Three-Party, Password-Authenticated Key Exchange with Server
Private Keys: Security Models and Protocols*

Jean Lancrenon'
Interdisciplinary Centre for Security, Reliability and Trust,
Université du Luxembourg
jean.lancrenon@uni.lu

June 9, 2016

Abstract

In this paper, we conduct a study of three-party, password-authenticated key exchange in the three
party setting (3-PAKE), focusing on protocols that require the trusted third party to have a high-entropy
private key. We show how in this scenario we can maintain the user-friendly functionality of password-
based authentication while provably achieving security properties that ordinary password-authenticated
key exchange protocols cannot, namely key-compromise impersonation and a special form of resistance
against internal state revealing. We define new simulation-based security models specifically tailored to
3-PAKEs with server private keys and illustrate our work with several protocols.

1 Introduction

1.1 Password-Authenticated Key Exchange

2-PAKEs and 3-PAKEs This article’s main focus is on the design and analysis of Password-Authenticated
Key Exchange (PAKE) protocols. The goal of a PAKE is for two parties to perform a cryptographic key
exchange that is authenticated using each party’s knowledge of a password. In the two-party case (2-PAKE),
both parties share the same password, and in the three-party case (3-PAKE), each party shares its own
password with a trusted server which aids in the exchange. We will be studying 3-PAKEs in which the
server also holds strong secret keying information to which corresponds a public key. We call such protocols
3-PAKEs with server private keys, or 3-PAKE[spk]s.

Motivation and Challenges The study of PAKEs has become quite important simply because of the
ubiquity of password-based methods in everyday applications. In contrast with cryptographically strong,
long-term keys — be they symmetric and private or asymmetric and managed in a public-key infrastructure
— passwords are easy to handle and much more user-friendly. These features are of course due to passwords’
most prominent property: they are typically low-entropy. However, this also makes brute force password
guessing a feasible task. Thus, PAKEs must be carefully designed in order to resist so-called dictionary
attacks: a well-constructed PAKE should allow at most one password to be tested per online impersonation
attempt (online dictionary attack resistance), and its message exchange should not leak any information
whatsoever on the underlying password (offline dictionary attack resistance).

*This is the full version of the research paper What Public Keys Can Do for Three-Party, Password-Authenticated Key
Ezxchange [30], which was published in the proceedings of the 10th European Workshop on Public-Key Infrastructures, Services
and Applications (EuroPKI 2013).

TThe present project is supported by the National Research Fund, Luxembourg. Specifically, it is funded by the Postdoc
AFR project PAKAJ (FNR reference number 3975577) running from July 2012 to June 2014.

Our Contributions, in a Nutshell Most of the research done in the last decade has been centered on
providing provably secure 2-PAKEs; 3-PAKEs have been much less studied. Most notably, although such
protocols have been considered before [33, 39], there appears to only be one that has been proven secure [16].
We propose to broaden the study by describing several security models capturing adversarial capabilities and
protocols proven secure in these models. We also show that the models we consider are strictly separate.

More specifically, our investigations show that adding a private key at the server first makes protocol
design much simpler, as it becomes possible to rely on simple, well-understood cryptographic building blocks.
Secondly, we are able to exhibit a protocol that enjoys security properties that are desirable in key exchange in
general, but impossible to obtain in PAKEs that only use passwords. These properties are resistance against
key compromise impersonation and resistance against (a special form of) internal state revealing. Third, all
of this can be done without sacrificing usability.

1.2 Related Work

2-PAKEs A large amount of research has been done on 2-PAKEs. Bellovin and Merrit [6] were the first to
consider the problem of dictionary attacks in 2-PAKEs, and the first to propose a solution, without defining
a formal security model. Jablon [25] devised a protocol as well. Lucks [31] later gave formal definitions of
security capturing offline dictionary attack resistance. Halevi and Krawczyk [22] and Boyarsky [7] provided
security definitions and protocols also in the two-party setting where one of the parties is a server with strong
keying information, and the other is simply a user with a password. Since, many other protocols have been
proposed, e.g. [1, 4, 8, 10, 12, 27, 17, 18, 21, 23, 28, 29, 26].

Most of these solutions are provably secure, starting with [4] who adapt to 2-PAKEs the now widespread
indistinguishability-based security model of [5] for ordinary key exchange, and [8], who build their model on
the simulation-based ones in [35] and [3]. In [12, 27, 17, 18, 21, 28, 29, 26] one can find various practical
2-PAKEs secure without random oracles using Cramer and Shoup’s smooth projective hashing tool [15], and
assuming a Common Reference String (CRS) is hardwired into the protocol specification.

There are also theoretical results showing that efficient, but not practical, 2-PAKEs can be constructed
and proven secure with neither random oracles nor CRSs, see [19, 20]. Designing a practical 2-PAKE secure
in the standard model with no CRS remains an open problem.

3-PAKEs The first to consider 3-PAKEs seem to be Steiner et al. [36], building directly on [6]. Their solution
requires the trusted server to only know the passwords. Other protocols operating like this can be found
in [2, 34, 9, 37, 38]. Notably, in [2] the first rigorous security model for 3-PAKEs is defined, following the
indistinguishability approach of [5, 4]. They also strengthen the most commonly used security model for
2-PAKEs and provide a generic construction to get 3-PAKEs from 2-PAKEs. Besides [2] and [38], none of
the cited works contain formal security considerations.

Other proposed solutions require the trusted server to hold a secret key of its own, e.g. [33, 39, 16, 40].
The protocols in [33] and [39] lack security proofs. The results in [16] and [40] are much more closely related
to this work, and as such require special mention.! We highlight how our work differs from theirs.

The work in [16] In [16], the protocol design and analysis is approached in a modular way, using
password-based authenticators (devised in [24]) to derive a protocol secure in an unauthenticated model
of communication from a protocol that is secure in an authenticated model of communication. Security is
proven without idealized assumptions. The authors work in a security model based on Canetti and Krawczyk’s
framework in [13], an indistinguishability-based framework which does not allow detection of key compromise
impersonation (or KCI, see section 2 further below). They do however consider internal state revealing that
does not trivially open the protocol to offline dictionary attacks. The models we consider here are simulation-
based models directly derived from those of Shoup [35] and Boyko, MacKenzie, and Patel [8]. First, we
propose a hierarchy of models, and depending on which of our models one uses, one can choose to capture
or ignore different scenarios: adaptive (long-term key) corruptions, adaptive internal state revealing, KCIL

1Both of these works were discovered by the author of this paper only after the present work was submitted and published
at EuroPKI 2013.

We also prove that these are separate models. Secondly, simulation-based models naturally incorporate a
notion of key indistinguishability that is very close to that of the real-or-random framework from [2]. This
is a significant difference, as the results in [2] show that working in a find-then-guess-style model (in which
only the key output by the Test query may be either real or random) like in [16] may lead to a considerable
security degradation specifically when studying password-authenticated protocols. Third, our models may
accommodate the analysis of protocols that are not necessarily designed in a modular way. We believe this
gives us more flexibility. Ultimately however, the protocols we exhibit here can be viewed to some extent as
modularly designed. In fact, protocol Prot2 is very similar to the protocol in [16]. It differs essentially only
in the method employed to authenticate the server to the users: in [16], the authors use an encryption-based
authenticator, while we use signatures. Another difference is our dual use of the hash key from a family
of universal hash function as a server nonce. Finally, we find it strange that the security definition in [16]
ultimately yields an adversary advantage that is negligible, rather than negligible "plus an online guessing
attack success rate".

The work in [40] The work in [40] claims to have a notion of resistance against both KCI and internal
state revealing, as we do for the strongest of our models. However, upon closer examination, we have found
some flaws in the work. First, the protocol proposed does actually yield an offline dictionary attack in case
important internal state is revealed. In the notations of [40] (from, say, figure 1 of the paper in question) if
client A hopes to complete its protocol run with client B, it needs to hold on to both the ephemeral random
value = € Z, and the group element X* := ¢*Hq(pwa, A, B), as both of these are needed for the final key
computation. Revealing internal state will thus reveal both x and X*, and an adversary can exhaustively
search for pw, by testing if X* = ¢*H;(pw, A, B) for successive values of pw. Destroying the encryption
randomness fails to prevent this. The same can be said of client B in the protocol. Secondly, even without
taking into account internal state, theorem 1 and 2 in [40] are unlikely to be valid (at least against active
adversaries), as the encryption scheme is only required to be IND-CPA secure. Any proof of security of a
PAKE that relies on encryption to directly hide the password is most likely going to rely at least on IND-
CCA-2 encryption (see section B.1), as technically the simulator (in any model one uses) needs to be able to
decrypt adversary messages in order to detect password guesses. Accordingly, IND-CCA-2 encryption plays
an important role in both our work (and in [16]). Third, the TestPassword query is unnecessary. Finally, the
protocol relies on idealized assumptions (specifically, the random oracle model).

1.3 Organization of the Paper

In section 2 we explain why we think 3-PAKE[spk]s are worth considering. Next, section 3 states the security
properties we can expect of a 3-PAKE[spk], fixes some of the notation to be used throughout the paper,
and gives an overview of the ideal-world simulation paradigm for provable security. Sections 4, 5, and 6
then respectively exhibit the static, password-adaptive, and password-and-state-adaptive network adversary
models, each section being punctuated with a protocol and some comments. Section 7 is used to ease the
reader into sections 8 and 9, which provide complete proofs of security against network adversaries for two of
the three protocols we propose. (These proofs are admittedly very repetitive, but they have the advantage of
being completely self-contained. Only once does one need to refer to a portion of the proof of one theorem
to understand that of another, because in that case the proofs are absolutely identical: lemma 2 is proven
exactly the same way as lemma 6.) Section 10 completes all three of our models with a single model capturing
security against an Honest-but-Curious server. Finally, section 11 concludes the paper with some prospective
future work. Computational assumptions and security definitions for some cryptographic primitives can be
found in the appendix.

2 Why 3-PAKEs with Server Private Keys?

2.1 Retaining User-Friendliness

In a 3-PAKE with server private keys, in addition to knowing every user’s password, the trusted server 7 has
cryptographically strong, secret keying material sky to which corresponds public keying material pks that
is available to each user.

The reader may be legitimately wondering at this point why a string like pks is suddenly making an
appearance at the users’ end: after all, is not the whole point of using passwords to get rid of such cumbersome
data? The answer is that the users will not have to know it because since it is the same for every user, it can
be hardwired into the protocol specification. The application thus retains its user-friendliness despite this
added feature.

This concept is not new in PAKE research. All practical 2-PAKEs that are proven secure without random
oracles use this hardwiring technique because they rely on a Common Reference String (CRS) known to all
users. A CRS is basically a long public string that is generated in some secret manner and that all parties
know. In PAKEs, they tend to appear as public keys to public-key encryption schemes; the "secret" part
is then the corresponding secret decryption key which must be immediately destroyed: any entity that gets
access to it can essentially undermine the whole system undetected.

The reason a CRS-based construction is preferable to one where all users jointly compute the public string
is purely practical: deploying the same CRS for everybody allows new users to join the system without having
to update the common data each time.

2.2 Proving Security Without Idealized Assumptions

The previous observation is useful to make our case from a theoretical point of view. Aside from the work
of Abdalla et al. [2] and Cliff et al. [16], all 3-PAKEs in the literature either lack a security proof, or rely on
idealized assumptions. In [2] the authors devise a way to generically construct a 3-PAKE from a 2-PAKE
and prove its security in the following sense: if the underlying 2-PAKE is secure in the standard model of
computation, then so is the resulting 3-PAKE. Thus [2] shows a generic way to obtain a standard-model-secure
3-PAKE from a standard-model-secure 2-PAKE.

We claim that given the current state-of-the-art in 2-PAKE research, our method for obtaining 3-PAKESs
secure in the standard model is a good, and possibly more efficient, alternative. We reason as follows.

We already mentioned that all practical 2-PAKEs secure without idealized assumptions use a CRS. In
particular, some entity has to generate this CRS and be trusted to destroy — or at the very least, to never
disclose — the corresponding secret. If we construct a 3-PAKE generically from a CRS-based 2-PAKE, the
entity most naturally placed to perform this operation is the server itself, since it is already trusted with
all of the passwords. But then this server is also a very natural candidate to trust with correctly wusing
cryptographically strong secrets, rather than ignoring or discarding them. It is, after all, a pity to not
use the decryption key of a public-key encryption scheme. Thus, it makes sense to return to considering
3-PAKE[spk]s.

The upshot is that if our starting point is having strong secret keys at the server, the protocol design
complexity drops significantly. We emphasize however that we are not attempting to make the case that
in general protocol design, a CRS-based construction can systematically be replaced by a server with secret
keys. The reasoning as presented here is very specific to the cryptographic primitive at hand.

2.3 Simpler Practical Protocol Designs

We explained above that often the CRS in 2-PAKEs is a public encryption key. The reason is quite simple: no
information on a given password can be efficiently plucked from a semantically secure encryption of it, thus
guaranteeing offline dictionary attack resistance. The challenge then becomes finding a way for a legitimate
partner to exploit the resulting ciphertext’s contents without the decryption key. Subtle mechanisms, such as
smooth projective hashing [15], have been used to do this, but they yield complex designs.

In contrast, our scenario authorizes the server to use the secret keys, so we can rely in a much more
straightforward way on well-understood, classic cryptographic primitives. As an example, in the protocols
we propose users encrypt their passwords which can then be verified through decryption by the server, and
the server digitally signs its messages to the users, who can verify the signatures. The only requirements we
make on these primitives involve their level of security. No other properties are necessary.

We note that the (provably secure) protocols we present require at most six messages to be sent. Factoring
in the additional security properties we can achieve, this is certainly not excessive: four of the messages are
used to authenticate users to the server and vice-versa. The precise role of the other messages depend on the
protocol, but can be thought of as the key confirmation process. We can compare this to an instantiation of
Abdalla et al.’s scheme [2] with a two-message 2-PAKE, with no key confirmation between the parties and
the server and none either between the two parties at the end: this yields seven messages sent.

2.4 Capturing More Security Properties

Finally, a good reason to consider 3-PAKE[spk]s is that with them we can provably defend against more
attacks than with ordinary 3-PAKEs. Specifically, we can prevent key compromise impersonation and we can
give a meaningful security definition of resistance against a limited form of internal state revealing.

Key Compromise Impersonation In any key exchange scheme, Key Compromise Impersonation (KCI)
is said to occur if an attacker that gets its hands on a user’s long-term keying information can impersonate
some other user to that user. It is easy to see that 2-PAKEs cannot satisfy this property: if an attacker
compromises a user’s password, that attacker can always impersonate the other holder of that password to
that user. At least, it cannot impersonate other users to that user, because that would require compromising
other passwords, since these are distributed pairwise.

In the 3-PAKE case, this last point is no longer true. A user shares its password only with the trusted
server. If its own password is the only mechanism that proves to a user that it is indeed speaking to the
server, then compromise of this password by an adversary will allow this adversary to impersonate to that
user the server and any other user in the network at any time of its choice, which really is the worst KCI
scenario possible.

We are able to thwart this however if the server authenticates itself to users via strong secret keying
information. This is an interesting property because it is quite reasonable to assume that strong secret keys
at the server will be better protected than any password ever is (or ever will be) by a user.

Concretely, the protocols we propose either heavily mitigate the risk of KCI (see 5.3), or eliminate it
entirely (see 6.3). Interestingly, protocol Protl (see 5.3) shows that simply adding high-entropy private keys
at the server is not sufficient to fully defend against KCI. One still needs to be careful with the protocol
design.

Unerased Internal State Revealing Authenticated key exchange research also nowadays frequently con-
siders security notions involving the revealing of certain forms of internal state. What this means precisely
varies from author to author, but the general idea is to let the adversary obtain the values of certain inter-
mediate computations during a protocol execution. Several flavors of this can be found in the literature, e.g.
the ephemeral randomness revealing of [32] or the unerased internal state revealing of [35].

This kind of query is rarely seen in PAKE research for a simple reason: authorizing any form of internal
state revealing opens PAKEs to immediate dictionary attacks. Thus, while some works do consider revealing
state (e.g. [1, 10]), it includes password revealing by default.

We show that a meaningful definition of resistance against Unerased Internal State (UIS) revealing can
be considered for 3-PAKE[spk]s by exhibiting protocols that are not trivially subjected to dictionary attacks
when targeted by this query. In fact, all of the protocols we consider do this, even though only one of them
actually fulfills the corresponding security requirement (see 6.3), while the two others clearly do not (see 6.5).

3 3-PAKE[spk]s and Ideal-World Simulation

This section and the four that follow contain the main technical contributions of the paper. We essentially
adapt the simulation-style security models of Shoup [35] (the version of April 1999) and Boyko et al. [8] to
the case of 3-PAKE[spkl|s. Throughout the rest of the paper, we adopt their notations.

3.1 General System Description

The Users The system consists first of a set of users which we index by strictly positive integers i and to
whom are attributed identities ID; of some agreed upon length. We assume that each user ¢ has a password
pw; that was selected uniformly at random from some dictionary D, and that this password is kept secret.
D is a (possibly small) publicly known set of strings of some agreed upon length.

The Server There is also a server 7 indexed by 0. A server key generation algorithm K7 is run once on
input 17 - where 1 € N is a security parameter - at the time the system is initialized to produce a pair of
strings (pkr, sk1). T keeps skt secret and pks, which is publicly available data, is copied into the users’
protocol specification. The list {ID;, pw;}; is handed over to T, who also keeps the passwords secret.

Statement of Goals and Desirable Properties

Protocol Goal At the end of a protocol run performed by registered users 7 and i’ and server T, either
1 and 4’ used as input their correct respective passwords pw; and pw; and the server public key pky to
authenticate themselves to 7, and T used as input its secret key sk to authenticate itself to both parties, in
which case ¢ and 7’ should have computed a secret, random-looking, shared session key SK, or the protocol
is aborted by one of the parties.

It is important to note that we do not consider valid those protocols which require the server to authenticate
itself to the users using the shared password. Given the keying information the server has, it should not need
this.

Desired Security Properties We have already mentioned online and offline dictionary attack resistance
as necessary properties for all PAKEs. In [2], the authors identify a very specific kind of dictionary attack
that is proper to 3-PAKEs: insider attacks in which malicious users registered into the system with their
own passwords try to determine honest users’ passwords through manipulated protocol runs. This is a very
important property that we take into account as well.

Another security feature isolated in [2] that we capture here is that of session key privacy with respect
to the server. As in [2], we must assume that 7 is at worst Honest-but-Curious (HbC), i.e. that the only
adversarial behavior 7 might engage in involves eavesdropping on conversations. It is otherwise trusted to
carry out the protocol faithfully. However, in an effort to minimize the trust placed in the server with respect
to session key use, we require that 7 not be able to compute the session key established during a protocol
run. Abdalla et al. [2] propose with this notion a clear formal separation between three-party key exchange
and three-party key distribution.

We end this paragraph with a security property that remains to be integrated into our model, but that we
believe the protocols we present below satisfy, that is server forward secrecy: disclosure of the server’s secret
keys should not reveal past session keys. We stress this property does not automatically hold even given the
security against the HbC server. We leave this as future work.

3.2 Ideal-World Simulation Methodology

To define security, we use the so-called ideal-world simulation paradigm which finds its origins in multi-party
computation. Two computational environments are described. Within the ideal world the protocol’s goals
are ideally achieved between all users in the presence of an adversary. Whatever mischief he may cause in this
world represents inevitable attacks on the very service we are trying to provide. In the real world, the target
protocol is executed between users in the presence of an adversary who may disturb it however he wishes
according to the powers he is afforded. The goal resides in comparing these two execution environments: we

say that security is achieved if for any real-world adversary running against the protocol we can construct an
ideal-world adversary that behaves the same way. Given the definition of the ideal world, this implies that
any winning strategy the real-world adversary finds is necessarily one of the inevitable ones. Thus, we prove
that the protocol can really do no better.

Adversaries and Ring Masters In both worlds, the adversary (M* in the ideal world, M in the real world)
plays against an entity we call the ring master (RM™ in the ideal world, RM in the real world) whose task
is to run the protocol generating all of the necessary random variables, and to answer and react to various
operations the adversary asks to have performed. All adversaries are assumed to be probabilistic,
polynomial-time algorithms (PPTA for short), where the time measure is a function of the
security parameter 7 € N.

We will be considering two types of adversaries: network adversaries, which completely control all com-
munications between honest users and the server, and server adversaries, which simply try to infer session
key information from honest protocol runs. As in [2], we model these adversaries separately: trying to merge
them into one entity does not make sense, for we would effectively be giving the malicious network adversary
all of the secret keys.

Transcripts In either world, as the execution of the interaction between the ring master and the adversary
progresses, a transcript — ZW(M?*) in the ideal world and RW(M) in the real world — logging the adver-
sary’s actions is constructed. These random variables are the data used to compare both computational
environments.

Definition of Security We are now ready to define security:

We say that a 3-PAKE[spk] is secure against network adversaries (respectively, against
HbC servers) if for every real-world, network adversary M (resp., HbC server T) there exists
an tideal-world network adversary M* (resp., HbC server T*) such that TW(M*) and RW(M)
(resp., IW(T™*) and RW(T)) are computationally indistinguishable.

Jumping ahead, the adversary will in both worlds be allowed to have past-established session keys placed
in the transcript (see the "reveal session key" operation). In the real world, these are the real keys. In the
ideal world, they will be random, pairwise-independent bitstrings. The computational indistinguishability
requirement above then naturally captures (among other things) the idea that correctly exchanged session keys
cannot, be efficiently told apart from random strings. This is why when following the ideal-world simulation
paradigm - as is done in [35] or [8] - the test query found in most models in the style of [5] is unnecessary.

4 Static Network Adversaries

We first describe a basic security model that captures statically corrupted users, i.e. parties that are controlled
by the network adversary upon initialization. The adversary registers users of its own with passwords of its
choice, but cannot corrupt honest users that are already in play. Of course, the adversary may still try to
guess passwords by initiating, and interfering in, key exchange communications.

The bulk of our models’ description is in this section; those in sections 5 and 6 below are built on this
one by adding adversarial capabilities. Concretely, describing our models involves stating what operations
the adversary can ask of the ring master, explaining what their effects are, and by which string(s) they are
accounted for in the transcript. In the model description, the operation names are in bold, followed directly
by the arguments they take. Paragraphs in italics contain additional comments or explanations.

We expected our first protocol, dubbed Prot0 (see 4.4), to be provably secure in this model, but upon
closer inspection it appears not to be so. This phenomenon is interesting as it seems to be directly related to
the use of passwords and the Diffie-Hellman key exchange. We comment on this at the end of the section.

4.1 The Static Ideal World

Here we describe the operations the static network adversary M* may ask of the ideal-world ring master
RM™.

Let 1 be the security parameter. In the ideal world, the only parameters 7 determines are the length fgx
of the session keys, and the length of the password ¢,,,. We require that {5 grows fast enough as a function
of 1, in the sense that 2‘sk is a negligible as a function of 1. No such requirement need be made for £,,,
however.

Initialize server

M* starts the game on input 1”7 by formally invoking the server that is ultimately controlled by RM™. Tt
carries the index 0. It also specifies a non-empty dictionary D C {0, 1}fr» —{1%w}, an algorithm to efficiently
select passwords uniformly at random from D, and an algorithm to efficiently tell if an element of {0, 1}%w
isin D or not.

String logged in the transcript: ("initialize server” 0, D)

No identity or even integer index really needs to be assigned to this party in this formal setting, where
there can be no confusion as to which higher authority honest parties are to communicate with. In practice,
adding the identity of T to the messages is likely to be necessary.

Having the adversary choose the dictionary is convenient for two reasons. First, it seemingly gives our
adversary more power, although whether M* (or M in the real world) chooses D or gets it as input really
does not make a big difference. FEven the restriction that the passwords be sampled uniformly at random is
not necessary, but we keep it for simplicity. Second, by doing this we avoid having to deal with defining an
additional distribution ensemble of dictionaries indexed by the security parameter . Instead, it is implicitly

defined by M* (or M).

Initialize user, i, ID;

M* chooses an identity bitstring I D; with which to initialize i. ID; should not have been used before
for another user, or for a "set password" operation (see below). Also, a password pw; is chosen uniformly at
random from D and assigned to i outside of the adversary’s view.

Transcript: (initialize user”,i,1D;)
This query allows M™ to bring into existence new honest players, with their own passwords.

Set password, ID, pw
M* specifies an identity string I D that has not previously been assigned to a user and associates to this
string a password pw € D of its choice. RM”* knows the pair (ID, pw).

Transcript: (”set password”, 1D, pw)

This query allows M™* to put into play statically corrupted users with their own passwords registered at the
server. Server 0, controlled by RM*, should be thought of as having access to these passwords. It is through
this operation that insider attacks as considered by Abdalla et al. in [2] are modeled.

Initialize user instance, (i,j), role;;, PID;;

M* asks to have a previously initialized user ¢ initialize an instance j of that user. M* assigns to (i,)
a role role;j, which is either open or connect, and a partner identity bitstring PID;;. This bitstring may or
may not have been previously used to initialize a user. If not, we require that a "set password" operation on
PID;; has been previously performed.

Transcript: (”initialize user instance”, (i,j),roleij,PIDij)

This operation allows M* to activate many different key exchanges for a given user. During such an
exchange, a user may either be waiting for its partner to connect to it, or may be expected to connect to its
partner. In either case, the user knows its local session counter, and does not know the local session counter
of its partner. M™* knows both, since it controls the network communications. The activated instance knows
which identity string it is targeting, although it is not aware of whether that string belongs to an honest user.

Initialize server instance, (0,%), PIDSy

M* asks to have an instance k of the server initialized. M* specifies also the instance’s partner identities
PIDSy = (OIDgy,CIDyy) where OIDgy is the opening partner identity and CIDyy is the connecting
partner identity. We require these identity strings to be distinct, that at least one of them has been assigned
to a user, and that both have been assigned passwords. Note that PIDSy is ordered: the server assigns to
OI Dy, the role open and to C'IDg; the role connect.

Transcript: (”initialize server instance”,(&k),P]DSOk)

This operation allows M* to invoke instances of the server. Naturally, this server expects to be relaying
messages between two specific users during an exchange, hence the pair of partner identities. The server
instance need not be assigned a role because it will always be communicating with a pair of identities having
the same form: one will be asked to open, and the other to connect. On the other hand, it is reasonable to
expect the server to know each of its partners’ assigned roles in the exchange at hand. This is data local to
the server; if one of the two identities in play is actually a statically corrupted user, this role attribution at
the server still occurs.

Terminate user instance, (i,)
M* specifies a previously initialized user instance to terminate. This instance will no longer participate
in a key exchange.

Transcript: (”terminate user instance”, (i,j))

Terminate server instance, (0, k)
M* specifies a previously initialized server instance to terminate. It can no longer participate in a key
exchange.

Transcript: ("terminate server instance”,(0,k))

Test instance password, i, (0,k), pw

M* specifies a previously initialized user ¢, a previously initialized and not yet terminated server instance
(0, k) with ID; as one of the components of PI DSy, and a password string pw € D. It receives in return
the knowledge of whether or not pw = pw;. This is allowed under the condition that (0, k) has not completed
an exchange (see below). We also make the restriction that a "test instance password" operation can only be
done once on input i, (0, k), pw.

We will say that a password was successfully guessed if it has been the target of a successful "test instance
password" operation. Once a password has been successfully guessed, M* will no longer try to guess it. If a
"test instance password" operation results in an incorrect guess, we will say that the operation failed.

This operation leaves no record in the transcript.

This operation allows M* to make password guesses at the server. However, no such password guesses are
allowed to target users because that would require the adversary to impersonate the server, which we forbid
explicitly; this reflects the server having a private key that network adversaries do not have access to. It also
formally excludes protocols that call for passwords to be used to authenticate the server to users.

Notice that if M* tries a guess on one end of the server instance, it still has the possibility to attempt
a guess at the other end of this same instance. Thus, there are scenarios where M* could run two
"test instance password" operations on one initialized instance. This cannot happen in [8]. However, this
is not a violation of the usual desired restriction on online guessing, since this ability to perform two tests
involves two distinct passwords.

The reason this operation does mot log anything in the transcript will be more apparent in the proofs of
security, but the idea is that if we were to include a password testing log in the ideal world, we would need
one in the real world as well. Thus, we would need some kind of predefined real-world event indicating that a
password is being tested. Yet, no such event can be reasonable defined in gemneral; in fact our objective with
this model is to precisely single out what these events are for every given real-world protocol.

Exchange completed, (0, k)

M* specifies a previously initialized and not yet terminated server instance (0, k) and indicates that it has
completed its role in the current exchange. This requires that no failed "test instance password" operation
was conducted on (0, k) targeting a component of PIDSy; that is assigned to an initialized user. (Recall
that there is always at least one such component.)

Transcript: (”exchange completed”7(0,k))

This operation allows M™* to stipulate when a server instance has served its purpose in an exchange.
Accordingly, it can only occur if both password checks have passed.

Start session, (i,)

M* specifies a previously initialized and not terminated user instance (4,j) and indicates that a session
key should be constructed for it. One of several connection assignments is given to (7,), depending on how
it was initialized:

e Open for connection from (i, j’) through (0, k)

This requires PID;; = ID; for some initialized user ¢/, role;; = open, (i, j’) to have been initialized,
PID; j = ID;, role;y j; = connect, (0, k) to have been initialized, and PIDSor = (ID;,ID;/). RM”" selects a
session key SK; uniformly at random, and we now say that (i, j) is open for connection from (i',4") through
(0, k).

There are not too many prerequisites for an instance to be open for connection from another instance. This
is because we authorize implicit authentication. In this case, the user that is the last to send a message can
very well have only received replayed material and generated a key with this material. However, the protocol
should guarantee that this key will remain uncomputable by the adversary. (Note that in this paper we do not
have an example of a provably secure implicitly authenticated protocol. We were hoping that Prot0 might do,
but were mistaken, see 4.4. Protocols Protl and Prot2 enjoy mutual authentication.)

The reason a server instance is required to have been initialized mirrors the fact that before constructing
a session key and beginning to use it, the opening instance must be sure that its purported partner has
authenticated itself, and this can only be done through the server.

e Connect to (¢, ;') through (0, k)

This requires PID;; = ID; for some initialized user i, role;; = connect, (¢',j") to have been opened
for connection from (i, j) through (0, k), and (0, k)’s exchange to have been completed after (i’, j') has been
initialized. In this case, RM” sets SK}; - SK} .

For an instance to connect to another instance, there are more requirements. This is due to the fact
that both users must have had their passwords checked at the server before they can share a key, implying
that the server’s exchange was necessarily completed. Also, note that the connecting instance must have been

initialized before the partner instance was opened for connection and the server instance has completed its
exchange.

¢ Exposed through (0, k)

If role;; = open (resp., connect), this is allowed if (0, k) has been initialized with PIDSy, = (ID;, PI1D;;)
(resp., (0,k)’s exchange has been completed with PIDSy, = (PID;;,1D;)), and either PID;; is not the
identity of an initialized user, or PID;; is the identity of an initialized user whose password was successfully
guessed, or pw; was successfully guessed. In this case, the adversary M* specifies the session key SK/;.

This connection assignment basically stipulates the conditions that need to be met for an honest instance
to be in fact sharing a key with M*. FEither its partner is a statically corrupted user that was legally registered
by the server at M*’s request, or it is a user whose password was previously guessed, or its own password
was previously guessed. In any of these cases, the connection still needs to have gone through an honest
server instance with the appropriate partner identities. (The condition is a bit more stringent in the case
of a connecting instance, since the server’s exchange actually needs to be completed.) This is because M*
is not allowed to impersonate the server. Note however that these rules do not forbid opening or connecting
instances even if a password has been guessed: two users can have engaged in a perfectly honest exchange
even if the adversary knows a password.

10

The conservative vs. liberal exposure rule: In [35], two different exposure rules are exhibited.
Adapted to our case, the liberal rule is the one described above while the more constraining conservative
rule stipulates that exposing (7, j) is not allowed if only pw; was successfully guessed. Just as in [35],
simulatability using one or another model provides different security guarantees. This distinction is absent
from [8] because it only makes sense when the communicating parties have different long-term keys to
begin with, which is obviously not the case for 2-PAKEs. We shall return to this issue in sections 5 and 6.

We finally require that connection assignments be efficiently computable from the transcript up to the
current "start session" operation. In other words, if the last current log in the transcript is a "start session"
operation, the connection assignment attributed to the user in question is uniquely determined by the rest of
the transcript. This requirement reflects the fact that some criterion is in place to determine how instances
match their conversations. How this is done is not relevant to the ideal service, but it is crucial for concrete
protocols. This constraint also forces connection assignments to be unique.

The reader may be wondering by what means connection assignments are uniquely determined from tran-
script prefizes, i.e. with which transcript logs. See the "implementation" operation below.

Transcript: (” start session”, (i,j))

Reveal session key, (i, 7)
M* specifies a previously initialized user instance (4, j) that holds a session key. It receives in return the
session key SK7; that instance holds.

Transcript: (”reveal session key’ﬂ(i,j%SK{})

This operation is added to model session key leakage due to higher-level use of the established keys. The
idea is to ensure that revealing past session keys does not affect the security of new session keys.

Implementation, string

M* simply adds a string to its transcript. This operation is needed for several reasons. First, it is
used to make sure that the transcripts are comparable in a meaningful sense, i.e. such that they cannot be
distinguished because of a simple difference in syntax. Secondly, the information that goes into the transcript
via these operations is used to determine which connection assignments are attributed to the instances that
have started sessions. How this is done exactly will be more obvious when we describe the static real world.

Transcript: ("éimplementation”, string)

This completes our description of the ideal world adversary’s actions.

4.2 Some Further Explanations

Dictionary Attacks We briefly explain how the model thwarts dictionary attacks. The "test instance
password" operation can only be tried out once per password held by a given server instance, and in the
ideal world this is the only mechanism allowed to verify guesses. Therefore, online trials are indeed limited
to one per one of the two passwords at a given instance. Furthermore, since testing is no longer allowed after
a server instance has completed an exchange, offline verification is avoided as well. Finally, a server instance
can be the intermediary between an honest user and a statically corrupted one, thus taking insider attacks
into account.

Server Instances Our model is designed in such a way that a correct exchange can only occur between two
user instances and a single unique server instance. This seems like a fairly natural requirement. We have
to explicitly model the server since that it where all of the password testing happens. Thus, as there are
user instances, it is reasonable to have server instances. From that point forward, even if the server’s role is
limited to checking passwords, it sounds like good security practice to uniquely bind a server instance to a
given session key exchange.

Key Compromise Impersonation Observe the difference between the liberal and conservative exposure
rules: some thought reveals that the first rule allows KCI, while the second does not. Below we shall see that

11

Prot1 is secure under the liberal rule and insecure under the conservative rule (see 5.3), while and Prot2 is
secure under the conservative rule (see 6.3).

Remarks: There are some notable differences between our definitions and those found in [8]. First, rather
than using an "application" operation to model key leakage due to higher-level applications, we simply reveal
session keys. This is more direct, and likely an equivalent definition.

Another more interesting difference is that despite being in the implicit authentication model, we do not
need so-called "dangling" connection assignments. The reason for these in [8] is that in 2-PAKEs mutual
authentication is equivalent to key confirmation since there is no way for one party to verify the other’s
password message by message. (Such a mechanism would immediately open the protocol to dictionary
attacks.) 3-PAKE][spk]s do not suffer from this; in fact, our protocols do actually perform message-by-message
authentication.

We followed the work of [8] in that we explicitly integrated the passwords into the ideal world. As it is
already explained in [8], not doing so would require explicitly incorporating into the model a formula measuring
the non-negligible advantage the adversary has in guessing passwords through online impersonation attempts.
Roughly, rather than having ZW(M*) be computationally indistinguishable from RW(M), security would
be defined by asking that ZW(M*) and RW(M) be "only negligibly more distinguishable than %",
where Nypiine is the number of online guessing attempts made by M in the real world. A security model
(for 2-PAKES) in this vein can be found in [18]. In a certain sense, such a definition is arguably more elegant
because it is conceptually meaningful that in the ideal world of any key exchange protocol, the authentication
mechanism is ultimately irrelevant: entities that authenticate correctly by whatever means end up sharing a
key, and otherwise they do not.

4.3 The Static Real World

Now we describe the operations a static network adversary M can demand to have done by RM if it controls
the network in the real world.

Again, let 1 be the security parameter. In the real world, an actual protocol is being run, so 7 is used to
determine much more than just the session key and password lengths {gx and £y,.

Initialize server

On input 17, M starts the game by formally invoking the server 7, as before controlled by RM. Like
in the ideal model, we identify it with index 0. (pky,sky) is generated by RM running K+ (17), and pky
is given to M, whose first output is the (non-empty) dictionary D C {0,1}¢» — {1%v} (and the algorithms
that go with it). RM will run 7.

