
Real-Time Depth Enhancement by Fusion for
RGB-D Cameras

Frederic Garcia?, Djamila Aouada?, Thomas Solignac‡,
Bruno Mirbach‡, and Björn Ottersten?

?Interdisciplinary Centre for Security, Reliability and Trust
Universtity of Luxembourg

{frederic.garcia,djamila.aouada,bjorn.ottersten}@uni.lu

‡Advanced Engineering - IEE S.A.
{thomas.solignac,bruno.mirbach}@iee.lu

Abstract. This paper presents a real-time refinement procedure for
depth data acquired by RGB-D cameras. Data from RGB-D cameras
suffers from undesired artifacts such as edge inaccuracies or holes due to
occlusions or low object remission. In this work, we use recent depth en-
hancement filters intended for Time-of-Flight cameras, and extend them
to structured light based depth cameras, such as the Kinect camera.
Thus, given a depth map and its corresponding 2-D image, we correct
the depth measurements by separately treating its undesired regions. To
that end, we propose specific confidence maps to tackle areas in the scene
that require a special treatment. Furthermore, in the case of filtering ar-
tifacts, we introduce the use of RGB images as guidance images as an
alternative to real-time state-of-the-art fusion filters that use grayscale
guidance images. Our experimental results show that the proposed fu-
sion filter provides dense depth maps with corrected erroneous or invalid
depth measurements and adjusted depth edges. In addition, we propose
a mathematical formulation that enables to use the filter in real-time
applications.

Key words: depth enhancement, data fusion, active sensing.

1 Introduction

The research on autonomous systems that are capable of understanding the
shape and location of objects in a scene has been growing in recent years. Hence
the demand for a quality depth estimation is today one of the active research
areas in computer vision. Recent advances in active sensor technologiesby the
hand of PrimeSenseTMhave greatly helped to significantly overcome this prob-
lem, and consumer-accessible RGB-D cameras such as the Kinect distributed
by Microsoft R© , the Xtion Pro Live distributed by Asus, or the Carmine dis-
tributed and produced by the same manufacturer PrimeSenseTM, are able to
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provide high-resolution depth maps in real-time. However, such sensing systems
estimate depth from triangulation techniques and thus, they are linked to the
baseline between the camera and the light source, which yields to occlusions or
shadowing, and creates erroneous regions during depth estimation.

Similar non-desired artifacts have been tackled in stereopsis; e.g., large oc-
cluded regions can be handled by image in-painting [1] techniques that adopt
structure propagation and texture synthesis. The extension of such approaches
to active sensing systems is known as hole filling and is commonly used in depth
image based rendering for 3-D TV [2, 3]. However, its performance is far from
real-time. We, instead base our work on approaches of fusion by filtering tested
and proven on Time-of-Flight (ToF) cameras [4–7]. Our main goal is to gener-
alize such approaches and define a novel fusion filter, to which we refer as the
RGB-D filter, specifically intended for real-time RGB-D consumer cameras. The
filtering is based on the concept of fusing a given depth map with a guidance
or a reference image (or images), usually taken as the matching 2-D image. In
general, in the case of fusion filters for ToF depth enhancement, the guidance
image is used to upsample the low resolution depth maps to their same resolu-
tion. In our case, instead, this guidance image is used to correct unreliable depth
regions.
In this paper, we will design new confidence measures to incorporate to the pro-
posed filter in order to indicate those areas within the initial depth map that
require special attention.

The remainder of the paper is organized as follows: Section 2 presents the
general framework of depth resolution enhancement by fusion filters. In Section 3,
we present the RGB-D filter as well as the confidence measures to combine depth
and 2-D information. Section 4 proposes a mathematical formulation for the
RGB-D filter that enables for a real-time performance. In Section 5, we present
and quantify the results of the proposed depth enhancement approach. Finally,
concluding remarks are given in Section 6.

