data from the Middlebury stereo dataset [Mid11l]. Each
selected scene is represented by a 2-D RGB image and the corresponding depth map.
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Figure 7.4: RMSE between 100 images from the ALOI database and their CA transformed

versions.

We downsample the original depth maps by a factor of 8 in order to use them as
low-resolution depth maps inputs (D in (5.1)) (see Figure 7.5). After the filtering
process, we compare the resulting enhanced depth maps with the original ones by
using the structural similarity index (SSIM) [WBSS04]. Table 7.1 reports the computed
SSIM values, where 1 means that the enhanced depth map perfectly coincides with the
original one. Note that the PWAS filter always performs better when considering CA
images. This significant improvement is well illustrated in Figure 7.6 where we zoomed
on a region from the Teddy scene. Figure 7.6 also illustrates the enhanced depth
map using the 2-D guidance image with different colour representations, similarly to
experiments in [PD09]. Edge blurring and texture copying are clearly visible when
considering a grayscale image (Figure 7.6d). These artefacts are significantly reduced
when filtering using RGB images, but colour bleeding is another artefact that remains
due to filtering the 3 channels independently (Figure 7.6e). If one filters all channels
together (Figure 7.6f), then some bleeding still occurs. Instead, filtering using an HCL
image achieves satisfactory results (Figure 7.6g), which are similar to those obtained

from filtering using the proposed CA image (Figure 7.6h).

Table 7.1: SSIM comparison for the four scenes shown in Figure 7.5 (1 corresponds to a

perfect matching).

Venus | Cones | Art | Barn
SSIM for Grayscale | 0.974 | 0.835 | 0.837 | 0.948
SSIM for CA model | 0.989 | 0.888 | 0.873 | 0.974
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(a) (b) (©) (d)

() | 0 (@ | (n)

(a) (r) (t)

Figure 7.5: Comparison between PWAS filtering considering grayscale and CA images.
1%t row: RGB images. 2"% row: Grayscale images. 3" row: Downsampled input depth
maps. 4" row.: Enhanced depth maps using grayscale images (o5 = 10,04 = 0.02). 5"
row: Enhanced depth maps using CA images (0s = 10,04 = 0.1). 15! col.: Venus scene.

274 ¢ol.; Cones scene. 37% cool.: Art scene. 4" col.: Barn scene.
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(a) (b) (©) (@

©) (f) (2) (h)

Figure 7.6: Detail of a region from the Teddy scene. (a) RGB image. (b) Grayscale
image. (c) Ground truth depth map. (d) PWAS output using the grayscale image (b).
(e) PWAS output using “per-channel RGB image” (a). (f) PWAS output using the RGB
image (a). (g) PWAS output using the HCL image. (h) PWAS output using the CA image.
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Chapter 8

Depth map enhancement over

time

This chapter proposes an extension of the filtering techniques proposed in Chapter 5 in
order to increase the frame rate of the hybrid ToF multi-camera rig, i.e., to increase its
resolution in time. ToF cameras are known by their capability to provide depth infor-
mation at a high frame rate. However, this frame rate is usually lower than the frame
rate of standard 2-D video cameras, which is even more prominent in industrialized
ToF cameras. As a result, computer vision applications such as the identification of
a moving object (or multiple objects) over time, become intricate or even impossible.
In Chapter 5 we enhance the spatial resolution of ToF cameras by combining the ToF
data with the 2-D data given by a coupled 2-D camera into a hybrid ToF multi-camera
rig. In this chapter, we want to take advantage of the same setup in order to enhance
the depth information over time. To that end, we propose to estimate the motion
between each pair of 2-D camera frames and use it to compensate the motion in the
low-resolution depth maps. As a result, we predict new low-resolution depth maps
corresponding in time to the considered 2-D frames. The final enhanced depth video
results from the fusion between the predicted depth maps and their corresponding 2-D
frames by using one of the proposed filters in Chapter 5. In the following, we briefly
describe how to estimate the motion between consecutive 2-D frames. Then, we present
our concept to generate enhanced depth maps at the highest available frame rate of

the hybrid ToF multi-camera rig, i.e., the 2-D camera frame rate.
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8.1 Background, related work, and problem statement

Motion estimation is still a key problem in computer vision that involves the relation-
ship of correspondences between video frames along time. To cope with this problem,
a wide number of strategies can be found in the literature, starting from the first ap-
proaches proposed by Horn and Schunck [HS81] as well as Lucas and Kanade [LK81],
to more recent concepts overcoming drawbacks of previous approaches, such as ro-
bust statistics [BA91, BA96], coarse-to-fine strategies [Ana89, MP98|, non-linearised
models [AWS00, NE86], or spatio-temporal approaches [Nag90, BA91, WS01], among
others. Within this thesis we do not propose a new solution to the problem of motion
estimation since current strategies based on optical flow [BB95] can be used for our
purpose with promising results. The reason we consider motion estimation techniques
based on optical flow is because we need to estimate a dense motion field between a
pair of two consecutive 2-D frames. Therefore, the motion field obtained from motion
estimation techniques based on feature tracking [ST94] that consider the trajectory of
salient image points (features) over frame series is not sufficient.