Transcript: (7initialize server”,0, D), followed by

N

(" implementation”,” server public key”,pky)

Initialize user, i, ID;

M chooses an identity ID; with which to initialize i. I D; should not have been used before for another
user, or for a "set password" operation. A password pw; is chosen uniformly at random from D and assigned
to i outside of M’s view. The user gains access to pkr.

Transcript: (initialize user”,i,1D;)
Set password, ID, pw
M specifies an identity ID that has not already been attributed to a user, and a password pw € D.
Transcript: (”set password”, 1D, pw)
Initialize user instance, (i,j), role;;, PID;;
M asks to have a previously initialized user 7 initialize an instance (4, j) of that user. M assigns to (i, 5)
a role role;; of open or connect and a partner identity PID;;. If PID;; has not been attributed to a user,

we require that a "set password" operation on PID;; should have been previously performed. Obviously, the
instance has access to pkr.

12

Transcript: (” initialize user instance”, (i,j), role;;, PIDij)

Initialize server instance, (0,%), PIDSo

M asks to have an instance k of the server initialized, and specifies the partner identities PIDSy, =
(OIDyy, CIDyy), where OI Dy, is the opening partner identity and C'IDyy, is the connecting partner identity.
These strings should be distinct, at least one of them has been assigned to a user, and both must have been
assigned passwords. The server assigns to OIDgy the role open and to CIDg; the role connect. Server
instances, which are controlled by RM, have access to sk.

Transcript: (”initz’alize server instance”,(O,k),PIDSOk)

Deliver user message, (i,j), InMsg

For this operation to take place, user instance (i, j) must be initialized. M specifies an incoming message
InM sg which the instance processes according to the protocol specification, and using the keying information
it was handed at its initialization. The instance eventually produces an outgoing message OutM sg and reports
its status status;; to M. The status can be one of three values: accept, continue, or reject. If the instance
accepts, it generates a session key SK;; and halts. If the instance asks to continue, it has not generated
a key yet and is ready to process another expected message. If the instance rejects, it terminates without
generating a session key, and can no longer be used in the computation.

Transcript: (” implementation”, (i,), InM sg, Out M sg, statusij)

If the instance accepts, add to the transcript:
(” start session”, (i, j))

If the instance rejects, add:
("terminate user instance”, (i,j))

This query is a means for M to actively manipulate messages to and from various instances. It then gets
reports on how honest instances behave in reaction to what they receive. M can, for instance, interleave runs,
inject messages of its own, or simply forward messages as they should be from one instance to another.

Deliver server message (0,k), InMsg

For this operation to take place, server instance (0,k) must be initialized. M specifies an incoming
message InMsg which the instance processes according to the protocol specification, and using the keying
information it has access to. The instance eventually produces an outgoing message Out M sg and reports its
status statusgr to M. The status can be one of three values: accept, continue, or reject. If the instance
accepts, it has delivered all of the messages it expects to and halts. If the instance asks to continue, it is
ready to process another expected message. If the instance rejects, it terminates and can no longer be used
to process messages in the computation.

Transcript: (” implementation”, (0, k), InMsg, Out M sg, statusOk)

If the instance accepts, add:
("exchange completed”, (0,k))

If the instance rejects, add:
("terminate server instance”, (0, k))

Reveal session key, (i,)
M specifies a previously initialized user instance (7, j) that has accepted. It receives in return the session
key SK;; that instance holds.
Transcript: (”reveal session key”7(i,j)7SKij)
Adversary coins
When M ceases interacting with RM, the last entry in the transcript is
” N

(" implementation” ,” adversary coins”, coins)

where coins is the string of all random values chosen by M during the course of the interaction.

13

4.4 A Tentative Protocol: the (Odd) Case of Prot0

We now present the first protocol we designed to fit our models, Prot0. Contrarily to what we expected,
it seems not provably secure using the above described formalism. Fortunately, this is not the case
of the two other protocols in this work. We choose to expose Prot0 anyway because it is interesting to see
the obstruction the simulation runs into: the combination of the passwords’ (possibly) low entropy and use
of the Diffie-Hellman construct. Note that Prot0 can only hope to achieve implicit authentication, as would
any four-pass protocol following this message pattern.

Setup Let 1 € N be the security parameter. Let G be a group of prime order g, with eta being ¢’s bitlength,
let g be a generator of G, let Enc := (Kg,&, D) be a public-key encryption scheme, and let Sig := (Kg,S,V)
be a public-key signature scheme. We run Kg(1") to get (pkg,skg) and Kg(17) to get (pks, sks). The
server’s strong secret keying material skt is set to (skg, skg) and the corresponding public keying material
pky - which we assume is hardwired into the protocol specification - is set to (pkg, pks). Finally, let {H,},
be a family of universal hash functions, mapping into {0, 1}*s¥, where sk is long enough in 7 (i.e., STsic 1S
a negligible function of). We also assume that (¢, G, g) and {H,}, are a part of the protocol specification.
Let D be the dictionary.

Running Prot0 between Alice and Bob A and B are assigned identity bitstrings I D 4 and I Dy respec-
tively, and hold passwords pw 4 and pwpg respectively.

1). A chooses z € Z; uniformly at random, computes X < g%, computes ca < Epky (X, pwa, [D4, IDg),
and sends c4 to T;

2). T decrypts c4 and checks A’s password. If the test fails, the protocol is aborted. Otherwise, 7 chooses a
hash index n uniformly at random, computes o1 < Ssry (X, n,ID 4, 1Dg), and sends (X,n,ID4,IDp,071)
to B;

3). B verifies the signature. If the test fails, the protocol is aborted. Otherwise, B chooses y € Z; uniformly
at random, computes Y < ¢¥, computes cg < Epr (X, Y, n, pwp, ID 4,1Dg), computes session key SKpg
H,(XY), and sends cp to T;

4). T decrypts ¢ and checks B’s password, the identities, and the values of X and n. If any test fails, the pro-
tocol is aborted. Otherwise, 7 computes 072 < Ssig (X, Y,n,ID 4, IDg), and sends (X,Y,n,ID 4, IDp,o0712)
to A;

5). A verifies the signature against the data received and the value of the group element it first sent. If any
test fails, it refuses to generate a session key. Otherwise, A computes session key SK 4 «+ H,(Y7®).

Why Proving the Security of Prot0 Apparently Fails Rather unsurprisingly, one of the assumptions
we were hoping to rely on here is the Decisional Diffie-Hellman assumption (DDH, see the appendix for
precise definitions). Combined with the entropy smoothing (see the appendix) property of the hash family
{H,}n, we can roughly assert that for randomly chosen exponents x and y, a randomly chosen hash key n,
and a randomly chosen ¢-bit string R, the tuples

(9,97, 9%,n, Hy(g"")) and (g,9%,9",n, R)

cannot be told apart. How this should be used in the security proof is straightforward: whenever the real-
world adversary M has messages correctly delivered between instances, the session keys that are assigned
are replaced with random strings. To show indistinguishability of transcripts, a candidate distinguishing
algorithm D will ask first for challenge group elements X <+ ¢g* and Y < ¢¥ and a hash key n to compute
the message flows, and then ask for a challenge string either equal to H,(¢g*¥) or random R depending on the
value of some hidden bit.

Consider the following situation. The adversary M has a connecting instance (¢’, ') send the first message
to a server instance (0, k), and has the server instance’s response forwarded to an opening instance (4,5). At
this point, according to the protocol description, (i, j) accepts the second message, is opened for connection
from (¢, j') through (0, %), and generates a session key SK;;. This session key is requested as a challenge

14

string by D, who has also already requested X, Y, and n to compute the sent messages. Suppose now that M
has guessed i’s password pw;, and uses this knowledge to replace (i, j)’s message response with an encryption
of some weird group element U. If this is delivered to (0, k), it will have to be accepted because the password
check passes. If the fourth protocol message is then further delivered to (¢',j'), it will be accepted as well.
The problem now is assigning (4, j) its session key. Since the adversary chose U, we cannot rule out that it
may be able to compute H,, (X™) (where u := logy, (U)), so this is the exact value that D needs SK;; to be.
D’s only hope to compute this is to ask its challenger for 2 and compute H,,(U?); unfortunately, this trivially
breaks the DDH challenge because SK;/;» - which is equal to H,(¢"¥) or a randomly chosen R - was already
previously queried.

We could ignore this scenario if we could somehow argue that its probability of occurrence during an
execution is negligible. Unfortunately, this is not the case: what allows M to inject U into the message
flows is that it guessed i’s password. Since D is presumed to be a small set of values, guessing pw; can most
certainly not be considered a negligible-probability event.

This further illustrates the subtlety in handling password-based authentication. Protocols Protl and
Prot2 (see 5.3 and 6.3) do not have this problem; it is fixed at the cost of adding key confirmation, which
incidentally also provides mutual authentication.

5 Password-Adaptive Network Adversaries

Here, we extend our model by adding a "reveal password" operation. This of course models password leakage
outside of the key exchange protocol itself, through e.g. password mismanagement. The adversary can now
dynamically corrupt users, allowing us to capture user forward secrecy. We then show that by including a
key confirmation flow to Prot0, we obtain a provably secure protocol — Protl — in the enriched model, under
the liberal exposure rule.

Let us mention that intuitively, there should be some sort of connection between the model obtained here
and the static network adversary model because in practice, password leakage does occur in the static model
as well. We comment on this observation in paragraph 5.4.

5.1 The Password-Adaptive Ideal World

Here, and in section 6.1, we only show how the static network adversary model is modified to accommodate
additional adversarial capabilities. We basically need to add a query that allows the adversary to reveal
passwords for users of its choice. We also need to slightly modify the conditions under which a user instance
can be exposed.

Reveal password, i

M* specifies a previously initialized user i, and receives pw; from RM?*. i must not have already been
the target of a successful password guess.

We shall say that user i’s password has been revealed if i has been the target of a "reveal password"
operation. We slightly change our previous terminology: from now on, we shall say that the password of an
initialized user ¢ is known if it either has been successfully guessed, or if i’s password has been revealed.

In Shoup’s paper [35], the analogous query is not accompanied by any secret user information in the ideal
world, because there is none. Our situation is different since we explicitly placed passwords in the ideal world,
following [8]. Accordingly, this extra information has a role to play in the security proof.

Transcript: ("reveal password”,i,pw;)

A modification of the rules for testing passwords
The "text instance password" operation is no longer used on input i if pw; was already the target of a
"reveal password" query.

A modification of the rules for exposing

15

The exposure rule must also be modified to accommodate the adversary’s new capability. When a "start
session" operation is performed on user instance (i,) with role;; = open (resp., connect), this user may be
exposed through (0, k) if (0, k) has been initialized with PIDSy; = (ID;, PID;;) (resp., (0,k)’s exchange has
been completed with PIDSy, = (PI1D;j, ID;)), and either PID;; is not the identity of an initialized user, or
PID;; is the identity of an initialized user whose password is known, or pw; is known.

Distinguishing the liberal and conservative exposure rules here is of course still relevant. As was the
case in section 4, to get the conservative rule from the liberal one stated above, one simply needs to remove
the condition "or pw; is known". Protocol Protl described in 5.3 is actually provably secure under the
liberal rule, and insecure under the conservative rule, whereas Prot2, described in 6.3, is secure under the
conservative rule. The difference that this makes is significant: Prot2 is secure against KCI while Prot1l
is apparently not.

5.2 The Password-Adaptive Real World

Reveal password, i

M specifies a previously initialized user ¢, and receives pw; from RM. ¢ must not have already been the
target of a successful password guess.

The terminology set in terms of passwords being known or revealed in our description of the ideal world
carries over to the real world.

Transcript: ("reveal password”,i,pw;)

Note that it is unnecessary to add an implementation operation to specify the password, since it is already
specified in both the ideal and real worlds.

5.3 Protl: Adding a Confirmation Code to Prot0

While Prot0 is not provably secure, it is possible to slightly modify it to get a provably secure protocol in the
password-adaptive network adversary model. We simply add a key confirmation mechanism. The same fix
is used by Shoup to get from DHKE to DHKE-1 in [35]. The obstruction we described in trying to prove
Prot0 secure is actually exactly the same. The only difference is that since we are dealing with passwords,
the problem arises for us already in the static adversary case, while in [35] the protocol DHKE is secure in
the static-adversary model and not provably secure in the stronger model allowing dynamic user corruptions.

Setup 7 again being our security parameter, let G be a group of prime order ¢ (of bitlength 7), g be a
generator of G, Enc := (Kg, &, D) be a public-key encryption scheme, and Sig := (Kg,S,V) be a public-key
signature scheme. Run Kg(1") to get (pkg,skg) and Kg(17) to get (pks, sks). Set sk := (skg,sks) and
pkr := (pkg, pks). Finally, let {H,}, be a family of universal hash functions, mapping into {0, 1}¢sx+fcc
where both £gx and (¢ are long enough in 1) (574 and 5= are negligible in 7). Session keys will be of
length /s and confirmation codes will be of length /-¢. In what follows, "randomly" means "uniformly at
random".

Running Protl between Alice and Bob

1). A chooses exponent z € Z; randomly, computes X < g%, computes c4 < Epky (X, pwa, ID 4, Dg), and
sends c4 to T;

2). T decrypts c4 and checks A’s password. If the check passes, it chooses a hash index n randomly,
computes o7y < Sskg(n, X, ID 4, IDg), and sends (X,n, D, IDg,o711) to B;

3). B verifies the signature. If this check passes, it chooses y € Zy, randomly, computes Y < g¥, computes
ciphertext ¢z < Epip (X, Y, n, pwp, ID 4, IDg), and sends ¢ to T;

4). T decrypts cg and checks B’s password, the identities, and the values X and n. T computes oo
Sskg (X,Y,n,ID4,1Dg), and sends (X,Y,n,ID4,IDg,o72) to A;

5). A verifies the value of the group element it sent in the first protocol message and verifies the signature
against the data received. If both checks pass, it computes master key M K 4 < H,(Y*), and then parses it

16

into one bitstring SK4 € {1,0}s% and k4 € {0,1}*cc. SK 4 is the session key, and x4 is the confirmation
code. k4 is sent to B;

6). B computes master key M Ky + H,(XY), parses it into two strings SK € {0,1}*s% and xg € {0,1}¢cc.
If kg # kA, B stops. Otherwise, B sets SKp + SK.

Theorem 1 If Enc is IND-CCA-2-secure, Sig is EU-ACMA-secure, and the DDH assumption holds in G,
Prot1 is secure under the liberal exposure rule against password-adaptive network adversaries.

The complete proof of this theorem is in section 8. The definitions of IND-CCA-2 security, EU-ACMA-
security, and the DDH assumption are in appendices B.1, B.2, and A.1. &

We comment on the failure of Protl to completely defend against KCI.

The proof of security zeros in on the type of KCI attack which is possible in principle. One example is
as follows, in Alice and Bob notation. The attack will involve two different instances of the server, denoted
(T,1) and (T,2), one instance of A, and one instance of B.

Steps 1)., 2)., 3)., and 4). are performed as normal between A and B through (7,1). At this point, A
has chosen X = ¢*, (7,1) has chosen n;, and B has chosen Y = g¥. Since step 4) was carried out, a signed
message containing n; and Y is "on its way" to A.

Now suppose that our network adversary M intercepts this fourth message. While A is waiting, M
replays to (7,2) the first message that A sent. (7,2) - a new server instance - has no reason to reject this
replayed message, so it chooses a new no, and sends out a new second message which reveals no.

Next, assume that M knows pwg. Suppose that it uses this knowledge to compute a third protocol
message c of the form ¢ < &5, (X, V,n9, pwp, ID 4,1Dg), where V is some group element that may depend
in some weird way on X and Y;. M now has ¢ delivered to (7, 2), which computes a fourth protocol message,
that M finally has delivered to A.

A has been waiting for this message; A accepts it, since all checks pass, and computes SK4||lka +
H,,(V*).

Finally, suppose that A starts using SK 4, and that M somehow gets the entire session key. M can now re-
construct the entire string H,,, (V). This is where B is at risk because the assumptions made on G and {H, },,
do not guarantee that H,, (¢”¥) is incomputable in this case: M has at its disposal (X,Y,V,n1,n2, Hy,(V*))
where V' is a mysterious function of X and Y. In particular, M could very well compute the confirmation
code B expects, thereby having B accept despite A having computed a different key.

In the end, formally M has indeed successfully impersonated A to B using knowledge of pwg. Notice
however that in reality, M has to work a lot more to succeed in this extremely convoluted attack beyond
somehow getting pwp. Remember, revealing pwg is only a sufficient prerequisite for exposing (in the liberal
sense) an instance of B in the ideal model; this does not mean that it is sufficient in reality for a given protocol.

It turns out that this attack and variations of it are the only KCI scenarios possible against Prot1. This
is why it is reasonable to state that while this protocol does not fully eliminate KCI, it does heavily mitigate
it.

5.4 A Comment on the Relation Between the Static and Password-Adaptive
Models

Usually, in security models for classical key exchange using public-key infrastructures, the difference made by
allowing long-term key corruptions is quite stark. Some protocols secure in the static sense are immediately
and blatantly broken as soon as such a query is permitted (e.g. Shoup’s EKE protocol in [35], not to be
confused with Bellovin and Merrit’s "Encrypted Key Exchange" protocol [6]). When passwords
are used as long-term secrets, the difference is not so obvious because even in the static adversary case,
password guessing can be successful, and the advantage the adversary is granted in the protocol execution is
essentially the same. One might therefore postulate that on some level, both models are equivalent.

17

Our feeling is that this is probably not the case, for several reasons. First, it would be fundamentally
unsound because password guesses and corruption queries model two completely different types of information
leakage which in practice have nothing to do with one another. In the language developed in this paper, the
corresponding theoretical discrepancy can be described as follows. If we were to try to simulate a model with
password-revealing queries in a model without them, we would have no choice but to simulate password-
revealing requests with an amount of password guesses sufficient to give the right answer. But if we hope
to show indistinguishability of transcripts, all of these password guesses would have to be logged in both
models, making the adversary of the adaptive case basically do as much work for his reveal query as he would
by just performing successive authentication attempts.

The difference would be more visible if we replaced our asymptotic security definitions with ezact security
ones; we could then obtain formulas expressing the adversary’s advantage as functions of the number of
guessing attacks and the number of password reveal queries.

6 Password-and-State-Adaptive Network Adversaries

In this section, we further enhance the model by granting the adversary the power to corrupt user instances
in the following sense: upon corruption, a user instance’s Unerased Internal State (UIS) is revealed. This
models storage of ephemeral data in insecure memory (see [35]). This is a particularly interesting query to
study because revealing internal state is seldom considered for password protocols since it leads to immediate
dictionary attacks. This appears to not systematically be the case here precisely because we have private
keys at the server. We note however that it is crucial that certain random bits be erased as soon as they have
served their purpose.

Our goal is this: if a user instance’s UIS alone is revealed, that instance’s session key, and at most one
other instance’s session key, is compromised.

This "weak" definition of internal state revealing and the corresponding security goal were first exhibited
by Shoup [35].

Let us pause to state what this query does not reveal by definition. First of all, it does not formally
reveal the session key, for this key does not even "exist" until the UIS has served its purpose in the protocol.
Secondly, it obviously does not reveal the password?. This can be concretely interpreted as follows: in reality,
a password should be human-memorable. In particular, one can assume that it becomes input to the protocol
only when the user types it into whatever interface is implemented by the program. Thus, the password has
no business being in intermediate memory anyway. Following this line of thought, if one actually cares about
UIS revealing it seems a prudent design principle that either a). a password should only be used as input once
in a protocol or b). if a password needs to be used in several protocol computations separated by message
deliveries, the user should have to retype her password in for each of these computations. Clearly, the latter
option raises usability concerns.

Section 6.3 describes Prot2, which is provably secure in this model. Prot0 and Protl are insecure in
this sense, but still achieve something from a UIS point-of-view with respect to the passwords, see section 6.5
for further discussion.

6.1 The Password-and-State-Adaptive Ideal World

Corrupt instance, (i,7)

(i,7) should not be terminated and should not have started a session. If (i,j) has been the target of
this operation, we shall simply say that (i,j) has been corrupted. This terminology applies in the real world
(described below) as well. During the execution, an instance that has been corrupted is either unbound or

2We warn the reader however that these notions are not those from the latest version of [35]. Taking the definitions of the
latest version - version 4, which is from November 1999 - would not be suitable for our purpose as instance corruptions in that
case automatically reveal long-term secrets as well. If we were to do this, we could obviously not hope to protect the password.
The definitions we use can be found in the April 1999 version of [35].

18

bound. Upon corruption, it starts out unbound. Also, if an instance is bound and is later corrupted again, it
remains bound.

Transcript: (”corrupt ”, (i,)

A further modification of the rules for exposing

We first allow (4, 7) to be exposed if it has been corrupted. This is the relazed exposure rule. If (i, j) was
already connected using the special connection rule defined below, it remains so.

Next, if there exist (0, k) and (¢, j') such that (¢,7), (¢,), and (0, k) have matching roles and partners,
(,4) may be exposed if (i’,5’) is corrupted and unbound. (¢, ;") then becomes bound. This is the special
exposure rule.

A special premature connecting rule

Let (4,7) have the role connect, and let (i, j') and (0, k) be such that (¢/,5’) is open for connection from
(i,7) through (0, k). If (i,7) is corrupted and unbound, we allow the adversary to prematurely connect (i, j)
to (i, j') through (0,%). In this case, M* receives SK;;/, and (i,j) becomes bound. This is the special
connection rule.

The purpose of binding instances The mechanism enforcing the fact that at most one additional instance
is compromised solely due to a corruption is the attribution of the "bound" or "unbound" status to a corrupted
instance. Intuitively, if in the course of a simulation a user instance must absolutely be exposed but its natural
partner instance is already bound, the logic of the protocol should imply that a relevant password is known
to the adversary, thereby allowing an ordinary exposure to take place.

6.2 The Password-and-State-Adaptive Real World

In the real world, instance corruptions are treated as follows.

A modification of user instances and their message deliveries

When a user instance (4, j) is initialized, in addition to the random variable status;;, the random variable
InternalState;; is initialized outside of M’s view and at first set to ¢ (the empty string). InternalState;; is
updated at each message delivery. If status;; = accept, InternalState;; is set once again to e.

Corrupt instance, (i,7)
M specifies an initialized and not yet terminated user instance, and recovers the value of InternalState;;.

Transcript: (” corrupt”, (i, j)) followed by
(”implementation” ,Vinternal state”, (i, j), InternalStateij)

The InternalState;; Random Variable The values this variable takes will be specified in the real-world
protocol description. According to the definition, the adversary recovers the value of InternalState;; at the
time of corruption. This may very well be an empty value at times, but notice that in neither the ideal nor
real worlds do we prohibit the adversary from corrupting an instance more than once. Recall that in the ideal
world, if an instance that was corrupted becomes bound and is later corrupted again, it remains bound.

Revisiting Dictionary Attacks The comments made in section 4.2 still apply here. Ideally, corrupting
user instances has no effect on an adversary’s ability to test password guesses beyond the one or two online
impersonations that can be performed on a server instance. This accurately captures the idea that dictionary
attacks are not aided by UIS revealing. But this is just a definition; it does not show how a protocol concretely
achieves this... (See the next paragraph.)

6.3 Prot2: Binding the Random Choices to Both Passwords

The setup is the same as for Prot1, except that the H,, map into {0, 1}’s%. Prot2 runs as follows. Also, we
explicitly assign a value to the the internal state variable in the protocol description. Let £ denote the empty
string.

19

1). A selects z € Z; randomly, computes X < g*, and sends (X, /D, IDg) to T. Here, A’s state is set to
InternalState 4 + (x, X);

2). T selects a hash index n randomly, and sends (X, n,ID4,IDg) to B.

3). B selects y € Z;, computes Y < ¢ and MKp < H,(X"), erases y, and computes the ciphertext
e« Epip (1, X, Y, n, pwp, ID 4, IDg). It erases the randomness used to compute cp, and sends cg to
T. Here, B’s internal state is set to InternalStateg <+ (X,Y,n, MKg);

4). T decrypts cg and checks the password pwg, the identities, and the random values n and X. If the
checks pass, it computes o1 < Sss(1, X,Y,n,ID 4,1Dp), and sends (Y,n,071) to A;

5). A checks the signature o1 against the data received and the held group element X. If the test passes,
it computes SK4 + H,(Y"), erases exponent x, and computes ca Epi, (2, X,Y,n,pwa, [D4, IDpg).
It erases the randomness used to compute c, and sends cyq to 7. A’s internal state is reset to
InternalState 4 < ¢;

6). T decrypts ca, checks password pwy, the identities, and checks the random values X, Y, and n. It
computes o7g < Ssks (2, X,Y,n,ID 4, IDg), and sends (Y, o12) to B.

7). B checks the value of Y, and then checks the signature oo against the data received and the held
originator element X and hash index n. It sets SKp < MKpg. Finally, B’s internal state is rest to
InternalStatep < ¢.

Theorem 2 If Enc is IND-CCA-2-secure, Sig is EU-ACMA-secure, and the DDH assumption holds in G,
Prot2 is secure under the conservative exposure rule against password-and-state-adaptive network adversaries.

The full proof of the theorem is in section 9, and the definitions of IND-CCA-2 security, EU-ACMA
security, and the DDH assumption, are in the appendix (see B.1, B.2, and A.1). B

Since the theorem holds under the conservative exposure rule, Prot2 fully avoids KCI. What about UIS
revealing?

Revisiting Dictionary Attacks Again UIS is basically "whatever information is needed for an instance
to continue its computations". Everything else — as specified in the protocol description above — is erased as
soon as it is no longer needed. In particular, what (say) A needs to hold on to after sending its first protocol
message is its exponent x, otherwise it cannot compute the session key. What it does not need to hold on
to is the randomness used in the public-key encryption performed to compute the fifth protocol message in
step 5). Hence this randomness is erased and therefore off limits to the UIS revealing. But the fact that the
encryption is randomized is exactly what protects the password, even if the other parts of the plaintext are
known to the attacker. This is the very definition of semantic security.

It is worth contrasting this with the situation in CRS-based 2-PAKEs that are standard-model-secure and
that use smooth projective hashing. Such protocols also protect the password with public-key encryption.
Recall that decryption in this setting is impossible; nobody even has the decryption key. Now, this problem
is circumvented using the smooth projective hashing mechanism. But this is where the catch lies in terms of
internal state: for the mechanism to work, the parties need to hold on to the randommness used for encryption,
and it becomes UIS. Thus, revealing UIS causes trivial dictionary attacks.

Comparing UIS According to Role It is interesting to note the inherent asymmetry that the initiator
and responders have in this protocol as far as UIS is concerned. Arguably, the most striking observation is
that the protocol initiator (i.e. .A) needs to hold on to its random exponent between two messages, while the
responder (i.e. B) does not. More interestingly, if we try to "force" symmetry to occur, e.g. by asking B to
hold on to its exponent y and only compute the session key at the end, we lose simulatability. See 6.4 for
an explanation of this.

Replaying Stale Data As for the security goal that we aim to achieve with UIS revealing, it is indeed
reached by this protocol intuitively because the random group elements of both instances are bound to both
passwords. In particular, if an adversary who gets the exponent x of an originator wants to successfully replay

20

X = ¢” in a protocol run, it can only do so through knowledge of the originator’s password because the fifth
protocol message contains an encryption of the new responder’s fresh group element. A stale message cannot
therefore simply be replayed.

6.4 Variations of Unerased Internal State in Prot2

It is instructive to see the kind of obstruction that arises when using a simulatability definition for different
definitions of the UIS held by the user instance with the role "connect". In "Alice and Bob" notation, B has
the role "connect".

Suppose first that upon receipt of the third protocol message, B does not compute H,,(X¥) directly before
erasing y, but instead waits until it has checked the signature on the sixth message to do so. Here, X = g*
is the group element (purportedly) chosen by A, Y = g¢¥ is the group element and hash index chosen by
B, and n is the hash index (purportedly) chosen by 7. Consider the case where the first four messages are
correctly computed and delivered. A having received the fourth message, she has computed the session key.
Since all messages were faithfully delivered and neither .4 nor B has been corrupted, our simulation-based
security definition has had A opened for connection from 5, and the session key SK 4 she has been assigned
is a random string. But if B is corrupted at this point, the adversary M learns the exponent y in addition
to having X and n. Thus, M will have no trouble deciding whether SK 4 = H, (Y*) or not.

6.5 Unerased Internal State in Prot0O and Protl

We return briefly to Prot0 and Protl to see what happens to them under UIS revealing. For this, we need
to specify the InternalState variable for the users at all stages of the descriptions of both "Prots". It seems
that we cannot get away with having the initiator’s exponent being a part of InternalState, but as with
Prot2, we can get rid of all of the random bits used for the encryption scheme.

Under these assumptions, clearly neither protocol fulfills the security goal, for if the exponent x chosen
by A is revealed to adversary M, M can replay the first protocol message to many new server instances
communicating with many other B instances and compute the correct session key (and, in the case of Protl,
confirmation code) each time, without M ever needing to reveal pw 4 or pwg.

However, even though the desired goal defined in case of UIS revealing is not achieved, UIS revealing
still fails to open either protocol to dictionary attacks, for the exact same reason as in the case of Prot2:
no reasonable definition of UIS for ProtO or Protl will contain the encryption’s random bits. Of course,
it would be better to actually prove this in an adequate model, which we do not do here. Since we see no
way to prove it secure even in a basic sense, we have no real idea on how this could be done for Prot0. We
nevertheless give some indications on how it might be possible to proceed for Protl (or similar protocols).

Recall that the ideal-world device that limits the number of compromised instances in the face of an
instance corruption is the fact that a corrupted instance may become bound (see section 6.1). The corruption
operation alone does not suffice. Therefore, to capture the idea that revealing UIS does not open a protocol
to dictionary attacks, we simply a). strip the ideal world of the "bound" and "unbound" attributes and b).
make the rules for exposing only a function of whether a given partnered instance is corrupted. These changes
should suffice again by virtue of the fact that in the ideal world, corrupting a user instance does not aid in
any way in testing passwords.

7 Preparing for the Proofs of Security

The purpose of this section is to lay out the framework necessary to understand the proofs of security. The
full proofs of each theorem are in the two following sections, and each of these begins with a proof sketch.
Here we fix the notations used in, and explain the structure of, both the full proofs and the sketches.
Technically speaking, the proof sketches (see section 8.1 for Protl and 9.1 for Prot2) add nothing to
the full proofs. We have decided to include them anyway because the high-level view they provide a). was

21

extremely useful for us to finally pin down the correct arguments developed in the full proofs and b). really
shows off the "simulation" mechanism. Because of this, we think that that from the reader’s point of view
these sketches may actually be more instructive than the proofs themselves, which are very long due to the
moderately high complexity of the protocols. However, some of the features of the proof sketches can really
only be properly explained with the full proofs.

7.1 Some Notations and Terminology

In either protocol, the user that generates the first message is called the originator. The other user is called
the responder. In both Prot1l and Prot2, the originator happens to be the user instance that computes the
session key first; therefore, originators will always receive the role open, and responders, the role connect. We
will always try to use (i,7) to designate an originator instance and (i, j') to designate a responder. We will
sometimes refer to these as i-originators and i’-responders. (0, k) will always be used for server instances.

M is the real-world network adversary. Recall that it is a PPTA in security parameter 1. As stated in
section 3.2, our objective is to build an ideal-world adversary M* whose interaction with the ideal world
ring master RM”* is computationally indistinguishable from an interaction between M and a real-world
ring master RM. To achieve this, we build M* by having it simulate RM’s actions while running M as
subroutine. Security is achieved if M* can unambiguously translate any real-world action M takes into
a corresponding legal ideal-world action. In particular, any of M’s successful real-world attacks should
correspond to an unavoidable ideal-world attack.

7.2 Structure of the Proof Sketches

The proof sketches make only mention of M*, M as it is used by M*, and RM™*. RM is "played by" M*
for M. In these sketches, we directly show how important events in the real world correspond to events in
the ideal world. The most significant real-world events that need to be translated into ideal-world ones are
those message deliveries that

a). lead to session keys being computed by user instances: these should be interpreted as "start session"
operations with corresponding, unique connection assignments, and

b). constitute real-world, online password guesses: these should be interpreted in the ideal world as "test
instance password" operations.

Of course, the security of the primitives used as protocol ingredients is invoked to show that the ideal-world
requirements for operations to take place are indeed satisfied. The fact that these security properties are
informally exploited is what makes these demonstrations only sketches.

7.3 More Notations, Structure of the Full Proofs, and Simplifying Assumptions
on the Encryption Scheme

The full security proofs carry out the above simulation in much more detail, making explicit the precise role
each primitive has in securing the protocol. These proofs proceed as sequences of games, a very common
technique in provable security.

The first game in the sequence is played between M and RM according to the precise real-world rules.
The intermediate games introduce small changes to the way RM runs the execution environment, changes
that the adversary should not be able to computationally notice based on the security properties of the
various building blocks in the protocol. Each game mainly exploits the exact security definition of one of
the protocol’s features. With each change, the adversary’s wiggle-room becomes more restricted up until
the second-to-last game, where M really has no more freedom to attack in a meaningful way. The very last
game is used to classify M’s remaining available actions into ideal-world operations, thereby completing the
simulation. It is in this last game that the fully modified ring master is converted into a simulator M*.

22

Since the intermediate games exhibit properties that fall somewhere in between those of the real and
ideal worlds, we call them hybrid worlds. Each hybrid world has a transcript of its own that follows the
same logging rules as in the real world. These hybrid-world transcripts are of course used to measure the
adversary’s ability to discern consecutive worlds.

For a € N, the hybrid-world ring master in the a-th world will be denoted R./\/IZ . In the real world and
in all of the hybrid worlds, the adversary will always be denoted M. The transcript random variable of the
a-th hybrid world will be denoted HW,(M).

We adopt the following (somewhat abusive) terminology. Let s := (si,...,s:) and ' := (s,...,s,) be
tuples of strings and let w be either s itself, an encryption &, (s) of s, or a signature Sgi(s) of s. If all of the
s, appear as components of s, we shall say that w contains s’ or that s’ is contained in w. We assume that
a signature on a message is not automatically accompanied by the message itself.

Group elements that are computed - or purportedly computed - by originator (resp., responder) instances
will be referred to as originator (resp., responder) group elements. We shall try to systematically reserve X
and U to designate originator group elements and Y and V to designate responder group elements.

We shall say that an integer (function) ¢ of n is long enough in 1 if 5; is negligible in . (For instance,
"¢ :=n" is long enough in 7.)

About the Encryption Scheme... We end this paragraph by making a few benign assumptions on the
encryption scheme Enc = (K, &, D).

First, we shall assume that for any fixed message m and for any public encryption key pkg, the function
T+ Epky(m;r) is injective, where r is the encryption randomness. An example of an IND-CCA-2 secure
scheme that satisfies this is the Cramer-Shoup [14] scheme. The assumption is not really limiting because
even if it does not strictly hold for Enc, the semantic security of the scheme implies that it will hold with
overwhelming probability.

Secondly, we shall assume that the function which to a secret decryption key associates the corresponding
public key is injective as well. This is also true for Cramer-Shoup [14]. Also, in the event that it is not strictly
true, it should be true with overwhelming probability.

Finally, we assume that decryption is perfect. This is rather common; we do not elaborate further.

It will be indicated in the proofs (even sometimes in the sketches) where these assumptions are used. We
could avoid making them, but this would only further complicate the proofs below, and add little value for
our purpose.

Let the game-hops begin.

8 Protl is Secure Against Password-Adaptive Network Adversaries

Paragraph 8.1 below contains the sketch of the proof of security for Protl. All other paragraphs in this
section - from 8.2 on - together form the full proof.

8.1 The Proof Sketch for Protl

RM* is the ideal-world ring master, M* is the ideal-world adversary under construction, and M is the
real-world adversary M* is using as a subroutine. M* has to use its queries to RM™ to answer the queries
from M. In what follows, (7, ;) will always be an originator instance, (0, k) will always be a server instance,
and (¢',7’) will always be a responder instance.

In this sketch, we only show how message deliveries are handled, since this is the crucial point in the
simulation. The other queries M may make have direct counterparts in the ideal world. Hence, these are
simply forwarded to RM™ by M* on the same input. We also omit the setup phase.

Text in italics is used every now and then to explain informally how some of the properties of the protocol’s
constructs are exploited.

23

The case of an originator instance

e Generating the first protocol message

Suppose M asks to have (i, j) generate the first protocol message. M* selects exponent x < Z; uniformly
at random, computes X < g%, and computes ¢ + Epp, (1a, 1w ID;, PID;j;). It then outputs OQutMsg, < c
to M.