2 Problem Statement & Background

The idea of considering a guidance 2-D image to improve the quality of its cor-
responding depth map was first introduced by Kopf et. al in [8], where they
presented the Joint Bilateral Upsampling (JBU) filter, an extension of the bilat-
eral filter [9] that considers two different data sources within the kernel of the
filter. Their work was first intended to compute a solution for image analysis and
enhancement tasks, such as tone mapping or colorization through a downsam-
pled version of the data. However, its application to depth data enhancement
inspired most of the current depth enhancement techniques by fusion [4–6, 10].
The JBU filter enhances an initial depth map D to the higher resolution of a
corresponding 2-D guidance image I, as follows

J1(p) =

∑
q∈N(p) fS(p,q)fI

(
I(p), I(q)

)
D(q)∑

q∈N(p) fS(p,q)fI
(
I(p), I(q)

) , (1)
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where N(p) is the neighborhood at the pixel indexed by the position vector
p = (i, j)T , with i and j indicating the row, respectively column corresponding
to the pixel position. This non-iterative filter formulation is a weighted aver-
age of the local neighborhood samples, where the weights are computed based
on spatial and radiometric distances between the center of the considered sam-
ple and the neighboring samples. Thus, its kernel is decomposed into a spatial
weighting term fS(·) that applies to the pixel position p, and a range weighting
term fI(·) that applies to the pixel intensity value I(q). The weighting func-
tions fS(·) and fI(·) are generally chosen to be Gaussian functions with stan-
dard deviations σS and σI, respectively. Nevertheless, according to the bilateral
filter principle, the fundamental heuristic assumptions about the relationship
between depth and intensity data, may lead to erroneous copying of 2-D texture
into actually smooth geometries within the depth map. Furthermore, a second
unwanted artifact known as edge blurring appears along depth edges that have
no corresponding edges in the 2-D image, i.e., in situations where objects on
either side of a depth discontinuity have a similar color. In order to cope with
these issues, we proposed in [5] a new fusion filter known as Pixel Weighted
Average Strategy (PWAS). The PWAS filter extends the expression in (1) by
an additional factor, to which we referred as the credibility map, that indicates
unreliable regions within the depth maps obtained using a Time-of-Flight (ToF)
camera. Since these unreliable regions are linked to depth edges, we defined the
credibility map as

Q(p) = exp

(
−
(
∇D(p)

)2
2σ2

Q

)
, (2)

where ∇D is the gradient of the given depth map D. From (2), depth pixels in
D that belong to smooth regions, i.e., no depth gradient, are weighted with a
high value (Q ≈ 1) to indicate that measurements in these pixels have a high
reliability. In contrast, depth pixels that belong to depth edges are weighted with
a low value (Q ≈ 0) to indicate that these pixels are not reliable. We then focus
on these low reliable depth pixels as they require a special treatment. Thus, for
a given depth map D, a credibility map Q, and a guiding intensity image I, the
enhanced depth map J2 resulting from PWAS filtering is defined as follows

J2(p) =

∑
q∈N(p) fS(p,q)fI

(
I(p), I(q)

)
Q(q)D(q)∑

q∈N(p) fS(p,q)fI
(
I(p), I(q)

)
Q(q)

. (3)

Although, the PWAS filter copes well with edge blurring, texture copying is still
not fully solved within the enhanced depth maps. The reason is that the range
weighting term within the filter in (3) considers a textured guidance image. In
order to significantly reduce this artifact, we proposed in [6] the Unified Multi-
Lateral (UML) filter. The UML filter combines two PWAS filters where the
output J3 of the second one has both spatial and range weighting terms acting
onto the same data source D. In addition, we suggested to use the credibility map
Q as a blending function, i.e., β = Q, hence, depth pixels with high reliability
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are not influenced by the 2-D data avoiding texture copying as follows

J4(p) =
(
1− β(p)

)
· J2(p) + β(p) · J3(p), (4)

with

J3(p) =

∑
q∈N(p) fS(p,q)fD

(
D(p),D(q)

)
Q(q)D(q)∑

q∈N(p) fS(p,q)fD
(
D(p),D(q)

)
Q(q)

. (5)

The kernel fD is another Gaussian function with a different standard devia-
tion σD.