The literature in depth enhancement over time is not yet extensive. Choi et
al. [CMHS09] proposed to use a slightly modified NAFDU filter [CBTTO08] to tackle the
spatial resolution problem for a given low-resolution depth map. Regarding the tem-
poral resolution problem, they proposed to interpolate depth maps according to their
corresponding 2-D frames, as they assume the frame rate of 2-D cameras to be higher
than that of the ToF camera. To that end, they used the motion given by a Full-search
Block Matching Algorithm (FBMA) between the previous and the next 2-D frames.
The final enhanced depth video is the result of filtering the interpolated depth maps
and their corresponding 2-D frames. The same authors proposed in [CMS10, CMKS10]
to reduce the temporal fluctuation problem by filtering where they start by simultane-
ously filtering several depth and 2-D image pairs in order to preserve depth consistency
within static regions in the scene. Kim et al. [KCKA10] proposed to enhance the spa-
tial resolution of a given depth map by minimizing the unmatched boundary problem
between depth and 2-D image pairs using joint bilateral upsampling (JBU) [KCLUO07],
in addition to a boundary refinement to reduce the edge blurring artefact by using

linear interpolation with a color segment set. In addition, they minimized temporal
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depth flickering artefacts on stationary objects, i.e., they preserved depth consistency
using the motion between two consecutive frames.

We proposed in [GAMO12] to extend our previous work on spatial domain Time-
of-Flight (ToF) data enhancement to the temporal domain. Similarly to the aforemen-
tioned approaches, we also assume the frame rate of the 2-D camera to be higher than
that of the ToF camera. Our aim is to predict the missing low-resolution depth maps
by using the motion between consecutive 2-D frames. The resulting enhanced depth
video will result from filtering such predicted depth maps and their corresponding 2-D
frames using the UML filter (see Section 5.2).

For our purpose and to estimate the motion between video frames, we have con-
sidered the work proposed by Brox et al. [BBPWO04] which combines several of the
aforementioned motion estimation approaches with a consistent numerical approxima-
tion yielding to an excellent performance. In [BBPWO04], Brox et al. propose a high
accuracy optical flow estimation based on an energy formulation. For two given con-
secutive frames I; and I,_1, taken at times ¢ and ¢ — 1, respectively, the grey value at
)T

a pixel position p; = (u,v)" is assumed invariant to displacement, i.e.,

Li(p:) = Li—1(pi — wi), (8.1)

with w; = (%,7)T being the investigated displacement vector of the pixel p; between
the frames I; and I;_;. In order to overcome the high sensitivity to slight changes in
brightness from this first assumption, the gradient of a grey value image is considered

to be invariant to displacement, i.e.,
VIi(pi) = VIi_1(pi — W), (8:2)

where V = (0y,9,)" denotes the spatial gradient. The global deviations are minimized
due to the grey and gradient constancy assumptions, and are measured by the following

energy function
Etata(W;) = /Q I (|1 (pi — wi) — Li(po) 2 + 11 VLi1 (pi — wi) — VE(po)|?)dps, (8.3)

with ©Q C R? being the image space and 7 being a weight between both assumptions.
['(s?) = Vs2 + €2, e = 0.001 is the robust norm to reduce the influence of outliers. How-

ever, these two assumptions operate locally without considering neighbouring pixels.
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Therefore, the smoothness of the flow field is introduced as
Eomooth(W;i) = /QF(\vayQ +|Va|*)dp;. (8.4)
The total energy is the weighted sum between (8.3) and (8.4),
E(w;) = Egata(Wi) + aEsmootn(Wi), (8.5)

with @ > 0 being a regularisation parameter. Finally, in the case of large pixel dis-
placements between video frames, multi-scale ideas were considered; starting from a
coarse, smoothed version of the problem and finishing with a multi-resolution strategy.
In [BBPWO04], Brox et al. proposed the estimation of a high accuracy optical flow by
minimizing the non-linear energy function defined in (8.5). The resulting motion vector

w; accomplishes that I;(p;) = Li—1(pi—1) with

Pi—1 =Pi — W; = g(pi), (8.6)

and assuming a translational motion. We note that the function g(-) gives the flow
between any pair of two consecutive frames. Then, no subscript is needed as it only
depends on its argument. We also note that the subscript ¢ in a pixel position p; or
motion vector w; is to relate the frame I; and not their pixel position within the image.
In [ST06], Sand et al. combined the minimization of Brox et al. with the regularization
of the estimated flow proposed by Xiao et al. in [XCS106]. In what follows, we have
considered Sand et al’s motion estimation algorithm and used its Matlab implementa-
tion provided by Chari [Visll]. We note that the better the motion estimation is, the
more accurate will be the enhanced depth map. In the following, we present how to
compensate the estimated dense optical flow in the given low-resolution depth maps in

order to generate enhanced depth maps at the 2-D camera frame rate.