By the semantic security of the encryption scheme, M’s behavior will not change even though (1¢g,1%w)
is encrypted rather than (X,pw;). It is important that this substitution be made, for a priori pw; is not
available to M*; indeed RM* selects passwords outside of M*’s view. In contrast with the reason 1°rv takes
the password’s place, the technical reason M* substitutes 1 for X has nothing to do with the specification of
the ideal-world, and is made clear in section 8.6. For the purpose of the proof sketch, it is not really necessary
to do this, but we choose to anyway to stay consistent with the ideal-world adversary built in the full proof.

e Receiving the fourth protocol message and computing the fifth

Suppose (i, j) receives the fourth protocol message InMsgy. Let OutM sg; be the first protocol message
output by (4,7) and let X be the group element chosen by (i,).

ee Suppose first that no server instance (0,k")) with PIDSy.) = (ID;, PID;;) received OutM sg,. In this
case, (4,) simply rejects InMsgy and terminates.

This is justified because given that the first protocol message is non-malleably encrypted (remember, Enc
is IND-CCA-2-secure), M’s only hope to get any information on X is by delivering exzactly OutMsgy to such
a server instance.

ee Suppose now that there exists a server instance (0,k(1)) with PIDSy,q) = (ID;, PID;;) that received
OutMsg, thereby revealing X to M. If InMsg, is not of the correct format - i.e. of the form (X,V,n, o)
for a non-trivial group element V', a hash index n, and a string o - (7, j) rejects and terminates. Otherwise
(4,7) computes the signature verification equation on input (X,V,n,ID;, PID;;, o).

eee If the verification fails, (,5) rejects InMsgy and terminates.

eee If the verification succeeds, the unforgeability of the signature scheme and the size of the hash key
space imply that there exists a unique server instance (0, k) with PIDSy, = (ID;, PID;;) that chose n and
computed a signature on input (X, V,n,ID;, PID;;) to output a second protocol message OutMsgs. Also,
(0, k) must have received as a first protocol message either OutMsg;, or some InMsg; containing (X, pw;).
(4,4)’s session is started, and we now need to determine what its connection assignment will be.

eeee Suppose that PID;; = ID where ID was not assigned to a user. In this case, (4, 7) is exposed through
(0,k). M* extracts master key M K;; <— H,(V?), where g* = X, specifies SK}; < pfig, (MK;;) to RM”,
and outputs OutMsgs < sfi.o (M K;j) to M.

eeee Suppose now that PID;; = ID; for some initialized user ¢’. Let InMsgs be the third protocol message
that (0, k) received.

eeeee Suppose that no user instance computed InMsgs. By the rules governing the way M* runs server
instances (see below), InM sgs’s acceptance by (0, k) implies that M* either revealed or successfully guessed
pwir. (i,7) is exposed through (0,%), M* computes M K;; <+ H,(V*®), specifies SK}; < pfes, (M Kij) to
RM?*, and outputs OutMsgs < sfeoe (MK;;) to M.

eeeee Suppose a user instance did compute InMsgs. The way server instances process the third message
(below) implies that it is necessarily a responder (i’, j') with PID; ;; = ID; that received as a second protocol
message some InM sgy containing the same data as Out M sgo. Furthermore, by the size of Enc’s randomness
space, (¢/,7’) is unique, and we also know that (i’,j') chose the group element V. Thus, at this point, (i,7)
has participated in a correct conversation with (i/, 5) through (0, k). (7, 7) is therefore opened for connection
from (i’,j') through (0,k). RM* selects SK; uniformly at random from {0, 1}s%, M* selects OutMsgs
uniformly at random from {0, 1}*¢¢, and outputs OutMsgs to M.

This substitution goes unnoticed by M under the DDH assumption coupled with the entropy smoothing
property of the hash family.

24

The case of a responder instance

e Receiving the second protocol message and computing the third
Suppose (', j') receives the second protocol message InM sgs.
ee If InMsgs is not of correct format, (i', j') rejects and terminates.

ee If InMsgs, is of correct format, let U and n be the non-trivial group element and hash index present in
InMsgs. (i, 5') computes the signature verification equation on input (U,n, PID;j/, ID;).

eee If verification fails, the message is rejected and (i, j') terminates.

eee If verification succeeds, the unforgeability of the signature scheme and the size of the hash index space
ensure that there exists a unique server instance (0, k) that computed a second protocol message OutM sgo
on input (U,n, PID;sj,ID;). In this case, M* selects y < Zj uniformly at random, computes Y « g",
computes ¢ Epkp (U, 1, n, 172, PID;1j1, ID;s), and outputs OutMsgs < ¢ to M.

Again, the security of encryption means that replacing pwy by 1%+ and Y by 1g does not change M’s
view. Also again, why Y is also replaced is clarified in section 8.6.

e Receiving the fifth protocol message

Suppose (i’,j') receives the fifth protocol message InMsgs. Let InMsgs be the second protocol message
(#,7") has received, containing originator group element U and hash index n, let OutMsgs be the third
protocol message computed by (i/,5’), and let Y = g¥ be the group element chosen by (i’,j’). Let (0, k) be
the unique server instance that computed a second protocol message OutM sgo on input (U, n, PID;:jr,1D;:).
Let InMsg; be the first protocol message received by (0, k).

ee Suppose that OutM sgs was not delivered to (0, k). Then (¢, j) simply rejects InM sgs.

This is justified because by the non-malleability of the encryption, only through delivery of exactly Out M sgs
to (0,k) can M get sufficient information to be able to compute the Lcc-bit suffiz of H,(UY). Notice that
this is true even if (i, j') is conversing directly with the adversary through (0,k).

ee Suppose now that OutM sgs was delivered to (0, k), thereby revealing Y to M. (0, k)’s exchange is now
completed, according to the rules governing the treatment of server instances (below). Let OutM sgy be the
fourth message computed by (0, k).

eee Suppose that PID;;» = ID, where I.D was never issued to a user. In this case, M* extracts the master
key MK, < Hy,(UY), computes ki j» < sfoo. (M Ky i), and compares InMsgs to ki j. If they are equal,
(7', j')’s session is started, and (', ;') is exposed through (0, k). Note that this is legal because Out M sgs was
delivered to (0, k), whose exchange is therefore completed. M* specifies SK < pfog, (MK j0) as (i, j')’s
session key. If InMsgs # k4, (7', j) rejects and terminates.

eee Suppose that PID;; = ID; for some initialized user ¢.

eeee Suppose that the following condition is not met: there exists an originator (7,j) with PID;; = ID;
that output a first protocol message OutM sgy, and either InMsgy = OutM sg, or OutM sg; was delivered to
some server instance (0, k(1)) with PIDSy,q) = (ID;,ID;/) and InMsg, contains the same originator group
element as the second protocol message output by (O,k(l)). In this case, InMsg; was not generated by a
user instance, yet was accepted by (0, k). This implies - see the case of server instances below - that M* has
either revealed or successfully guessed pw;. Then M* extracts the master key MK, ; < H,(UY), computes
Kirjr < Sfooe (M K;j), and compares InMsgs to k.. If they are equal, (i/,7’)’s session is started, (7/,7)
is exposed through (0, k), and M* specifies SK} ;1 < pfog, (M Ky) as (i',5')’s session key. If they are not
equal, (7, j’) rejects and terminates.

eeee Suppose the aforementioned condition is met, i.e. there exists an originator (¢, j) with PID;; = IDy
that output a first protocol message OutM sg;, and either InMsg; = Out M sg, or Out M sg, was delivered to
some server instance (0, k(1)) with PIDSy,q) = (ID;,ID;) and InMsg, contains the same originator group
element as the second protocol message output by (0, k:(l)). Then by the size of Enc’s randomness space,
(,7) is unique. Also, U was chosen by (i, j).

25

eeeee Suppose no fourth message was delivered to (7,7). In this case, (i/,7’) simply rejects InMsgs. This
is justified because M only has at its disposal (U,Y,n) to try to compute s fo.. (Hn (g“y)), which cannot be
done under the DDH.

eeeee Suppose some fourth message InMsg, was delivered to (3, j).
eeeeee Suppose InMsgy was rejected. In this case also, (i, j') simply rejects InM sgs.

eeeeee Suppose now that InMsgs was accepted by (4,7). Then (i,5)’s session was started. Let V and
n®) be the responder group element and hash index within InMsgs. By the rules describing the actions
M* takes when dealing with fourth message deliveries to originator instances, there exists a unique server
instance (0,%®) with PIDSy,2 = (ID;,ID;) that computed a fourth protocol message OutMsgf) on
input (U, V,n?) with n(® chosen by (0,%(?)). Also, (0, %) was delivered as a first protocol message either
OutM sg; or some InMsg§2) containing U. Let InMsgéz) be the third protocol message that (0, k(?)) received.

eeeeeee Suppose that InM sg§2) was not generated by any responder instance. Since it was accepted by

(0, k), according to the way the fourth protocol message delivery is handled (see above), the password
pw; has either been revealed or guessed by M*, and (4,7) has been exposed. M* has already extracted
master key M K,;; < H,,2(V*"), and computed SK}; and OutM sgs with it. In this case, M* further extracts
MK < H,(UY), computes ki jo < Sfooo(MKyj), and compares InMsgs to k5. If they are equal,
(¢',7')’s session is started, (i',j') is exposed through (0, %), and M* specifies SK}; < pfog, (M Kyj) as
(#,7")’s session key. (Exposing is legal here because pw; is known to M*. This is where key compromise
impersonation is possible in practice for Protl. The fundamental reason for this is that V' could very well be
a function of U and Y.) If they are not equal, (7', j') rejects.

eeeeeee Suppose that InM sgz(f) was generated by a responder instance. Then this instance is unique and
is of the form (', j')) with PID; ;2 = ID;. The way fourth message deliveries are handled indicates that

(i,7) has in this case participated in a correct exchange with (', 5/)) through (0,%()), and so was opened
for connection from (', j®) through (0, k). RM* has selected SK; uniformly at random from {0, 1}¢s%,

M* has selected OutM sgs uniformly at random from {0, 1}*c¢, and OutMsgs was output to M.

eeseseee Suppose j/(2) # j’. Then one can see that we also have k(?) # k. In this case, (i, ') simply rejects
InMsgs.

This works because assuming DDH, M still cannot compute sfy.. (Hn(g"v)) from (U,Y,n).

eeesseese Suppose finally that j/(2) = j'. Then we also have k®) =k, Y® =Y, and n(® = n. Furthermore,
InMsg, certifies the same data as OutMsg,. In this case, M* compares InMsgs and OutM sgs. If they are
equal, (¢, j') has had a correct exchange with (7, j) through (0, k), so it’s session is started and it is connected
to (i,7) through (0,k) and RM" sets SK,,, < SK;. If InMsgs # OutMsgs, (i', j") rejects.

The case of a server instance

e Receiving the first protocol message and computing the second
Let InMsg; be delivered to (0, k) by M.

ee Suppose that InMsg; was not generated by a user instance. Then M* decrypts InM sg; to get plaintext
w.

eee Suppose w is not of the form (U, pw, OI Dy, CIDyy;) where U is a non-trivial group element and pw is
a password. Then InMsg; is rejected.

eee Suppose w does have the correct format.

eeee Suppose OIDy, = ID was not assigned to a user. Then ID has necessarily been input to a "set
password" request, so M* knows pw;p. If pw = pw;p, (0,k) accepts the message and computes Out M sgo
as specified by the protocol. Otherwise, InM sg; is rejected.

eeee Suppose OIDg, = ID; for some initialized i. If pw; is already known to M* (i.e. if pw; has been
successfully tested as defined below or i was targeted by a "reveal password" operation), M* compares pw and

26

pw; and answers appropriately. If pw; is not known, M* makes a "test instance password" request on input
((0, k),i,pw). If RM™ answers positively, M* accepts the message and computes OutMsgs. It also learns
pw; If RM™ answers negatively, InM sg; is rejected.

This construction is justified by the fact that encryption is non-malleable, the consequence being that M
cannot feasibly manipulate an encryption containing a correct password with the goal of just changing, say,
a group element or an identity. M’s only real option is to encrypt a password itself, making it reasonable to
interpret a non-honest message as a password guess.

ee Suppose that InMsg; was generated by a user instance. Then this instance is unique by the size of Enc’s
randomness space.

eee If OIDy, = ID; for some initialized ¢ and the unique instance that computed InMsg; is an originator
instance (4, j) with PID;; = CIDy then (0, k) accepts the message without decrypting. Let X be the group
element chosen for (,7). (0,%) computes OutM sgs using X.

Since M* has a global view of the network it is running, it can check without decrypting whether or not

the necessary and sufficient conditions for message acceptance are fulfilled. This is technically important to
be able to work with IND-CCA-2 security, see section 8.5.

eee If any of the above-listed conditions are not met, InMsg; is rejected without decrypting.

e Receiving the third protocol message and computing the fourth

Let InMsgs be delivered to (0, k). Let InMsg; be the first message received by (0, k), let OutMsgs be
the second message computed by (0, k), and let U and n be the originator group element and hash index held
by (0, k).
ee Suppose that InMsgs was not generated by a user instance. Then M* decrypts InMsgs to obtain
plaintext w.
eee Suppose that w is not of the form (U, V,n, pw, OI Dy, CIDg;) where V is a non-trivial group element
and pw is a password. Then (0, k) rejects.

eee Suppose InMsgs is of correct format.

eeee If C'I Dy, = ID was not assigned to a user, then M* knows pw;p. pw is compared to pw;p to determine
the correct response.

eeee Suppose CIDg, = ID; for some initialized i’'. If M* knows pw,, it is simply compared to pw. If M*
does not yet know i/, M* makes a "test instance password" query on input ((0, k), z‘ﬂpw) to find out from
RM* if pw = pwy, and computes the response accordingly.

Once again, it is because Enc is non-malleable that a message concocted by the adversary can be reasonably
interpreted as a password guess.

ee Suppose now that InM sgs was computed by a user instance. Then by the size of Enc’s randomness space,
this instance is unique.

eee Suppose that CIDg, = ID; for some initialized user ¢/, that the unique user instance that computed
InMsgs is a responder (i, j') with PID;;; = OIDy, and that (i’,j") received and accepted as a second
protocol message some InMsgs containing (U,n). Then (0, k) accepts InM sgs without decrypting it, and
M* computes Out M sgy using U, n, and Y, where Y is the group element chosen for (i’, j'). (0, k)’s exchange
is completed.

Similarly to the case of the first message delivery, M* can check these conditions directly without needing
to decrypt.

eee If any of the above conditions does not hold, InM sgs is rejected without decrypting.

This completes the proof sketch for theorem 1.

27

8.2 The Real World

Let RM be the real-world ring master, and M be a real-world adversary (a PPTA). The interaction between
M and RM follows the rules defined in section 5.2. For completeness, we show how the game is initialized
specifically for Prot1.

Let n € N be the security parameter. The game begins with RM getting 17 as input and passing it to
M whose first action is to start the server.

e Initialize server RM sets up the parameters of Protl, as a function of 7. This involves constructing
the group parameters (¢, G, g), specifying the hash family {H,,},, where each H,, maps into {0, 1}¢sx+fcc for
a long enough session key length ¢sx and long enough confirmation code length ¢c¢, running Kg(1") and
KCs(17) to respectively get (pkg, skg) and (pks, sks), and finally specifying a password length ¢,,,. The tuple
of public parameters (17, (¢, G, g), {Hy }n, pkE, Pks, {pw) is then handed to M.

M responds by generating a non-empty dictionary D C {0, 1}« — {1%w} which is given back to RM.
M also provides a description of algorithms to efficiently sample elements of D uniformly at random and to
efficiently tell if an element of {0,1}%w is in D or not.

Of course, from this point on RM runs user and server instances using the passwords sampled from D
and the keying information (pkr, sky) := ((pkE,pks), (skg, sks))

8.3 The First Hybrid World: Unique Random Choices

Let RM}f be the first hybrid world’s ring master and let M be a PPTA. In the first hybrid world, R./\/llf’s
actions differ from those of RM as follows.

When M performs the "initialize server" operation, in addition to setting up the protocol parameters,
RM;‘ initializes the sets C& C Zj of previously chosen exponents, CHZ C Ky of previously chosen hash
indexes (where Ky is the index space for the hash family), and CER C Rg of previously chosen encryption
randomness, where R g is the randomness space of Enc. All three sets start out empty.

Whenever RM” has to select an exponent 2 from Zy for a user instance, it samples z uniformly at random
from Z; — C& and adds x to CE. Whenever RM! has to select a hash index n for a server instance, n is

sampled uniformly at random from Ky — CHZ and then added to CHZ. Whenever RM}f has to select a
randomness r from R g, it does so from R — CER and adds r to CER.

These changes, which we call the Nonce Uniqueness Rules (NUR), basically force all of the instances in
the system to choose pairwise-distinct random values. This guarantees that any given instance is uniquely
determined by the random choices it makes. More specifically, it allows uniquely associating honestly gen-
erated messages to the instances that computed them. Why this is also done with the encryption scheme’s
randomness will be made clear later. Since G, Kp, and Rg have cardinalities that grow faster than any
polynomial in 7, intuitively we have the following result:

Proposition 1 The transcript random variables HW1(M) and RW(M) are statistically close.

Proof: To ease notation, set ¢ := HW; (M) and 1 := RW(M). Let T be the set of all possible transcripts
that ¢ or ¢ can yield. We are to show that the expression

> |Plp =] - Py =1]]
teT

is negligible in 7. We first do some work on 7. Specifically, we partition 7 into good sets to work with.

1). Let Ty ("U" for "Unlucky") be the set of elements in 7 yielded by interactions in which the ring master
has at some point chosen the same exponent, or hash index, or encryption randomness at least twice.

28

2). Let To (the "O" is for "Ordinary") be the set of elements in 7 yielded by interactions in which the ring
master has always chosen previously unused values.

We clearly have 7 = Ty U To. It is also clear by construction that ¢ always takes its values in 7o, while 1
may take its values in both 7y and 7o.

Lemma 1 Ty and To are disjoint.

Proof: Let ¢t € 7. Suppose that it is both in 7y and 7. This means that there exists a configuration cip of
the interaction between RM respecting the NUR or RM? and M that yields transcript ¢, and there exists
a configuration ciyy of the interaction between RM failing to respect the NUR and M that also yields t.
Since cip and ciy both output ¢, the public setup parameters - which are placed in t - worked with in both
configurations are the same. In particular, both configurations use the same public encryption key pkg. This
namely implies that the decryption key skg is the same in both configurations as well.

Suppose first that ¢ is in Ty as a result of RM having chosen the same hash key n for two distinct server
instances in ciyy. Then n will have been immediately placed in ¢ in the output messages of these two different
server instances. But in cip this situation can only be a result of the ring master having chosen the same
hash index n twice for two distinct server instances as well, which is a contradiction. We have proven that if
t € To, t cannot be in 7y via a collision in hash index choices.

Suppose next that t is in Ty because in ciy ring master RM chose the same exponent x for two different
user instances. Then ¢ contains, as the output messages of two different user instances, encryptions ¢ and ¢
both of the form &y, (..., g%, ...). Since these strings are the result of computations in cip as well and in cip
the decryption key being used is the same as that in ciy, the ring master necessarily chose x twice as well in
cio. This is again a contradiction. Thus, if ¢ € T, t cannot be in T via a collision in exponent choices.

Suppose finally that ¢ is in Ty because the ring master - in ciy - chose the same encryption randomness r
for two different user instances. In this case, ¢ contains encryptions - produced by two different user instances
- of the form ¢ = &k, (m;7) and ¢ = Epk, (M';7). Then ¢ and ¢’ were produced also in cip, and since the
decryption key is the same in ciy and cip, ¢ and ¢ decrypt in cip to the same messages m and m’. But in
cio, the two randoms used are distinct, i.e. c is of the form i, (m;r1) and ¢ is of the form &, (m/;7r2),
where r1 # ro. By the injectivity of the encryption function in the randomness argument (see paragraph 7.3,
this is still a contradiction: indeed, this implies r = ry # ro = 1.

This concludes the (tedious) proof of the lemma. B

We return to the proof of the proposition. The lemma has the immediate consequence that T = To LU To
and that ¢ only yields values in 7p. We can write

SPlp=1]-Pp=t]| = > [Plo=t]-Pp =t]|+ >_ |Plp =t] — Pl =1]]

teT teTu teTo

The expression 7. |P[¢ = t] — Pl = t]| collapses to P[¢) € Ty] by the lemma and the fact that RMY re-
spects the NUR. Now, let X denote the random variable of exponent, hash index, and encryption randomness
choices made by RM in the real-world interaction, let Z be the set of values X’ may reach, and let Z be the
subset of Z consisting of those choices which respect the NUR. By definition we have P[¢ € Ty] = P[X ¢ Z].

We now turn our attention to Y, [P[¢ = t] — Pty = t]|. We have

S Plo=t]-Plp =t = > |Plo=1] - (Ply = t|X € ZIP[x € 2]+ Ply = 1| ¢ ZIP[X ¢ 2))|
teTo teTo

> |Plp =1] - Py = t|X € Z|P[x € Z]]

teTo

because conditioned on X ¢ 2, the lemma shows that 1 cannot be in 7. Next, we compare P[¢ = t] and

Pl = t|X € Z]. The adversary M is identical in both the real world and the hybrid world, and conditioned

29

on the random instance choices respecting the NUR, these choices in the real world are identically distributed

to those in the hybrid world. We conclude that P[¢ = t] = P[¢) = t|X € Z]. Combining this with our previous
equation yields

S Plo=t-Pp=t]|= > [Pl¢=1t-Plp=1tPX € Z||
teTo teTo

=Px ¢ 2]y Plo=1]

teTo

=PlX ¢ 2]

so we basically end up with

S |Plo =] — Pl = 1] = 2B[X ¢ Z]

teT

It remains to show that P[X ¢ Z] is a negligible quantity.

Lemma 2 P[X ¢ Z] is negligible.
Proof: We can first write

Plx ¢ 2] = Z PlX ¢ g‘(q”CH,RE)]P[(q,’CmREﬂ
(¢,Ku,RE)

where the event "(¢, g, Rg)" is shorthand for the event that the group size is ¢, the hash key space is Ky,
and the encryption randomness space is R. We fix a possible value for (¢, Cg, Rg) and focus our attention
on]P’[X ¢ Z|(q,ICH,RE)].

Let Cl (4, =) be the set of configurations of the interaction between RM and M in which the setup
parameters contain (¢, Kz, RE), and let X, x,, =) denote the random variable of exponent, hash index, and
encryption randomness choices made by RM in Cl, x,, =,)- We have by definition that

P[X(qJCH,'RE) ¢ ZV] = P[X ¢ Z:,;’(q’ ’CH7RE)]

Let B be an upper bound on the running time of M. The random variable X, x,, =) can be viewed as
X(QJCHaRE) = (ch X)CHv‘XRE)

where X, takes values in UiO(Z;)i, Xi,, takes values in | |2 K&, and Xr, takes values in | |7 Ri. We
see then that X, x,, =) ¢ Z if and only if one of these three components has a collision in its coordinates.
Let Colg, Colk,, and Colr, be the events that X,, Xi,, and X, samples two identical coordinates,
respectively. We can write

P[X(Q7KH7RE) ¢ Z] S]P[COlq] +]P)[COZKZH] +]P[COIRE]

Now, for any fixed value of 7, the set of possible triples (¢, Kg, Rg) is finite. Let g, Kz, and Rg be such
that ¢ — 1, #K, and #R g be minimal among all possible values. For large enough 7, we have B? < g — 1,
B? < #Kpy, and B? < #Rp. Therefore these inequalities are true for all possible triples (¢, K, Rg). Since
we have P[Col,| = Zf;OIP’[Colq|Xq € (23)'|P[X, € (Z})'], and since the ring master samples exponents
uniformly at random and independently of all other events in the interaction, we can use the birthday bound

2 2 L. 2 2 2 2
to conclude that P[Col,] < qB_—l < %. Similarly, P[Colk,] < % < #]’%{ and P[Colgr] < ﬁ < #%.

30

Thus, we finally get that

PlX ¢ 2] = PlX ¢ g‘(Qa’CH,RE)]P[(Q»’CH’RE)}

<

(¢, K, RE)
> (P[Coly] + P[Colx,,] + P[Colr ,])P[(¢,Kr, RE)]
(.. RE)

1 1 1
< B? + =t —= E Pl(q,Kw, R
S R G el (@, Kar, Re)]
(¢,Ku,RE)

P
-1 #Ku #Rg

= B¥(

This last expression being indeed negligible in 7, we have the result. B

8.4 The Second Hybrid World: Secure Signatures

In this next world, we tend to the signatures. Let RMS be the second hybrid world’s ring master and let
M be an adversary. RMS answers M’s operation requests exactly as RM? would except in how to process
messages that are supposed to be signed by the server. The only changes that are made involve the "deliver
user message" operation.

e Delivering the second protocol message and computing the third Let (i/,j’) be a responder
instance expecting the second protocol message and let InMsgs be delivered to (i, ') by M.

RMUE first, checks to see if InMsgs is of the form (U,n, o) for a group element U # 1, hash index n, and
string . If not, RM% has (i’,j') reject the message and terminate. Otherwise, it computes the signature
verification equation on input (U,n,PID;;, 1Dy, o). If verification fails, (¢/,j") rejects (and terminates).
If verification succeeds, RMS examines past computations. If there exists a server instance (0,%k) with
PIDSy, = (PIDy s, ID;) that computed a second protocol message OutMsgo on input (U,n), RM? has
(7', 4') accept the message, and pursue the protocol according to the specification. Otherwise, we shall say
that InMsgs was forged; (i, j') rejects InM sgs, even though the verification equation passed.

e Delivering the fourth protocol message and computing the fifth Let (i, j) be an originator instance
waiting for the fourth protocol message and let InMsgy be delivered to (i,5). Let X be the group element
chosen for (4, 7).

RMQ checks to see if InMsgy is of the form (X,V,n,o) where V # 1g and n are a group element
and hash index, and o is a string. If not, InMsg, is rejected and (i,7) is terminated. Otherwise, RMS
computes the signature verification equation on input (X,V,n,ID;, PID;;,0). If this fails, the message
is rejected. If it succeeds, R./\/lg examines previous actions. If there exists a server instance (0,k) with
PIDSy, = (ID;, PID;;) that computed a fourth protocol message OutM sg, on input (X, V,n), (i,7) accepts
InMsg, and the protocol continues. Otherwise, we shall say that InMsg, was forged; (i,7) rejects despite
the verification equation having passed.

The effect of these changes is to force user instances to reject signatures that have been forged. Notice
that in accordance with the precise definition of EU-ACMA security (see appendix B.2), we do not consider
a string (that passes the verification equation) output by the adversary as being a forged signature if the
adversary has already seen a valid signature on the same message. This is sufficient to provide security for
our purpose because in the real world, all that is necessary is to prove that the signed data was indeed
authenticated by the server. The malleability of the "signature around the message" does not affect this
inference.

Since providing a forged signature is an event that occurs with negligible probability, we have:

Proposition 2 The transcript random variables HWa(M) and HW1(M) are statistically close.

31

Proof: Set ¢ := HWa(M) and ¢ := HW;1(M), and let T be the set of values that can be reached be ¢ or
1. We must show that
> |Plo =1 Py =]
teT
is a negligible quantity in 7.
As in the proof of proposition 1, we begin be adequately partitioning 7 into subsets to work with.

1). Let To ("O" for "Ordinary") be the set of transcripts in which no forged signatures have been delivered
to user instances that should accept them following protocol specification.

2). Let 77 be the set of transcripts in which at least one forged signature was delivered to a user instance,
and this instance has accepted it.

3). Let 73 be the set of transcripts in which at least one forged signature was delivered to a user instance,
the format check and verification equation have passed, and the instance has rejected.

It should be clear by definition that 7o is indeed disjoint from both 7; and 73. Also, a transcript yielded
by ¢ cannot record the successful delivery of a forged signature. Similarly, a transcript yielded by ¢ cannot
record the forced rejection of a forged signature. Thus, 77 and 73 are disjoint as well. These facts imply that
we have the following partition:

T=ToUT1UTs
As a result, we can write
Y Plp=t-Py=14|=> [Plo=-Plp=1|+ Y |Plo=1t]-Plp=t]+ Y [Pl¢=1t—Pl=1|
teT teTo teT teTz

which can even be rewritten as follows:

STIPlo =1t -Pp=1]| = > |Pl¢ =t] - Pl = t]| + Plp € To] + P[t) € Ti]

teT teTo

We now study the expressions Y, [Pl = t] — P[¢ = 1]

, P[¢ € T3], and P[¢p € T1].

First of all, for all ¢ € 7o we have P[¢ = t] = P[¢) = t] because by construction the interaction between the
adversary and ring master is identically distributed in both worlds provided no forged messages are delivered
to user instances susceptible to computing a correct verification equation. Thus, obtain

> Plo=t]-Pp=t]|=0

teTo

For the other two formulas, we have

Lemma 3 Pl € T3] = Py € 71| = P[B(GEU—ACMA(W)) = 1] where B is a PPTA trying to break the

EU-ACMA-security (see appendiz B.2) of the signature scheme. In particular, both P[¢ € Tz] and Py € Ti]
are negligible.

Proof: "¢ € 73" and "¢ € Ti" are events that occur if and only if the adversary - which is the same
in both worlds - has at least one forged signature delivered to a user instance that will verify the correct
signature equation. Up until this happens, both worlds are identically distributed. Thus, we indeed have
Pl¢ € To] = P[y € Thl.

We now have to construct algorithm B. It will basically play the role of the ring master while running
the adversary M as a subroutine.

At the beginning of the game, on input 17, the challenger CH runs Kg(1") once to get (pks, sks), and
gives pkg to B. B generates the remaining public parameters himself and hands them to M, which returns
a dictionary D back to B. From this point on, 5 can play the role of the ring master in an interaction with

32

M, respecting the NUR the same way RM? or RM% would. What we need to clarify is how B treats the
generation and reception of signed messages, since B does not have control over the secret signing key.

e Receiving the first protocol message and computing the second Let (0,%) be a server instance
expecting to receive the first protocol message and suppose M has InM sg; delivered to (0, k). B processes this
message as RM{L or RMQ’ would. If InMsg; is accepted, let U be the originator group element contained in
InMsg,. B selects hash index n respecting the NUR, and makes a "signature" query to CH on input message
(U,n,OIDg,CIDgy). Upon receiving the response o from CH, B outputs OutMsgs < (U,n,0) as (0,k)’s
response to M.

e Receiving the second protocol message and computing the third Let (¢, ;') be a responder instance
expecting to receive the second protocol message and suppose that M has InMsgy delivered to (i/,5'). B
first checks whether InMsgs is of the form (U, n, o) for some non-trivial group element U, some hash index
n, and some string o. If not, the message is rejected. Otherwise, B computes the signature verification
equation on input (U,n, PID; s, 1Dy, o) with public key pkg. If verification fails, the message is rejected. If
it succeeds, B examines its past challenger queries. If B has previously made a "signature" request on input
(U,n,PID; j,ID;), the message is accepted and the protocol continues. If such a query has not previously
been made, B stops its interaction with M, outputs (U,n, PID;;,ID;, o) in a "forgery" query, and the
game between B and CH ends with total output 1.

e Receiving the third protocol message and computing the fourth Let (0, k) be a server instance
expecting to receive the third protocol message, and suppose that M has InMsgs delivered to (0,k). B
processes this message following the same rules as the ring master of the first hybrid world. If the message
is accepted, let U, n, and V be the originator group element, hash index, and responder group element
contained in InM sgs. B makes a "signature" query to CH on input (U, V,n,OI Dy, CIDg). Upon receiving
the answer o, B outputs OQutMsgy < (U,V,n,o) to M.

e Receiving the fourth protocol message and computing the fifth Let (4, j) be an originator instance
expecting the fourth protocol message, and suppose that it receives InMsg, from the adversary. Let X be
the group element chosen for (i,7). B first checks if InMsgy is of the form (X, V,n, o) for some non-trivial
group element V', hash index n, and bitstring o. If not, the message is rejected. Otherwise, B computes the
signature verification equation on input (X, V,n,ID;, PID;;) using public key pkg. If verification fails, the
message is rejected. If it succeeds, B examines past signature requests. If (X,V,n,ID;, PID;;) was already
the input to a "signature" query, the message is accepted and the protocol continues. If not, B ends the
interaction with the adversary, outputs (X, V,n,ID;, PID,;, o) in a "forgery" query, and the game with CH
ends with total output 1.

This completes our description of B. We now analyze it.

It is clearly a PPTA, since M is, and it is built to abide by the rules of the security game
Therefore, on one hand the security of the signature scheme implies that 5 outputs a forged signature only
with negligible probability in 7. On the other hand, B is constructed in such a way that it successfully outputs
a forgery if and only if the interaction between B and the subroutine M reaches a configuration in which
M has had a signed message that was never output by a server instance accepted by a user instance. Since
up until this happens B runs in an identically distributed manner to the ring master in the first and second
hybrid worlds, the probability that such a configuration is reached is equal to both P[¢ € T1] and P[¢) € T3].
These quantities are thus negligible as well. The proposition is proved. B

GEU—ACMA

8.5 The Third Hybrid World: Using the Encryption

In the third hybrid world, we make use of the encryption scheme’s security for two things: a). hiding
the password in honestly generated encrypted messages and b). hiding certain group elements from the
adversary’s view until the relevant messages are delivered to appropriate server instances. The first of these
two properties is necessary to guarantee offline dictionary attack resistance. The second is more subtle, and

33

has consequences on the deliveries of the fourth and fifth protocol messages. We shall return to these points
in in paragraphs 8.6 and 8.7.

The changes that are made to the ring master in this world involve the way honest user and server
instances process the first and third protocol messages. The operations that are affected are the user and
server message deliveries. The way the game is setup remains the same. Let M be an adversary.

e Computing the first protocol message Let (i,5) be an originator instance and suppose that M has
(i,4) compute the first protocol message. RM? selects x uniformly at random respecting NUR, computes
X « ¢*, computes ciphertext ¢ < Epip(la, 1€P'W7IDZ-7PIDZ-]-) respecting NUR, and outputs OutMsg; < ¢
to M.

e Receiving the first protocol message and computing the second Let (0,%) be a server instance
expecting to receive the first protocol message, and suppose that M has InMsg; delivered to (0, k).

ee Suppose that InMsg; was not computed by a user instance. In this case, ’R/\/lg computes (0, k)’s response
as in the previous hybrid world.

ee Suppose that InMsg; was computed by a user instance. By the NUR (specifically, the uniqueness of
the encryption randomness), this instance is unique. (Recall that the encryption scheme is injective in the
randomness argument over fixed messages.)

eee Suppose that OI Dy, = ID; for some initialized user i, that the instance that computed InMsg; is an
originator (%, j) with PID;; = CIDyy, and that InMsg, is the first protocol message output by (¢, 7). In this
case, RM" has (0, k) accept InMsg; without decrypting. Let X be the group element chosen for (i,) by
RMQ‘ RMQL computes OutM sgs using X, and outputs OutMsgs to M.

eee Suppose that the above conditions are not met. Then RMY has (0,k) reject the message without
decrypting.

e Receiving the second protocol message and computing the third Let (i, j') be a responder instance
waiting for the second protocol message and suppose that M has InMsgy delivered to (¢,). R/\/lg accepts
or rejects the message as in the previous hybrid world. Suppose that InMsgs is accepted. By the NUR
and the rules on the treatment of signatures, there exists a unique server instance (0,k) with PIDSq, =
(PID;jr,ID;) that computed a second protocol message OutMsgs containing the same tuple as InMsgs.
Let U be the group element in InMsgy and n be the hash index chosen for (0, k). RMY selects y uniformly
at random, computes Y < g¢¥, computes ciphertext ¢ < Epi, (U, 1g,n, 1w PID;;, I1D;), and outputs
OutMsgs + ¢’ to M.

e Receiving the third protocol message and computing the fourth Let (0, k) be a server instance
waiting for the third protocol message. Let InM sgs be delivered to (0, k) by M. Let OutM sgs be the second
protocol message output by (0, k).

ee Suppose that InMsgs was not computed by a user instance. Then RMQL processes InMsgs as in the
previous hybrid world.

ee Suppose that InM sgs was computed by a user instance. By the NUR (specifically, the uniqueness of the
encryption randomness used), this instance is unique.

eee Suppose that CIDgy, = ID; for some initialized user i/, that the user instance that computed InM sgs
is a responder (¢, ;') with PID; j; = OIDq, and that (i, ;') received as a second protocol message some
message InMsg, containing the same tuple as OutMsgs. Then RMYE has (0,k) accept InMsgs without
decrypting. Let Y be the group element that was chosen for (¢/,;'), let n be the hash index that was chosen
for (0,%), and let U be the group element in OutM sgs. T\’,Mg” computes (0, k)’s response OutM sgy using
(U,Y,n) and outputs OutMsgy to M¥E.

eee Suppose that the above conditions are not met. Then (0, k) rejects InM sgs without decrypting.