3 Proposed RGB-D Filter for Depth Enhancement

In the following, we demonstrate how fusion filters designed to enhance the ac-
curacy and the resolution of low-resolution depth maps from ToF cameras can
be extended to enhance the data given by consumer RGB-D cameras such as
the Kinect or the Xtion Pro Live. In contrast to ToF cameras, RGB-D cameras
estimate depth using structured light techniques and thus, problems arise when
the light power of the projected pattern is not sufficient to be reflected back
to the sensor. Furthermore, since active triangulation methods require a base-
line for depth estimation, occlusion is an additional drawback to overcome. We
herein consider a consumer RGB-D camera as an active sensor that provides a
depth map D and a perfectly matching 2-D color image I. Depth maps obtained
from such RGB-D cameras have no depth information within occluded regions.
Moreover, depth measurements can be unreliable in object boundaries. We note
that in the case of the PWAS or UML filters, non-valid depth measurements
were treated separately in order to be preserved in the enhanced depth map,
e.g., background pixels [11]. In the case of RGB-D cameras, non-valid pixels are
set to 0. Since the aim of this paper is to fill these regions with appropriate
depth measurements, we propose to replace the credibility map Q in J2 by QD,
defined as

QD(p) =

{
0 if D(p) = 0,
Q(p) otherwise.

(6)

We recall that pixels with low weights in QD indicate a low reliable depth pixel
while pixels with high weights indicate a reliable depth pixel.

The use of the credibility map Q as a blending function β, suggested in (4),
provokes edge blurring when filtering low reliable depth pixels if no corresponding
2-D edge is present. Although this situation only arises when foreground and
background objects share the same intensity value, the conversion of the given
color image I to its grayscale version IG, that is used as a guidance image,
increases this unwanted effect. Indeed, different colors in the RGB space get
collapsed to the same grayscale intensity value. Fig. 1 presents two synthetic
images that make this effect more prominent, illustrating the loss of 2-D edges
when transforming to grayscale. Thus, in order to reduce edge blurring in the
filter output, we proposed in [12] to generalize the blending function β in (4) as
follows

β(p) = QD(p)
(

1 + QIG(p)
(
1−QD(p)

))
, (7)
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(a) I (b) IG (c) I (d) IG

Fig. 1: (a) First test case. (b) Grayscale conversion of (a). (c) Second test case.
(d) Grayscale conversion of (c).

(a) QIG (b) QD (c) D (d) J4

(e) QIG (f) QD (g) D (h) J4

Fig. 2: 1st col.: QIG computed on Fig. 1b and Fig. 1d. 2nd col.: QD computed
on (c) and (d). 3rd col.: Depth maps D. 4rd col.: Filter responses J4.

with the factor QIG defined analogously to Q in (2) but considering ∇IG, the
gradient of IG. By doing so, we give more weight to the PWAS term J2 in the
case where QIG is low, i.e., if there exists a 2-D edge to which it is possible to
adjust the unreliable depth measurements. However, in the case where no 2-D
edge is present, i.e., QIG ≈ 1, inaccurate depth measurements along depth edges
cannot be aligned. Fig. 2a and Fig. 2e are the confidence measures QIG computed
on the two test cases in Fig. 1b and Fig. 1d, respectively. We can observe that in
both cases, QIG is high for all non reliable depth pixels (QIG ≈ 0). As a result,
the filter outputs J4 shown in Fig. 2d and Fig. 2h, respectively, present edge
blurring within object boundaries.

In general, RGB-D cameras include an RGB sensor intended for display pur-
poses, e.g., Microsoft R© uses it to display what the RGB-D camera sees. In this
paper, we propose to take advantage of this sensor and to use its data as colour
guidance images. By doing so, we overcome the aforementioned problem when
transforming from RGB to grayscale. However, when real-time is required, the
straightforward usage of RGB images as three channels to guide the filtering be-
comes impractical. If we consider an RGB image within the range kernel in (3),
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its dimensionality increase becomes intractable due to memory restrictions [13].
A possible solution would be to consider each RGB channel separately and then
to combine the three filter outputs. However, this combination may also lead to
edge blurring since edges might not be visible in all three channels, as demon-
strated in [13, 14]. Instead, we propose to filter considering each RGB channel
adaptively, i.e.,

J2,c(p) =

∑
q∈N(p) fS(p,q)fI

(
Ic(p), Ic(q)

)
QD(q)D(q)∑

q∈N(p) fS(p,q)fI
(
Ic(p), Ic(q)

)
QD(q)

. (8)

The subscript c indicates the channel of the RGB image I = {Ic}, c ∈ {0, 1, 2}
to be filtered. Our aim is to consider for each pixel p the RGB channel c(p) that
best describes a corresponding 2-D edge when filtering; that is, to choose the
RGB channel in which the edge is visible to better guide the filter (see Fig. 3). To
that end, we define three new confidence measures QIc to quantify the presence
of a 2-D edge for each RGB channel. QIc is defined analogously to QIG but
replacing IG by Ic. The RGB-D filter is then defined as follows