8.2 Proposed motion cumulation

We now investigate the problem of depth resolution enhancement over time. That is,
we are in the case of a sequence of 2-D frames I; taken at a frame rate 1/7y, where
the subscript i € N, indicates the " frame taken at time (i x 71). We consider the
corresponding sequence of ToF frames D,,;, n € N, taken at a frame rate of 1/mp,

such that the period 7p is multiple of 71, i.e., 7p = & - 71. Indeed, during a time
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period mp, the 2-D camera provides x frames while the ToF camera provides a single
one. We refer to the depth maps D, as ToF keyframes and to their corresponding
frame-synchronised 2-D images I, as 2-D keyframes. We recall that our objective is
to increase the hybrid ToF multi-camera rig resolution over time. To that end, we
first estimate the motion vectors wy,1; between every consecutive 2-D frames I,,;
and Ly.4i+1, 0 < i < k using the optical flow based approach presented in Section 8.1.
Then, we use the estimated motion vectors to predict the missing ToF frames between
every consecutive ToF keyframes D, and D(,;1),. For the sake of simplicity, we

formulate our concept for the first period m, 7.e., n = 0.

)
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(b) Cumulative backward motion estimation.

Figure 8.1: Proposed cumulative motion estimation techniques.

In (8.6), we have introduced the function g(-) that relates the pixel positions between
two consecutive frames. However, in general we want to relate pixel positions between

non-consecutive frames. Indeed, we want to relate the pixel position of p; on the current

105



8. DEPTH MAP ENHANCEMENT OVER TIME

image frame I;, 0 < i < k with its corresponding pixel position on the keyframe Ij.
We therefore propose a cumulative forward motion estimation approach and define it
as the cumulation of the estimated motion between each pair of 2-D frames starting
from the current 2-D frame I; until the 2-D keyframe I, as illustrated in Figure 8.1a.

In Appendix C.1, we show and prove by induction that

Po = ¢'(pi), where g' =go...0g, (8.7)

—_—

1 times
where o is the combination of functions, and 7 € N* being the number of frames between
the current frame I; and the keyframe Iy. The predicted depth map ﬁi, where ¢’
denotes forward-predicted frame, results from using the estimated cumulative forward
motion between the current frame I; and the keyframe Iy, on the ToF keyframe Dg as

follows
D;(pi) = Do(g'(p1)), (8.8)

for all pixel positions p;. The final enhanced depth video results from the fusion between
the predicted depth frames D, and their corresponding 2-D frames I; by using one of
the filtering techniques proposed in Chapter 5. We thus end up with a depth map J i
enhanced both in time and space.

Nevertheless, we realize that the edge blurring artefact (see Section 4.2.1) appears
within the enhanced depth maps J; that are closer in time to their next ToF keyframe
D, than to their precedent ToF keyframe Dy, from which they have been predicted
(compare Figure 8.2n and Figure 8.2f). The reason is due to the large displacement in
both time and space between the frame I; and its preceding keyframe Iy. We therefore
propose a cumulative backward motion estimation in which in contrast to the cumulative
forward motion estimation approach, the predicted depth maps result from the next
ToF keyframe D,, as illustrated in Figure 8.1b. Thus, in this case, the estimated

motion vector w; accomplishes that I;(p;) = Ii+1(piy1) with

Pi+1 = Pi + w; = h(pi). (8.9)

In Appendix C.2 we also prove by induction that p, = hi(p._;). Thus, the predicted

depth map Di, where ‘*’ denotes backward-predicted frame, follows as

N

Dz(pz) =Dy (hz(pnfz)) (8'10)
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Enhanced depth maps that result from considering forward-predicted depth maps
D, are more accurate the closer they are to the precedent ToF keyframe Dg. Instead,
enhanced depth maps that result from considering backward-predicted depth maps DZ
are more accurate the closer they are to the next ToF keyframe D, (compare Figure 8.20
with Figure 8.2g). We therefore propose to linearly combine the forward-predicted
and backward-predicted low-resolution depth frames, and define a bidirectional motion
estimation, as follows

A K—1

D, = D+~ Dy, (8.11)
K K

where ¢

"7 denotes bidirectionally predicted frame. Enhanced depth maps that result
from considering bidirectional motion estimation are expected to present a major ad-
vantage of reducing the noise within depth measurements between consecutive ToF
frames Dy and D, [CMKS10, FZY10, KCKA10]; hence, preserving depth consistency
and reducing the temporal fluctuation problem. In addition, enhanced depth maps from
such a combination are more accurate and less noisy than when considering depth maps
resulting from a single directional motion estimation. It is, however, important to note
that both backward and bidirectional approaches require the next ToF keyframe and
thus impose a higher latency. Next, we quantify the final enhanced depth maps when

considering forward motion estimation, backward motion estimation, and bidirectional

motion estimation.