Important Remark: The injectivity property of the encryption function (see paragraph 7.3) is important
here for the ring master to keep track of which honest instance computed which encrypted message. Indeed,

34

we can take the first protocol message as an example. In this hybrid world, i-originators do not compute en-
cryptions of (X, pw;, ID,, PID;;) anymore, with X a unique, local choice; they now all compute encryptions
of (1g,1%w ID;, PI D;;). If one such message is received by an appropriate server instance, the ring master
needs to be able to tell unambiguously the origin of the message, i.e. which instance (among several with
the same partner identity, of course) computed it. The only way to do this is to ensure that the messages
are distinct, but by construction we cannot count on the plaintext to achieve this anymore. So, we use the
encryption randomness instead. A similar remark holds for responders to whom identical messages may have
been forwarded.

This completes our description of the way the third hybrid world works. We give an indication of what
replacing the correct passwords with 1¢7» gives us. The reason certain group elements are replaced by the
neutral element will be explained later.

Intuitively, offline dictionary attacks are prevented because semantically secure encryption does not allow
computationally bounded adversaries to compute any plaintext information. This is exploited in the changes
above by replacing the real passwords with the dummy password 1%» whenever a user generates a message.
(This was the point of requiring that D not contain 1%»w, although this is not a damaging restriction. In
practice, a system can always enforce that at least one string of correct password length not be allowed as a
password.) The technical description of semantic security basically states that the adversary cannot tell the
difference, and so will behave essentially the same way.

Jumping ahead, aside from preventing offline dictionary attacks this change is essential for simulatability
in two ways. First, as the reader may have already noticed in the proof sketch, we shall see when constructing
the ideal-world adversary that it will have to behave like this ring master without knowing the users’ passwords.
Being able to encrypt a dummy password without the adversary noticing is the only way to do this. Secondly,
this method allows singling out which messages are to be translated into "test password" operations.

Of course, using the IND-CCA-2 security of the encryption scheme, we have:

Proposition 3 The transcript random variables HW3(M) and HW2(M) are computationally indistinguish-
able.

Proof: As usual, let ¢ := HW3(M) and ¢ := HW2(M). Let D be a PPTA (in 7, of course). We are to
show that the quantity

‘]P’['D(l”,¢) = 1} - P[D(1n7¢) = 1]‘

is negligible in 7. We do this by constructing a PPTA B that plays the games GZhidd*[ND*CCA*Z for
b € {0,1} with challenger CH, against the encryption scheme Fnc (see appendix B.1). More specifically,
during the game it plays with CH, B will first run M as a subroutine, simulating the ring master and
recording the transcript. Once the interaction with M ends, B will run D on input the transcript obtained
in the first stage, and answer whatever D answers.

We now detail the construction of B. For b € {0,1}, at the beginning of the game Ggh_ad_IND_CCA_Z
between B and CH, B receives as input the candidate public key encryption key pkr computed by CH on input
1. B then sets up all of the other parameters for its interaction with M itself, gives all public parameters to
M, and receives dictionary D in return.

From here on, B runs the interaction exactly as RMQ or RMQ would, except in the way encrypted
messages as produced and processed upon receipt, since 5 does not have control over the decryption key skg.
The operations that need to be modified involve the user and server message deliveries.

e Computing the first protocol message Let (i, j) be an originator instance that M prompts to compute
the first protocol message. B Selects an exponent z for (i,7) respecting the NUR, computes X «+ g%, and
then makes a "challenge" query to CH on input the pair of messages

(1g, 1% ID;, PID;;) and (X, pw;, ID;, PID;;)

Upon receipt of CH’s answer ¢, BB sets OutMsg;, < ¢, and outputs ¢ to M.

35

e Receiving the first protocol message and computing the second Let (0,%) be a server instance
expecting to receive the first protocol message and suppose that M has InMsg; delivered to (0, k). There
are several cases to consider.

ee Suppose first that InMsg; was not output by a user instance. Under this condition, 5 has never obtained
InMsgy as the result of a "challenge" query, since this only occurs when B needs to encrypt messages for
user instances. Therefore, B may make a "decryption" query to CH on input InMsg;, and this is what it
does. From this point on, B processes the obtained plaintext exactly as RMS or R./\/lg would.

ee Suppose now that InMsg; was output by a user instance. Then this instance is unique.

eee Suppose that OI Dy, = ID; for some initialized user 7, that the unique instance that computed InM sg;
is an originator (¢, j) with PID,; = CIDgy, and that InMsg; is indeed the first protocol message output by
(4,7). In this case, B simply has (0, k) accept InMsg;. Let X be the group element that was chosen by B
for (i,7) at the time InM sg; was computed. B computes OutM sg, using X, and a hash index n chosen for
(0, k) respecting the NUR.

eee Suppose that the above conditions are not met. Then B has InMsg; rejected.

¢ Receiving the second protocol message and computing the third Let (¢, j') be a responder instance
waiting for the second protocol message, and let InMSgs be delivered to (i/,5’). B processes this signed
message as it would be in the second hybrid world. If the message is accepted, B selects an exponent y
respecting NUR,, computes Y <+ ¢g¥, and makes a "challenge" query to CH on input the pair of messages

(U, 1g,n, 1% PID;yj) and (U,Y,n, pwy, PID;, I D)

where U and n are the originator group element and hash index in InMsgs. When CH answers with
encryption ¢, B sets OutM sgs < ¢ and outputs ¢ to M.

e Receiving the third protocol message and computing the fourth Let (0, %) be a server instance
waiting for the fourth protocol message, and let InMsg, be delivered to (0, k). Let OutMsgs be the second
protocol message output by (0, k). B has several cases to consider.

ee Suppose that InM Sg, was not generated by a user instance. In this case, B never obtained InM Sg, as
the response to a "challenge" query, so B may may a "decryption" query on input InMsg,. It does so, and
pursues the protocol as normal upon examining the obtained plaintext.

ee Suppose now that InMsgs was computed by a user instance. Then this instance is unique.

eee Suppose that CIDy, = ID; for some initialized user ¢/, that the unique instance that output InMsg, is
a responder of the form (¢/,j') with PID;j; = OIDyy), and that (¢/, j/) received as second protocol message
some message InMsgs containing the same tuple as OutMsgs. Then B has (0, k) accept the message and
computes OutM sgy using the originator group element U in OutM sgs, the hash index n chosen for (0, k),
and the group element Y chosen for (¢/,).

eee Suppose that the above conditions are not met. Then the message is simply rejected by (0, k).

This completes the description of B’s handling of encryption in its interactions with the adversary. Note
first that the NUR are respected for the encryption randomness as well, since this is built into the way the chal-
lenger answers challenge queries in the challenge-adaptive IND-CCA-2 security game (Ggh_“d_l ND-CCOA=2
see appendix B.1.) Note also that in accordance with the rules of the IND-CCA-2 security game, B never
asks to decrypt messages that have been requested as challenge encryptions. B can make decisions in these
cases without having to decrypt.

It is clear that B is a PPTA; we now analyze B’s advantage in winning the IND-CCA-2 security game.

We first need to relate the internal workings of the interaction between B and M with the second and
third hybrid worlds. This depends on the challenge bit b the challenger CH is working with at the beginning
of the game.

Suppose that b = 0. In this case, whenever B submits a pair of messages to obtain a new challenge
ciphertext, the message that is encrypted by CH is the one in which the new group element and user password

36

are respectively replaced by G’s neutral element 1g and the dummy password 1P*. Since B is built to
treat encrypted messages exactly as RMQ does, we can conclude that the interaction between B and M is
identically distributed to the one between RM% and M.

Suppose now that b = 1. Here, the message that is encrypted by the challenger contains the real chosen
group element and password, as is done by RMS in the second hybrid world. Now we need to make sure that
B responds to encrypted messages the same way RMS does. This is clearly the case if the message received
by the server is not user-generated. If the message is user-generated, it is as well because the conditions B
checks for are exactly those that can be verified by examining the contents of the plaintext. Hence, if b = 1
the interaction between B and M is identically distributed to the on between RMY and M.

In particular, if b = 0 the obtained transcript is sampled according to ¢ and if b = 1 it is sampled according
to 1. Since by construction B outputs 1 if and only if D outputs 1, we can therefore conclude that

P[D(7,6) = 1] ~ P[P, 4) = 1]| =

‘P[B(GghadINDCCAQ(ln)) _ 1} _ IP;[B(GihfadleDfCCA72(1n)) _ 1H
The latter being negligible in 7 by the security of Enc, the proposition is proved. B

8.6 The Fourth Hybrid World: Originator Group Elements the Adversary Can-
not Guess and Statistically Secure Confirmation Codes

A Preliminary Discussion In this hybrid world and in the next, we will be dealing with certain cases
of the adversary delivering the fifth protocol message: the confirmation code. In this hybrid world, we will
also deal with a special case of the adversary delivering the fourth protocol message, but let us focus first on
making some interesting comments about the code.

This benign-looking object is actually quite subtle to handle. In studying the security of Prot1, we noticed
that depending on the configuration in which a responder instance, say (', j’), finds itself, the confirmation
code it expects to receive is, in the eyes of the adversary, of varying nature. Before continuing the proof, let
us elaborate a little on this.

The confirmation code is an object that can only be computed given the knowledge of local random choices.
If this were not the case, the protocol would be insecure. If the adversary finds itself in a position where it
cannot a priori compute a confirmation code, it is natural to require that the adversary could only output
this code with negligible probability. The corresponding change that is made to get from one hybrid to the
next in such a case is then to simply make responders that receive candidate codes from the adversary reject
them systematically. Only with negligible probability would a responder then reject a valid code illegally
output by the adversary, thus assuring the statistical closeness of transcripts.

The issue is now identifying those configurations where the adversary should not be able to compute
the code. In Protl, they can be classified into two categories: the ones where the confirmation code is
statistically secure and the ones where it is computationally secure. The former category relies solely on the
entropy smoothing theorem while the latter relies on the DDH assumption.

This dichotomy was a big surprise to us at first, but in hindsight it does have an intuitive explanation.
First, we explain our surprise, then we provide the explanation.

Surprise! Protl is similar to Shoup’s DHKE-1 protocol in [35], and the proof of security of DHKE-1
also has to argue the systematic rejection of certain confirmation codes. In turns out however that in DHKE-
1, these codes are all computationally secure: they can only be computed if the adversary can compute the
Diffie-Hellman function. Given the similarity of our protocol and DHKE-1, we simply expected the situation
would be the same.

We were wrong.

Two Examples with One Major Difference Let us now explain what the difference is through two
examples.

37

In our first example, consider the case where the first three protocol messages are computed and delivered
correctly between (i,j), (0,k), and (¢’,;'), with the usual notations. Since the third protocol message was
delivered, a fourth was computed. Suppose that this fourth message is not yet delivered to (i, j), but that
adversary M sends some string x € {0,1}Y°¢ to (', ') anyway. s must absolutely be rejected in this case,
otherwise (¢, j') will compute the key thinking (4, j) has as well, which is not true. Now, the adversary has
at its disposal (g, X,Y,n) to try to compute the £cc-long suffix of H,(¢g*Y). Clearly, it can do so if it can
solve the computational Diffie-Hellman problem on input (g, X,Y"). Fortunately, it cannot assuming DDH.
Thus, in this case the code is computationally secure.

We turn now to our second example. Suppose that a responder (¢, j') is partnered to a statically corrupted
user - i.e. controlled directly by adversary M - and is communicating with this user through (0, k). Suppose
that M has the first and second protocol messages delivered correctly, and puts the third on hold. At this
point, M has chosen some originator group element U that is not G’s neutral element, M has observed
the hash index n chosen by the server, and (', j') has chosen an exponent y € Z; uniformly at random
and computed the third protocol message containing Y = ¢g¥. According to the rules of our ideal world, if
M delivers some string & to (7', ;) now, this message must be rejected, because we require that even when
exposing a responder, the server must have completed its exchange. But there does not seem to be any
way to justify this, since M has complete control over U. What saves us is the fact that M has not had
a chance to observe Y yet, because the third message is encrypted and has not been delivered to the server.
In other words, M needs to compute the ¢cc-long suffix of H,, (UY) without any knowledge of y to hope
to get (i',7') to accept. But since U # 1g and y is uniform, the entropy smoothing theorem tells us that
H,(UY) is statistically close to uniform, despite U having been computed by M. Thus, in this case the code
is statistically secure, modulo of course the security of the encryption scheme.

To sum up, the major difference between these two examples lies in whether or not the third message
was decrypted, because that event gives the adversary more knowledge. Returning to our earlier mention of
DHKE-1, all of the secure codes there are so computationally for the very simple reason that there is no
encryption (it would be useless in that setting): the responder’s group element is available to the adversary
from the get-go.

Before returning to the proof, we explain what this has to do with the fourth protocol message. The
special case of the fourth message delivery we deal with is in fact very simple, and natural: unless the first
protocol message computed by an originator was actually decrypted by an appropriate server instance, any
fourth protocol message delivered to this originator must be systematically rejected. The reasoning behind
this is exactly the same as that justifying the rejection of statistically secure codes: if the first protocol
message was never delivered, the originator group element was never made available to the adversary, and
guessing this element to have a correct fourth message delivered to the originator is hopeless.

Treating with a single hybrid world both the rejection of statistically secure confirmation codes and the
rejection of originator group elements the adversary cannot guess is actually a). the most convenient to
pursue the proof and b). logical, since the arguments of both rejections are essentially of identical nature.

Returning to the Proof Itself Transforming the previous hybrid world into this one involves simply
making changes to the treatment of the fourth and fifth message deliveries. Let M be an adversary and
RMY be the ring master.

e Receiving the fourth protocol message and computing the fifth Let (4, j) be an originator instance
expecting to receive the fourth protocol message and suppose that M has InMsg, delivered to (4,7). Let
OutM sgy be the first protocol message (i, j) computed.
Suppose that OutMsg; was never delivered as a first protocol message to a server instance (0, k) with
partner identities PIDSo, = (ID;, PID;;). We shall say that (7,7) is a statistically lonely originator.
In this case, RM simply has (i,) reject InMsg, and terminate.

If (i,) is not a statistically lonely originator, RM" computes (i, j)’s response as in the previous hybrid
world.

38

e Receiving the fifth protocol message Let (i, j') be a responder instance expecting to receive the fifth
protocol message and suppose that M has InM sgs delivered to (i',j'). Let InMsgs be the second protocol
message (i, j') has received and let OutM sg3 be the third protocol message (i’, j’) has computed. Let U and
n be the originator group element and hash index contained in InMsg,. We know that there exists a unique
server instance (0,k) with PIDSy, = (PID;j,ID;) that computed a second protocol message OutMsgs
containing U and n.

Suppose that OutM sgs was never delivered to (0, k). We shall say that (i’,j’) is a statistically lonely
responder.

In this case, RMZ simply has (¢, j') reject InM sgs and terminate.

If (¢, §') is not a statistically lonely responder, RM" computes (i, j')’s response as in the previous hybrid
world.

This completes our description of the fourth hybrid world. We now compare it to the previous hybrid
world.

Proposition 4 The transcript random variables HW4(M) and HW3(M) are statistically close.

Proof: We set ¢ := HW4(M) and ¢ := HW35(M). Let T be the set of transcripts that either ¢ or ¢ can
evaluate to. We wish to show that
> IPlo = 1] — Pl = 1]

teT
is negligible in 7.
As usual, we begin by partitioning 7 into adequate sets to work with.

1). Let 73 be the set of transcripts ¢ such that in ¢ there exists a statistically lonely originator that accepted a
fourth protocol message or there exists a statistically lonely responder that accepted a fifth protocol message.

Clearly, such a transcript can only be yielded by 1, since the rules of the fourth hybrid world do not apply
to the third hybrid world.

2). Let T4 be the set of transcripts ¢ verifying either of the following properties.

2.a). There exists in ¢ a statistically lonely originator (i, j) that automatically rejected a fourth protocol
message InM sg, that passed the format check and the signature verification equation, and such that InMsgy
contains X as the originator group element, where X is (4,7)’s group element.

2.b). There exists in ¢ a statistically lonely responder (i’,;’) that automatically rejected a fifth protocol
message InMsgs equal to the confirmation code (i, j') expects.

It should also be clear that such a transcript can only be yielded by ¢. Indeed, the rules imposed in the

fourth hybrid world force these situations to happen.
3). Let 7o be all remaining possible transcripts. These can be described as those transcripts in which if
a statistically lonely originator (i,j) rejected a fourth protocol message InMsgy, InMsgy either did not
contain as an originator group element (i,7)’s chosen element, or was of incorrect format, or failed the
signature verification, and if a statistically lonely responder (', j’) rejected a fifth protocol message InM sgs,
then InM sgs was not equal to the expected confirmation code.

Of course, these transcripts can be yielded by both ¢ and .

It is easy to see that 7o, T3, and Ty indeed form a partition of 7. Therefore, we have

Y [Ple=t-Py =t =3 [Plo=1t-Ply =]+ Pl Ts] + Pl¢ € Ti]
teT teTo
We now study these three expressions.

We begin with >, [P[¢ = t] —P[) = t]|. We claim that for all t € To, it holds that P[¢ = t] = P[¢ = 1],
and thus the total sum is 0. Indeed, let ¢t € To. By definition this means that none of the events that define
elements of the sets 73 or 7 has occurred during the interaction. Since these events are precisely those that

39

differentiate the actions of the ring master in the third and fourth hybrid worlds, we conclude that the view
of the adversary is identically distributed in both worlds up until the point they do occur.

We next deal with Py € T3] and P[¢ € T4]. We will show that we can construct a PPTA B that uses M
as a subroutine, plays against a challenger CH in the G*~¢F=sficc =FS game (see appendix A.3), and for
which it holds that

Pl € Ts] = P|B(G - OF o= FS(1m)) — 1| =Pl € Ti]

The negligibility of the expression in the middle then yields the result.

We construct PPTA B by directly describing its internal workings as it plays game Ga4-¢F=sficc—ES

against challenger CH on input security parameter 17. B will be essentially simulating the ring master in an
interaction with M, using the queries it may submit to CH to get group elements and hash indexes for user
instances.

At the beginning of G4~ ¢F~sfecc =ES on input 17, CH constructs the tuple of group parameters and hash
functions ((¢,G,g),{Hy}n), and gives this tuple to B. B then generates all of the other public parameters
for Prot1, and hands them over to M. M, of course, returns to B a password dictionary D.

e Generating the first protocol message Let (i,j) be an originator that M asks to have compute the
first protocol message. B computes its answer exactly as RMZ does, but instead of choosing an exponent for
(4,7), it makes a "prepare exponent" query to its challenger C?{, and records the (updated) counter C;;.

e Receiving the first protocol message and computing the second Let (0, k) be a server expecting
to receive the first protocol message and suppose M has InMsg; delivered to (0, k). B accepts or rejects the
message exactly as RMZ would.

Suppose InMsg; is accepted. B makes a "hash index" query to get n for (0,k). If InMsg; was not
generated by a user instance, B computes OutMsgo as RMZ’ would. If InMsg; was generated by a user
instance, let (¢,7) be this unique instance. B makes a "recover exponent" query on input Cj; to get z;;,
computes Z;; < g%, and computes OutMsgy with Z;;.

e Receiving the second protocol message and computing the third Let (i, j') be a responder instance
waiting for the second protocol message and suppose that M has InM sgs delivered to (', j'). B has InMsgs
accepted or rejected as RMZ would. If InMsgs is accepted, B makes a "prepare exponent" query and records
the value of Cj ;. It computes OutMsgs as R/\/lff would and outputs OutMsgs to M.

e Receiving the third protocol message and computing the fourth Let (0, k) be a server instance
waiting for the third protocol message. Suppose InM sgs is delivered to (0, k). B has the message accepted
or rejected as RMY would.

Suppose InMsgs is accepted. If it was not generated by a user instance, the response is computed as
RM" would compute it. If InMsgs was generated by a user instance, let (i, 5') be this unique responder. B
makes a "recover exponent" query on input Cjy/ ;s to get zy;/, computes Zy j» < ¢*’s', and computes OutM sgy
using Z; 5. OutMsgy is output to M.

e Delivering the fourth protocol message and computing the fifth Let (i, j) be an originator instance
expecting to receive the fourth protocol message, and suppose that InMsg, is delivered to (¢,5) by M. B
first checks to see if InMsgy is of the form (U, V,n,o), where U and V are non-trivial group elements, n is
a hash index, and o is a string. If not, B has (4,j) reject the message. Otherwise, there are two cases to
consider.

ee Suppose (i,7) is not a statistically lonely originator. In this case, by construction of B, B has made a
"recover exponent" request on input C; to get z;;, and has computed Z;; < ¢g*. B then treats InMsgy
as RMZ would, using the group element Z;; as (4, j)’s originator group element. If InMsg, is accepted, B
computes H,(V?*7), which is then parsed into SK;; and OutMsgs. OutMsgs is output to M.

ee Suppose now that (7, j) is a statistically lonely originator. B has therefore not made a "recover exponent"
request on input Cj;. In this case, B first verifies the signature. If the signature is invalid, B rejects the

40

message. If the signature is valid, B makes a "guess group element" request on input (U,C;;). If this
guess fails, B has InMsgy rejected, (i,7) is terminated, and the game continues. If the guess succeeds,
Gd=GE=sficc =ES ends with total output 1.

e Receiving the fifth protocol message Let (', ;') be a responder instance waiting for the fifth protocol
message, and suppose that M has InMsgs € {0,1}¥¢¢ delivered to (i',;'). Since (i’,5) is expecting a fifth
message, it already accepted a second one, InMsgs. Let U and n be the originator group element and
hash index present in InMsgs. We know that there exists a unique server instance (0, k) with PIDSy, =
(PID;:jr,ID;) that computed a second protocol message OutM sg, on input (U, n), and that n was obtained
through a "hash index" query.

ee Suppose that (i,) is not a statistically lonely responder. Then by construction B has made a "recover
exponent" query on input Cyj to get zy;» and computed Zyj < g*’i’ as the responder group element. In
this case, B computes H,, (U%'s"), parses it, and compares the obtained confirmation code to InM sgs. If they
are equal, InM sgs is accepted, and otherwise it is rejected.

ee Suppose that (i/,5’) is a statistically lonely responder. Therefore, by construction of B, no "recover
exponent" query has been made on input Cy ;s for the instance (¢, j'). In this case, B makes a "guess hash
suffix" query on input (U, n, Cyj, InMsgs), has (¢, j') reject InMsgs, and the game continues.

This completes the description of how B runs its interaction with M. It should be clear that 5 is a PPTA.
We now turn to relating B’s success probability, i.e. the probability that the total output of G4~ GE=sfecc—ES
is 1, to the probabilities P[¢ € T3] and P[y) € T4].

By construction, the events "¢ € 73" in the third world, "¢ € 74" in the fourth world, and
"B(GI~CGF=sftco mES(17)) = 1" in the game occur if and only if at some point in the interaction between
M and the ring master one of the following two events first occurs: a statistically lonely originator receives
a fourth protocol message that passes the signature check and containing the correct (hidden) group element
or a statistically lonely responder receives the expected (hidden) confirmation code. Since this combination
of requirements is the same in all three interactions, we will have the result provided up until these conditions
first occur, all three of these interactions are identically distributed. But this is also the case by construction
of the two hybrid worlds and algorithm 5. This completes the proof. B

Remark: The proof above shows why Protl technically requires the originator’s group element to be a
part of the message returned to the originator. Indeed, one might wonder why this had to be the case, since
in reality the originator should have its own group element in memory anyway. The problem is that in the
above construction, B has to verify a signature first, and needs an candidate originator group element to do
so. There does not seem to be any non-convoluted way around this.

8.7 The Fifth Hybrid World: Computationally Secure Confirmation Codes

As previously announced, this fifth hybrid world is used to get rid of confirmation codes that are compu-
tationally secure. These are essentially the codes that should be output by originators waiting to receive a
fourth protocol message from the server during a correct exchange with an honest responder. Delivery of
the first and third protocol messages - computed by the originator and responder, respectively - make both
instances’ group elements public, but this alone should not be sufficient for the adversary to compute the
correct confirmation code.

Again, moving from the previous world to this one only involves changing one of user message deliveries,
that of the fifth message.

e Receiving the fifth protocol message, revisited Let (i, j') be a responder expecting to receive the
fifth protocol message, and suppose that M has InMsgs € {0,1}*cc delivered to (i’,5'). Let InMsgy be
the second protocol message received by (¢/,7’) and let OutMsgs be the third protocol message computed
by (i',j'). By the NUR and the security of the signatures, there exists a unique server instance (0, k) that

41

computed a second protocol message OutM sgs containing the same tuple as InMsgo. Let InMsg, be the
first protocol message received by (0, k).

ee Suppose that PID;;; = ID; for some initialized user ¢, that PIDSo, = (ID;,ID;), and that there
exists an originator (i, j) that computed OutMsg; as its first protocol message. Let X be the group element
chosen for (i,7). Suppose that either InMsg; = OutMsg; or there exists a server instance (0,k()) with
PIDSy,) = (ID;,ID;) that received and accepted OutM sg; and (0, k) received and accepted a first protocol
message InMsg; containing the group element X. In particular, (7,) is not a statistically lonely originator,
and by the NUR, (4, 7) is unique.

Suppose further that (0, %) received OutMsgs as third protocol message and computed OutMsgy. In
particular, (¢/,j’) is not a statistically lonely responder.

Suppose finally that one of the three following conditions is satisfied:

CS1). (4,7) has not received a fourth protocol message;

CS2). (i,7) has received and rejected a fourth protocol message;

CS3). (4,7) has received and accepted a fourth protocol message InM sgy, there exist a server instance
(0,k®) with k) # k and a responder instance (i,5'®)) with /(2 # j" such that (0, %)) accepted a third
protocol message computed by (i, 5/®)), and the fourth protocol message OutMsgf) computed by (0,%3)
contains the same tuple as InMsg,.

We shall say that (i/,j’) is a computationally lonely responder.

In this case, RMY has (i, ') reject InMsgs automatically.
ee Suppose that (i, ') is not a computationally lonely responder. Then RM? computes (i, j')’s response
as in the previous hybrid.

Remark: We point out in the conditions above that neither (i,7) nor (i, ;') are statistically lonely. This

makes complete sense in view of the computational assumption we wish to exploit in this world which amounts

to the adversary being unable to compute a sufficiently long suffix of H,,(¢*¥) given (n, g%, g¥): indeed, it is

precisely because (¢,j) and (¢, j') are not statistically lonely that ¢* and ¢gY are made available to M.
This completes the description of the fifth hybrid world. We turn to proving;:

Proposition 5 The transcript random variables HWs(M) and HW4(M) are statistically close.

Proof: Set ¢ := HW5(M) and ¢ := HW4(M), and let T be the set of all possible transcripts either of these
variables can evaluate to. We partition 7 as follows:

1). Let 74 be the set of transcripts in which there exists a responder (i/,j’) that accepted a fifth protocol
message while computationally lonely. Clearly, elements in T4 can only be yielded by .

2). Let 75 be the set of transcripts in which there exists a responder (7', j') that rejected a correct confirmation
code while computationally lonely. Such transcripts can only be yielded by ¢.

3). Let 7o be the set of remaining transcripts. These can be described as follows: if a computationally lonely
responder rejected a confirmation code, this code was incorrect, and if a responder accepted a confirmation
code, this responder was not computationally lonely upon receipt of this code.

By construction, it is clear that these three sets indeed form a partition of 7. We deduce from this that:

S [Plp=t]-Plp=1|= D |Plp=1] - P =]| + Ply) € Ta] + P[¢ € T]

teT teTo

We first assert that >, - |P[¢ = t]—P[t) = t]| = 0. Indeed, the adversary’s view is identically distributed
in both hybrid worlds unless one of the events defining 74 or 75 occurs. This implies that for all ¢t € 7o,
Pl =t] =Py =t].

Next, we show that

Pl € Ta = P[B(G*~*Fec~OPHES (1)) — 1] = P[p € T3]

42

where B is a PPTA we exhibit below, playing game G*?~*ftcc ~¢PHES (egcribed in appendix A.2 against a
challenger CH. Of course, the negligibility of the middle term then yields what we want.

We describe B by explaining its actions in an interaction with CH. At the beginning of G*?~3ftcc ~¢PHES
on input 17, CH generates the group and hash parameters ((q7 G,9), {Hn}n), and gives these to B. B then
computes the remaining setup for the protocol, hands all of the public parameters to its subroutine M, and
receives from M the description of a dictionary space D. The interaction between M, B, and CH then
proceeds as follows.

e Computing the first protocol message If M asks to have originator (4,j) compute the first protocol
message, BB responds by making a "left group element" query to receive (L, X) from CH. It then computes
OutMsg; as RMZ would, and outputs OutMsg; to M.

e Receiving the first protocol message and computing the second Let (0,%) be a server instance
waiting for the first protocol message, and let InM sg; be delivered to (0, k). B processes this message exactly
as RMZ would. If the message is accepted, B makes a "hash index" query to get hash key n from CH, and
then computes OutM sgs using n and the originator group element obtained from InMsg;.

e Receiving the second protocol message and computing the third Let (i, j') be a responder instance
to whom M has a second protocol message InMsgo delivered. B processes the message as RMZ; if the
message is accepted, B makes a "right group element" query to obtain (R,Y’), and computes OutM sgs as
RM" would. OutMsgs is output to M.

e Receiving the third protocol message and computing the fourth This operation is treated exactly
like in the fourth hybrid world. (We do not detail this more as no queries need to be made by B at this
stage.)

e Receiving the fourth protocol message and computing the fifth Let (¢, j) be an originator waiting
for the fourth protocol message, let (i,) receive InMsgy, and let X be the group element chosen for (i, j).
InMsg, is processed by B exactly as it would be by ’RMZ .

Suppose it is accepted. In particular, recall that this implies that (7, j) is not statistically lonely. Further-
more, there exists a unique server instance (0, k) with PIDSy, = (ID;, PID;;) that received a first protocol
message either equal to the one (¢, 7) output, or containing X, and that output a fourth protocol message
OutMsg, containing the same tuple as InMsgy. Let OutMsgs be the second message computed by (0, k)
and let InMsgs be the third protocol message received by (0, k).

ee Suppose that PID;; = ID is not the identity of an initialized user. In this case, InMsgs was not
generated by any user instance. Let V' be the responder group element resulting from InM sgs’s delivery. B
makes a "left exponent" query on input (L, X) to get exponent z, computes M K;; < H,(V"), parses it into
SK;; € {0,1}%s% and k;; € {0,1}°cc, sets OutMsgs < k;j, and outputs OutMsgs to M.

ee Suppose now that PID;; = ID; for some initialized user i’. There are two subcases to consider.

eee Suppose that InMsgs was not computed by any user instance. Let V be the group element obtained
from InMsgs. Then B makes a "left exponent" query on input (L, X), and responds using z, as just above.

eee Suppose that InMsgs was computed by a user instance. Then this instance is unique, is a responder
(¢',4") with PID;;; = ID;, and received a second protocol message InMsg, containing the same tuple as
OutMsgy. Let Y be the group element chosen for (i, j'). Y was obtained through a "right group element"
query. B makes a "hashed Diffie-Hellman" query on input ((L,X), (R, Y),n), where n is the hash key
obtained for (0, k) through a "hash index" query. CH responds with H,(¢*¥) which B uses to compute SK;;
and OutM sgs.

Important Remark: It is very important to have the "hashed Diffie-Hellman" query here, rather than just
ask for exponent x to compute (4,5)’s master key, because we still cannot discount the possibility of (i, j)’s
first protocol message being forwarded to different server instances, communicating in turn with different
responders. Below, we shall see that we need to be able to perform "guess hash suffix" queries on those
instances as well, and can only do so if x has not been queried.

43

e Receiving the fifth protocol message Finally, let (i, j') be a responder expecting to receive the con-
firmation code, and let InM sgs be delivered to (i/,5'). Let InM sgs be the second protocol message received
by (i, j"), OutMsgs be the third protocol message computed by (i/,5’), and Y be the group element chosen
for (¢/,7’) through a "right group element" query. We know that there exists a unique server instance (0, k)
with PIDSo, = (PID;j,ID;) that computed a second protocol message OutM sgs on input the same tuple
as InMsgo. Let InMsgy be the first protocol message received by (0, k) and n be the hash index chosen for
(0, k) using a "hash index" query.

If Out M sg3 was not delivered to (0, k), (i, ') is statistically lonely. Accordingly, InM sgs is automatically
rejected. We therefore suppose that Out M sgs was delivered to (0, k). Let OutM sgy be the fourth protocol
message computed by (0, k).

ee First, suppose that PID;j; = ID is not the identity of an initialized user. In this case, InMsg; was not
computed by a user instance. Let U be the originator group element obtained from InMsg;. B makes a
"right exponent" query on input (R,Y) to obtain y, computes H, (UY), parses it into SK € {0,1}*s¥ and
kiyr € {0,1}¢¢ and compares InMsgs to k. If they are equal, B has (i, j') accept InMsgs, and sets
SKij < SK as (i/,7')’s session key. Otherwise, InM sgs is rejected.

ee Next suppose that PID; j; = ID; for some initialized user i. There are several subcases to consider.

eee Suppose that the following condition s not met: there exists an originator instance (i, j) with PI1D;; =
ID;: that computed a first protocol message OutMsgy, and either InMsg, = OutMsg; or OutMsg, was
delivered to some server instance (0,k™M) with PIDSq,qy = (ID;, IDy), and InMsg, contains the same
originator group element as the second protocol message computed by (0, k(l)). In this case, InMsg; was not
computed by a user instance; let U be the group element it contains. In this situation, B makes a "right
exponent" query on input (R,Y’) to get y, and pursues the protocol in the same way as directly above.

eee Suppose the condition just described is met, i.e. there exists an originator instance (i,) with PID;; =
ID; that computed a first protocol message OutM sg1, and either InMsg; = OutMsg;, or OutMsg; was
delivered to some server instance (O,k:(l)) with PIDSy,.y = (ID;,ID;/), and InMsg, contains the same
originator group element as the second protocol message computed by (O,k(l)). Then (7,7) is unique; let X
be (i,7)’s group element. It was obtained through a "left group element" query.

eeee Suppose no fourth protocol message was delivered to (4,7). This is condition CS1. In this case, B has
made neither a "left exponent query" on input (L, X), nor a "hashed Diffie-Hellman" query with the inputs
(L,X) and (R,Y). He can thus make a "guess hash suffix" query on input ((L, X),(R,Y),n, InMsg5), and
then have (i, j') reject InM sgs.

eeee Suppose now that some fourth protocol message InMsg, was delivered to (2, 5).

eeeee Suppose that InMsg, was rejected by (i,7). This is condition CS2. Similarly to the situation just
above, B has made neither a "left exponent query" on input (L, X), nor a "hashed Diffie-Hellman" query
involving (L, X) and (R,Y). Thus, a "guess hash suffix" query is made on input ((L, X),(R,Y),n, InMsg5),
and InMsgs begin rejected.

eeeee Now suppose that InMsgs was accepted by (¢,7); (¢,7) has thus computed a session key SK;; and
output a fifth protocol message OutM sgs. Then we know that there exists a unique server instance (0, k(2))

with PIDSy = (ID;,ID;) that computed some fourth protocol message OutMsgf) containing the same

data as InMsgys. Furthermore, (0, k(2)) necessarily received as a first protocol message either OutMsg; or

another message containing X. Let InM sg:(f) be the third protocol message received and accepted by (0, k(?))

and let n(® be the hash key obtained for (0, k().

eeeeee Suppose that InMsgéQ) was not computed by a user instance. Let V' be the responder group element
obtained from InM sg:(f). According to the way fourth protocol messages are handled (see above), B has
already made a "left exponent" query on input (L, X) to get = and has computed SK;; and OutM sgs using
H, > (V?®). B now makes a "right exponent" query on input (R,Y’) to get y, computes H,(XV), parses it
into SK € {0,1}*% and k;j € {0,1}%c¢, and compares r; ;; and InMsgs. If they are equal, (i', j') accepts.
Otherwise, it rejects.

44

eeeeee Suppose now that InMsg§2) was computed by a user instance. Then this instance is necessarily a

responder of the form (', j/)) with PID; 12y = ID; and, by the NUR, is unique. Furthermore, (@', 5'®) has
necessarily received as a second protocol message a message containing the same tuple as the second protocol
message output by (0,k)). Let Y(® be the group element chosen for (i/,5'(®)). Tt was obtained using a
"right group element" query.

eeessese Suppose that j(2) # j/. Then, OutMsg:(f) # OutMsgs. Since OutMsg:gz) and OutM sgs were
respectively accepted by (0, k(2)) and (0, k), we conclude that k@) £ k and n®® # n. We see then that
condition CS3 is satisfied. According to the treatment of fourth protocol message deliveries, B has made a
"hashed Diffie-Hellman" query on input ((L,X), (R,Y®), n) to obtain SK;; and OutMsgs. It has not
made a "left exponent" query on (L, X), a "right exponent" query on (R,Y), or a "hashed Diffie-Hellman"
query involving both (L, X) and (R,Y’). Therefore, B may make, and makes, a "guess hash suffix" query on
input ((L,X),(R,Y),n,InMsgs) and has (7', j') reject InMsgs.

eessese Suppose that j/(2 = j’. Then, OutMsgéz) = OutMsgs, and so k? = k. In this case, B has made a
"hashed Diffie-Hellman" query on input ((L7 X),(R,Y),n) to obtain SK;; and OutM sgs. Thus, B compares
InMsgs and OutMsgs. If they are equal, (¢/,5’) accepts and SK; ;s < SK;;. Otherwise, (¢/,j") rejects.