J5(p) =
(
1− β(p)

)
· J2,c(p)(p) + β(p) · J3(p), (9)

with
β(p) = QD(p)

(
1 + QI(p)

(
1−QD(p)

))
, (10)

and
[QI(p), c(p)] = min{QIc(p)}, c ∈ {0, 1, 2}. (11)

The function min(A) returns the smallest element along different dimensions of
an array A, and its corresponding index. We recall that J2,c(p) is the PWAS
filter output that considers as a guidance image the RGB channel Ic(p) that best
describes the 2-D edge for each pixel p, as shown in Fig 4.

4 Real-Time Implementation

Though bilateral filtering is known to be time consuming, its latest fast im-
plementations based on data quantization and downsampling [13, 15], enable a
high-performance. Inspired on these techniques, we proposed a real-time imple-
mentation for the PWAS and UML filters in [6]. In the following, we extend
our previous work and we propose an RGB-D filter formulation intended for
real-time performance.

4.1 Range Data Quantization

Similarly to [15], we sample the range of the 2-D intensity values and depth
measurements, i.e., Ic,k = sI · k, and Dl = sD · l, with k = 0, ...,K and l =
0, ..., L. sI and sD are the 2-D and depth quantization factors; thus (sI×K) and
(sD × L) are equal or larger than the maximum 2-D intensity values and depth
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(a) IG (b) I0 (c) I1 (d) I2

(e) QIG (f) QI0 (g) QI1 (h) QI2

(i) IG (j) I0 (k) I1 (l) I2

(m) QIG (n) QI0 (o) QI1 (p) QI2

Fig. 3: 1st and 3rd rows: 2-D guidance images. 2nd and 4th rows: 2-D confidence
measures.

measurements, respectively. Then, inserting in (8) and in (5) the quantized levels
Ic,k and Dl for Ic(p), respectively D(p), one obtains for each intensity channel
and for each level a filtered range image

J2,c(p, Ic,k) =

∑
q∈N(p) fS(p,q)fI

(
Ic,k, Ic(q)

)
QD(q)D(q)∑

q∈N(p) fS(p,q)fI
(
Ic,k, Ic(q)

)
QD(q)

, (12)

and

J3(p, Dl) =

∑
q∈N(p) fS(p,q)fD

(
Dl,D(q)

)
QD(q)D(q)∑

q∈N(p) fS(p,q)fD
(
Dl,D(q)

)
QD(q)

. (13)
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Fig. 4: Flow diagram of the RGB-D filter computation. The subscript c stands
for the channels of I, i.e., c ∈ {0, 1, 2} and c(p) indicates the best channel c to
adjust a given pixel p.

We define four mappings, i.e., EIc,k(·) and F Ic,k(·), for a quantized intensity
value at the pixel position p such that

EIc,k : q 7−→ fI
(
Ic,k, Ic(q)

)
·QD(q)·D(q), (14)

F Ic,k : q 7−→ fI
(
Ic,k, Ic(q)

)
·QD(q), (15)

and GDl(·) and HDl(·), for a quantized depth measurement at the pixel position
p such that

GDl : q 7−→ fD
(
Dl,D(q)

)
·QD(q)·D(q), (16)

HDl : q 7−→ fD
(
Dl,D(q)

)
·QD(q). (17)

We then may rewrite (12) and (13) as follows

J2,c(p, Ic,k) =

∑
q∈N(p) fS(p,q)·EIc,k(q)∑
q∈N(p) fS(p,q)·F Ic,k(q)

, (18)

and

J3(p, Dl) =

∑
q∈N(p) fS(p,q)·GDl(q)∑
q∈N(p) fS(p,q)·HDl(q)

. (19)

We note that fS(p,q) is a function of the difference (p − q). We may hence
write (18) and (19) as

J2,c(p, Ic,k) =

(
fS ∗ EIc,k

)
(p)(

fS ∗ F Ic,k
)
(p)

, (20)

and

J3(p, Dl) =

(
fS ∗GDl

)
(p)(

fS ∗HDl

)
(p)

, (21)

where ∗ denotes the convolution between functions.
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The filtered value J2,c

(
p, Ic(p)

)
results from a linear interpolation of the

filtered range image J2,c(p, ·) obtained for the different levels at position p and
intensity value Ic(p) between Ic,k and Ic,k+1, i.e.,

J2,c

(
p, Ic(p)

)
=interpolate

(
J2,c(p, ·), Ic(p)

)
=

1

sI

((
Ic,k+1−Ic(p)

)
J2,c(p,Ic,k+1) +

(
Ic(p)−Ic,k

)
J2,c(p,Ic,k)

)
.