8.3 Experimental results

In the following, we present some experimental results computed on a real sequence of
a hand moving through the scene. The sequence has been recorded using the second
hybrid ToF multi-camera rig presented in Section 2.3 and has the same frame rate of
the ToF camera. In order to quantify our concept for depth video enhancement, we
assume the frame rate of the 2-D camera to be four times higher than the frame rate
of the ToF camera, i.e., kK = 4. That is, three low-resolution depth maps are replaced
every four 2-D frames by the predicted low-resolution depth maps. In order to quantify
the performance of our proposed method we compute the peak signal-to-noise ratio
(PSNR) as well as the structural similarity (SSIM) index between the enhanced depth
maps resulting from filtering using the predicted depth maps and the enhanced depth

maps resulting from filtering using the neglected depth maps, i.e., the ground truth.
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Figure 8.2 shows an experiment where enhanced depth maps using the UML filter
have been predicted from forward motion estimation (1% column), backward motion
estimation (2"¢ column), and bidirectional motion estimation (3"¢ column). From now
on and for the sake of simplicity, we refer to the output of the UML filter given by (5.2)
as J instead of J7. It can be observed that forward-predicted depth maps are visually
better the closer they are to Jy, the enhanced depth map using the precedent ToF
keyframe Dg. Instead, the backward-predicted depth maps are better the closer they
are to J,;, the enhanced depth map that results form the next ToF keyframe D,;,. Thus,
the combination of both strategies gives better results as reported in Table 8.1. In-
deed, Table 8.1 quantifies the predicted enhanced depth maps with their corresponding
ground truth, i.e., the enhanced depth maps that result from filtering the pair of I,
and D,,,; given by the camera rig. From the table, we can observe that the predicted
depth enhancement frames from bidirectional motion are more similar to the ground

truth than considering either forward or backward motion.

Table 8.1: Quantification of forward-predicted, backward-predicted and bidirectional-
predicted enhanced depth maps.

Forward Backward Bidirectional
Frame | PSNR | SSIM || PSNR | SSIM || PSNR | SSIM
J1 53.72 | 0.98 46.69 | 0.97 54.97 | 0.99
Jo 53.41 | 0.98 48.88 | 0.97 54.26 | 0.98
Js 49.17 | 0.98 51.50 | 0.98 52.93 | 0.99

We next quantify the robustness to the noise within distance measurements dis-
cussed in Section 1.2.2.1. Thus, we add Gaussian noise with a standard deviation
linearly dependent on the distance measurement. In Figure 8.3 and Figure 8.4 we
present the PSNR and the SSIM index responses, respectively, of the proposed depth
maps prediction strategies obtained over 50 Monte Carlo runs. The graphs confirm that
the forward strategy performs better when predicting frames closer to the precedent
keyframe while the backward strategy performs better the closer the predicted frame
is to the next keyframe. In contrast, the bidirectional strategy outperforms any pre-
dicted frame. However, the runtime is doubled as both forward and backward motion

estimation have to be computed and combined.
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(a) 2-D keyframe
Io

(e) I () Forward- (g) Backward- (h) Bidirectional-
predicted Jy predicted Ji predicted Ju

(i) I 3) Forward- (k) Backward- (1) Bidirectional-
predicted Js predicted Jo predicted Jo

(m) Is (n) Forward- (o) Backward- (p) Bidirectional-
predicted .j3 predicted 33 predicted J 3

(q) 2-D keyframe (r) Ground truth (s) Ground truth (t) Ground truth
I, Jx Jx Jw

Figure 8.2: Predicted enhanced depth maps. 15 column: 2-D frames. 2"¢ column:
Forward-predicted enhanced depth maps J. 37 column: Backward-predicted enhanced
depth maps J. 4" column: Bidirectional-predicted enhanced depth maps J.
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Figure 8.3: PSNR responses against Gaussian noise using cumulative forward (r>), back-
ward (<), and bidirectional ((J) motion estimation approaches.
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Figure 8.4: SSIM index responses against Gaussian noise using cumulative forward (&),

backward (<), and bidirectional ((J) motion estimation approaches.
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Chapter 9

Conclusions

This thesis deals with the enhancement of depth data by means of low-level 3-D and
2-D data fusion. ToF cameras are cost-efficient and compact devices capable to provide
depth maps with distance information of the observed scene in a single shot. In addition,
due to the nature of their working principle, ToF cameras are able to provide distance
information regardless of illumination conditions and independently of the texture in
the scene, which makes them very attractive for many computer vision and robotic
applications. However, the resolution of the given depth maps is still far below the
resolution given by alternative 3-D sensing systems with an additional disadvantage
of being highly influenced by noise. Thus, we chose to combine an industrialized ToF
camera with a standard 2-D video camera in a hybrid ToF multi-camera rig in order
to enhance the ToF data and overcome the limitations of ToF cameras that currently
restrict their use in real applications such as those for safety and security. We presented
a low-level data fusion approach that combines the data given by each of the cameras in
the multi-camera rig and provides enhanced depth maps at the highest available frame
rate, i.e., the frame rate of the 2-D camera. The enhanced depth maps have the same
resolution as the images given by the 2-D camera and the distance measurements are
more accurate, i.e., the global noise level has been significantly reduced. As a result, the
work presented in this thesis facilitates computer vision processes to recognise, segment
or classify an object within the provided enhanced depth maps. In other words, our
work allows the use of such a hybrid ToF multi-camera rig for computer vision or
robotic applications where the use of industrialized ToF cameras was restricted due