This completes the description of B. It is clearly a PPTA assuming M is. We now analyze B’s advantage
in winning the G4—3ftcc ~CPHES game,

By construction, the events "B(G“d’sffcc*CDHEs(I")) = 1" in the game just described, "¢ € T5" in
the fifth hybrid world, and "¢ € 74" in the fourth hybrid world all occur if and only if at one point in
the interaction between M and the ring master a configuration is reached in which M delivers a correct
confirmation code to a computationally lonely responder. Up until this happens, the adversary’s view and
the ring masters’ actions are all identically distributed. Hence, we conclude that indeed

Py € Ta] = P{B(GadfsfzcchDHESuﬁ)) - 1} =P[¢ € T3]

which completes the proof. l

8.8 The Sixth Hybrid World: Replacing Correctly Exchanged Keys and Con-
firmation Codes with Random Strings

The last step before we are able to funnel our hybrids into the ideal world is to identify those exchanges
in which the session key and confirmation code can be replaced with random strings without the adversary
being able to tell the difference, and to make this substitution. The following definitions basically state what
a correct exchange is from the points of view of both an originator and a responder, taking into consideration
the changes leading up to the fifth hybrid world. We state the definitions, then comment them, and then
describe the changes made to the interaction in the sixth hybrid world.

In what follows, ¢ and ¢ are initialized users, (4,j) is an é-originator with PID,; = IDy, (¢/,j') is an
i'-responder with PID; j; = ID;, and (0, k) is a server instance with PIDSy, = (ID;,1D;).

Definition 1 We shall say that (i,j) has participated in a correct exchange with (i', ;') through (0, k)

if:

1). (i,j) computed a first protocol message OutMsg;. Let X be the unique group element chosen for
(?:’ j);

2). (0,k) received and accepted OutMsg, or there exists a server instance (0,k™1)) with PIDSy,0) =
(ID;,ID;) that received and accepted OutMsg, and (0,k) received and accepted a first protocol message
InMsgy containing the group element X. Let OutMsgs be the message computed by (0,k) and let n be the
unique hash index chosen for (0,k);

3). (i,7') received and accepted a second protocol message InMsgs containing the same group element
X and hash index n as OutMsgs, and computed OutMsgs. Let Y be the unique group element chosen for

(@".5");

45

4). (0,k) received and accepted OutMsgs, and computed Out M sgy;
5). (i,7) received and accepted a fourth protocol message InMsgy containing (X,Y,n), and computed
OutM sgs.

Definition 2 We shall say that (i', ") has participated in a correct exchange with (i,j) through (0,k)

if:

1). (i,j) computed a first protocol message OutMsg,. Let X be the unique group element chosen for
(i7j);

2). (0,k) received and accepted OutMsg, or there exists a server instance (0,k™)) with PIDSy.q) =
(ID;, ID;) that received and accepted OutMsgy and (0,k) received and accepted a first protocol message
InMsg, containing the group element X. Let OutMsgs be the message computed by (0,k) and let n be the
unique hash index chosen for (0,k);

3). (i',j") received and accepted a second protocol message InMsgs containing the same group element
X and hash index n as OutMsgs, and computed OutMsgs. Let Y be the unique group element chosen for
(. 4");

4). (0, k) received and accepted OutM sgs, and computed OutMsgy;

5). (i,7) received and accepted a fourth protocol message InMsgy containing (X,Y,n), and computed
OutM sgs;

6). (7,7 received and accepted OutM sgs.

Comments on the Definitions The protocol is really just a Diffie-Hellman Key Exchange enhanced with
a mildly elaborate authentication mechanism. Fundamentally, (¢,j) and (i’,j’) will have participated in a
correct and secure exchange if the g® chosen by (¢, j) was indeed received by (¢, 5’), the g¥ chosen by (¢, ;")
was indeed received by (4, j), and both (i, 5) and (¢, j') received the n chosen by (0, k). This is all that needs
to be guaranteed for the exchange to be secure, and it explains the difference between the odd-looking point
2). and the seemingly natural point 4). in both definitions.

Suppose M gets its hands on group element X (really just X, nothing about its logarithm to the base g,
or other information) and password pw;. M can very well decide to re-encrypt (X, pw;, ID;, ID;/) and have
that forwarded to the server. From the point of view of the protocol run’s honest participants, this event
makes no difference whatsoever as far as security goes: M has the password, but did not use it to replace or
otherwise alter (i, 7)’s random choices. Thus, the DDH assumption can still be applied. The same argument
can be made regarding responder (i',j’), group element Y, and password pw;.

The question now is how these situations can occur; M needs a concrete way to get X or Y for these
bizarre events to happen. As it turns out, the fact that X and Y are encrypted in the first messages they
appear in makes quite a bit of difference. To actually get group element X, M can in theory simply forward
the first protocol message to some other server instance: this would be (0, k(l)) in the definitions. In fact, by
the security of the encryption, this is the only feasible way. The case of the responder’s group element Y is
a different story however, because the third protocol message also contains the server instance’s chosen hash
index n, which doubles as a nonce. Therefore, the only way for M to get Y is to forward it to that single
server instance. But this wastes the only server instance that could still be involved in a correct exchange
between (7, j) and (¢/, '), so a correct exchange is no longer possible.

As for the conditions on the second and fourth protocol messages, specifically the fact that the received
messages may be different from the sent ones, even if they certify the same data, they are due to the definition
of a secure signature, see appendix B.2. As already stated in section 8.4, changing the signature "around"
the message without altering said message does not do any harm in this case.

These considerations serve once again as a good example of the fact that the "matching conversation"
criteria of [5], while quite natural intuitively, is actually far too rigid to be applicable in all cases.

Back to the Hybrid at Hand To correctly specify the changes made in this world, we will need to following
lemma to justify the consistency of responders’ session key assignments. Let (¢,), (¢,), and (0, k) be as in
the definitions.

46

Lemma 4 Let (i, ') be another responder instance with PID; jn2 = ID; and (0, E®?) be another server
instance with PIDSy,2) = (ID;,IDy). If (i,7) has participated in a correct exchange with (i',j’) through
(0,k) and with (i',5'®) through (0,k?)), then @ = j/, k) =k, and In/OutMsg((zg) = In/OutMsg, for
all a € N.

Let (i, j?) be another originator instance with PID, ;= = IDy, and let (0, k) be another server instance
with PIDSgy2) = (ID;, ID;/). If (i, 5") has participated in a correct exchange with (i,7) through (0,k) and
with (i,7®) through (0,k®), then j* = j, k) =k, and In/OutMsgt(f) = In/OutMsg, for all a.

Proof: Suppose that (i, j) has participated in a correct exchange with (', j/) through (0, k) and with (', j'(2))
through (0, k(®). Then InMsgy, OutMsg,, and OutMsgf) contain the same (X, Y, n) tuple. By NUR, this
implies k) = &, and so OutMsgs = OutMsg:(f). By NUR again, this implies that j/(*) = j’.

Suppose that (i’,') has participated in a correct exchange with (i,4) through (0, %) and with (i,;()
through (0, k(®). Then (4, 7) and (4,5®) used the same group element and (0, %) and (0,%k®)) used the same
nonce, so j® = j and k® = k.

The message equalities follow easily. B

Remark: It was already clear from the definitions that if (i’, j/) participated in a correct exchange with (i,)
through (0, k), then (i, j) participated in a correct exchange with (i’, j') through (0, k). Some thought reveals
that the expected message equalities across these two correct exchanges hold.

Now, we exhibit the changes made to define this world. They involve how to compute session keys in
correct exchanges, which occurs when the last expected protocol message is delivered to either instance. Let
RM{ be the ring master.

e Delivering the fourth protocol message and computing the fifth Let (i, j) be an originator instance
with PID;; = ID; for some initialized user . Suppose that adversary M has a fourth protocol message
InMsga delivered to (i,7). Suppose that there exist a responder instance (¢',j") with PID;;; = ID; and
a server instance (0,k) with PIDSy, = (ID;,I1D;) such that, having been delivered InMsgy, (i,7) has
participated in a correct exchange with (i', /) through (0, k).

In this case, R./\/lg selects SK; uniformly at random from {0, 1}fsx selects ki; uniformly at random from
{0,1}¢ec, sets OutM sgs < kij, and outputs OutM sgs to M.

o Delivering the fifth protocol message Let (i, j') be a responder instance with PID;/;; = ID; for an
initialized user ¢ and suppose that M has just delivered to (¢, j') a fifth protocol message InMsgs. Suppose
that there exist an originator (¢, j) with PID;; = ID;s and a server instance (0, k) with PIDSo; = (ID;,ID;/)
such that, having been delivered InMsgs, (i, j') has participated in a correct exchange with (4, j) through
(0,k). In this case, (i,7) has already participated in a correct exchange with (¢/,5’) through (0, k), and so
R./\/lg has already selected SK;; and OutMsgs = InMsgs uniformly at random. Since by lemma 4, (i, 7)
and (0, k) are the only originator and server instance that could have participated in a correct exchange with
(7,7, it is well-defined to set SK;/;: < SK;;.
RMY sets SKyjr + SKj.

These are the only changes made to the interaction in this world. We shall now exploit the DDHES
property (see appendix A.1) to prove

Proposition 6 The transcript random variables HWe(M) and HW5(M) are computationally indistinguish-
able.

proof: The proof of this proposition follows the same type of structure as that of proposition 3. Fixing a
PPTA D that tries to distinguish ¢ := HWg(M) and ¢ := HW5(M), we construct a PPTA B that runs both
D and M as subroutines, while playing the games ng_DDHES for b € {0,1} against some challenger C?H.
Essentially, B first simulates the ring master for M, using the queries made available to it via sz*D DHES
generate the session keys and confirmation codes for correct exchanges, and builds the interaction transcript.

47

Secondly, this transcript is fed as input to D, and the resulting bit is B’s final output in the game. As usual,
B is described through its interaction with M, and the scheduling of its queries to CH.

At the beginning of the game, on input 17, CH constructs ((q7G7g), {Hn}n) and gives this data to B.
B then generates itself the remaining parameters for Protl, and gives all of the public data to M, who
responds with a dictionary D. From this point on, the only operations that require a precise description are
those concerning message deliveries.

e Generating the first protocol message If M has originator (4, j) compute the first protocol message, B
responds by making a "left group element" query to get (L, X), and otherwise computes OutMsg; as RM?
would.

e Receiving the first protocol message and computing the second If M has InMsg; delivered to
server instance (0, k), B processes this message as R/\/l’g would. If the message is accepted, B makes a "hash
index" query to get n for (0, k), and computes OQutM sgs with n.

e Receiving the second protocol message and computing the third If (i/,j’) receives message
InMsgo, B accepts or rejects it as RM? would. If the message is accepted, B makes a "right group el-
ement" query to get (R,Y), and computes OutM sgs as RM? would.

e Receiving the third protocol message and computing the fourth 5 deals with this operation as
RM? would. No queries need be made to CH.

e Receiving the fourth protocol message and computing the fifth Let (i, j) be an originator expecting
the fourth protocol message and suppose that InMsg, is delivered to (i, 7). BB processes this message as RM?
would. Suppose it is accepted. Recall that in particular, this implies that (4,7) is not statistically lonely,
and therefore its group element X - previously obtained by a "left group element" query - has been made
available to M. We know that there exists a unique server instance (0, k) with PIDSo, = (ID;, PID;;) that
computed a fourth protocol message OutM sgy containing X. Let n be the hash index obtained for (0, k) via
a "hash index" query. Let InMsg; be the first protocol message (0, k) received, let Out M sgs be the second
message computed by (0, %), and let InM sg3 be the third message (0, k) received.

ee Suppose first that PID;; = ID is not the identity of an initialized user. In this case, InMsgs was not
generated by a user instance; let V' be the group element it yielded upon receipt by (0, k). Since (i, j) is just
now required to compute a master key, and X is uniquely associated to (7, j), no "challenge" query on input
(L, X) has been made to CH yet. Thus, B may make a "left exponent" query on input (L, X) to get z. It
then computes M K;; < H,,(V®), and further computes SK;; and OutM sgs from M K;; as usual.

ee Suppose now that PID;; = ID; is the identity of some initialized i’. Then there are several cases to
consider.

eee If InMsgs was not generated by a user instance, B answers as just described above: letting V' be the
group element obtained from InMsgs, B makes a "left exponent" query with (L, X) to get x, computes
MK;; + H,(V?), and pursues the protocol from there.

eee If InMsgs was generated by a user instance, we know that this instance is unique and is of the form
(¢, ") with PID;j» = ID;. Since InM sgs was accepted, we also know that (', j') received a second protocol
message InMsgs containing the same tuple as OutM sgs. Thus, (i,7) has participated in a correct exchange
with (¢, j') through (0, k), and by lemma 4 (i, j') and (0, k) are unique in verifying this property. Note that
(7', 4) is not statistically lonely, so Y has indeed been made available to M. The group element Y associated
to (i',j') was obtained using a "right group element" query.

By the rules governing the response to receipt of the fifth message (see below), no "right exponent" query
has been made on input (R,Y). Also, the third protocol message (0, k) received was honestly generated, so
no "left exponent" query has been made on input (L, X). No challenge query has yet been made on input
((L,X),(R,Y)) with a hash index different from n, because (0,k) is the only server instance (i, j) could go
through to participate in a correct exchange with (i’, j').

48

B can thus make a "challenge" query on input ((L, X), (R,Y),n) to CH to get M K;;. Recall that if b = 0,
MK;; is selected by CH uniformly at random from {0, 1}fsxttee and if b =1, MK;; is computed by CH as
H,(g").

Upon receipt of M K;;, B parses M K;; into SK;; € {0,1}*5% and OutMsgs € {0,1}%¢ as usual.

e Receiving the fifth protocol message Let (i/,j’) be a responder expecting the confirmation code,
and let InMsgs be delivered to (i/,j'). Let InMsgs be the second protocol message received by (', ;') and
OutM sg3 be the third protocol message output by (i’,j'). We know that there exists a unique server instance
(0,k) with PIDSy, = (PIDy;,1D;/) that computed a second message OutM sgo containing the same data
as InMsgs. Let n be the hash index, and InMsg; be the first message received by (0, k).

If OutMsgs was not delivered to (0,k), InMsgs gets automatically rejected. So we can suppose that
OutM sg3 has been delivered to (0,k) (i.e. (¢,j') is not statistically lonely). Thus, the group element Y,
chosen for (¢, ;') via a "right group element" query, is available to M through the fourth protocol message
OutM sg4 output by (0, k).

ee Suppose that PID; ;v = ID is not the identity of a user. In this case, InMsg; was not generated by a
user; let U be the group element obtained upon receipt of InMsg; by (0, k). Since (¢/, ') has not participated
in a correct exchange with an honest originator, no "challenge" query has been made involving (R, Y"). Thus,
B can make a "right exponent" query on input (R,Y) to get y. B then computes MK/ ;» < H,(UY), parses
it into SK and k;/;, and compares InMsgs to ;. It accepts or rejects accordingly.

ee Now suppose that PID; ; = ID; for a user i. Then there are further subcases to consider, based on the
origins of InMsg; .

eee Suppose that the following s not statisfied: there exists an originator (i,j) with PID;; = ID; that
generated a first protocol message OutMsg, and either InMsg; = OutMsgy, or OutMsg, was delivered to
some server instance (0, k")) with PIDSy,qy = (ID;, IDy) and InMsg, contains the same originator group
element as the second protocol message output by (0, k™)), In this case, InMsg; was not generated by a user,
and (7', j7) has not participated in a correct exchange with an originator. Let U be the group element obtained
from InMsg,. No "challenge" query has been made involving (R,Y), so B makes a "right exponent" query
with (R,Y) to get y, computes MK, ;i < H,(UY), parses it into SK and k-, and compares InMsgs to
R’ 57 -
eee Suppose that the above-mentioned condition s satisfied, i.e. there exists an originator (i,j) with
PID;; = IDy that generated a first protocol message OutMsg, and either InMsg, = OutMsg, or OutM sg:
was delivered to some server instance (0, k(l)) with PIDSy,y = (ID;,I1D;/) and InMsgy contains the same
originator group element as the second protocol message output by (0, k™). Then (i, 7) is unique. Let X be
its group element, obtained with a "left group element" query.

If (i,7) did not receive a fourth protocol message, or received and rejected one, we know that (i/,;’)
is computationally lonely, so InMsgs is rejected by B. We can therefore suppose that (i,j) received and
accepted some fourth protocol message InMsg,. Then we also know that a unique server instance (0, k:(Q))

generated some fourth protocol message OutM sgf) containing the same tuple as InMsgy, and that (0, k()

received as a first message either OutM sg; or some other first protocol message containing X. Let InM sg§2)

be the third message received by (0, k) and n® be (0, k?)’s hash index.

eeee Suppose that InMsgéZ) was not generated by a user instance. In this case, (4,j) has not participated
in a correct exchange with any responder, and according to the above rules on fourth message deliveries,
B has computed (i,7)’ response by making a "left exponent" query with (L, X) to get # and computing
MK;; + H,(V?), with V being the group element obtained from InMsgz(f).

No "challenge" query on input (R,Y’) has been made yet because by lemma 4, (4,) is the only originator
(7', 4") could have a correct exchange with.

B makes a "right exponent query" on input (R,Y’) to get y, and computes MK/, < H, (XV), parses it
into SK and ky;/, and compares InMsgs and k.

eeee Now suppose that InMsggz) was computed by a user instance. Then this instance is of the form (', j/(2))

49

with PID; iz = ID;, and (i,) has participated in a correct exchange with (i’,5'®) through (0,k(®). Let
Y be (i/,5'?)’s group element. B has made a "challenge" query on input ((L,X), (R,Y®),n®) to get
MK;; (which is either random, or equal to H,,) (gmym)) and has computed SK;; and OutM sgs with it. By
lemma 4, we have either ;) # j and k& # k or j'® = j" and k® = k.

If 7/® +£ 4" and k3 # k, (i/,7) is computationally lonely (the originator (4,) has at this point partici-
pated in a correct exchange with a different #’-responder and through a different server instance), so B simply
rejects InM sgs.

If ®) = j” and k® = k, B compares InMsgs and OutMsgs. If they are equal, (i) has participated
in a correct exchange with (4, j) through (0, k). Thus, B can set SK;/;» < SK,;, which is well-defined, again
by lemma 4. If they are not, InM sgs is rejected.

This completes the description of B’s interactions with M. It is clear that B is a PPTA. It is also clear
by construction that if CH is playing ng*D DHES ' then the interaction between B and M is identically
distributed to that between RMZE and M in the fifth hybrid world, and if CH is playing G4~ PPHES "this
interaction is identically distributed to that in between RMQ and M in the sixth world. Therefore, we indeed
have:

P[P,) = 1] ~ P[PA",) = 1]| =]P[B(GWDHEW)) = 1] - B[B(G5-PPHES (1m) = 1]\

and since the right-hand term is negligible by the DDHES property, this completes the proof of the proposition.
|

8.9 The Ideal World

We are now ready to construct an ideal-world adversary M™ running against the ideal-word ring master
RM* from an arbitrary, PPTA network adversary M, thereby completing the proof of theorem 1. M* will
essentially play the role of a sixth-hybrid world ring master to M, running as a subroutine. M* will use the
operations it has access to in its interaction with RM™* to

a). answer (some of) M’s operation requests and
b). classify M’s actions into corresponding ideal-world actions.

Point b). is especially important, for it is through this classification that we can identify the conditions for,
and compute, connection assignments, and identify online password tests.

The analysis of the resulting M* will then be straightforward. By construction, we will have that the ideal-
world transcript ZW(M*) and sixth-hybrid-world transcript HWg(M) are in fact identically distributed.
It is to be able to seamlessly carry out this simulation that we slowly factored out of the real world all of
the "bad" events that could occur - albeit with negligible probability - that have strictly no hope of being
captured in the ideal world. For example, if M forges a signature and this leads to the compromise of a
user instance, the ideal world does not cover this, for exposing can only happen under the condition that a
corruption has occurred. Passing from the first to the second hybrid world allows us to formally exclude such
an event with probability exactly 1.

The final argument will then of course be that the sixth-hybrid-world transcript HWgs(M) and the real-
world transcript RW(M) are computationally indistinguishable. This is what the string of propositions
yields, by the fact that statistical closeness implies computational indistinguishability and the transitivity of
computational indistinguishability.

On to constructing M*.

As usual, M* is described through its behavior in an interaction with RM™. We do this carefully, one
operation at a time. Let 1”7 be the security parameter at the beginning of the interaction. Using 17, RM™
specifies two integers: the session key bitlength {gx and the password bitlength ¢,,,. The tuple (17, sk, {pw)
is then given to M*, who passes it on to M.

50

Server initialization

On input (17, lsk, {pw), M first asks M* to initialize the server. M* thus runs the algorithms for the
protocol’s parameters and thus gets

((Q7 G7 g)7 {Hn}na gSKa eCC, (pkEv Sk;E); (pk57 Sks))

It passes the public parameters ((¢, G, g), {Hy}n, sk, cc, (Pke, pks)) on to M, who generates a dictionary
D c {0,1}f»» — {1%w}. D and its password sampling and recognizing algorithms are returned to M*.

Now M* performs an "initialize server" operation to RM™, on input (0, D). It also performs an "imple-
mentation" operation on input

(server public key, ((q,G, 9), {Hn}n, lsk, Lo, (pkE,pks)))

User initialization

When M asks to have user 7 initialized on input ID;, M* makes the same request to RM™. Recall that
RM* samples a password pw; from D for ¢ outside of M*’s view. Therefore, while M* has control over the
server’s strong secret keying information, it does not a priori know honest users’ passwords.

Setting up statically corrupted users

When M makes a "Set Password" request on input (I D, pw) with pw € D, M* makes the same request
to RM™.
Initializing user and server instances

When M makes "initialize user instance" or "initialize server instance" requests, these are simply for-
warded by M* to RM*.
Dynamically corrupting users

When M makes a "reveal user password" operation on input i, M™* will also simply forward the request
to RM*. RM™’s response is password pw; - which M* thus learns - and forwards to M.
Revealing session keys

When M makes a "reveal session key" query on input some user instance (i,j) or (i,j'), M* simply
makes the same request to RM™*. RM™ responds with the value of SK};, and M* sets SK;; < SKJ;, and
gives SK;; to M.

Message deliveries to originator instances and connection assignments for the role open
Let (4,7) be an originator instance.

First of all, any message delivery M makes to (i, j) is recorded by M* in an "implementation" operation
made to RM™ on input
((i, 7), InMsg, OutM sg, statusij)

where of course InlM sg is the message delivered to (¢, j), OutM sg is the message output by (4, j), and status;;
is equal to accept, reject, or continue. To indicate that (¢, 7) is to generate the first protocol message, InM sg
must be set to e. If (4,7) does not generate a message, OutM sg is set to €. If (i, j) rejects the message, M*
makes a "terminate user instance" request to RM™ on input (4, j).

Next, suppose M has (i,j) generate the first protocol message. M* computes (i, j)’s response as it is
done by RMg in the sixth hybrid world. Notice in particular that M™* does not need to know pw; to do this,
since it encrypts 1%+ instead.

Now, we examine M™*’s response when M has a fourth protocol message InMsgy delivered to (i, 7).
InMsg, is accepted or rejected by M* following the same rules as in the sixth hybrid world. Suppose
InMsg, is accepted; we know that (7, 7) is not statistically lonely, and we know that there exists a unique
server instance (0,k) with PIDSy, = (ID;j, PID;;) that computed a fourth protocol message OutMsgs

51

containing the same tuple as InMsgy. Let OutMsgs be the second message output by (0, %), and InMsgs
the third message received by (0, k). Let X = ¢g* be the group element M* chose for (7, j), and n be the hash
index M* chose for (0, k).

o If PID;; = ID is not the identity of an honest user, let V" be the group element obtained from InMsgs. M*
makes a "start session" request to RM”* on input (i,5), and (7,) is exposed through (0, k). M* computes
MK;j < H,(V®), parses MK;; into SK;; € {0,1}*s% and OutMsgs € {0,1}°c, specifies SK;; as (i,7)’s
ideal-world session key SK; to RM*, and outputs OutMsgs to M.

e Suppose now that PID;; = ID; for an initialized '.

ee If InMsg; was not generated by a user instance, then by the rules governing the deliveries of message to
server instances (see below), i"’s password is known to M*. In this case as well, M* starts (i, j)’s session,
and (7, 7) is exposed through (0, k).

oo If InMsgs was generate by a user instance, we know that this instance is unique, is of the form (¢/, ;")
with PID; ;= ID;, and (1, j) has participated in a correct exchange with (i, j/) through (0, k). In this case,
(i,7)’s session is started and (4, j) is opened for connection from (¢, j') through (0, k). RM”* selects session
key SK;; uniformly at random from {0,1}$%. M* selects OutM sgs uniformly at random from {0,1}¢c,
and outputs OutM sgs to M.

Message deliveries to responder instances and connection assignments for the role connect
Let (', 7") be a responder instance.

First, the comments made regarding "implementation" and "termination" operations at the beginning of
the paragraph on messages delivered to originators apply here as well.

Next, suppose that M has a second protocol message delivered to (¢/,;’). The message is processed by
M* as RMIg would process it; in particular, if it is accepted, the third protocol message is computed with
1w in place of pwy, which M* does not a priori know.

Now we turn to treating the delivery of the fifth protocol message, the confirmation code. Let InM sgs
be delivered to (i, ;') by M. Let InMsgs be the second protocol message received by (i',5'), let Y = ¢g¥
be the group element chosen by M* for (i/,j’), and let OutMsgs be the third message output by (i/,j').
We know that there exists a unique server instance (0, %) with PIDSo, = (PIDy;,1D;/) that computed a
second protocol message OutM sg, containing the same tuple as InMsgs. Let n be (0, k)’s hash index. Let
InMsgy be the first message received by (0, k).

Suppose first that OutMsgs was not delivered to (0,k). In this case, (¢/,j’) is statistically lonely, so
InM sgs is rejected. This is in perfect accordance with the ideal-world rules because recall that we can only
start (¢/,7')’s session if (0, k)’s exchange is completed. Since OutM sgs was not delivered to (0, k), this is not
the case (see server message deliveries below).

From now on, we suppose that OutM sgs was delivered to (0, k), so (0,k)’s exchange is completed. Let
OutMsgy be the fourth message output by (0, k).

e Suppose PID;j; = ID is not the identity of a user. Let U be the group element obtained from InMsg;.
In this case, M* computes M K;/j; <— H,(UY) and parses it into SK and k;j. If InMsgs = Ky, (¢',5")’s
session is started and (i, j’) is exposed through (0,k). M* specifies SK},; < SK. If InMsgs # Ky,
InMsgs is rejected.

o Suppose that PID; ; = ID; for some initialized i.

ee Suppose that the following ¢s not true: there exists an originator (¢, j) with PID;; = I D, that generated
a first protocol message OutM sg; and either InMsg; = OutMsg; or OutM sg; was delivered to some server
instance (0,k™")) with PIDSy,) = (ID;,ID;) and InMsg; contains the same originator group element as
the second protocol message output by (0,k(1)). In this case, InMsg; was not generated by a user, (i’,5’)
has not participated a in a correct exchange with any i-originator, and according to the treatment of server
message deliveries (below) pw; is known to M. Letting U be the group element obtained from InMsg;, M*
computes M K, j» < H,(UY) directly, parses it into SK and k, -, and either starts (¢’, j')’s session - exposing
through (0, k) - or rejects InM sgs, based on whether InM sgs = k5, or not.

52

ee Suppose that there exists an originator (7,j) with PID;; = ID; that generated a first protocol message
OutMsgy and either InMsg; = OutMsg; or OutMsg; was delivered to some server instance (0, k(l)) with
PIDSya) = (ID;,ID;) and InMsg; contains the same originator group element as the second protocol
message output by (0, k(). Then (i, 5) is unique. Let X = g* be the group element chosen for (i, j).

If (i,) either has not received a fourth message or has rejected one, we know that (i/, j') is computationally
lonely. Thus, InMsgs is rejected. This situation is clearly the only option we have according to the ideal-
world rules because (i, j') has no i-originator to connect to yet and it cannot be exposed since nothing has
forced pw; or pw; to be known by M*.

From now on, we suppose that (i, ;) has received and accepted some fourth protocol message InMsg,.

Then there exists a unique server instance (0,%®)) that computed a fourth message OutM sgf) containing

the same tuple as InMsg,, and that received group element X in its first protocol message. Let InM sg§2)

be the third protocol message received by (0,k?)) and let n(® be (0,%(?))’s hash index.

eee If InlM sggz) was not computed by any user instance, then (4, j) has not participated in a correct exchange
with any responder, and by the server message delivery rules below, pw;s is known to M*. Thus, (i,j) was
exposed through (0, k(). In this situation, M* computes MK, ;i < Hp(XV) directly, parses it into SK and
Kkqirjr, and either exposes (7', j') through (0, k) or rejects InMsgs, based on whether InMsgs = k;/; or not.
(According to our model, this is the only scenario that can lead to KCI.)

eee If InMsgéZ) was computed by a user instance, this instance is unique, is of the form (i, 5'(?), and (i,)
has participated in a correct exchange with (', j/)) through (0, k(?). So at this point, (i,5) was opened for
connection from (i', j) through (0,k®). RM* selected a session key SK7; uniformly at random for (i,),
and M* selected OutM sgs uniformly at random as the fifth protocol message. Furthermore, we know that
either 7/ = j" and k@ =k or 5@ # j’ and k® # k.

If 7@ = j and k® = k, M* compares QutMsgs and InMsgs. If they are equal, (i/,7')’s session is
started, and (i, ') is connected to (i,) through (0,%). Thus, RM" sets SK};,, < SK};. If they are not
equal, (i',7") rejects InM sgs

If 5/ # j" and k3 #£ k, (/,7') is again computationally lonely (the only i-originator it could possibly
connect to is open for connection from a different #’-responder through a different server instance) so (i/, ')
rejects InM sgs.

Message deliveries to server instances and password testing

Let (0, k) be a server instance.

Similarly to the cases of the user instances, the comments made regarding "implementation" and "termi-
nation" operations at the beginning of the paragraph on messages delivered to originators apply here.

Now, we need to show how message deliveries made to servers are translated into "exchange completed"
operations, and - most importantly - "test password" operations.

Delivering the first protocol message Suppose M has some first protocol message InMsg; delivered
to (0, k).
e If InMsg; was computed by a user instance, M™ can process InMsg;, exactly as RMg does.
e Suppose that InMsg; was not computed by a user instance. Then M™* decrypts InMsg; to get some

plaintext string w. If w is not of the form (U, pw,OI Dy, CIDyy), for U a non-trivial group element in G,
and pw € D, InMsg; is rejected. We can therefore suppose from here on that w is of correct format.

ee Suppose that OIDg, = ID where ID was not assigned to a user. Then ID was necessarily registered
through a "set password" operation, so M* knows pw;p. M™* can thus imply compare pw and pw;p. If they
are equal, InMsg; is accepted and M™* computes OutM sgy. Otherwise, M™ rejects.

ee Now suppose that OI Dy, = I D; for some initialized user 7.

eee If pw; is known to M™*, i.e. if i has been the target of a "reveal password" query or a successful password
guess (defined just below), M* can compare pw and pw;. If they match, the protocol continues and otherwise
InMsg is rejected.

53

eee If pw; is not known to M*, M* makes a "test instance password" query on input (7, (0, k), pw) to RM*.
If the test succeeds, M* continues the protocol, and otherwise it rejects InMsg;. Note that if the test
succeeds, M* learns pw;.

Delivering the third protocol message Suppose M has some third message InMsgs delivered to
(0,k). Let U and n be the originator group element and hash index held by (0, k).

e If InMsgs was computed by a user instance, M* can compute the response as RMZ .

e Suppose now that InMsgs; was not computed by a user instance. Then M* decrypts InMsgs to get
plaintext w. If w is not of the form (U, V,n, pw, OI Dy, CIDy;) for some non-trivial group element V' and
password pw, the message is rejected. Let us therefore suppose w is of the correct form.

ee If CIDy, = ID where ID was not issued to a user, I D was necessarily the input to a "set password"
operation, and thus pw;p is known to M*, which can thus compute the appropriate response. If the message
is accepted, an "exchange completed" operation is made to RM™ on input (0, k).

ee If CIDy, = ID; for some initialized i’, there are two more cases.

eee If pw; is already known to M™*, M™* can already compute the appropriate response. If InMsgs is
accepted, an "exchange completed" operation is made.

eee If pw; is not known, M* makes a "test instance password" query on input (i, (0,k), pw). If the test is
successful, InMsgs is accepted, an "exchange completed" operation is made, and pw; is known to M™*. If
not, the message is rejected.

Coin collection Once M has finished interacting with M*, M* makes one final "implementation" operation
to place all of M’s random coins in the transcript.

This completes the description of how M* is constructed from M and how M* interacts with RM™.

Proposition 7 M* (as constructed above) faithfully follows the rules of the ideal world, and the transcript
random variables HWg(M) and IW(M*) are identically distributed.

Proof: The first statement of the proposition follows by construction. All of the ideal-world operations that
M* makes are legal in the sense that all of the ideal-world conditions that need to be satisfied for them to be
made indeed are. Next, we need to check that connection assignments are a strict function of the transcript
up to the current "start session" operation. This can be seen by construction as well. Observe that all
connection assignments are determined by conditions on previously made message deliveries, and between
connection assignments the conditions are mutually exclusive.

The second part of the statement is clear for most operations, since M* essentially runs R./\/lg . Only two
points need to be checked: a). that session key assignments are identically distributed in both worlds in the
case of correct exchanges and b). that server instance responses are identically distributed in both worlds in
case the delivery of messages that are not generated by users.

Point a). is true because in both worlds originators that are assigned session keys when they have
participated in a correct exchange received uniformly distributed ones. The only difference is that in the
sixth hybrid world, RM chooses it while in the ideal world, RM* chooses it. This difference does not
change M’s view however since in both worlds, M will receive a session key if and only if it makes a "reveal
session key" query. Until this happens, the session keys have no effect on the adversary’s behavior.

As for point b)., it is true because in both interactions - between M and RMQ in the sixth hybrid and
between M and M* in the ideal world - M has the messages it concocts itself accepted if and only if they
decrypt to the correct password. How this is checked - directly by RMZ , who has access to all passwords, or
via "test instance password" queries by M*, who only has access to corrupted passwords - is irrelevant since
this check is outside of M’s view.

This completes the proof of the proposition, and therefore of theorem 1. H

54

9 Prot2 is Secure Against Password-and-State-Adaptive Network
Adversaries

As in the previous section, this section begins with a sketch of how the simulation is carried out to establish
theorem 2. The remainder of the section is the proof. Given that Protl and Prot2 share many ingredients
- e.g. signatures and encryption - some parts of the proof below are unfortunately boringly similar to some
parts in the previous section. We detail them anyway, for a). readers who may be interested in one protocol
and not the other and b). pedagogical reasons.

There are a few notable differences between the proofs of security of both protocols, which will be of course
more apparent in the details. Perhaps the most important is that Prot2 does not achieve key confirmation
by using the suffix of a hash; instead, the last protocol message is signed. On one hand, this simplifies the
overall proof; indeed, dealing with confirmation codes in Prot1 was quite the battle, and much more delicate
than dealing with signatures. On the other hand, our aim is to study Prot2 in the password-and-state-
adaptive network adversary model, so we have to juggle with instance corruptions that reveal the session
key prematurely to the adversary. Making sure that we carry out the simulation consistently is made more
challenging by this.

9.1 The Proof Sketch for Prot2

As in section refPoSProtl, RM”* is the ideal-world ring master, M* is the ideal-world adversary under
construction, and M is the real-world adversary M* is using as a subroutine. M* uses its queries to RM”*
to deal with queries from M.

We omit the setup phase, which is straightforward. We also omit all the queries M makes that have ideal-
world counterparts, as these are directly forwarded by M* to RM™*. We only show how message deliveries
are interpreted.

Text in italics explains informally how some of the security properties of the involved primitives intervene.