(22)

The same applies to J3

(
p,D(p)

)
; thus from a linear interpolation between Dl

and Dl+1, i.e.,

J3

(
p,D(p)

)
=interpolate

(
J3(p, ·),D(p)

)
=

1

sD

((
Dl+1−D(p)

)
J3(p,Dl+1) +

(
D(p)−Dl

)
J3(p,Dl)

)
. (23)

Finally, the enhanced depth map J5 results from (9), considering the best PWAS
filter output J2,c(p) from (22), the filtered depth map J3 from (23), and the
blending function β from (10).

4.2 Data Downsampling

In addition to the range quantification, one can ensure a good memory and speed
performance by downsampling the data to be filtered. According to the study
that Paris et al. conducted in [13], the sampling of the input data does not intro-
duce significant errors. The same strategy applies to the proposed RGB-D filter
presented in Section 3. To that end, we downsample the input data, i.e., Ic↓ =
downsample(Ic, λ), D↓ = downsample(D, λ), and QD↓ = downsample(QD, λ),
with λ being the scale factor. We run equations (12)-(23) using Ic↓ and D↓,
instead of Ic, respectively D, from which result four low-resolution filtered im-
ages J2,c↓, and J3↓. Formally, the values J2,c

(
p, Ic(p)

)
and J3

(
p,D(p)

)
of the

high-resolution filtered range images can be obtained by spatially interpolating
the low-resolution filtered images, i.e.,

J2,c

(
p, Ic(p)

)
= interpolate

(
J2,c↓

(
·, Ic(p)

)
,p/λ

)
, (24)

and

J3

(
p,D(p)

)
= interpolate

(
J3↓
(
·,D(p)

)
,p/λ

)
. (25)

In addition, we propose to combine both the linear range interpolation and the
bi-linear spatial interpolation to a tri-linear (i.e., eight point) interpolation as
follows

J2,c

(
p, Ic(p)

)
= interpolate

(
J2,c↓(·, ·),p/λ, Ic(p)

)
, (26)
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and

J3

(
p,D(p)

)
= interpolate

(
J3↓(·, ·),p/λ,D(p)

)
. (27)

Notice that within these interpolations, the low resolution filtered images J2,c↓
have to be computed for each value Ic(p) of the high resolution input images.
Instead, we propose to not compute for each channel c the filter output J2,c, but
only compute for each pixel p the filter output of the channel c(p), i.e.,

J2,c(p)

(
p, Ic(p)(p)

)
= interpolate

(
J2,c(p)↓(·, ·),p/λ, Ic(p)(p)

)
. (28)

c(p) being the index of the channel given by (11). The final output of the RGB-D
filter is then obtained according to (9) by superposing the filter outputs in (27)
and (28) using the blending function β in (10) that defines a pixel-dependent
weight for each of the two contributions.

In order to avoid filtering artefacts due to the data quantization and sam-
pling introduced above, the standard deviations σI, σD, and σS may be chosen
greater than sI, sD, and sS, respectively. Otherwise, the approximation may be
poor, i.e., numerically unstable. According to the mappings in (15) and (17),
the noise due to quantization only affects the range mapping functions F Ic,k

and HDl , and thus, the intensity values of the 2-D image Ic(q) as well as the
depth measurements of the depth map D(q) are preserved.

Through the experiments, we noticed that depth measurements that belong
to reliable regions (D(p) with QD(p) ≈ 1) do not present significant noise. This,
in turn, allowed us to further optimise the computation time as we could replace
the second PWAS filtering J3 in (9), intended to smooth depth measurements
in such regions, by the depth map D given by the RGB-D camera, i.e.,

J6(p) =
(
1− β(p)

)
· J2,c(p)(p) + β(p) ·D(p), (29)

By doing so, we further improve the global time consuming of the RGB-D filter as
we avoid the consumption time required to compute J3. We note that this further
time optimization can only be done in case the noise within depth measurements
that belong to reliable regions can be neglected.