to their limitations. We note that our concepts for ToF data enhancement consider
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industrial requirements for real-world applications, specifically, robustness to noise,
accuracy, and reduced memory and time consumptions. In addition, the concepts for
depth enhancement presented in this thesis are applicable to alternative 3-D sensing
systems such stereo vision or structured light systems, or laser scanners in combination
with a 2-D video camera. Thus, our methods apply either to recently emerging laser
scanners such as the ibeo LUX [Ibell] or the Eco Scan FX8 [Nipl1] or, to new gaming
devices such as Microsoft’s Kinect camera.

In the first part of this thesis we tackled the calibration of the hybrid ToF multi-
camera rig and the alignment of the recorded data to be further fused. We proposed a
practical calibration approach to estimate the intrinsic camera parameters of each of the
cameras that constitute the multi-camera rig as well as their relative extrinsic ones. In
addition to determining these parameters as accurate as the commonly used Bouguet’s
calibration toolbox [Bou09], our calibration approach can be automated for a mass
calibration process as only one image acquisition with a known position and orientation
is required. With the system parameters accurately determined, we proceeded with a
dedicated mapping procedure intended for data matching. This mapping is based on
projecting the image coordinates from each camera reference frame to a unified reference
frame where the projected data is pixel aligned. To that end, we had to deal with the
binocular disparity which is due to the baseline between the cameras in the camera rig.
We overcame the disparity problem by using the depth information acquired by the ToF
camera. However, since the disparity is distance dependent, the mapping process had to
be recomputed for each acquired depth map, making the real-time mapping intricate.
We addressed this challenge by accounting for disparity variations in the mapping
model. To that end, we precomputed a set of look-up tables for an array of disparities.
As a result, real-time is feasible by an iterative algorithm that selects pixel by pixel the
look-up table that corresponds to the distance measurement of the pixel to be mapped.
By using the optimal implementation discussed in Section 3.4 in which only one look-up
table must be precomputed, the alignment of a given depth map with its corresponding
2-D guidance image performs in only 2 milliseconds using our experimental setup.
Therefore, the proposed method is feasible for real-time applications under industrial
constraints. In addition, we showed that this proposed mapping is suitable for all

kinds of ToF cameras even with large fields of view and low resolutions. The final
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experimental results of this part showed an accurate pixel alignment that assists further
low-level data fusion techniques.

The second part of this thesis presented a new multi-lateral filter for low-level data
fusion in real-time, the so-called UML filter. The proposed filter overcomes many of
the drawbacks of existing fusion techniques, i.e., texture copying and edge blurring in
the enhanced depth maps. This is achieved by adding a new term in the kernel of the
filter, the so-called credibility map. The credibility map accounts for the misalignment
of edges between the data to be filtered by setting a low weight to the distance measure-
ments that belong to depth edge pixels. Even with the good accuracy of the previous
mapping process, this misalignment may appear due to the difference between the 2-D
and depth map resolutions. Hence, the UML filter enhances a low-resolution depth
map given by a ToF camera up to the image resolution given by the coupled 2-D video
camera in the hybrid ToF multi-camera rig. The generated dense depth maps pre-
sented more accurate measurements where the depth discontinuities were well defined
and adjusted to the 2-D guidance image. In addition, we increased the depth accuracy
in such areas that were geometrically smooth adjusting the right weights during the
filtering process. Regarding the global noise level, it was significantly reduced thanks
to the nature of the bilateral filter on which the UML filter is based. The experimen-
tal results of this part were conducted on our own recorded sequences as well as on
different scenes from the Middelbury dataset. We showed that our filter outperforms
previous fusion techniques, delivering better results even in the case where depth edges
have no corresponding 2-D edge in the guidance image. In addition, we proposed a
fast implementation inspired by the work of Yang et al. [YTA09] and following the
recommendations of Paris et al. [PD09] that enables real-time applications. Thus, in
a similar way than in [YTAO09], we proposed to quantify the range of the data to be
filtered. As a result of this quantization our non-linear filter became a linear filter
where the convolution between the spatial and range weighting terms could be applied.
Considering the work of Paris et al. in [PD09], we also proposed to downsample the
data before filtering. As a result, we ensured a good memory and speed performance
without introducing significant errors. Finally, the final enhanced depth map results
from combining the linear range interpolation and the bi-linear spatial interpolation to

a tri-linear (i.e., eight point) interpolation.