The case of an originator instance

e Computing the first message

Suppose (i, 7) is asked to compute the first protocol message. M* selects = Zy randomly, computes
X + g%, and outputs OutMsg, < (X,ID;, PID;;) to M.
e Receiving the fourth protocol message and computing the fifth

Suppose (i,7) is waiting for the fourth protocol message, and M has InMsg, delivered to (i,j). Let
X = ¢g” be the group element chosen for (¢, 7). If InMsg, is not of the form (V,n, o) for a non-trivial group
element V', a hash index n, and string o, M* rejects. We therefore suppose InM sg, is of correct format.
M* then computes the signature verification equation on input

(1,X7‘/,n,IDZ',PIDij,O')

If verification fails, InMsgy is rejected. If it succeeds, the unforgeability of the signature scheme shows
that there exists a server instance (0, k) with PIDSy, = (ID;, PID;;) that computed some fourth protocol
message OutM sgy on input (X, V,n). Thus, (0, k) chose n, and by the size of the hash index space, (0, k) is
unique. (0, k) necessarily received as a first message the OutMsg; computed by (i, 7). Let OutMsgs be the
second message computed by (0, k), and let InMsgs be the third message received by (0, k). M* computes

OutMsgs < Epry (2, X, V,n, 1% ID;, PID,;)

and outputs OutMsgs to M. M* starts (i,7)’s session and now we must specify how to compute (i,7)’s
session key.

95

The semantic security of Enc implies that M’s behavior will not change even though pw; is replaced by

1w Since pw; is not readily available to M*, this is M*’s only option.

ee Suppose PID;; = ID was not assigned to a user. Then InMsgs was not generated by a user instance.
In this case, (i,j) is exposed through (0, k). M* specifies the session key SK; < H, (V).

ee Suppose PID;; = ID; for some initialized ¢'.

eee Suppose InMsgs was not computed by a user instance. Since InM sgs was accepted, by the way server

instances are simulated (see below), we know that pw;s is known to M™*. In this case too, (4,7) is exposed
through (0, k). M* specifies the session key SK7; < H,(V?).

eee Suppose InMsgs was computed by a user instance. This instance is necessarily a responder of the form
(¢, 5") with PID;j» = ID;, (¢, j') previously received Out M sg,, and by the size of the encryption randomness
space, (¢',7’) is unique. Furthermore, (i’,j’) also chose V' = g randomly.

eeee Suppose (i,7) was corrupted after computing its first protocol message. Then M* has already released
(X,x) to M. (i,7) is exposed through (0, k) using the relaxed exposure rule. M* specifies the session key
SK}; « Hy(V®).
eeee Suppose (7,7) was not corrupted after computing its first protocol message.
eeeee Suppose (i, j') was corrupted after sending InMsgs. Then M* has computed MK, ;» < H,(X") and
has released (M K; 1, X,V,n) to M. (4,) is then exposed through (0, k) using the special exposure rule, and
(i',j') becomes bound. M* specifies the session key SK}; < Hn (V7).
eeeee Suppose (i',j’) was not corrupted after sending InMsgs. In this case, (4, 7) is opened from connection
from (', j') through (0, k). RM”* selects SK;; randomly from {0, 1}¢sx.

The DDH assumption ensures that M will not change its behavior despite this substitution.

e Corrupting an originator

ee Suppose M corrupts (i,j) before (i,7) has sent a first protocol message. Then M* returns the string
InternalState;; < € to M.

ee Suppose M corrupts (i, j) after (i,) sent its first protocol message and before receiving a fourth message.
Then M* has chosen X = ¢” for (i,7), and M* returns InternalState;; < (X, x) to M.

The case of a responder instance

e Receiving the second protocol message and computing the third

Suppose (i',5’) receives from M a second protocol message InMsgs. If InMsgs is not of the form
(U,n, PID; j,ID;) for a non-trivial group element U and a hash index n, the message is rejected. Otherwise,
M selects y < Z; randomly, computes

OutMsgz < Epry,(1,U, 1g,n, 1% PID;y i, IDy)

and outputs OutM sgs to M.

Here again M* is forced to replace pw; with 1>+ but Enc’s properties ensure that M does not notice the
difference. Notice also that Y is replaced by 1g. An explanation for this can be found in section 9.7. For
the proof sketch, exhibiting this change is not crucial, but this way we remain consistent with the simulator
constructed in the full proof. Note that when we described above the originator’s computation of the fifth
message, only the password was replaced. This is because the originator’s chosen group element was already
made available to the adversary in the first message, so replacing it with 1g in the fifth message buys us
nothing.

e Receiving the sixth protocol message

Suppose M delivers InMsgg to (i’,j'). Let InMsgs be the second protocol message received by (¢/,5'),
let OutM sg3 be the third message computed by (i, j'), and let Y = g¥ be the group element and chosen for
(#,7"). Let U and n be the originator group element and hash index in InMsgs.

56

ee Suppose that OutM sgs was not accepted by any server instance.
eee Suppose that (i',j’) was not corrupted after receiving InMsgs. Then M* simply has InM sgs rejected.
This happens because since Enc is non-malleable, the only way to have a server instance give information

on'Y is to deliver exactly OutMsgs to (0,k). If this does not happen, M has another option to obtain Y :
corrupting (i',7"). (This was not an option in the model used to study Prot1.)

eee Suppose that (i, j') was corrupted after receiving InMsgs. Under these conditions, M* has computed
MK;j + H,(UY), and InternalState; j; < (MK;;,U,Y,n) was released to M.

eeee If InlMsgg is not of the form (Y, o) for some string o, InMsgg is rejected.
eeee Suppose InMsgg is of the form (Y, o). M™* computes the signature verification equation on input

(2,U7K7’7,,PIDZ'/]‘I,IDZ'/,O')

eeeee If verification fails, InM sgg is rejected.

eeeee If verification succeeds, by the unforgeability of the signature, there exists a server instance (0, k)
with PIDSo, = (PID;j,ID;) that computed a sixth message OutMsgs on input (U,Y,n). By the size
of the hash index space, (0, k) is unique, and must have computed InMsgs. Also, since OutM sgs was not
accepted by (0,%), (0,k) must have received a third protocol message InMsgs containing (U,Y,n). Since
(0, k) computed a sixth message, its exchange has been completed. M* starts (i’,j')’s session.

Let InMsg; and InM sgs be the first and fifth messages received by (0, k) and let Out M sgy be the fourth
message computed by (0, k).

eeeeee Suppose PID; ;; = ID was not assigned to a user. In this case, M* exposes (i’,j’) through (0, k),
and specifies SK;/j <= MK .
eeeeee Suppose now that PID;;; = ID; for some initialized user i.

eeeeeee Suppose that the following is not verified: there exists an originator instance that computed a fifth
protocol message OutM sgs on input (2,U,Y,n, 1w ID;, IDy) and either InMsgs = OutM sgs, or InM sgs
contains (2,U,Y,n,ID;, ID;). In this case, InMsgs is not generated by a user and no originator instance
has participated in a correct exchange with (¢/,j’) through (0,%). Also, by the response to server message
deliveries (see below), pw; is known to M*. (i, j') is exposed through (0, k). M* specifies SK 0 « MKy
to RM™.

eeeeeee Suppose that the above-mentioned condition is verified, i.e. there exists an originator instance
that computed a fifth protocol message OutMsgs on input (2,U,Y,n, 1% ID; IDy) and either InMsgs =
OutM sgs, or InMsgs contains (2,U,Y,n,ID;,I1D;). Then (i,j) must have output InMsg;, must have
received a fourth protocol message containing the same tuple as OutMsgy, and by the size of G, (i,j) is
unique. (Since the originator’s group element is actually encrypted even in the case of an honestly generated
message, we do not need the size of the encryption randomness to make this argument.) Furthermore, U = g*
has been chosen for (i,5). The response to receiving the fourth protocol message shows that (4,5)’s session
has been started. Since InM sgs was not generated by a user, we know that (7, j) has been exposed through
(0,k), and that SK}; was set to H,(Y™") by M*. In this case, (i, ;') is exposed through (0,%) using the
relaxed exposure rule. M™* specifies SK;‘,j, — MK j to RM".

ee Suppose now that OutM sgs was accepted by a server instance, thereby revealing Y to M. By the rules
governing server message deliveries (see below), this server instance (0,%) has PIDSy, = (PID;j,ID;),
and has computed InMsgs. By the size of the hash index space, (0, k) is unique. Let InMsg; be the first
protocol message received by (0, k).

eee If InMsgg is not of the form (Y, o) for some string o, InMsgg is rejected.

eee Suppose InMsgg is of the form (Y, o). M* computes the signature verification equation on input
(2,U,KH,PID7;/J'/,ID7;/,O')

eeee [f verification fails, InM sgg is rejected.

o7

eeee If verification succeeds, by the unforgeability of the signature we know that instance (0, k) necessarily
computed a sixth message OutM sgg on input (U,Y,n). Furthermore, (0, k)’s exchange has been completed.
Let OutMsgy be the fourth message computed by (0, k) and let InMsgs be the fifth message computed by
(0,k). Since the verification equation has passed, M* accepts the message and starts (i',5’)’s session. We
now need to determine which connection assignment is used and how the session key is computed.

eeeee Suppose that PIDy; = ID is not assigned to a user. In this case, InMsg; and InMsgs were not
computed by a user. (i, ;') is exposed through (0, k), and M* specifies SK; ;o < H,(UY).

eeeee Suppose now that PID; ;; = ID; for some user 1.

eeeeee Suppose that the following is not verified: there exists an originator instance that computed a fifth
protocol message OutM sgs on input (2,U,Y,n, 1% ID;, IDy) and either InMsgs = OutM sgs, or InM sgs
contains (2,U,Y,n,ID;,ID;). In this case, InMsgs is not generated by a user and no originator instance
has participated in a correct exchange with (i/,j’) through (0,%). Also, by the response to server message
deliveries (see below), pw; is known to M*. (i’, j') is exposed through (0, k). M* specifies SK7,;, < H,(U")
to RM™.

eeeeee Suppose that the above-mentioned condition is verified, i.e. there exists an originator instance
that computed a fifth protocol message OutMsgs on input (2,U, Y, n, 1%w ID; ID;) and either InMsgs =
OutM sgs, or InMsgs contains (2,U,Y,n,ID;,ID;). Then (i,j) must have output InMsg;, must have
received a fourth protocol message containing the same tuple as OutMsgy, and by the size of G, (i,j) is
unique. Furthermore, U = g* has been chosen for (i,5). The response to receiving the fourth protocol
message shows that (4, j)’s session has been started.

eeeeeee Suppose that (i,5) has been corrupted after sending InMsg;. Then M* has released the string
InternalState;; < (U,u) to M. According to the rules on delivering the fourth protocol message, (4, j) has
already been exposed using the relaxed exposure rule, and M* has specified SK}; < H,(Y") to RM".

eeeeeeee Suppose (i, ;') has not been corrupted after sending OutMsgs. (i',j') is exposed using the special
exposure rule, (7,7) becomes bound, and M* specifies SK[i+ H,(UY) to RM*.

eeeeeeee Suppose (i’,j) has been corrupted after sending OutMsgs. (i',j') is exposed using the relaxed
exposure rule, and M* specifies SK};/ < H,(UY).

eeeeeee Suppose that (7,7) has not been corrupted after sending InMsg;.
eeeeeeee Suppose that (i, ;') has been corrupted.

seseeceee If (i, ') was corrupted before InM sg, was delivered to (i, j), M* has already computed MK,/ <
H, (UY) and released InternalState; ;o <— (MK ;,U,Y,n) to M. By the rules on originator instances, (¢, j)
has been exposed using the special exposure rule, M* has specified SK; < H,(Y™"), and (¢',j") is now
bound. (¢, ;') is now exposed using the relaxed exposure rule, and M* specifies SK < Hp(UY).

eeeeeeeee If (i’ j') was corrupted after InMsgy was delivered to (i,j), M* has already opened (i,j) for
connection from (i, ;") through (0,k), and so SK; was selected uniformly at random from {0, 1}fsx. Cor-
ruption having occurred after this event, M* has prematurely connected (i, j') to (i, 7) through (0, k) using
the special connection rule (this happens regardless of whether (0, k) has completed its exchange or not, which
is allowed by the ideal-world rules), received SK}; + SK; from RM*, and set MK, j < SK} ;. to give
InternalState; o < (MK,;j,U,Y,n) to M. (i,7) was bound when this event happened. In this case, (7', ;)
stays connected to (i,7) through (0, k), with session key SK, /.

eeeeeeee Suppose that (i, j') has not been corrupted. Then (z, 7) has been opened for connection from (7', 7/)
through (0,%), and RM" has selected SK;; randomly from {0, 1}fsx. (i',5') is connected to (i, ;) through
(0,k). It gets session key SK7,; < SKJ;.

e Corrupting a responder

ee Suppose M corrupts (i, j') before it receives a second protocol message. Then M* returns the string
InternalState; j + € to M.

58

ee Suppose M corrupts (i/,j') after it receives a second protocol message. Let InMsgs be the message
received, and let OutM sgs be the message output. Let Y = g¥ be the group element chosen by (¢, j’), and
let U and n be the group element and hash index in InMsgs.

eee Suppose PID; j; = ID; for an initialized user ¢, and that there exist a user instance (¢, j) with PID;; =
ID; and server instance (0, k) with PIDSy, = (ID;,ID;/) such that 1). (i,7)’s first message OutM sg; was
received by (0, k), 2). (0, k) computed InMsgs, 3). (0, k) received OutMsgs, 4). (i, j) received and accepted
a fourth message InM sgy containing (U, Y, n), and 5). (4,) was not corrupted after sending its first protocol
message.

In this case, (i,7)’s session was started, (i,7) has been opened for connection from (i’,j') through (0, k),
and RM™ has set SK;; randomly. (i, ;') is prematurely connected to (i,j) through (0,%), (4,5) becomes
bound, and RM" gives SK},, < SK}; to M*. M* sets MK ; < SK};,/, and gives InternalState; ;i <
(MKi/j/, U, Yv, n) to M.
eee Suppose the above conditions do not hold. M* computes MK, ;» < H,(UY) and gives to M the value
InternalState; j < (MK, U, Y, n).

The case of a server instance

e Receiving the first protocol message and computing the second

Suppose M has a first message InMsg; delivered to (0,k). If InMsg; is not a tuple of the form
(U,0IDyy, CIDgy) for some non-trivial group element U, InMsg; is rejected. Otherwise, InMsg; is ac-
cepted, M* selects n randomly, and OutM sgs < (U, n, OI Doy, CIDgy) is output to M.

e Receiving the third protocol message and computing the fourth

Suppose M has InMsgs delivered to (0,k). Let InMsg; be the first message received by (0, k) and let
OutM sgs be the second message output by (0,k). Let n be the hash index chosen for (0, %), and let U be
the group element in InMsg;.

ee Suppose first that InM sgs was not generated by a user instance. In this case, M* decrypts InMsgs to
get a plaintext w.

eee Suppose that w is not of the form (1, U, V, n, pw, OI Dy, CI1Dgy), where V is a non-trivial group element
and pw is a password. Then InM sgs is rejected.

eee Suppose w is of the form (1,U, V,n,pw,CIDgy, OIDgy).

eeee [f C'I Dy, = ID is not the identity of an initialized user, I D was the input to a "set password" operation,
and so pw;p is known to M*. If pw # pwrp, InMsgs is rejected. Otherwise, InM sgs is accepted, and M*
computes OutM sgy < Ssis(2,U, V,n,O0I Dy, CIDyy), and OutMsgy is given to M.

eeee Suppose now that CIDg, = ID; for some initialized ¢’. If pw; is known to M*, M* compares pw
and pw; and computes the appropriate response. If pw; is not known to M*, M* makes a "test instance
password" request on input ((0, k)J’,pw). If the answer is negative, InMsgs is rejected. Otherwise, the
appropriate OQutM sg, is computed, and pw; becomes known to M*.

The non-malleability of Enc is crucial here. The intuition behind the reasoning is that since M cannot
feasibly modify an honestly encrypted value to change e.g. a group element, it has to re-encrypt a plaintext
of its own, and therefore input a candidate password. In short, non-malleability makes it possible to interpret
all encryptions created by the adversary as password tests.

ee Now suppose that InM sgs was generated by a user instance. Then by the size of the encryption random-
ness space this instance is unique.

eee Suppose that CIDg, = ID; for some user ¢, that the unique instance that computed InMsgs is a
responder instance (', ;") with PID;;; = OIDyy, and that (7', j') received and accepted OutM sgo. In this
case, M* has (0,k) accept InMsgs without decrypting. Let Y be the group element chosen by (', ;).
OutM sgy is computed using Y.

59

Here, M* can observe directly which messages are supposed to be accepted, so it does not need to decrypt.
This is technically important to be able to reason with IND-CCA-2 security, see section 9.6.

eee Suppose that the above conditions are not met. Then M* has (0, k) reject InM sgs without decrypting.

e Receiving the fifth protocol message and computing the sixth

Suppose (0, k) is waiting for the fifth protocol message. Let InMsg; be the first message received, let
OutM sgs be the second message sent, let InMsgs be the third message received, and let OutMsgy be the
fourth message sent. Let U be the originator group element received, n be the chosen hash index, and V be
the responder group element received. Let InM sgs be delivered to (0, k).

ee Suppose that InM sgs was not generated by a user instance. Then M* decrypts InM sgs, to get plaintext
w.

eee If w is not of the form (2,U, V,n, pw, OI Dy, CIDyy;) where pw € D, InM sgs is rejected.
eee If w is of the form (2,U,V,n, pw, OI Dyy, CIDyy), M* examines OI Dgy.

eeee If OIDy, = ID was not assigned to a user, ID was the input to a "set password" operation, so M*
has pwrp. If pw = pwrp, InMsgs is accepted, Out M sgg is computed as normal, and (0, k) is the input to a
"exchange completed" request. Otherwise, InMsgs; is rejected.

eeee If OIDy, = ID; for some initialized user i, M™* checks whether pw; is known or not. If pw; is known,
M* carries out the comparison to compute the response. If pw; is not known, M™ makes a "test instance
password" query on input ((0, k), %, pw) and computes the response based on RM™’s answer.

ee Suppose now that InMsgs was generated by a user instance. Then this instance is unique.

eee Suppose that OI Dy, = ID; for some user i, that the unique user instance that computed InM sgs is an
originator of the form (i, j) with PID;; = CIDyy), that (i, j) computed InMsg,, and that (i, j) accepted a
fourth protocol message InM sg4 containing (2, U, V, n). In this case, M* accepts InM sgs without decrypting,
and computes OutM sgg as normal. (0, k) is the input to an "exchange completed" request.

eee Suppose that the above conditions are not all met. InM sgs is rejected.

The sketch of Prot2’s security proof is now complete.

9.2 The Real World

Let M be an adversary, and let RM be the real-world ring master. The game played between M and RM
is exactly the one described in paragraph 6.2. We just specify here certain details about how the server T is
run, and how unerased internal state is revealed.

Let n € N be the security parameter.

e Initialize server RM first constructs (¢,G,g) and H := {H,}, from 7. Let Ky be the space of hash
indexes. The H,, functions map into {0,1}s% for all n € Ky. The integer {5k is all assumed to be long
enough in 7. RM then runs Kg(17) and Kg(17) to respectively obtain (pkg, skg) and (pks, sks), and the
server public/private key pair is set to (pkr, skr) < ((pke,pks), (skg, sks)).

The tuple (17,q,G, g, H, lpw, Pk7) is given to M, who can now begin its interaction with RM. Recall
that M first constructs a non-empty dictionary D C {0, 1}f» — {1%w}, which it gives to RM, along with
an efficient algorithm to sample elements of D uniformly at random, and an efficient algorithm to recognize
whether an element of {0,1}%w is in D or not. The server has access to skt

e Unerased internal state We make explicit here what is actually leaked by a "corrupt instance" operation
according to the protocol specification.

Let (i,7) be an originator instance expecting to receive the fourth protocol message. It has necessarily
already sent the first protocol message, and so RM has chosen an exponent z uniformly at random, computed
X < ¢, and given InMsg, < (X,ID;, PID;;) to M. Here we have InternalState;; = (X, x).

60

Let (i',j") be a responder instance expecting to receive the sixth protocol message. At this point, RM
has chosen exponent y uniformly at random for (i, j’), and computed Y < ¢¥. Furthermore, (i, ;') has
previously received some group element U and hash key n through a second protocol message, and RM has
computed the master key MKy < H,(UY). In this situation, InternalState; ;v = (MK j,U,Y,n).

Initialized user instances that are in neither of the above two cases have empty unerased internal state,
i.e. InternalState,, < €.

9.3 The First Hybrid World: Delaying the Computation of Responder Master
Keys

Let M be an adversary in this world. The change made to the real world to obtain this world is minimal:

instead of having a responder instance (i’,j’) compute its master key upon receipt of the third protocol

message, the ring master RM'f computes this value only if the adversary chooses to corrupt (i', ;') between

the time it receives the third protocol message, and the time it receives the sixth protocol message. The view
M has of the execution is strictly identical to the one it would have in the real world. Therefore:

Proposition 8 The transcript random variables RW(M) and HW1(M) are identically distributed.

Before continuing, let us reassert how transcripts are built in the hybrid worlds: they are built following
the same rules as in the real world.

9.4 The Second Hybrid World: Unique Random Choices

In the second hybrid world, the ring master RM}QL interacts with PPTA adversary M exactly like ’RM;‘ does
with M in the first hybrid world except in how exponents, hash indexes, and server nonces are chosen.

Specifically, at the "initialize server" operation, RMS initializes the sets CE of chosen exponents, CHZ
of chosen hash indexes, and CER of chosen encryption randomness, which start out empty. Whenever a user
instance is called upon to generate a group element, R/\/l}z1 selects the exponent uniformly at random from
Zy —CE&, and adds it to CE. Whenever a server instance must produce a new a hash index, RMS chooses it

in Ly — CHZ, and adds it to CHZ. Whenever a user instance must select an encryption randomness, RMS
chooses it from Rg — CER, and adds it to CER.

As in the previous section, we call these the Nonce Uniqueness Rules (NUR), and their purpose is to
uniquely associate instances to the random choices they make. More precisely, it allows the ring master to
uniquely associate delivered messages to the instances that computed them. We now prove:

Proposition 9 The transcript random variables HW1(M) and HWa(M) are statistically close.

Proof: Let 7 be the set of transcripts that can be yielded by ¢ or ¥». We wish to show that the expression

> [Pls =t~ Py = 1)
teT
is negligible in 7.
We define two subsets of T, as follows:
1). Let To be the set of transcripts ¢ € T such that ¢ was obtained from an interaction between the ring
master and M in which the ring master made only pairwise distinct exponent, hash key, and encryption
randomness choices. Clearly, ¢ will always yield values in 7o, and v may yield values in 7p.

2). Let Ty be the set of transcripts ¢t € T such that ¢ was obtained from an interaction between the ring
master and M in which the ring master chose an exponent, or hash key, or encryption randomness at least
twice. Clearly, ¥ may yield values in 7.

By definition, we have T = 7o U Ty.

61

Lemma 5 7o and Ty are disjoint.

Proof: Let t be in both sets. This means that there is a configuration cip of the interaction between the
ring master and M in which the ring master made only pairwise distinct exponent, hash key, and encryption
randomness choices that yielded ¢, and a configuration ciy; of the interaction between the ring master and M
in which the ring master chose an exponent, or hash key, or encryption randomness at least twice that also
yielded t.

Suppose that in ciyy the ring master chose the same exponent x twice. If this exponent was selected for
two different originator instances, then the same group element X was placed directly in ¢ as the output
of these two different originator instances. But this could only be yielded by cigp if the ring master in that
configuration had chosen the same exponent twice as well, which is a contradiction. Suppose now that = was
selected for an originator instance and a responder instance. Then the corresponding group element X was
placed directly in ¢ as the output of the originator, and a string c¢ of the form &y, (..., X, ...) was placed in
t as the output of the responder, where pkg is the public key used in ciy. Since ¢ was also placed in ¢ as
the output of the responder in cig, c is also of the form 5pk}5(~'7 Y, ...), where pk’; is the public key used in
cip, and Y is the group element chosen for the responder in cip. Notice that we must have pkr = pkl as
this public key is placed directly in ¢. This in turn implies that skg = sk;. Therefore, decrypting c in cip
gives the same plaintext as in ciy and thus Y = X. This shows again that in cip the ring master must have
chosen the same exponent twice, which is a contradiction. The case where = was selected for two different
responders leads to a contradiction with the same argument.

The reasoning in the case of two hash indexes being the same across two different server instances is
treated exactly as is the case of the same exponent being chosen across two originators, since hash indexes
are immediately placed in the transcript.

We now deal with the encryption randomness. Suppose that in ciy the ring master chose the same
encryption randomness twice across two different user instances. Then a string c of the form &y, (m;7)
was placed in the transcript and another string ¢ of the form &, (m’;r) was placed in the transcript as
well, where r designates the same encryption randomness used for both messages m and m’. Since c and ¢
appear in the transcript, they were also produced by configuration cip. Since we already remarked that both
configurations use the same public/private key pair for encryption, we thus know that ¢ and ¢ also decrypt
in cip to m and mP respectively. Let r; and ro be the encryption randomness the ring master used in cip to
compute ¢ and ¢’. We get the equalities &y, (m; 1) = ¢ = Eppy (M) and Epp, (M/s1) = ¢ = Epp (M5 72).
But we made the assumption that Enc is injective in the randomness argument (see paragraph 7.3) for fixed
messages. Thus, these equalities imply vy = r = ry. Since r; = ro is impossible in cip, we again have a
contradiction. This concludes the proof of the lemma. B

Two immediate corollaries of the lemma are first that 7 = 7o U7y and second that ¢ cannot yield values
in 7y. Thus, we can write

D [Plo=t-Plw=t]| =) [Plp=1]-P=1]]+Pl € To]
teT teTo
and we now must analyze), |P[¢ = t] — P[y) = t]| and P[4 € Ty]. To this end, let X' denote the random
variable consisting of the exponent, hash index, and encryption randomness choices that R/\/l}f makes, let Z
denote the space of values this random variable may reach, and let Z be the subset of Z consisting of those
values that respect the NUR. _ _
By definition of 7, we have that ¢ € Ty if and only if X ¢ Z. Thus, Ply € Ty| = P[X ¢ Z].
Let us now work on - |P[¢ = t] — Pl = t]|. We have:

ST Plp=t]—Plp=t]| = > |Plp=t] - Pl = t|X € Z|P[X € Z] — P[pp = t|X ¢ Z|P[X ¢ Z]|
teTo teTo

> |Plp =1] - Pl = t|X € Z|P[x € Z]]

teTo

62

where the fact that Pty = t|X ¢ Z] = 0 is a consequence of the lemma, ¢ being an element of 7p. Next,

conditioned on X € Z, RM"’s actions are identically distributed to those of RMY%. Thus, for t € To we
necessarily have P[¢ = t] = P[¢p = t|X € Z] and we can write:

S IPlp=1-Pp=t]]|= > [Plp=t]—Ply=t|x € Z|P[X € Z]|

teTo teTo
= > |Plp =] - Pl¢ = P[X € Z]|
teTo
=PlX ¢ 2]) Plp=1
teTo
=PX ¢ Z]

In the end, we have obtained that Y, . |P[¢ = t] — Py = t]| = 2P[X ¢ Z], so all that is left to prove is
that P[X ¢ 2] is a negligible quantity.

Lemma 6 P[X ¢ Z] is negligible.

Proof: The proof is strictly identical to that of lemma 2. B

9.5 The Third Hybrid World: Secure Signatures

The third hybrid world is defined by having the ring master RMQ behave exactly like RM}QL, except in how
it computes responses to the reception of messages that should be signed. Only the "deliver user message"
operation is modified.

e Delivering the fourth protocol message and computing the fifth Let (4, j) be an originator instance
expecting to receive the fourth protocol message. Suppose M has InMsg4 delivered to (i,7). Let X be the
group element chosen for (i, 7).

RMQL first sees if InM sgy is of the form (V,n, o) for a group element V' # 1, a hash index n, and a string
o. If not, InMsg, is rejected. Otherwise, RMQ checks the signature on input (1, X,V,n,ID;, PID;;,0). If
the verification fails, InMsg, is rejected. If it succeeds, RMQL checks to see if there exists a server instance
(0, k) that computed a fourth protocol message on input (1, X,V,n,ID;, PID;;). If no such instance exists
we shall say that InMsg, was forged. In this case, InMsg, is rejected even though the verification equation
has passed. Otherwise, InMsg, is accepted, and (4,) continues the protocol according to specification.

e Delivering the sixth protocol message Let (i’,j’) be a responder instance expecting to receive the
sixth protocol message, and suppose that InMsgg is delivered to (i, j’) by M. Let Y be the group element
chosen for (i, j'). Let U and n be the originator group element and hash index (¢, j’) received in the second
protocol message.

R./\/lg checks that InMsgs is of the form (Y,0) for some string o. If not, the message is rejected.
Otherwise, RMg computes the verification equation on input (2,U,Y,n, PID;;,ID; o). If it fails, the
message is rejected. If it succeeds, RM? checks to see if there exists a server instance (0, k) that computed a
sixth protocol message on input (2,U,Y,n, PID; ;,1D;). If no such instance exists we shall say that InM sgg
was forged, and InM sgg is rejected, despite the verification equation having passed. Otherwise, InM sgg is
accepted and (¢’,j') pursues its computations.

Proposition 10 The transcript random variables HWo(M) and HWE(M) are statistically close.

Proof: Let ¢ := HW35(M) and ¢ := HW5(M). Let T be the set of all possible transcripts that ¢ or ¢ can
evaluate to. As usual, we partition 7 into sets to work with:

63

1). 75 is the sets of transcripts in 7 in which there exists a user instance that accepted a fourth or sixth
protocol message that was forged. Clearly, ¢ may yield such a transcript.

2). T3 is the set of transcripts in 7 in which there exists a user instance that rejected a fourth or sixth
protocol message that was forged. ¢ may yield such a transcript.

3). To is the set of remaining transcripts, i.e. those in which if a user instance accepted a fourth or sixth
protocol message, then this message was not forged, and if a user instance rejected a fourth or sixth protocol
message, this message failed either the format check or the signature verification equation. Both ¢ and ¢
may yield such transcripts.

Again, it is clear that T = Tp U T3 U T3. Also, it is clear by definition that 7o is disjoint from 75 and
Ts. Let t € TN T3. Since t € Ts, there exists a user instance that accepted a fourth or sixth message that
was forged. By the rules that RMSL follows, this cannot happen in the third hybrid world. Therefore, t was
obtained in an interaction with RMS . However, t is also an element of 73, i.e. there is a user instance that
rejected a four or sixth protocol message that was forged. Since this cannot occur in the second hybrid world,
we have a contradiction. Thus, we have shown that 72 and 73 are disjoint as well. Therefore:

SIPlp =1 -Py =t = > [Pl =t] - Pl =t]| +Pl¢ € T3] + Py € T3]

teT teTo

and we study the three terms in this sum.

First of all, for all ¢ € To we have P[¢ = t] = P[¢) = t] because by construction the interaction between
the adversary and ring master is identically distributed in both worlds provided no forged fourth or sixth
messages are accepted. Thus, we obtain

> Plo=t]-Pp=t]|=0

teTo

Next, we examine P[¢) € T3] and P[¢ € T3]. We show that we can define a PPTA B that uses M as a
subroutine, plays against a challenger CH in the GFV=ACMA game (see appendix B.2), and for which we
have

Pl € To] = P[B(GPV~A“MA(IT)) = 1) = Plp € T3]

The security of the signature scheme will then yield the desired result.

To begin the game on input 17, CH runs Kg(17) to get (pks, sks), and gives pkg to B. B generates the
remaining public parameters himself and hands them to M, which returns a dictionary D back to B. B then
plays ring master’s role in an interaction with M, respecting the NUR the same way RMQL or RM? do. We
show now how B treats the generation and reception of signed messages.

e Receiving the third protocol message and computing the fourth Let InMsgs be delivered to a
server instance (0, k). B accepts or rejects this message according to protocol specification. If it is accepted,
let U be the originator group element, V' be the responder group element, and n be (0, k)’s hash index. /B
makes a "signature" query to CH on input (1,U, V,n,OI Dy, CIDq). Once CH answers with a string o, B
outputs OutMsgy < (V,n,0) to M.

e Receiving the fourth protocol message and computing the fifth Let InMsgs be delivered to an
originator (4, 7). Let X be the group element chosen for (4, 7). B first checks if InMsg, is of the form (V,n, o)
for a non-trivial group element V', a hash index n, and a string o. If not, InMsg, is rejected. Otherwise, B
verifies the signature on input (1, X,V,n,ID;, PID;j, o). If the verification fails, InMsg, is rejected. If it
succeeds, B checks to see if there exists a server instance (0, k) that computed a fourth protocol message on
input (1, X,V,n,ID;, PID;;). If no such instance exists then B has never made a "signature" query on input
(1,X,V,n,ID,, PID;;). It therefore halts the game with C?#, outputting ((1,X, V,n,IDi,PIDij),J) in a
"forgery" query. Otherwise, InMsg, is accepted, and (7, j) continues the protocol according to specification.

64

e Receiving the fifth protocol message and computing the sixth Let (0,k) be a server instance
and let InMsgs be delivered to (0,k). B accepts or rejects this message as R./\/lg or R/\/lg would. If it is
accepted, let U be the originator group element, V' be the responder group element, and n be (0, k)’s hash
index. B makes a "signature" query on input (2,U,V,n,CIDg, OIDg) to get o from CH, and outputs
OutMsgs + (V,0) to M.

e Receiving the sixth protocol message Let (i, ') be a responder instance and suppose that InM sgg
is delivered to (i, j) by M. Let Y be the group element chosen for (i, j’), and let U and n be the originator
group element and hash index (¢, ;) received previously. B checks that InMsgg is of the form (Y, o) for
some string o. If not, the message is rejected. Otherwise, B computes the verification equation on input
(2,U,Y,n,PID;;,IDy). 1If it fails, the message is rejected. If it succeeds, B checks to see if there exists
a server instance (0, k%) that computed a sixth protocol message on input (2,U,Y,n, PID;;,ID;). If no
such instance exists, then (2,U,Y,n, PID;;,ID;) was never input to a "signature" query. Thus, B outputs
((U, Y,n,PID;;,ID;), U) in a "forgery" query, and the game with CH ends, with total output 1. Otherwise,
(#/,7") pursues its computations as normal.

This completes the description of B. It is certainly a PPTA. We now relate]P’{B(GEU’ACMA(P’)) = 1] to

Pl¢ € T3] and P[y) € T3]. We have that the events "B(GFU-ACMA(1m)) = 1", "¢ € T", and "¢ € T3" occur
if and only if in any of these three interactions adversary M outputs a forged signature at least once. But
by construction, up until this event happens these three interactions are identically distributed. Therefore,

we indeed have Py € T3] = P[B(GEU*ACMA(IW)) = 1] = P[¢ € T3]. This proves the proposition. B

9.6 The Fourth Hybrid World: Using the Encryption

In this hybrid world, we make use of the security of the encryption scheme. As in the previous section, it
is mainly used to prevent offline dictionary attacks. Recall that in the previous section, we also used the
encryption to hide group elements, and this had a profound effect on the rest of the proof, namely because
of the presence of a confirmation code. While we do indeed hide one of the group elements in this world (the
responder’s), the effect is not so dramatic. It still cannot be completely ignored, because as we shall see,
there are two ways for the adversary to reveal a responder’s group element: the first and most obvious way is
through delivery of the message to the appropriate server and the second is through an instance corruption.
Indeed, careful examination of the protocol specification indicates that the responder’s group element is a
part of its UIS. Without it, the last signature cannot be verified.

The changes made in this world involve both the computation and treatment upon delivery of the third
and fifth messages. Thus, we modify both the "deliver user message" and "deliver server message" operations.
Let M be the adversary.

e Delivering the second protocol message and computing the third Let (i’, j') be a responder that
M has some second protocol message InM sgs delivered to, and suppose (', j') accepts InMsgs. Let U and
n be the originator group element and hash index in InMsgs and Y be (i, 5’)’s group element. Ring master
RM" computes the encryption OutMsgs Epp (1, U, 1g,n, 1% PID;1;, 1D;s), and outputs OutMsgs to
M.

e Delivering the third protocol message and computing the fourth Let (0,%) be a server instance
waiting for the third protocol message, and suppose that M has InMsgs delivered to (0, k). Let OutMsgo
be the second protocol message computed by (0, k).

ee Suppose InMsgs was not computed by any user instance. In this case, RMZ computes (0, k)’s response
as in the previous hybrid world.

ee Suppose InMsgs was computed by some user instance. By the NUR (specifically, by the uniqueness of
the used encryption randomness), this instance is unique.