5 Experimental Results

We herein consider the Xtion Pro Live as a consumer RGB-D camera, how-
ever, either the Xtion Pro Live, the Carmine, or the Kinect cameras present
similar specifications as all of them are produced by the same manufactured,
PrimeSenseTM. In addition to be a consumer-accessible depth camera, a major
advantages is that the aforementioned depth cameras are a close sensing system
that provide real-time depth and video streams with a well done mapping be-
tween the integrated sensors. Therefore, we do not have to deal with the internal
transformation, in which distance-dependence disparity is involve [16], to map
the depth data onto the 2-D data. In the following, we first motivate the use of a
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Table 1: Percentage of best SSIM performance per enhanced depth pixel in J6

when filtering using IG, I, I0, I1, and I2 as a guidance image.
Dataset IG I I0 I1 I2
Art 19.41 26.02 27.81 20.55 37.33
Books 25.66 39.98 33.77 30.41 38.05
Dolls 15.89 23.84 30.50 19.54 29.64
Laundry 26.46 36.45 34.47 29.26 38.99
Moebius 27.12 38.28 34.86 29.89 35.98
Teddy 43.87 48.13 46.20 52.06 46.12

colour guidance image by a quantitative evaluation in which we have considered
scenes from the Middlebury stereo dataset1 as well as the two test cases that
we have previously generated to illustrate the downside of transforming a colour
guidance image to its grayscale version. Next, we show some visual results us-
ing lab-acquired sequences recorded by the Xtion Pro Live camera. Finally, we
perform a runtime analysis at different data sampling rates.

5.1 Qualitative and Quantitative Evaluation

In order to motivate the use of a colour guidance image within the filtering pro-
cess, we have first quantified the performance of the RGB-D filter using the Art,
Books, Dolls, Laundry, Moebius, and Teddy scenes from the Middlebury stereo
dataset (see Fig. 5). The Middlebury stereo dataset provides ground truth dis-
parity maps and their corresponding 2-D RGB images. The ground truths G (see
3rd column of Fig. 5) have been generated from the given ground truth disparity
maps using the sensing system parameters from the Middlebury website (focal
length is 3740 pixels and baseline is 160 mm). The depth maps to be enhanced
D (see 2nd column of Fig. 5) result from the product between the occlusion
masks O (see 4th column of Fig. 5) and their corresponding ground truth depth
maps G. The occlusion masks O have been generated by crosschecking the pair
of given disparity maps. Table 1 presents the qualitative evaluation of the pro-
posed RGB-D filter. We have used the Structural SIMilarity (SSIM) measure [17,
18] as an evaluation metric. Each cell in Table 1 contains the percentage of best
SSIM performance per enhanced depth pixel in J6 when filtering using IG, I,
and Ic as a guidance image. We recall that IG is the grayscale version of I while
the subscript c relates to each of the channels of I, i.e., c ∈ {0, 1, 2}, indicating
the red, green, and blue channels, respectively. We note that the accuracy of an
enhanced depth pixel in J6 is always higher when filtering using either the red,
green, or blue channels of I than when using IG. Indeed, a 2-D edge may not be
present in all three channels, provoking a low intensity contrast when the three
channels are linearly combined to get IG, i.e., IG = 0.299 I0 + 0.587 I1 + 0.114
I2.

1 Middlebury Stereo Dataset, http://vision.middlebury.edu/stereo
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(a) I (b) D (c) G (d) O

(e) I (f) D (g) G (h) O

(i) I (j) D (k) G (l) O

(m) I (n) D (o) G (p) O

(q) I (r) D (s) G (t) O

(u) I (v) D (w) G (x) O

Fig. 5: 1st row. Art scene. 2nd row. Books scene. 3rd row. Dolls scene. 4th row.
Laundry scene. 5th row. Moebius scene. 6th row. Teddy scene. 1st col. RGB
guidance image. 2nd col. Depth map to be enhanced. 3rd col. Ground truth. 4th

col. Occlusion mask. Depth units are in meters.
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(a) J6 from I (b) J6 from IG

(c) J6 from I0 (d) J6 from I1 (e) J6 from I2

Fig. 6: RGB-D filter responses using I, IG, and Ic guidance images, respectively
(σS = 10, σD = 10, σQD

= 100, σQI
= σD, sI = 50, sD = 300, λ = 8).