115



9. CONCLUSIONS

The last part of this thesis proposed two extensions of the filtering techniques pre-
sented in Part II. Due to restrictions in processing time and memory constraints, many
filtering techniques in computer vision applications consider grayscale images instead
of the original coloured ones. Although the generalization of our filter to colour images
is straightforward, the memory and computation time demands that result from the
processing of the 3-colour channels of a colour image, e.g., red, green, and blue chan-
nels in the case of an RGB image, prevent from a real-time implementation. However,
we noticed that when filtering using colour images, the edge blurring artefact is sig-
nificantly reduced. The reason is that different colours are not collapsed to the same
intensity value suppressing 2-D edges between objects in the scene. Hence, we have
proposed a new 1-D colour model, i.e., the cumulative angle model, that reduces the
dimensionality of the 3-D HCL representation to a unique dimension while preserving
original perceptual properties. We derived the cumulative angle model by sampling
the HCL cone in two dimensions using spirals. By using this new colour model, the
edge blurring artefact may only appear in the case where objects at different distances
share exactly the same colour. The second extension tackled the enhancement of the
hybrid ToF multi-camera rig resolution over time. We proposed to estimate the motion
between each pair of 2-D frames and to compensate it in the low-resolution depth maps.
The predicted low-resolution depth maps were then fused with their corresponding 2-D
frames by using the depth enhancement techniques presented in Chapter 5. As a re-
sult, the hybrid ToF multi-camera rig is capable to provide enhanced depth video where

computer vision processes can be applied to improve the robustness of real applications.

9.1 Future research directions

Due to the time constraints that cover the working plan of this project, there are a
list of points related to the work that can be further investigated. In the following, we

address some issues.

e Credibility map. Since we know that ToF cameras provide inaccurate depth
measurements within depth edges, we defined the credibility map as a weight
related to the gradient of the low-resolution depth maps such that a low credibility
weight indicates an unreliable depth measurement whereas a high credibility map

weight indicates a reliable depth measurement. However, more sophisticated
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ways to estimate the credibility map, such as the work proposed by Reynolds et
al. [RDP*11], can be considered although the computational complexity will be

increased.

Cumulative angle colour model. Although we have proposed a new colour
model for filtering purposes, we have realised that the two sampling rates K and
KL are important parameters that need to be further investigated in order to
evaluate the extent of the colour data compression rate. On the other side, we
will work towards a simple and discriminative distance for the proposed model as

it is another open question important for real-time colour filtering.

3-D optical flow. Our last contribution relates the enhancement of the depth
information over time, i.e., increasing the frame rate of the enhanced depth data
delivered by the hybrid ToF multi-camera rig. To do so, we estimate the motion
between each pair of 2-D frames and we use it to predict new low-resolution depth
maps. The enhanced depth video results from the fusion between predicted depth
maps and their corresponding 2-D frames. However, we assume that the motion
in the scene is always parallel to the sensing system. As a future work, we would
like to consider an extra dimensionality and thus generalise our concept to any
possible motion within the scene. Therefore, an appropriate concept for 3-D

optical flow has to be investigated.

The application of our depth enhancement techniques to other 3-D sensing modal-

ities.

— Stereo vision systems. Stereo vision systems reproduce the observed
scene from the triangulation of feature-correspondence pairs. As a result,
there are areas in the resulting depth map without distance information.
Thus, a registration process that interpolates between the estimated 3-D
points is required in order to obtain a dense depth map. Instead, we propose
to use our concepts and fuse the estimated 3-D points, without registration,
with one of the 2-D images acquired by the camera rig. To that end, we
need to investigate how to extend our concept to cope with unreliable areas

instead of only edges.
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— Structured light systems. The same idea of enhancing the 3-D informa-
tion proposed for stereo vision system applies to structured light systems.
In that case, the 3-D information may be combined with the 2-D image
given by the 2-D camera. A straightforward application would be the fusion
between the depth maps given by Microsoft’s Kinect camera and the 2-D
images given by its VGA camera. This solution would enhance the final
depth maps with more accurate depth edges and a significant reduction of

shadowing and occlusion artefacts.

— ToF scanner. New emerging ToF scanners, e.g., the ibeo LUX [Ibell] or
the Eco Scan FX8 [Nipll] are able to generate low-resolution depth maps
with more precise distance measurements than current ToF cameras. How-
ever, these depth maps are generated successively point by point which yields
a known time delay between them. As a result, some motion artefacts can
be observed in the given depth map. We propose to investigate the exten-
sion and adaptation of our temporal enhancement technique to reduce these
motion artefacts. Then, the generated depth maps can be enhanced by using

our fusion filtering techniques.
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Appendix A

Hybrid ToF multi-camera rig

devices

This appendix reports the specifications of each of the cameras considered within our

hybrid ToF multi-camera rig prototypes.
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A. HYBRID TOF MULTI-CAMERA RIG DEVICES

A.1 3D MLI SensorTMPrototype

The 3D Modulated Light Intensity (MLI) Sensor prototype (Figure A.1) is a compact
ToF camera prototype fully manufactured by IEE S.A. [IEE11]. It is able to generate
3-D imaging without requiring additional cameras or specific processing. Due to the
ToF principle in which it is based on (Section 1.2.1), lighting conditions as well as
temperature do not influence to the generated depth measurements. Table A.1 presents

the main hardware specifications of the 3D MLI SensorTMprototype.