65

eee Suppose that PIDSy, = (OIDgyg, ID;:) for some user ¢, that the instance that computed InMsgs is a
responder of the form (4', /) with PID;/;» = OIDgy, and that (¢, j') received Out M sg» as the second protocol
message. In this case, (0, k) accepts InM sgs automatically without decrypting and computes Out M sgy using
the group element in OutMsg, and the group element and hash index chosen for (i, j).

eee Suppose that the situation is not that described above. (0, k) automatically rejects the message without
decrypting.

e Delivering the fourth protocol message and computing the fifth Let (i, j) be an originator expect-
ing to get the fourth protocol message, and let InMsg4 be delivered to (4, 7). InMsgy is accepted or rejected
according to the rules of HW35. Suppose that (i, j) accepts. Then we know that there exists a server instance
(0, k) with PIDSy, = (ID;, PID;;) that computed a fourth protocol message OutM sg4 containing the same
tuple as InMsgy, the originator group element within InMsg, is the group element X chosen for (4, 7), and
by the NUR (0, k) is unique. Let V' be the responder group element InMsgy and n be (0, k)’s hash index.
RMZ computes OutMsgs < Epip (2, X,V n, 1ZP1U,ID1‘,PID1']‘) and outputs OutM sgs to M.

e Delivering the fifth protocol message and computing the sixth Let (0,%) be a server instance
waiting for the fifth protocol message. Let OutMsgy be the fourth protocol message output by (0, k).
Suppose that M has InMsgs delivered to (0, k).

ee Suppose that no user instance computed InM sgs. RMZ computes (0, k)’s response as in the previous
world.

ee Suppose that some user instance computed InM sgs. By the NUR, this instance is unique.

eee Suppose that PIDSy, = (ID;, CIDgy) for an initialized user ¢, that the instance that computed InM sgs
is an originator instance of the form (¢, j) with PID;; = CIDyy, and that (i, j) received a fourth protocol
message InMsg, containing the same tuple as OutM sgy. In this case, RMZ has (0, k) automatically accept
InM sgs without decrypting, and computes OutM sgg using the data in OutM sg,.

eee In any case other than the one described above, (0, k) automatically rejects InM sgs.

Important Remark: The injectivity property of the encryption function (see paragraph 7.3) is important
here for the ring master to keep track of which responder instances compute which third protocol messages,
in the case that several of them have been delivered identical second protocol messages. (A similar situation
happens in the analysis of Protl.) Indeed, the third protocol message - when computed by a responder - no
longer contains the unique group element that responder chose, for it has been replaced by 1. To be sure
that the third message can be traced back to a unique instance, we must have the guarantee that even if the
same plaintext is encrypted several times, the resulting ciphertext will always be different. Our only option
is to use the changing encryption randomness to do this.

This completes our description of how messages are computed in this world.

Proposition 11 The transcript random variables HW3(M) and HW4(M) are computationally indistin-
guishable.

Proof: Let ¢ := HW4(M), 1) := HW3(M), and D be a PPTA. To show that
[P[D(1",9) = 1] - P[P, %) = 1]|

is negligible in n we construct a PPTA B that plays the games Ggh_ad_IND_CCA_2 for b € {0,1} with
challenger CH against the encryption scheme Enc (see appendix B.1). B first simulates the ring master for
M running as a subroutine, and the transcript is built. Once the interaction with M ends, B runs D on
input the obtained transcript and outputs to CH whatever bit D outputs.

We now detail the construction of B. For b € {0, 1}, at the beginning of Ggh_ad_IND_CCA_Q, B receives
as input the candidate encryption key pkr computed by CH on input 17. B then sets up all of the other

66

parameters for its interaction with M itself, gives all public parameters to M, and receives dictionary D in
return.

From here on, B runs the interaction exactly as R./\/lg or RMZ would, except in the way encrypted
messages as produced and processed upon receipt. The operations that need to be modified involve the user
and server message deliveries.

e Receiving the second protocol message and computing the third Let (i, j7) be a responder that
M has the second protocol message InMsgo delivered to. Suppose that InMsgs is accepted, and let U be
the originator group element and n be the hash index in the message. B selects and exponent € Z; uniformly
at random respecting the NUR and computes Y < ¢g¥. It then makes a "challenge" query to CH on input
the pair of messages

(1, U, 1ag,n, lé”“’,PIDi/j/7IDZ‘/) and (1,U,Kn,pwi/7PIDi/j/,IDi/)

to obtain a ciphertext c. B outputs OutM sgs < ¢ to M.

e Receiving the third protocol message and computing the fourth Let (0, k) be a server instance
waiting for the third protocol message and suppose that InMsgs is delivered to (0, k). Let OutM sgs be the
second message output by (0, k).

ee Suppose InM sgs was not computed by any user instance. In this case, B has not obtained InM sgs from
CH as the result of a "challenge" query. It therefore makes a "decryption" query on input InMsgs and
examines the plaintext according to protocol specification, as R./\/lg and R./\/lff would.

ee Suppose InMsgs was computed by a user instance. By the NUR, this instance is unique.

eee Suppose that PIDSy, = (OIDg, ID;) for some user i’, that the instance that computed InMsgs is
a responder of the form (¢, ;') with PID;;; = OIDyy, and that (i',j") received OutMsg, as the second
protocol message. In this case, B accepts InM sgs and computes OutM sg, using the group element and has
index in OutMsgs and the group element chosen for (i/, j/).

eee Suppose that the situation is not that described above. Then InM sgs is automatically rejected.

e Receiving the fourth protocol message and computing the fifth Let (i,) be an originator instance
that receives the fourth protocol message InMsgy from (0,k). Let X be the group element chosen for
(i,4). B has InMsg, accepted according to the same rules as RMQL or RMZ. If InMsg, is accepted, there
exists a unique server instance (0, k) with PIDSy, = (ID;, PID;;) that computed a fourth protocol message
OutM sg, containing the same tuple as InMsgs, and the originator group element within InMsg, is the
group element X. Let V be the responder group element in InMsgy and n be (0, k)’s hash index. B makes
a "challenge" query on input the pair of messages

(27X,‘/,7’L, 1ép'“’,IDi7PIDZ‘j> and (27X,‘/,7’L,pwi,IDi,PIDij)

to get challenge c. It then outputs OutMsgs < ¢ to M.

e Receiving the fifth protocol message and computing the sixth Let (0,k) be a server instance
waiting for the fifth protocol message and suppose that InMsgs is delivered to (¢,7). Let OutMsgy be the
fourth protocol message output by (0, k).

ee Suppose that no user instance computed InMsgs. In this case, B has not obtained InMsgs from a
"challenge" query, so it makes a "decryption" query to CH and processes the obtained plaintext as RM? or
RM" would.

ee Suppose that some user instance computed InMsg;. By NUR, this instance is unique.

eee Suppose that PIDSy, = (ID;, CIDyy) for an initialized user 4, that the instance that computed InM sgs
is an originator instance of the form (4, j) with PID;; = CIDyy, and that (i, j) received a fourth protocol
message InMsg, containing the same tuple as OutMsgy. In this case, B has (0, %) automatically accept
InMsgs, and computes OutM sgg using the data in OQutM sgy.

67

eee In any case other than the one described above, (0, k) automatically rejects InM sgs.

This completes the description of B, which is obviously polynomial-time. We turn to determining B’s
advantage in winning the security game. Consider the bit b which indexes Ggh_“d_l ND-CCA=2

By construction of B, if b = 0, whenever B submits a pair of messages in a "challenge" query, the message
that is encrypted by CH is the one in which the password is replaced by 1" and, in the case of a responder,
the new group element is replaced by 1g. Since by definition B deals with encrypted message deliveries
exactly as RMff , we conclude that the interaction between B and M is identically distributed to the one
between RMY% and M.

If b = 1, the message that is encrypted by the challenger contains the protocol-specified data, like in
the third hybrid world. We need to make sure that B responds to encrypted messages the same way RMg
does. This is clearly the case if the message received by the server is not user-generated. If the message
is user-generated, it is as well because the conditions B checks for are exactly those that can be verified by
examining the contents of the plaintext. Hence, if b = 1 the interaction between B and M is identically
distributed to the one between RMY and M.

In particular, if b = 0 the obtained transcript is sampled according to ¢ and if b = 1 it is sampled according
to 1. Since by construction B outputs 1 if and only if D outputs 1, we can therefore conclude that

’P[D(l",gb) —1] - P[DO",y) = 1]‘ -
‘P[B(GghadINDCCAQ(ln)) _ 1} _]P;[B(Gihfadlech'CAf%ln)) _ 1H
This proves the proposition, by virtue of the assumption on Enc’s security. B

9.7 The Fifth Hybrid World: Group Elements the Adversary Cannot Guess

In this world, we make a small modification to the way the sixth protocol message is treated upon delivery.
Specifically, we force responder instances to reject the sixth protocol message under the joint conditions of
being uncorrupted after computing the third protocol message and not having had the third protocol message
delivered to an adequate server instance. This automatic rejection makes sense because until delivery of the
third protocol message, the adversary should have no knowledge of the responder’s group element, since it is
encrypted. This is why in the previous world, the responder’s element is replaced by 1 in the encryption.
The only other way the group element could be revealed is through an instance corruption of (i/,5’). Indeed,
Y is in (¢, j')’s unerased internal state at this point.

This change is necessary to have a consistent definition of what a correct exchange is. Let M be the
adversary.

e Delivering the sixth protocol message Let (i, j') be a responder expecting the sixth protocol message
and let InMsgg be delivered to (i, j') by M. Let OutMsgs be the third message computed by (¢,). If
OutMsgs was not accepted by a server instance and if (¢, j') was not corrupted after computing Out M sgs,
we shall say that (i, j) is a statistically lonely responder.

In this case, InM sgg is automatically rejected.

Proposition 12 The transcript random variables HWs(M) and HW4(M) are statistically close.

Proof: Let ¢ := HW5(M), let 1) := HW4(M), and let T be the set of transcripts ¢ or ¢ may evaluate to.
We define to following sets.

1). Let T4 be the set of transcripts in 7 such that there exists a statistically lonely responder instance (', j')
that accepted a sixth protocol message.

2). Let 75 be the set of transcripts in T such that there exists a statistically lonely responder instance (i/, j')
that rejected a sixth protocol message that was of correct format, passed the signature verification equation,
was not forged, and contains the responder group element Y chosen for (¢/, j').

68

3). Let To be all remaining transcripts. These can be described as those transcripts in which all responder
instances that accepted sixth protocol messages were not statistically lonely at the time this message was
delivered, and all responder instances that rejected a sixth protocol message while being statistically lonely
did so because at least one of the checks failed.

By definition, we have that T = Top U 74 U T5. We also have that 7o is disjoint from 74 and 75. Let
t € TyN7Ts. Since t € Ty, some statistically lonely responder accepted a sixth protocol message. But this
only happens according to the rules of the fourth hybrid world, so ¢ can only be sampled from ¢. However,
t € T; as well, which means that some responder that was statistically lonely rejected a sixth message that
verified all the conditions necessary to be normally accepted. This cannot happen according to the rules in
the fourth hybrid world, so we have a contradiction. This shows then that 7 = To U 73 U Ts, that ¢ cannot
takes values in 74, and that v cannot take values in 75. Thus:

D IPlp=t]-Ply=t]| = > [Pl =t] - Pl =t]| +Pl¢ € Ta] + Py € T3]

teT teTo

We now study the three terms on the right of the equality.

For >, 7. |P[¢ = t] — Pl = t]|, observe that the interaction between the ring master and the adversary
is identically distributed in both hybrid worlds up until the point when one of the events defining 7, or 75
occurs. This implies that for t € T, we necessarily have P[¢ = ¢] = P[¢) = t], so the total sum is zero.

For P[¢ € T4] and P[¢p € Ts], we shall construct an adversary B that plays against a challenger in the
game Ge4=CGE=sft;=ES (efined in appendix A.3, but with ¢, = 0 and without making any "hash index" or
"guess hash suffix" queries. In other words, B is going to only ask for group elements to be prepared and will
only try to guess group elements outside of its view. In the end, we will have by construction that

Pl € Ta] = P[B(G*"CE—*P=ES (1)) = 1] = Pl € T3]

yielding the desired result.

We show how to build B, using M as a subroutine. On input 17, the challenger CH constructs the data
((¢,G,9),{Hn}n) where the H, map into {0,1}*sx 2 = {0,1}¢sx. ((¢,G,g),{Hy,},) is then given to B,
who generates all of the other parameters for M itself and gets a dictionary space D from M. We now detail
how message deliveries are treated.

e Computing the first protocol message Let (i, j) be an originator instance that M asks to have compute
the first protocol message. In response, B makes a "prepare exponent" query, records the counter Cj;, and
immediately makes a "recover exponent" query on input Cj; to get z;;. It then sets Z;; < g% as (i,j)’s
group element, and continues the protocol.

e Receiving the first protocol message and computing the second Let (0, k) be a server instance that
receives the first protocol message InMsg;. If the message is accepted, B selects a hash index n uniformly
at random (respecting the NUR) and computes the second protocol message using n.

e Receiving the second protocol message and computing the third Let (¢/,j’) be a responder that
receives and accepts a second protocol message InMsg,. B makes a "prepare exponent" query, records the
counter Cy -, and computes the third protocol message as OutMsgs < Eprp(1,U, 1a, 1, 1ZPw,PIDi/j/, ID;),
where U and n are the originator group element and hash index found in InMsgs.

e Receiving the third protocol message and computing the fourth Let (0, k) be a server instance
that M has a third protocol message InM sgs delivered to. Let InMsg; be the first message (0, k) received,
OutM sgs be the second message (0, %) computed, and U and n be the associated originator group element
and hash index.

InM sgs is accepted or rejected by B following the same rules as RMZ or RM? Suppose that InMsgs
is accepted, and was computed by a user instance. Then we know that this instance is unique, and is a

69

responder (¢', j") with ID;; = CIDgyy, and PID;s s = OIDyy, and which received OutM sgs as second protocol
message. In this case, B makes a "recover exponent" query on input counter Cy s to recover the exponent z;
previously prepared for (¢, j'). B then computes (0, k)’s response with responder group element Z; j < g*i’.

e Receiving the sixth protocol message Let (i’,j’) be a responder expecting the sixth protocol message,
and suppose InMsgg is delivered to (i',j'). Let InMsgs be the second message received by (¢/,j') and
OutM sgs be the third message output by (i, j’). B has previously made a "prepare exponent" query for
(¢/,7"), and holds counter C; ;. Let U and n be the group element and hash index obtained from InMsgs.

ee Suppose that (i,) is not statistically lonely. In this case, B has already made a "recover exponent" query
on input Cjy; to compute Zy;, either because OutMsgs was delivered to a server instance and accepted
by that instance, or because (i', ;') was corrupted after receiving InMsgs (see below). B computes (i, j')’s
response as RM! or RM?E would.

ee Suppose now that (¢, j’) is statistically lonely. Then no "recover exponent" query has been yet made
on input Cyjr. B first checks to see if InMsge is of the form (V, o) for some non-trivial group element V'
and a string o. If not, the message is rejected. Otherwise, B computes the signature verification equation
on input (2,U,V,n, PID;;,I1D;, o). If verification fails, the message is rejected. If it succeeds, B checks to
see if some server instance (0, k) computed a sixth protocol message on input (2,U,V,n, PID;;,IDy). If
not, the message is rejected. Otherwise, 3 makes a "guess group element" query on input (V,Cj/ /). If the
guess is correct, B ends the game with CH and the total output is 1. Otherwise, InM sgg is rejected and the
interaction continues.

e Corrupting a responder instance Let (¢/,j’) be a responder that M chooses to target in a "corrupt
instance" operation. If this is done before (i, ;") receives a second protocol message, B responds with
InternalState; ;o < €. If this is done after (¢, j') accepts a second protocol message, then B has made a
"prepare exponent" query for (¢/, j'). In this case, B makes a "recover exponent" query to get z; j/, computes
MK, j + H,(U*'3") and Z; j < ¢g*'s', and answers with InternalState; j < (MK, j,U, Zyj,n).

B’s description is complete; we analyze it now. It is clearly a PPTA. We now relate the probability
P[B(G“d_GE‘SfU‘ES(ln)) = 1} to Pl¢ € T5] and P[yp € T4]. The events "B(G*~CE=sfo=ES(m)) = 1",
"o € T5", and "¢ € T4" occur if and only if in any of these three interactions adversary M manages to
guess the responder group element of a statistically lonely responder. But up until this occurs, the three

interactions are identically distributed. Therefore: Py € T3] = P[B(Gad’cE’st’ES(ln)) = 1] =Pl € Ts],

and the proposition is proved. B

Odd Remark: This proof shows the reason Prot2 requires the responder’s group element to be a part
of the sixth protocol message, even though the responder should be holding it in memory anyway. The
problem is that in the above construction, B needs an candidate group element to verify the signature first.
(Actually, the exact same issue arises in the security analysis of Prot1 when dealing with statistically lonely
originators.) We have not yet tried to find a way around this.

9.8 The Sixth Hybrid World: Replacing Correctly Exchanged Session and Mas-
ter Keys with Random Strings

In this hybrid world, we identify those exchanges that are to be considered correct, and therefore that yield
session keys that should be replaced by random strings. Care must be taken regarding the computation of
master keys on the responder’s end. Indeed, the ability to corrupt a responder instance in such a way that
its master key can be revealed to the adversary makes the simulation process more delicate, as depending on
the time the corruption has occurred an originator instance may have already been assigned a random string
as its session key. In any case, the master key the responder holds must absolutely be identical to the session
key of the originator it may be partnered to.

70

To be able to isolate the problematic cases, we need a rather cumbersome set of definitions that separate
correct exchanges from correct exchanges in which in addition neither of the two user instances has
been corrupted.

Let (4,7) be an originator, (i’,j") be a responder, and (0, k) be a server instance, with PID;; = IDy,
PID;jr = ID;, and PIDSo, = (ID;,I1Dy).

Definition 3 We shall say that (i,7) has participated in a correct (respectively, correct and uncor-
rupted) exchange with (i',j') through (0,k) if conditions 1). through 5). involving 4'). (respectively,
conditions 1). through 7). involving 4).) below are met:

1). (i,j) computed OutMsg;. Let X be the group element chosen for (i,7);

2). (0,k) received OutMsg; and computed OutMsgs. Let n be the hash index chosen by (0,k);

3). (¢, 7") received OutMsgs and computed OutMsgs. Let Y be the group element chosen for (i',5');

4). (0,k) received Out M sgs and computed Out M sgy;

4’). (0,k) received OutMsgs or (i',j') was corrupted after computing OutMsgs and (0,k) received and
accepted a third message InMsgs containing (X,Y,n). (0,k) computed OutMsgy;

5). (i,7) received and accepted a fourth protocol message InMsgy containing (X,Y,n), and computed
OutM sgs;

6). (i,7) was not corrupted after computing OutM sg;;

7). (¢,7") was not corrupted after computing Out M sgs and before (i, j) received Out M sg.

Definition 4 We shall say that (i',j’) has participated in a correct (respectively, correct and uncor-
rupted) exchange with (i,j) through (0,k) if conditions 1). through 7). involving 4'). (respectively,
conditions 1). through 9). involving 4).) below are met:

1). (i,7) computed OutMsg,. Let X be the group element chosen for (i, j);

2). (0,k) received OutMsg; and computed OutMsgs. Let n be the hash index chosen by (0,k);

3). (¢, 7") received OutMsgs and computed OutMsgs. Let Y be the group element chosen for (i',5');

4). (0,k) received OutMsgs and computed OutMsgy;

4’). (0,k) received OutMsgs or (i',j') was corrupted after computing OutMsgs and (0,k) received and
accepted a third message InMsgs containing (X,Y,n). (0,k) computed OutMsgy;

5). (i,7) received and accepted a fourth protocol message InMsgy containing (X,Y,n), and computed
OutM sgs;

6). (0,k) received and accepted either OutMsgs or a fifth message InMsgs containing (X,Y,n) and
computed OutM sgg;

7). (i',7") received and accepted a sizth protocol message InMsgg containing (X,Y,n);

8). (i,7) was not corrupted after computing Out M sg, ;

9). (¢,j') was not corrupted after computing Out M sgs.

Comments on the Definitions The author agrees with the reader that these are horrid. Unfortunately,
they are necessary. We make some comments in the same vein as those made when defining correct exchanges
in the sixth hybrid world for Prot1.

Perhaps the most interesting points that merit some indications are the (mutually excluded by definition)
points 4). and 4').. Suppose the adversary does not deliver the third protocol message to the server
instance. The security of the encryption ensures that the responder’s group element remains hidden in this
case. However, a correct exchange can still occur in the bizarre event that the adversary corrupts the instance
(#,7") and then uses its newfound knowledge of the responder’s group element to compute a new encryption
around an otherwise unaltered plaintext. Now, this requires of course that the adversary also already know
the responder’s password; furthermore, the corruption of the instance ultimately leads to a compromised
responder. But this is no reason to not consider the exchange correct as the data chosen by each user
instance still reaches its intended destination.

We now describe the changes made to get form the fifth world to the sixth world. These involve changing
how to process user instance message deliveries and master key computations. We must also pay attention to

71

how corruptions are handled. To this end, we need the lemma below, which is extremely similar to lemma 4
in section 8.8. Let (4,7), (0,k) and (¢, 5’) be as in definitions 3 and 4.

Lemma 7 Let (i',j/(V)) be another responder instance with PID; ;i) = ID; and (0, kMY be another server
instance with PIDSy,y = (ID;,IDy). If (i,7) has participated in a correct exchange with (i',j") through
(0,k) and with (i',5'M) through (0,kM), then 7V = j/, KV =k, and In/OutMsg((zl) = In/OutMsg, for
all a € N.

Let (i, jV)) be another originator instance with PID;;a) = ID;:, and let (0, kM) be another server instance
with PIDSy,y = (ID;, ID;/). If (i',5") has participated in a correct exchange with (i,7) through (0,k) and
with (i, 7)) through (0, k™M), then j = j, kW) =k, and In/OutMsgt(ll) = In/OutMsg, for all a.

Proof: Similar to that of lemma 4.
Remark: Note that the lemma holds regardless of whether or not the instances are corrupted.

e Receiving the fourth protocol message and computing the fifth Suppose M has InMsg, delivered
to an originator instance (¢, j). Suppose that PID;; = ID, for some initialized user ', and that there exist
a responder instance (i',j") with PID;;; = ID; and a server instance (0,k) with PIDSo, = (ID;,ID;)
such that, having been delivered InMsgy, (i,7) has participated in a correct and uncorrupted exchange with
(#,7") through (0, k).

In this case, RMg selects SK;; + {0,1}*s% uniformly at random, and computes OutMsgs as in the
previous hybrid world.

o Receiving the sixth protocol message Suppose that M has InMsgg delivered to some responder
instance (,j"). Suppose that PID;;; = ID; for some initialized ¢, and that there exist an originator
instance (4, j) with PID,; = ID; and a server instance (i', ;') with PIDSo, = (ID;,ID;/) such that, having
been delivered InMsgg, (7', j') has participated in a correct exchange with (¢,) through (0, k) and (7, j) has
participated in a correct and uncorrupted exchange with (', j') through (0, k).

In this case, RMZ has already selected SK;; uniformly at random. Also, by lemma 7, (4,) and (0, k)
are the only user and server instances that (i’,j’) could have participated in a correct exchange with. Thus,
RM{ may set SKiijo «+ SK;j.

Remark: We require the exchange to be uncorrupted from the originator’s point of view, but not necessarily
from the responder’s. This will make more sense to the reader after seeing how a special case of responder
corruptions are handled below.

e Corrupting a responder Let (i/,j’) be a responder instance. Suppose that PID; ; = ID; for some
initialized user ¢, and that there exist an originator (4, j) with PID;; = ID; and a server instance (0, k) such
that (i, 7) has participated in a correct and uncorrupted exchange with (i, j') through (0, k). Suppose that
M targets (¢, ') in a "corrupt instance" operation after (,j) has computed its fourth protocol message.

In this case, RM/ has already selected SK;; uniformly at random. RM{ further sets M Ky ;o + SKij,
and uses M K j to compute and return InternalState; j» to M. This assignment is well-defined again because
by lemma 7, (i, 7) and (0, k) are the only instances (i/,j’) could have participated in a correct exchange with.

Remark, cont’d: Since (7, j) has already been assigned a key and at this point the responder’s master key
is supposed to be identical to this session key, the ring master has no choice but to assign the same value
to MK, j to answer the corruption. Of course, this does not prevent in any way a correct sixth protocol
message being at some point delivered to (i, j’). If this indeed happens, we must also have SK;;; = SK;;.
This is why we cannot impose the responder’s exchange to be uncorrupted in the rule on delivering the sixth
protocol message above.

This completes the description of the sixth hybrid world.

Proposition 13 The transcript random variables HWe(M) and HW5(M) are computationally indistin-
guishable.

72

Proof: Let D be a PPTA that tries to tell ¢ := HWg(M) and ¢ := HW5(M) apart. We construct a PPTA
B that uses D and adversary M as a subroutines to try telling apart the two games ng_DDHES for b=10
or b= 1. (See appendix A.) Specifically, B will get the group and hash family parameters from its challenger
CH and pass these on to M. It will then run an interaction with M according to the rules of the fifth hybrid
world, using the queries of the game (ng*D DHES {4 assign group elements, hash indexes, and master and
session keys to user instances. Once a transcript has been built, this transcript is fed to D, and B’s final
output will be whatever D outputs.

We need to make precise the way B uses its queries in G‘bld_D DHES ¢, simulate the ring master for M.
The setup B runs with CH allows it to get ((¢, G, g), {Hn}n)- B then generates the remaining setup for Prot2
itself, and runs the usual setup with M. We now examine ho B handles message deliveries.

e Computing the first protocol message If M asks that an originator (4,j) compute the first protocol
message, B makes a "left group element" query to get (L, X), and sets OutMsg, < (X,ID;, PID;;).

o Receiving the first protocol message and computing the second If M asks to have InMsg;
delivered to a server instance (0, k) and this message is accepted, B makes a "hash index" query to get a hash
index n from CH and computes OutMsgs < (U,n,OIDgy, CIDyy), where U is the group element obtained
in InMsg;.

e Receiving the second protocol message and computing the third If M has some InM sgs delivered
to a responder instance (i, j') and this message is accepted, B makes a "right group element" query to get
(R,Y) and then computes OutM sgs with Y.

e Receiving the fourth protocol message and computing the fifth Let (7, j) be an originator expecting
the fourth message and let InMsgs be delivered to (i,j). InMsgy is accepted or rejected by B using the
same rules as in the fifth hybrid world. Suppose the message is accepted, and let V' and n be the responder
group element and hash index in InMsgs. We know that there exists a unique server instance (0, k) with
PIDSy, = (ID;, PID;;) that computed some fourth protocol message on input (X,V,n) where X = ¢* is
the group element chosen for (i, j) (via a "left group element" query) and n is the hash index chosen for (0, k)
(via a "hash index" query). We also know that (0, k) must have received the first protocol message OutM sg;
computed by (4, 7). Let InM sgs be the third message received by (0, k), and OutM sgs be the second message
computed by (0,%). Since (i,7) accepted InMsgy, it computes OutM sgs as RMg would; we now need to
specify its session key.

ee Suppose PID;; = ID was not used to initialize a user. Then InMsg; was not computed by user instance.
Under these conditions, B has not made any "challenge" query involving (L, X) as input (see below). Thus,
it makes a "left exponent" query to get z, and computes SK;; < H, (V7).

ee Suppose now that PID;; = ID, for an initialized 7'.

eee Suppose that InM sgs was not computed by a user instance. Again, B has not made a "challenge" query
query on input (L, X), so it can make a "left exponent" query on (L, X) to get = and compute H, (V*).

eee Suppose now that InM sgs was computed by a user instance. Then we know that this instance is unique,
and is a responder of the form (¢, ;') with PID;; = ID; that received OutMsgs as a second protocol
message. We also know that V' = ¢g¥ was obtained through a "right group element" query. At this point,
(i, 7) has participated in a correct exchange with (i’, j') through (0, k). We now reason according to whether
this exchange is corrupted or not.

eeee Suppose that (i, ') was corrupted after having received Out M sgs. Then according to the rules below,
B has already made a "right exponent" query on input (R, V') to get v and has computed MK,/ ; < H,(X")
to give InternalState;y ;; < (MK;j, X,V,n) to M. Since (L, X) was not the input to a "challenge" query,
B further makes a "left exponent" query on (L, X) to get « and sets SK;; < H, (V7).

eeee Suppose now that (i/,5’) was not corrupted after having received OutM sgs.

eeeee If (i,j) was corrupted after computing (¢, 7), B has already made a "left exponent" query on input
(L, X) to get x to give InternalState;; < (X,) to M. It further computes SK;; < H, (V™).

73

eeeee If (i,j) was not corrupted after computing OutM sg;, the exchange is uncorrupted. By the rules above,
B has made neither a "left exponent" query on (L, X), nor a "right exponent" query on (R,Y). Since by
lemma 7 the correct exchange could have only gone through the unique instance (0, %), B and has also not
yet made a "challenge" query involving both (L, X) and (R, V). It thus makes a "challenge" query on input
(L, X),(R,V),n) to get SK;; from CH.

e Corrupting an originator Let (¢, j) be an originator waiting for the fourth protocol message and suppose
M corrupts (4, 7). At this point B has made a "left group element" query to get (L, X) for (i, j), where X = g*.
Since no fourth message was delivered, no key was asked to be computed and in particular, no "challenge"
query on input (L, X) was made. Therefore, B may make a "left exponent" query on (L, X) to get z, and
give InternalState;; < (X, x) to M.

e Receiving the second protocol message and computing the third Suppose M has a second protocol
message InMsgs delivered to a responder (i’, ;') and that this message is accepted. Then B makes a "right
group element" query (R,Y’) and computes OutM sgs as RM? would.

e Receiving the sixth protocol message Let (i, j') be a responder instance expecting to receive the sixth
protocol message. Let InM sgg be delivered to (¢/,5’). Let InM sgs be the second message accepted by (i/, 57)
and let OutM sgs be the third message computed by (i',j'). Let Y = g¥ be the responder group element
obtained for (i, ;') and let U and n be the originator group element and hash index received in InMsgs.

InMsgg is treated exactly as in the fifth hybrid world. Suppose it is accepted. Then we need to assign
(#,7) a session key. We already know that there exists a unique server instance (0,k) with PIDSy, =
(PID;:jr,ID;) that computed InMsgs and computed a sixth protocol message OutM sgs on input (U, Y, n).
Let InMsgy and InMsgs be the first and fifth messages received by (0, k), and OutMsgs be the fourth
message computed by (0,%). We also know that (i’,j’) is not statistically lonely, so either OutMsgs was
delivered to (0, k) or (¢',7') was corrupted after receiving InM sgs.

ee Suppose first that OutMsgs was not delivered to (0,%). Then we know that (i’,j') was corrupted after
receiving OutM sgs. We also know that no originator instance has participated in a correct and uncorrupted
exchange with (¢/,5). Thus, B has made a "right exponent query" on input (R,Y) to get y, compute
MK;j < H,(UY), and release InternalState; j < (MK ;,UY,n) to M. In this case, B simply sets
SKilj/ — Hn(Uy)

ee Suppose now that OutM sgs was delivered to (0, k).

eee Suppose that PID; j = ID is not the identity of an initialized user. Then (¢, j') has not participated
in any correct and uncorrupted exchange with an originator, and thus 55 has not made any "challenge" query
involving (R,Y"). B makes a "right exponent query" on (R,Y") to get y, and sets SK;/;» < Hy,(UY).

eee Suppose now that PID;;; = ID; for some initialized i. Then we discuss the origins of InMsgs (and
InMsgy).

eeee Suppose that the following is not verified: there exists an originator instance that computed a fifth
protocol message OutM sgs on input (2,U,Y,n, 1% ID; ID;y) and either InMsgs = OutMsgs, or InMsgs
contains (2,U,Y,n,ID;,ID;). Then InMsgs was not computed by any user instance, and again no "chal-
lenge" query was made involving (R,Y’). B makes a "right exponent" query on input (R,Y) to get y, and
computes SK; ; < H,(UY).

eeee Suppose that the afore-mentioned condition is wverified, i.e. Then InMsgs was not computed by any
user instance, and again no "challenge” query was made involving (R,Y"). B makes a "right exponent” query
on input (R,Y) to gety, and computes SK; ;; < H,(UY). Then, this instance is unique, and is necessarily an
originator of the form (4, j) with PID;; = ID;,. Furthermore, U = g* was obtained in a "left group element"
query, (i,7) computed InMsg;, and (i,J) received some fourth protocol message InMsgy containing the
same data as OutM sgy. At this point, (¢/, j’) has participated in a correct exchange with (¢, j) through (0, k).
By lemma 7, we know that (7,) and (0, k) are unique in satisfying this. We now need to examine possible
instance corruptions.

74

eeeee Suppose (4,5) was corrupted after sending InMsg;. Then B has already made a "left exponent" query
to get u and release (U,u) to M. Since (i,7) and (0, k) are the unique originator and server instance that
have participated in a correct exchange with (i/,j’), no "challenge" query has been made involving Y. Thus,
B makes a "right exponent" query on (R,Y) to get y, and computes SK;/;» < H,(UY). (Note that at this
point, B has also already set SK;; < H,(Y™").)

eeeee Suppose now that (i,j) was not corrupted after sending InMsg;. Then no "left exponent" query has
been made on input (L, X).

eeeee If (i j/) was corrupted after sending OutMsgs and before InMsgy was delivered to (i,7), then no
"challenge" query has been made involving (R,Y’). B thus makes a "right exponent" query to get y and
computes SK; ;< H,(UY). (At this point, SK;; = H,(Y™") as well.)

eeeee Suppose that (i/, ;') was not corrupted after sending OutM sgs and before InM sgy was delivered to
(i,4). Then no "right exponent" query was made on input (R,Y’), and B has already made a "challenge"
query on input ((L,U), (R,Y),n) to get SK;;. B sets SKy ;o < SK;;. By lemma 7, this assignment makes
sense.

e Corrupting a responder instance Let (i, ;') be a responder instance that M targets in a "corrupt
instance" query after the second protocol message was received by (i, j').

e Suppose that PID;;; = ID,; for some initialized user i and that there exist an originator (i,j) with
PID;; = ID;) and a server instance (0, k) with PIDSo, = (ID;,I1D;/) such that (i,) has participated in a
correct and uncorrupted exchange with (¢, j’) through (0, k). In this case, B has already made a "challenge"
query to obtain SK;;. B further sets M Ky ; < SK;; to compute InternalState; j for M.

e In any other case, B has not made a "challenge" query involving (', j')’s group element Y. Thus, B makes
a "right exponent" query to get y and computes MK, ;; with y and the originator group element and hash
index from the second protocol message.

This completes the description of B. We now analyze it. In game ng_DDHES, if b = 0, "challenge"

queries return uniformly distributed and independent bitstrings. Therefore, by construction we have that the
interaction between B and M is identically distributed to that between RMQ and M. However, if b = 1,
"challenge" queries yield the exact hashed Diffie-Hellman value. Thus, the interaction between B and M is
distributed as that between ’RM? and M. Since B outputs exactly what D outputs, we indeed obtain

[P[D(17,¢) = 1] - P[D(1", %) = 1] | = ’P[B(ng_DDHES(ln)) = 1] - P[B(G§- P25 (1)) = 1H
The term on the right being negligible in 7 by assumption, we have the result. B

9.9 The Ideal World

Now we can build an ideal-world adversary M* from a real-world adversary M. Of course, M*’s role is to play
the part of a sixth-hybrid-world ring master for M and to funnel M’s actions into ideal-world operations. We
are especially interested in how connection assignments are computed and how password testing is identified.

We now build M* from M.

Let n € N be the security parameter. Specifying M* means describing its interaction with RM™ according
to the rules of the password-and-state-adaptive ideal world network adversary model. At the beginning of
the interaction RM™ specifies the session key length g and the password length £p,,,; (17, €5k, £py) is given
to M*, who gives it to M.

Server initialization

On input (17, lsk, Lpw), M first asks M* to initialize the server. M* runs the parameter algorithms and
gets
((CI» G? 9)7 {Hn}TH gS’Kv (pkE7 SkE)v (pk5'7 Sks))

75

It passes ((q,G,9), {Hn}n, sk kg, pks) on to M, who generates a dictionary D C {0, 1} — {1%+}. D
and its password sampling and recognizing algorithms are returned to M*.

Now M* performs an "initialize server" operation to RM™, on input (0, D). It also performs an "imple-
mentation" operation on input

(server public key, ((a,G.9), {Hn}n Csic, phi, pks))

User initialization

When M asks to have user i initialized on input ID;, M* makes the same request to RM™. Recall that
RM* samples a password pw; from D for i outside of M*’s view.

Setting up statically corrupted users

When M makes a "Set Password" request on input (I D, pw) with pw € D, M* makes an identical request
to RM™.