Table 2: Quantitative evaluation using the SSIM evaluation metric on a detail
of the RGB-D filter responses presented in Fig. 6.

Row in Fig. 7 J6 from I J6 from IG J6 from I0 J6 from I1 J6 from I2
1st row 87.70 86.32 83.48 89.15 79.75
2nd row 95.06 96.50 91.92 97.51 92.77

Table 3: SSIM evaluation of the proposed RGB-D filter presented on Fig. 6
(Non-valid pixels in G are not considered).

D J6 using I J6 using IG J6 using I0 J6 using I1 J6 using I2
84.95 94.20 94.61 93.25 95.00 93.06

We next quantify the RGB-D filter against our previous works. To that end,
we have considered the Teddy scene (see last row of Fig. 5). In Fig. 6, we show
the RGB-D filter outputs using I, IG, and Ic as guidance images, respectively.
We observe a much better performance when adjusting depth edges using RGB
guidance images (see a detail of the object boundaries in Fig. 7 and the quantifi-
cation in the first row of Table 2). However, in this specific case, the performance
within occluded regions is lower if we use the RGB guidance image than if we
use its grayscale version, as presented in the second row of Table 2). According
to the proposed β in (10), QI will be linked to the RGB channel that has a
higher gradient. In this case, a higher gradient does not mean a better 2-D edge
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(a) Detail of D (b) Detail of J6 using I (c) Detail of J6 using IG

(d) Detail of D (e) Detail of J6 using I (f) Detail of J6 using IG

Fig. 7: Detail of the RGB-D filter responses in Fig. 6.

description but a higher amount of texture that is copied within the low reliable
regions indicated by the credibility map QD (see Fig. 8). We note that different
weights are assigned to each RGB channel during their linear combination to
grayscale conversion. Indeed, a higher weight is assigned to the green channel,
which, according to Table 1 and Table 3, produces the best performance. That is
why in this specific case, the use of a grayscale guidance image presents a higher
performance.

Fig. 8: Credibility map QD of D in Fig. 5v.

We next evaluate the evolution of our research work to deal with accurate
depth data enhancement by fusion. We note that further evaluations and com-
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(a) G (b) D

(c) G (d) D

Fig. 9: 1st row: Test case 1. 2nd row: Test case 2. Depth units are in millimetres.

parisons of our previous work against state-of-the-art depth enhancement tech-
niques were done in [5, 6], in which we presented an overall improvement in all
test cases. However, depth enhancement approaches often fail when 2-D guidance
information is not available. To show that, we have considered the two synthetic
cases presented in Fig. 1. Their respective ground truth depth maps G are shown
in Fig. 9a, respectively Fig. 9c, to which we compare the filter outputs using the
SSIM measure. Fig. 9b and Fig. 9d are the depth maps D to be enhanced, which
differ from their corresponding ground truths G as they present depth inaccu-
racies along object boundaries as well as occlusion areas. Fig. 10 presents the
enhanced depth maps when using the PWAS filter (1st row), the UML filter
(2nd row), and the RGB-D filter (3rd row). We observe that the output of the
PWAS filter not only presents edge blurring as a consequence of filtering using
grayscale guidance images IG, but also texture copying. The last artifact is well
handled by the UML filter, but edge blurring still occurs. When 2-D edges get
suppressed during the transformation from RGB to grayscale, the RGB-D filter
gives the best enhanced depth maps. Table 4 presents a comparison between
the enhanced depth maps presented in Fig. 10 and their respective ground truth
G. In both test cases, enhanced depth maps using the RGB-D filter are almost
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(a) J2 (b) J2

(c) J5 (d) J5

(e) J6 (f) J6

Fig. 10: 1st row. Output of PWAS filter. 2nd row. Output of UML filter. 3rd row.
Output of RGB-D filter. Depth units are in millimetres.

equal to the ground truth, which indicates a perfect handling of occlusion areas
as well as inaccurate depth measurements along object boundaries.

Finally, we evaluate our filter in a real scene. Fig. 11 shows a raw depth map
D acquired using the Xtion Pro Live camera and its enhanced version J6 using
the proposed filter. The credibility map QD in Fig. 12 indicates those invalid
or occluded depth pixels (QD ≈ 0) in the given depth map D that have been
satisfactorily handled, i.e., replaced by correct depth measurements from their
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Table 4: Quantitative evaluation using the SSIM measure between the filter
outputs presented in Fig. 10 and their corresponding ground truth depth maps
G (100 is the highest similarity).