Figure A.1: 3D MLI SensorTMprototype from IEE S.A.

Table A.1: Hardware specifications of the 3D MLI SensorTMprototype.

Imager technology Time-of-Flight (ToF)
Silicon process CMOS with CCD
Pixel resolution 61 pixels x 56 pixels
Pixel size § 68 pm x 49 pm
Field of view (130° x 100°) or CS-mount lenses
Lens mount CS-mount lenses
Frame rate Up to 10 Hz
Illumination type LED array
Ambient light 0 to full sunlight
Non ambiguity 7.5 m at 20 MHz modulation frequency
Distance accuracy £2 cm at 1.5 m at 20 MHz modulation frequency
Operating temperature —20°C to +50°C full operation,
storage up to 110°C
Housing dimensions (LxW xH) 104 mm x54 mmx144 mm
Supply voltage 90 V-220 V to 12 V, 50 Hz to 60 Hz
Digital interface USB 2.0 full speed
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A.2 Flea®2 CCD Camera

A.2 Flea®2 CCD Camera

The Flea®2 CCD Camera (Figure A.2) is an ultra-compact, cost effective, and versatile
2-D video camera for demanding imaging applications in industrial machine vision. It
is manufactured by Point Grey Research, Inc. [Poill]. The main reason why we chose
this 2-D camera was first because it is commonly used by the research community in
computer vision and second because of its dimensions, that facilitated the attachment
with the 3D MLI Sensor  prototype from IEE S.A. (Figure A.1). We selected the
FL2-03S2C model, since its resolution is sufficient (about ten times higher than the
IEE’s ToF camera) to evaluate our depth enhancement approaches. Table A.2 presents

the main hardware specifications of the Flea®2 camera.

Figure A.2: Flea®2 CCD Camera from Point Grey Research, Inc.

Table A.2: Hardware specifications of the Flea®2 CCD Camera.

Specification FL2-0352C
Image sensor model Sony progressive scan interline transfer CCD’s
with square pixels and global shutter, color
Maximum resolution 648 pixels x 488 pixels
Pixel size § 7.4 pm X 7.4um
Lens mount C-mount lenses
Maximum frame rate 80 frames per second (fps)
Operating temperature 0°C to +45°C
Housing dimensions (LxW xH) 29 mm x29 mmx30 mm
Digital interface Bilingual 9-pin IEEE-1394b for camera control,
video data transmission, and power
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A.3 3D MLI Sensor

In the same way as its prototype (Section A.1), the 3D Modulated Light Intensity
(MLI) Sensor' (Figure A.3) is a sensing system that collects real-time distance images
of objects by means of infrared reflection. The main differences between the proto-
type and the serialized cameras are the housing dimensions, digital interface and other
features such as water proof or web interface. Table A.3 presents the main hardware

specifications of the 3D MLI Sensor .

Figure A.3: 3D MLI SensorTMprototype from IEE S.A.

Table A.3: Hardware specifications of the 3D MLI Sensor .

Imager technology Time-of-Flight (ToF)
Silicon process CMOS with CCD
Pixel resolution 61 pixels x 56 pixels
Pixel size § 68 pm x 49 pm
Field of view 130° x 100°
Frame rate Up to 10 Hz
Illumination type LED with optimized diffuser
Ambient light 0 to full sunlight
Non ambiguity 7.5 m at 20 MHz modulation frequency
Distance accuracy 42 cm at 1.5 m at 20 MHz modulation frequency
Operating temperature —20°C to +50°C full operation,
storage up to 110°C
Housing dimensions (LxW xH) 150 mm %180 mmx108mm
Supply voltage 24 V DC +15%
Digital interface Ethernet
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A.4 Dragonfly®2 CCD Camera

A.4 Dragonfly®2 CCD Camera

The Dragonfly®2 CCD Camera (Figure A.4) presents similar features as the Flea®2
CCD Camera (Section A.2). However, its remote head as well as the possibility of buy-
ing an OEM style board facilitated its integration within the 3D MLI Sensor housing.

Table A.4 presents the main hardware specifications of the Dragonfly®2 camera.

Figure A.4: Dragonfly®2 CCD Camera from Point Grey Research, Inc.

Table A.4: Hardware specifications of the Dragonfly®2 CCD Camera.