D J2 J5 J6

1st test case 88.43 53.38 79.66 99.89
2nd test case 86.89 70.62 86.13 99.99

(a) D (b) J6

Fig. 11: (a) Raw depth map given by the Xtion Pro Live camera. White areas
indicate non-valid (occluded) pixels. (b) Enhanced depth map using the RGB-D
filter (σS = 10, σD = 10, σQD

= 100, σQI
= σD, sI = 50, sD = 300, λ = 8).

Fig. 12: Credibility map QD of the depth map D in Fig. 11a.

neighbourhood, as shown in Fig. 11b. Depth measurements inaccuracies in object
boundaries have been fixed by aligning depth edges to their corresponding ones
in the RGB image I, shown in Fig. 13a. Red, green, and blue pixels in Fig. 13e
indicate which channel has been chosen when filtering those pixels. This decision
was taken using the confidence measures QIc shown in Fig. 13f-Fig. 13h.
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(a) I (b) I0 (c) I1 (d) I2

(e) c(p) (f) QI0 (g) QI1 (h) QI2

Fig. 13: (a) Input RGB image. (b)-(d) are the red, green, and blue channels of I
in (a). The value of each pixel in (e) indicates the RGB channel to be considered
for each pixel. (f), (g), and (h) are the confidence measures that describe the
2-D edges for each RGB channel.

5.2 Runtime Analysis

Next, we present a runtime analysis to show that the implementation proposed
in Section 4 enables real-time applications. We have implemented the RGB-D
filter in C++ language. However, we note that our implementation is not opti-
mized and that many tasks within the filtering process can run in parallel, which
would significantly increase its performance. A GPU implementation would also
significantly reduce the filtering consumption time. We ran the experiments on
a laptop with Intel R© CoreTMi7-2640M CPU @ 2.80GHz with 4 GB of RAM.

Table 5 presents the consumption time to obtain the output of an RGB-D
filter for four different scale factors λ ∈ {0, 1, 2, 3, 4}. That is, we sample the input
data at 1x, 2x, 4x, 8x, and 16x, respectively. We provide the SSIM measure to
illustrate the induced error linked to each sampling rate. A sampling rate of 8x
(λ = 3) seems to be a good trade-off between quality and speed. We also compare
the difference on performance when considering I and IG as guidance images.
As expected, the filtering process is almost three times slower when processing
three channels for small sampling rates while this difference is reduced for bigger
sampling rates.

6 Conclusions

In this paper, we presented a new fusion filter to remove undesired artifacts from
depth data given by consumer depth cameras such as the Kinect, the Carmine,
or the Xtion Pro Live. Our main contribution is in identifying the areas of erro-
neous measurements that require a special treatment such as object boundaries.
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Table 5: SSIM measure and runtime analysis of the RGB-D filter using I and IG
as a guidance images, and at different sampling rates (time units are in seconds;
average over 100 iterations).

Sampling
SSIM(100 - 0) Time consumption (s)

Using I Using IG Using I Using IG
0x 96.23 96.22 7.34 2.42
2x 96.17 96.18 1.70 0.59
4x 96.06 96.10 0.55 0.20
8x 95.67 95.79 0.30 0.12
16x 94.84 95.17 0.21 0.09

In contrast to ToF cameras, consumer RGB-D cameras present accurate and
less noisy depth measurements. This, in turn, allowed us to avoid the depth
smoothing operation performed by the second term of the RGB-D filter. That
is, we preserve the real sensed data in areas of high depth reliability. Moreover,
we propose to tackle the limitations of grayscale images by adaptively using
color channels as guidance images where the adaptivity comes from considering
the color channel with the highest gradient. The selection of the best channel
descriptor when filling occluded areas needs to be further investigated as the
current approach tends to preserve 2-D texture within occluded regions.

A real-time formulation has been proposed and evaluated in the experimental
part in which we propose to quantize and sample the data to be filtered. A sam-
pling factor of 8x presents a good trade-off between the quality of the enhanced
depth map and its computation time. This new formulation enables the use of
colour guidance images within the filtering process, which was impractical for
real-time applications.

Current applications in which consumer RGB-D cameras are being used, e.g.,
games, gesture recognition, or human sensing, can benefit from the proposed
depth enhancement approach to improve their performance.
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