Specification DR2-COL-XX
Image sensor model Sony progressive scan interline transfer CCD’s with
square pixels and global shutter, color
Maximum resolution 648 pixels x 488 pixels
Pixel size § 74 pm X 7.4pm
Lens mount CS-mount lenses
Maximum frame rate 60 frames per second (fps)
Operating temperature 0°C to +45°C
Dimensions 64 mm x51 mm (bare board without case or lens holder)
Digital interface 6-pin IEEE-1394 for camera control and
video data transmission
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Appendix B

Uncertainty of the measured

distance d

In this appendix we derive the expression of the uncertainty of a measured distance o,
presented in (1.17). The uncertainty of a measured distance o4 is proportional to the

uncertainty of the determined phase ¢ by a factor L/27, from (1.10) and (1.16). Then,

3 2
L L ¢ 2
g T o J > (350w o

3 2
= % : J > (821)) - (e(rk) + 02 + 02) (B.1)
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with
90\ 2
kzzo <86(Tk)> . (C(Tk) +os+ O‘t)
) —(&(rs) — (1)) )2 PN
((6(7’0)—0(7’2))2+ (C(Tg)—C(Tl))2 ( ( 0)+ 6+ t)
—(&(70) — &(72)) )2 (&) 0?1 o
* ((E(Tg) — 6(7’2))2 + (6(7’3) — C(Tl))2 ( () +oc + t>
(&(3) — é(m)) )2 (&) + o2 4 o2
* ((E(To) — (7’2))2 + (é(r3) — c(7’1))2 (#(ra) & 0 + )
(@(r0) — &(m)) )2 ) ,
+ -(e(m3) - 0g + 0y
((em) st e -yt )
_ (@m) + ém) + 202 + 7)) - (E(m0) — &)
2
((alro) = &(r2))* + (&) — &)
(&(r0) + &(m2) + 2(02 + 02)) - (&(m3) — &)’
- — - (B.2)
((elro) = &(m2))* + (el7s) — &(m))
From (1.6),
&) = o+ %cos(wm —¢) =h+ gcos(qb), (wro = 0),
(i) =h+ %cos(wﬁ ) =h+ gsin(qﬁ), (wr = 7/2),
&(rg) = h+ gcos(un'g —¢)=h-— %cos(d)), (wre = ),
&(m3) = h+ gcos(ng —¢)=h— %sin(qﬁ), (wrg = 37/4). (B.3)
with 7, = k- T'/4. From (B.3) we see that é(m9) + é(m2) = é(71) + é(73), thus
06\ 2,
kZ:D (05(Tk)> (&) + 02+ 0t)
(@lm) +élr) + 202 +07)) - (o) = &(72) + () — &(m))°)
((em) — a(m)? + (ers) — 2(r))?)”
_ (5(7'1) + 5(7’2) +2(02 + atz)) (B.4)

(¢(m0) — é(m2))” + (c(r3) — 5(7'1))2.
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From (1.14) and assuming that ¢(79) 4+ ¢(12) = é(11) + é(73),

i _ elm) +é(n) Z &(m2) +&(r3) _ (o) J2r c(r2) (B.5)

Finally, we determine o4 by substituting (1.13), (B.4), and (B.5) in (B.1), i.e.,

V2L \/h+ 02402 I \h+o2+o? .
— : = : : .6
on 24 V2 2 (B-6)

We note that the expression of o4 in (B.6) differs from the one presented by

0d

Lange [LSBLO00] by a constant factor called the demodulation contrast, which depends

on the sensor characteristics, i.e., the way the demodulation is practically implemented.
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Appendix C

Proof of the proposed motion

cumulation

In this appendix we show and prove by induction the proposed cumulative forward and

backward motion estimation approaches.

C.1 Cumulative forward motion estimation

In (8.6), we have introduced the function g(p;+1) that relates the position of a pixel p;

on I; with its corresponding position p;11 on the consecutive frame I, 1, as follows

pi = g(Pi+1)- (C.1)

In the following, we prove by induction that

Pi = 9"(Pitn), where g" =go..og, (C.2)

n times

and n € N*. From (C.1), we check that the case of n =1 in (C.2) is true by definition.

We then assume that (C.2) is correct and we show that

Pi = ¢ (Pitnt1)- (C.3)

If we replace ¢ by (i +n) in (C.1), we obtain

Pitn = 9(Pi+nt1), (C4)
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and by replacing (C.4) in (C.2), we find

Pi = 9" (9(Pitn+1)) = (9" © 9)(Pitn+1) = ¢ (Pin+1)- (C.5)

Hence, we have demonstrated that our assumption is correct. In the cumulative forward
motion estimation approach (Section 8.2), we refer to the index of the current frame n
as i, and to the frame with subscript i as the keyframe 0. Then, by replacing n by ¢
and i by 0 in (C.2), we obtain

po = 9'(pi)- (C.6)

C.2 Cumulative backward motion estimation

In (8.9), we have introduced the function h(p;_1) that relates the position of a pixel p;
on I; with its corresponding position p;_; on the immediately preceding frame I,_1, as

follows
pi = h(Pi71)~ (0-7)

Following the same ideas as in Appendix C.1, we prove by induction that

pi = h"(pi—n), where h* =ho..oh, (C.8)

n times

and n € N*,
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