Initializing user and server instances

When M makes "initialize user instance" or "initialize server instance" requests, these are forwarded by
M* to RM™.
Dynamically corrupting users

When M makes a "reveal user password" operation on input i, M* forwards the request to RM™*. RM™*’s
response is password pw;, then given to M.

Revealing session keys

When M makes a "reveal session key" query on input some user instance (7, j) or (¢, j'), M* simply the
same request to RM™. RM™ responds with the value of SK};, and M* sets SK;; < SK;, and gives SK;
to M.

Message deliveries to originator instances and connection assignments for the role open
Let (7,7) be an originator instance.

Any message delivery M makes to (i,j) is recorded by M* in an "implementation" operation made to
RM* on input
((i, 7), InMsg, Out M sg, statusij)

where InM sg is the message delivered to (4, j), OutMsg is the message output by (7, 7), and status;; is equal
to accept, reject, or continue. To indicate that (7, 7) is to generate the first protocol message, InMsg must
be set to e. If (4,) does not generate a message, Out M sg is set to e. If (i, j) rejects the message, M* makes
a "terminate user instance" request to RM™ on input (4, 7).

Suppose first that M has (4,j) compute the first protocol message. Then M* computes OutMsg; as
RM} would.

Suppose now that M has a fourth protocol message InMsgy delivered to (4,5). M* has (i,5) accept or
reject this message as R./\/lg would. Suppose it is accepted. Let X be the group element chosen for (i, j), and
let V and n be the responder group element and hash index found in InMsg,. We know that there exists
a unique server instance (0, k) with PIDSy, = (ID;, PID;;) that chose n and computed a fourth protocol
message OutM sg4 on input (X, V,n). We also know that (0, k) must have received as a first protocol message
OutM sgy computed by (i,7). Let InMsgs be the third message received by (0, k) and let OutM sgs be the
second message computed by (0, k).

M* computes OutM sgs as R/\/lg would. In particular, M* does not need to know pw; to do this. Since
this is the last message (i, j) expects to receive, M™* makes a "start session" request on input (¢, 7). We must
now show how to assign a session key to (,7). Let X = ¢g* be the group element chosen for (i, j).

o If PID;; = ID is not the identity of an initialized user, (i,j) is exposed through (0, k), and M* specifies
SK}; < Hp(V®).

76

e Suppose PID;; = ID; for some initialized 4’

ee If InM sgs was not generated by a user instance, then by the way server instances respond to third message
deliveries (below) we know that pw; is known to M*. In this case, (i,7) is also exposed through (0, k) and
SK}; + H, (V).

ee Now suppose that InMsgs was generated by a user instance. By the way server instances respond to
third message deliveries, we know that this user instance is unique, is a responder (¢, j') with PID;/;» = ID;,
and has received OutM sgo. Furthermore, V' = ¢g¥ was chosen for (i/, ;") by M*.

eee If (i,j) was corrupted after computing OutMsg;, then M* has released InternalState;; < (X,) to
M. (i, j) is then exposed using the relaxed exposure rule, and SK7; < H,(V?).

eee Suppose (4,7) was not corrupted after computing OutMsg; .

eeee Suppose (i',5’) was corrupted after computing InMsgs. In this case, M* has computed MK/
H,(X") and has released InternalState; j; < (MK, X,V,n) to M. (i,j) is exposed using the special
exposure rule, SK}; < H,(V?), and (i’, j') becomes bound.

eeee Suppose (i, ') was not corrupted after computing InMsgs. Then at this point, (4,) has participated
in a correct and uncorrupted exchange with (¢/,j') through (0, k). Thus, (7,) is opened for connection from
(', j') through (0, k), and RM”* selects SK; uniformly at random from {0, 1}¢s%.

Corrupting an originator instance

Let (i,7) be an originator instance. If M makes a "corrupt instance" operation on (¢, j), M* makes the
same request on (z,7) to RM™. Tt also makes an "implementation" operation on input

(” internal state, (i, j), InternalStateij)

where we must specify how InternalState;; is computed.

If (i, 7) has not yet computed a first protocol message, InternalState;; < €. If (4,) has computed a first
protocol message, M* has chosen X = ¢” for (4, j); InternalState;; < (X, z) in this case. InternalState;;
is then given to M.

Message deliveries to responder instances and connection assignments for the role connect
Let (¢/,7') be a responder instance.

"Implementation" operations and the status; ;; variable are dealt with as in the case of originator in-
stances.

Suppose M has the second protocol message InMsgs delivered to (¢/,j'). If it is accepted, M* computes
the third protocol message of (i’, ;') as RMP. M* does not need pw; to do this.

Suppose now that M has the sixth message InM sgg delivered to (', j'). It is accepted or rejected by M*
as R./\/lg would. Suppose that it is accepted. Let Y = ¢g¥ be the group element chosen for (¢, j'), let OutM sgs
be the third message computed by (¢/, '), and let InMsgs be the second message received by (i, j'). Let U
and n be the originator group element and hash index present in InM sg;.

We know that there exists a unique server instance (0, k) with PIDSo, = (PIDyj,ID;) that chose n
and computed a sixth protocol message OutMsgg on input (U,Y,n). Thus, (0,%) has been the input to a
"exchange completed" operation in the ideal world. We also know that (i’, j') is not statistically lonely, i.e.
that OutM sgs was delivered to (0, k) or that (i, ;') was corrupted after computing OutM sgs. M* makes a
"start session" request on input (i, j'), and we now examine how SKj;, is computed.

e Suppose that OutM sgs was not delivered to (0, k). Then (i, ') was corrupted after computing Out M sgs.
Since OutM sgs was not delivered, the special connection rule (see below) was not used. Thus, M* has
computed MK ;; < H,(UY) and given InternalState; j < (MK;;,U,Y,n) to M. Let InMsgs be the
third protocol message (0, k) has received.

ee Suppose PID;;; = ID is not the identity of an initialized user. Then (7', ;) is exposed through (0, k),
and SK ;< H,(UY).

7

ee Suppose now that PID;;; = ID; for some initialized i. Let InMsg; and InMsgs be the first and fifth
protocol messages received by (0, k) and let OutMsg, be the fourth message computed by (0, k).

eee Suppose the following property is not verified: there exists an originator instance that computed a fifth
protocol message OutM sgs on input (2,U,Y,n, 1% ID; ID;y) and either InMsgs = OutMsgs, or InMsgs
contains (2,U,Y,n,ID;,ID;). Then InMsgs was not computed by a user instance and by the way server
instances treat fifth message deliveries (see below), we know that pw; is known to M*. Thus, (', j') is exposed
through (0, %), and SK}, < H,(UY).

eee Suppose that there exists an originator instance that computed o fifth protocol message OutMsgs on
input the tuple (2,U,Y,n,1%w ID; ID;) and either InMsgs = OutMsgs, or InMsgs contains the string
(2,U,Y,n,ID;,ID;/). Then this instance is unique, is of the form (¢, j) with PID;; = ID;, and has picked
U = g". It has also necessarily computed InM sg;, and received a fourth protocol message InM sg, containing
the same data as OutMsg,s. Thus, it has been the target of a "start session" operation, and since InM sgs
was not computed by a user instance, (4,7) has been exposed through (0, %) (according to the rules above).
In this case, (i, ') is exposed through (0, k) using the relaxed exposure rule, and SKj; < H,(UY).

e Suppose now that OutM sgs was delivered to (0, k).
ee If PID;j =1D, (i/,5") is exposed through (0, k), and SK} ., < H,(UY).

i’'j’
ee Suppose PID; j; = ID; for some 4.
eee Suppose the following property zs not verified: there exists an originator instance that computed a fifth
protocol message OutMsgs on input (2,U,Y,n, 1% ID; ID;) and either InMsgs = OutMsgs, or InMsgs
contains (2,U,Y,n,I1D;, ID;). Then InM sgs was not computed by a user instance and we know that pw; is
known to M*. (', j") is exposed through (0, k), and SK7; < H,(U").
eee Suppose that there exists an originator instance that computed a fifth protocol message OutMsgs on
input the tuple (2,U,Y,n,1%w ID; ID;) and either InMsgs = OutMsgs, or InMsgs contains the string
(2,U,Y,n,ID;,ID;). Then this instance is unique, is of the form (i,j) with PID;; = ID;, has picked
U = ¢“, has computed InMsg,, and has received a fourth protocol message InMsg, containing the same
data as OutM sgy. It has been the target of a "start session" operation.
eeee Suppose (¢, ;') was corrupted after computing Out M sgs.

eeeee Suppose the corruption of (i, ;') occurred before (i,j) received InMsgy. (i',7") is exposed using the
relaxed exposure rule and SK7;, < H,(UY).

eeeee Suppose the corruption of (i’,j') occurred after (i, j) received InM sgs.

eeeeee Suppose (4,j) was not corrupted after sending InMsg;. Then (i,) was opened for connection from
(#',7") through (0,%), and (¢, ') was already connected to (7,) through (0, k) using the special connection
rule. It remains so.

eeeeee Suppose (i,j) was corrupted after sending InMsg;. Then (i, j) was exposed using the relaxed expo-
sure rule. (7, ;') is exposed using the relaxed exposure rule as well, and SK < Hp(UY).

eeee Suppose (i, j') was not corrupted after computing OutM sgs.

eeeee If (i,) was corrupted after sending InM sgy, (4,) was exposed using the relaxed exposure rule. (i/, ;")
is exposed using the special exposure rule, and (7, j) is now bound.

eeeee If (i, j) was not corrupted after sending InMsg, (i,j) was opened for connection from (7, j') through
(0,k), RM" has selected SK}; < {0,1}*sx uniformly at random, and now (i’,;') is connected to (i,5)
through (0, k). RM" sets K\, < SK};.

Corrupting a responder instance

Let (¢, ') be a responder instance, and suppose that M makes a "corrupt instance" operation on (', j').
M* forwards the request to RM”*, and makes an "implementation" operation on

(internal state, (i’, "), InternalState; ;)

where InternalState; j is computed as follows.

78

If (', j') has not accepted a second protocol message, InternalState; ;; <— . Suppose (¢, j') has accepted
a second protocol message. Let U and n be the originator group element and hash index (i', j') received, and
let Y be the group element (i’,j') chose.
o If PID;/;; = ID; for an initialized user ¢ and there exist an originator instance (7, j) and a server instance
(0, k) such that (4,) has participated in a correct and uncorrupted exchange with (¢', j/) through (0, k), then
we know (4, j) has been opened for connection from (i, j') through (0, k) and has thus been assigned session
key SK}; randomly. (i',j') is connected to (i,) through (0, k) using the special connection rule, and RM*
gives SK; to M*. In this case, InternalStatey ;< (SK};,U,Y,n).
e In any case other than that above, M* computes the values M K;/j» <— H,(UY) and InternalState; j <
(MKi’j’) Ua K n)

Message deliveries to server instances and password testing

Let (0,k) be a server instance.

"Implementation" operations and the statusg, variable are dealt with as in the cases of originator and
responder instances.

Delivering the first protocol message and computing the second This is handled in a completely
straightforward way by M*. No password testing is done.

Delivering the third protocol message and computing the fourth Let InMsgs be delivered to
(0,k) by M. Let U and n be the originator group element and hash index held by (0, k).

o If InMsgs was computed by a user instance, M* can compute (0,%)’s response following a procedure
identical to that of RMU.

e Suppose now that InMsgs; was not computed by a user instance. Then M* decrypts InMsgs to get
plaintext w. If w is not of the form (1,U,V,n,pw,OIDgy, CIDyy), for pw € D, (0,k) rejects. We suppose
that w is of correct format.

o If CIDy, = ID is not assigned to a user, then a "set password" operation was made on input /D and M*
knows pw;p. pw is compared to pwrp. If they match, InMsgs is accepted and the protocol continues. If
not InMsgs is rejected.

e Suppose CIDg, = ID; for some initialized ¢'.

ee Suppose pw; is already known to M* (i.e., i’ has been the target of either a successful password guess as
defined just below or a "reveal password" query). Then M* can already compare pw and pw; to determine
the response.

ee Suppose pw; is not known to M*. In this case, M* makes a "test instance password" operation on input
(i’, (0, k),pw), and computes (0, k)’s response based on RM™’s response.

Delivering the fifth protocol message and computing the sixth Let InMsgs be delivered to (0, k)
by M.
o If InMsgs was computed by a user instance, M* computes (0, k)’s response as RMZ.

e If InM sgs was not computed by a user instance, M™* decrypts InM sgs to get plaintext w. We may suppose
that w is of correct format (2, U, V,n, pw, OI Dgy, CIDgy)-

ee If OIDy;, = ID was not assigned to a user, M™* compares pw and pw;p.

ee If OIDy, = ID; for some i:

eee If pw; is already known to M*, M* compares pw and pw;.

eee If pw; is not known to M*, M* makes a "test instance password" operation request on input the string
(i, (0, k),pw).

Coin collection Once M has finished interacting with M*, M* makes one final "implementation" operation
to place all of M’s random coins in the transcript.

This completes the description of how M* is constructed from M and how M* interacts with RM™.

79

Proposition 14 M* (as constructed above) faithfully follows the rules of the ideal world in the password-
and-state-adaptive network adversary model, and the transcript random variables HWg(M) and W (M*)
are identically distributed.

Proof: For the first statement, all of the ideal-world operations that M* makes are legit in the sense that all
of the ideal-world conditions required for them to be made are satisfied. Next, Connection assignments are
a function of the transcript up to the current "start session" operation because all connection assignments
are determined by conditions on message deliveries, and across connection assignments these conditions are
mutually exclusive.

The second part of the statement is obvious for most operations: M* essentially just "runs" T\’,/\/lg . But
two points need to be examined: a). that session key assignments are identically distributed in both worlds
in the case of correct exchanges and b). that server instance responses are identically distributed in both
worlds in the case of delivery of messages that are not generated by users.

Point a). is true because in both worlds originators that are assigned session keys when they have
participated in a correct exchange received uniformly distributed keys. The only difference is that in the
sixth hybrid world, RMZ chooses these keys while in the ideal world, RM™ chooses them. This difference
does not change M’s view however since in both worlds, M will receive a session key if and only if it makes
a "reveal session key" query. Until this happens, the session keys have no effect on the adversary’s behavior.

As for point b)., it is true because in both interactions - between M and R/\/lg in the sixth hybrid and
between M and M* in the ideal world - M has the messages it concocts itself accepted if and only if they
decrypt to the correct password. How this is checked - directly by RMZ , who has access to all passwords,
or via "test instance password" queries by M*, who only has access to known passwords - is irrelevant since
this check is outside of M’s view.

This completes the proof of the proposition and therefore of theorem 2. W

10 Honest-but-Curious Servers

In this section, we provide a framework capturing the security of 3-PAKE[spk]s against honest-but-curious
servers. We leave it to the reader to show that Protl and Prot2 are secure in this sense. The proofs are
considerably less involved than those above since the server does not deviate from the protocol and does not
interfere with the network traffic. Thus, there are no complications due to confirmation codes or instance
corruptions. We do not even have to worry about dictionary attacks, since the server has all of the passwords.

10.1 The Ideal World

We begin by a description of ideal-world adversarial behavior.

Initialize user, i, ID;

T* chooses an unused identity ID; with which to initialize 7. A password pw; is chosen uniformly at
random by RM™ and handed to T*.

Transcript: (initialize user”,i,1D;)
T* uses this to bring into play new honest users.
Initialize user instance, (i,j), PID;;

T* asks to have a previously initialized user ¢ initialize an instance (4, j) of that user. 7* assigns to (i, 7)
a partner identity PID;; which is here required to be the identity of another initialized user.

Transcript: (” initialize user instance”,(i,7), PIDij)

It is no longer necessary to attribute roles to the users essentially because all executions will be honestly
carried out.

Start session, (i,7), (7', ;')

80

T* specifies a pair of previously initialized user instances (¢, j) and (¢, j') with PID;; = ID;, PID;j =
ID;, and indicates that a session key should be constructed for them. Neither should have been already
participating in a session. RM™ chooses SK}; = SK},;, uniformly at random.

Transcript: (”start session”, (i,3), (i, j'))

Recall that T* is passive. Accordingly, there can be no exposing.

Reveal session key, (i,7), (¢,7')

T* specifies previously initialized user instances (i,j) and (i, ;') that hold a common session key and
receives that session key in return.

Transcript: (” reveal session key”,(i,7), (@, '), SKZ-*]-)

Implementation, string

Transcript: (7éimplementation”, string)

10.2 The Real World

Here are an eavesdropping server’s real capabilities.

The execution begins with 7 correctly generating its long term keying material (pks, sk7). The public
key pks will be made available to users.

Initialize user, i, ID;

T chooses an identity ID; with which to initialize i. I D; should not have been used before for another
user. A password pw; is chosen, assigned to i, and handed 7. The user gains access to pky.

Transcript: (initialize user”,i,1D;)

Initialize user instance, (i,j), PID;;
T asks to have a previously initialized user ¢ initialize an instance j of that user. 7 assigns to (4,5) a
partner identity PID;;, previously used to initialize another user. The instance has access to pkr.

Transcript: (” initialize user instance”, (i,j), PIDij)

Execute protocol, (i,7), (i',j'), MsgSeq

For this operation to take place, user instances (i,7) and (¢/,j’) must be initialized, PID;; = ID;,
PID; j» = ID;, and neither instance should have been the argument of an "Execute Protocol" operation.
The computations of an honest protocol execution between both instances and 7 take place, yielding in
particular a sequence of messages MsgSeq that T receives. At the end, both instances hold the same session
key SK;; = SKyj, as computed by specification.

Transcript: (” implementation”,” execute protocol”, (i,j), (i’,j’)) followed by

("start session”, (i,7), (i',5"))

This operation allows T to observe as many honest protocol runs from the point of view of the server as
it wishes.

Reveal session key, (i,7), (¢,j)

T specifies previously initialized user instances (i,7) and (i’,j’) that have computed a common session
key together. It receives in return that session key.

(”reveal session key”, (i,7), (', 7", SKij)

This operation captures potential leakage of session key information to the adversary via higher-level
session key use. It is meaningful to have this because T is assumed honest-but-curious only within the
context of the key exchange protocol. No assumptions are made on its behavior if it interferes with

81

other protocols. The operation is also technically useful to define security: after all, we need a mechanism to
measure the server’s ability to distinguish real keys from random strings.

When 7T stops its interaction with RM, the last entry in the transcript is

("implementation”,” adversary coins”, coins)
where coins holds all random values chosen by 7.

11 Conclusions and Future Work

We made a (theoretical and practical) case for considering 3-PAKE[spk]s. We proposed a hierarchy of security
models to accommodate them, and exhibited several protocols that demonstrate the strictness of (parts of)
this hierarchy. In the process, we were able to make what we believe to be a sensible definition of security
against internal state revealing that does not trivially break password security.

Several directions should be explored from here. First, the models could be extended to accommodate
arbitrary password distributions. It has already been argued for instance in [8] and [12] that simulation-based
security models are well suited to do this.

Second, the models can be enhanced to capture server forward secrecy, in the sense that compromise of
the server’s long-term secret key should not damage past-established session keys. It is highly likely that
Protl and Prot2 can be proven secure in this sense, at least using a weak definition of forward secrecy (i.e.,
one that assumes non-interference of the adversary in case of a corruption in the middle of a protocol run).

Third, it may be possible to consider queries that reveal erased state by demanding that a subset of
random bits remains hidden. Admittedly, practical scenarios which would lead to this kind of attack may be
somewhat rare (although one can imagine using an insecure pseudo-random generator for exponents and a
secure one for encryption), but it is still worth exploring in an effort to continue refining provable security
for key exchange. Of course, this result is of interest only if a provably secure protocol comes with it.

Finally, working in a simulation-style framework naturally leads to extending these results to the setting
of universal composability [11].

Acknowledgments The author wishes to thank Dalia Khader, Peter Y. A. Ryan, Qiang Tang, and Jeroen
van de Graaf for fruitful discussions on this topic.

References

[1] ABpDALLA, M., CHEVALIER, C., POINTCHEVAL, D., Smooth Projective Hashing for Conditionally Ex-
tractable Commitments Crypto 2009, LNCS 5677, pp. 672-689, Springer, 2009

[2] ABDALLA, M., FOUQUE, P.-A., POINTCHEVAL, D., Password-Based Authenticated Key Exchange in the
Three-Party Setting, PKC 2005, LNCS 3386, pp. 65-84, Springer, 2005

[3] BELLARE, M., CANETTI, R., KrawczYK, H., A Modular Approach to the Design and Analysis of Au-
thentication and Key Exchange Protocols, STOC 1998, pp. 419-428, 1998

[4] BELLARE, M., POINTCHEVAL, D., ROGAWAY, P., Authenticated Key Exchange Secure Against Dictionary
Attacks, Adv. in Cryptology, Eurocrypt 2000, LNCS 1807, pp. 139-155, Springer, 2000

[5] BELLARE, M., ROGAWAY, P.. Entity Authentication and Key Distribution, Adv. in Cryptology, Crypto
1993, LNCS 773, Springer-Verlag, pp. 232-249, 1994

[6] BELLOVIN, S., MERRIT, M., Encrypted Key Exchange: Password-Based Protocols Secure Against Dic-
tionary Attacks, Proceedings of the IEEE Symposium on Research in Security and Privacy, 1992

[7] BOYARSKY, M., Public-Key Cryptography and Password Protocols: the Multi-User Case, 6th ACM Conf.
on Computer and Communications Security (CCS), pp. 63-72, 1999

82

18]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

BoYyko, V., MACKENZIE, P., PATEL, S., Provably-Secure Password-Authenticated Key Exchange Using
Diffie-Hellman, Eurocrypt 2000, LNCS 1807, Springer-Verlag, pp. 156-171, 2000

Byun, J., JEONG, 1., HOON LEE, D., PARK, C., Password-Authenticated Key Exchange Between Clients
with Different Passwords, ICICS 2002, LNCS 2513, pp. 134-146. Springer, 2002

CAMENISCH, J., CAsATI, N., Gross, T., SHOUP, V., Credential Authenticated Identification and Key
Exchange, Crypto 2010, LNCS 6223, pp. 255-276, Springer, 2010

CANETTI, R., Universally Composable Security: A New Paradigm for Cryptographic Protocols, 42nd
FOCS, TEEE, pp. 136-145, 2001

CANETTI, R., HALEVI, S., KATZ, J., LINDELL, Y., MACKENZIE, P., Universally Composable Password-
Based Key Exchange, Eurocrypt 2005, LNCS 3494, pp. 404-421, 2005

CANETTI, R., KRAWCZYK, H., Analysis of Key Exchange Protocols and Their Use for Building Secure
Channels, Eurocrypt 2001, LNCS 2045, pp. 453-474, Springer, 2001

CRAMER, R., SHouP, V., A Practical Public-Key Cryptosystem Provably Secure Against Adaptive
Chosen-Ciphertext Attack, Crypto 1998, LNCS 1462, pp. 13-25, Springer, 1998

CRAMER, R., SHouP, V., Universal Hash Proofs and a Paradigm for Adaptive Chosen-Ciphertext Secure
Public-key Encryption, Eurocrypt 2002, LNCS 2332, pp. 45-64, Springer, 2001

Cuirr, Y., TiN, Y.S.T, BovyDp, C., Password Based Server Aided Key Exchange, ACNS 2006, LNCS
3989, pp. 146-161, Springer, 2006

GENNARO, R., Faster and Shorter Password-Authenticated Key FExchange, ACM Conference on Com-
puter and Communications Security, 2008

GENNARO, R., LINDELL, Y., A Framework for Password-Based Authenticated Key Exchange, Eurocrypt
2003, pp. 524-543, 2003

GOLDREICH, O., LINDELL, Y., Session-key Generation Using Human Passwords Only, J. Cryptology,
19(3), pp- 241-340, 2006

GoOvYAL, V., JAIN, A., OSTROVSKY, R., Password-Authenticated Session Key Generation on the Internet
in the Plain Model, Crypto 2010, LNCS 6223, pp. 277-294, Springer, 2010

GROCE, A., Katz, J., A New Framework for Efficient Password-Based Authenticated Key FExchange,
17th ACM Conf. on Computer and Communications Security (CCS), pp. 516-525, ACM Press, 2010

Havrevi, S., KrRawozvk, H., Public-Key Cryptography and Password Protocols, 5th ACM Conf. on
Computer and Communications Security (CCS), pp. 122-131, 1998

Hao, F., RyaN, P. Y. A., Password Authenticated Key Exchange by Juggling, Security Protocols Work-
shop, 2008, pp. 159-171, 2008

HiTcHCOCK, Y., TiN, Y.S.T., BoyD, C., GONZALEZ NIETO, J.M., MONTAGUE, P., A Password-Based
Authenticator: Security Proofs and Applications, Indocrypt 2003, LNCS 2904, Springer, 2003

JABLON, D., Strong Password-Only Authenticated Key Exchange, ACM Computer Communications Re-
view, Vol. 26, No. 5, pp. 5-26, 1996

JIANG, S., GONG, G., Password-Based Key Exchange with Mutual Authentication, 11th Annual Interna-
tional Workshop on Selected Areas in Cryptography (SAC), LNCS 3357, pp. 267-279, Springer, 2004

83

[27] KATzZ, J., OSTROVSKY, R., YUNG, M., Efficient Password-Authenticated Key Exchange Using Human-
Memorable Passwords, Eurocrypt 2001, LNCS 2045, Springer, pp. 475-494, 2001

[28] KATZ, J., VAIKUNTANATHAN, V., Smooth Projective Hashing and Password-Based Authenticated Key
Exchange from Lattices, Asiacrypt 2009, LNCS 5912, pp. 636-652, Springer, 2009

[29] KATZ, J., VAIKUNTANATHAN, V., Round-Optimal Password-Based Authenticated Key Ezchange, Theory
of Cryptography, LNCS 6597, Springer, pp. 293-310, 2011

[30] LANCRENON, J., What Public Keys Can Do for Three-Party, Password-Authenticated Key Ezchange,
EuroPKI 2013, LNCS 8341, Springer, pp. 83-101, 2014

[31] Lucks, S., Open Key Exchange: How to Defeat Dictionary Attacks without Encrypting Public Keys,
Security Protocols Workshop 1997, LNCS 1361, Springer, pp. 79-90, 1997

[32] LAMAcCcHIA, B., LAUTER, K., MITYAGIN, A., Stronger Security of Authenticated Key Ezchange,
ProvSec, LNCS 4784, Springer, pp. 1-16, 2007

[33] LiN, C.-L., SuN, H.-M., HWANG, T., Three-Party Encrypted Key Exzchange: Attacks and a Solution,
ACM Operating Systems Review, vol. 34, no. 4, pp. 12-20, 2000

[34] Lin, C.-L., SuN, H.-M., STEINER, M., HWANG, T., Three-party Encrypted Key Exchange Without Server
Public-Keys, IEEE Communications Letters, 5(12), pp. 497-499, 2001

[35] SHOUP, V., On Formal Models for Secure Key Exchange, IBM Research Report RZ 3120, April 1999

[36] STEINER, M., TsuDIK, G., WAIDNER, M., Refinement and Extension of Encrypted Key Exchange, ACM
Operating Systems Review, 29(3), pp. 22-30, 1995

[37] WaNG, F., ZHANG, Y., A New Security Model for Cross-Realm C2C-PAKE Protocol, IACR e-print
archive, 2007

[38] Wu, S., Znu, Y., Client-to-client Password-Based Authenticated Key Establishment in a Cross-Realm
Setting, Journal of Networks, vol. 4, n.7, 2009

[39] YEH, H.-T., SuN, H.-M., HwANG, T., Efficient Three-Party Authentication and Key Agreement Pro-
tocols Resistant to Password Guessing Attacks, Journal of Information Science and Engineering, 2003,
19(6):1059-1070, 2003

[40] YoNEYAMA, K., Efficient and Strongly Secure Password-Based Server Aided Key Exchange, Indocrypt
2008, LNCS 5365, pp. 172-184, Springer, 2008

A Computational Assumptions and Properties

A.1 The Decisional Diffie-Hellman Assumption and Entropy Smoothing

The basic case Let G be a group of prime order ¢ and g be a generator of G. The Decisional Diffie-Hellman
(DDH) assumption states that
(9.9%,9%,9"") and (g,9", 9%, 9%)

are computationally indistinguishable when x, y, and z are sampled independently and uniformly at random
from Z;. Combining DDH with the Entropy Smoothing (ES) property of the hash family {H,}, (the H,
mapping into {0, 1}¢, for long enough ¢), the DDH assumption becomes the statement that

(9,9%.9%,n, Hy(g™)) and (g,9%,9%,n, R)

84

are computationally indistinguishable when z, y, n, and R are sampled independently and uniformly at
random. We shall simply call this the Decisional Diffie-Hellman and Entropy Smoothing (DDHES) property.
Remark: Asis common in papers that rely on the DDH, we make the (outrageous) abuse of notation that
consists of stating the assumption using a fixed group. In truth, we should be working with a family of distri-
butions of groups indexed by the security parameter, since the assumption only makes sense asymptotically.
We leave it up to the reader to collect the details. The same could also be said of the hash family.

Adding adaptive queries For the proofs of security of our protocols, we require an adaptive version of
the DDHES property, best-described using algorithmic attack games ng_DDHES for b € {0,1}. Let B be
a probabilistic, polynomial-time algorithm. Game sz_D DHES is run between a challenger CH and B as
follows.

On input security parameter 17, CH begins by constructing (¢, G, g) and {H,, },, and gives this data to B.
It also initializes the sets CE€ and CHZ, which start out empty. Next, 5 may make a sequence of the following
queries:
o Left group element query: CH selects x € Z; — CE uniformly at random, computes X < g%, adds = to C&,
and gives (L, X) to B;
e Right group element query: CH selects y € Z; — CE uniformly at random, computes Y < ¢¥, adds y to C¢,
and gives (R,Y) to B;
o Hash index query: CH selects n € Ky — CHZ uniformly at random, adds n to CHZ, and gives n to B;

o Left exponent query: B specifies (L, X) previously obtained through a "left group element" query and not
previously input to a "challenge" query (see below), and CH gives x to B;

e Right exponent query: B specifies (R,Y") previously obtained through a "right group element" query and
not previously input to a "challenge" query, and CH gives y to B;

o Challenge query: B specifies ((L,X),(R,Y),n) where (L, X) (resp., (R,Y), n) was obtained through a
"left group element" (resp., "right group element", "hash index") query, neither X nor Y have had their
exponents queried, and the pair ((L, X), (R,Y)) was not previously input to a "challenge" query. If b = 0,
CH selects R uniformly at random from {0,1}¢ and gives R to B. If b = 1, CH computes H,(g*¥) and gives
H,(g*¥) to B.

When B is done making queries, it outputs a single bit i), and the game ends, the total output being b. We
write this as: B(GZdiDDHES(ln)) =b.

A standard hybrid argument (slightly modified to accommodate the fact that we ask the challenger
to choose pairwise-distinct exponents and hash indexes) shows that under the DDH assumption, for every
probabilistic, polynomial-time algorithm B, the expression

‘P{B(ngDDHES(ln)) _ 1} _ P[B(thzdeDHES(ln)) _ 1]‘
is negligible in 7.

A.2 Hard-to-Compute Suffixes of Hashes of Diffie-Hellman Group Elements

The basic case Let us keep the notations of the previous section, except now we assume that the H,
functions map into {0,1}*1*% for long enough ¢; and f,. We are interested in the computability of the
{5-bit-long suffix of H,(g"¥), simply denoted sz, (H,(g"¥)). It can be proven that if the DDHES property
holds, then for every probabilistic, polynomial-time algorithm B the expression

P[B(979I,gy7n) = sfu, (Hn(gw))}

is negligible in 1. We call this the Computational Diffie-Hellman and Entropy Smoothing (CDHES) property.

85

Adding adaptive queries For the part of the proof of security of Prot1 dealing with computationally lonely
responder instances, we need an adaptive version of this basic case (again with pairwise-distinct exponents
and hash indexes). Let B be a probabilistic, polynomial-time adversary, and consider the following game
God=sfe=CDHES plaved by B against a challenger CH.

On input security parameter 17, CH constructs (¢,G,g) and {H,},, and hands these to B. It also
initializes sets CE, CHZ and OUT which start out empty. B may now make a series of queries, as specified
below:

o Left/right group element query: as in the previous section;

e Hash index query: as in the previous section;

o Left exponent query: B specifies (L, X) previously obtained through a "left group element" query and CH
gives x to B;

o Right exponent query: B specifies (R,Y’) previously obtained through a "right group element" query and
CH gives y to B;

e Hashed Diffie-Hellman query: B specifies ((L,X), (R, Y),n) where (L, X) (resp., (R,Y), n) was obtained
through a "left group element" (resp., "right group element", "hash index") query. CH responds with the
full string H,,(¢™¥);

o Guess hash suffix query: B specifies ((L,X),(R, Y),n,s) where (L, X) (resp., (R,Y), n) was obtained
through a "left group element" (resp., "right group element", "hash index") query, s € {0,1}%2, neither
X nor Y’s exponent has been queried and the pair ((L,X),(R,Y)) has not been the input to a "hashed
Diffie-Hellman" query. The tuple ((L, X), (R,Y),n,s) is added to the list OUT.

Eventually, the game ends, and the list OUT is examined. If there is a tuple ((L, X),(R,Y),n, s) such that
s=sfu, (Hn(g””y)), the game’s output is 1. Otherwise, it is 0.

By using a tedious hybrid argument, it can be shown that assuming the DDHES property, we have that
for every adversary B, the expression

P {B(Gadfsng 7CDHES(117)) _ 1]

is negligible in 7.

A.3 Hard-to-Guess Random Group Elements and Hard-to-Guess Suffixes of
Hashes of Hidden, Random Group Elements

The basic case Keeping the notations of the previous paragraph, we are now interested in the computability
of the ¢o-long suffix of hashes of the form H,,(U?) for any non-trivial group element U, any uniformly random
exponent z, and any uniformly random hash index n. Let B be a probabilistic, polynomial-time algorithm
and consider the following game, denoted G*/2=F5 played against a challenger CH.

Oun input security parameter 17, CH constructs the (¢, G, g) and the hash family {H,},, and hands this
over to B. CH then chooses a hash index n and an exponent z € Z; uniformly at random. n is given to B,
and z is kept out of B’s view. B then outputs a non-trivial group element U and a string s € {0,1}% to CH
and halts. If s = sfy, (H,(U?)), the total output of the game is 1, and otherwise it is 0. This is denoted
B(Gsle==ES(1m)) € {0,1}.

Using only the entropy smoothing property of the hash family (and appropriate group parameters), we
can show that the quantity

P[B(G*: 5 (1) = 1]

is negligible in 7.

86

Adding adaptive queries In the part of the proof of security of Protl dealing with statistically lonely
originators and responders, we actually need an adaptive version of the above basic game that also integrates
opportunities for the adversary to guess hidden group elements. We denote this new game G4~ GF=sfe, =ES,
We keep the notations above. Let B be a probabilistic, polynomial-time adversary.

At the beginning of the game, CH, on input 17, constructs (¢, G,g) and {H,},, and gives these to B. It
also initializes the sets CE, CHZ, and OUT. A counter C <« 0 is also initialized. B may then make any
number of the following queries:

e Prepare exponent query: C'is incremented, CH chooses z¢ uniformly at random from Zj — CE, and 2¢ is
added to C&;

e Recover exponent query: B submits k € {0, ...,C} to CH and gets zj, back in return;
o Hash index query: CH selects n uniformly at random from Ky — CHZ, gives n to B, and adds n to CHZ;

o Guess group element query: B submits (U, k) to CH, where k € {0, ...,C} was not the input to a "recover
exponent" query. If U = g, the game ends and the total output of the game is 1. Otherwise the game
continues;

o Guess hash suffix query: B submits (U, n, k, s) to CH, where U is a non-trivial group element, k € {0, ...,C}
was not the input to a "recover exponent" query, n was obtained through a "hash index" query, and s €
{0,1}*2. The tuple (U, n, k, s) is added to the list OUT.

Eventually, the game ends, and the list OUT is examined. If there is a tuple (U, n,k,s) such that s =
5fe, (Hn(U?)), the game’s output is 1. Otherwise, it is 0.

Using a hybrid argument with the non-adaptive basic game described above, we can show that the
expression

P[B(G“dﬂf"‘?*Es(ln)) _ 1}

is negligible in 7.

B Security Notions for Primitives

B.1 IND-CCA-2-secure Encryption
Let Enc:= (K,&,D) be an encryption scheme.

The single-challenge case Consider the following two attack games (GgN D=CCA=2 Ghere b € {0,1}, played
between a challenger CH and a probabilistic, polynomial-time adversary B.

At the beginning of either game, on input 17 challenger CH runs K(17) to get an encryption/decryption
key pair (pk, sk) for Enc, and pk is given to B. The games then proceed in four phases:

e First query phase: B may make "decryption" queries to CH, wherein B submits a string ¢ to CH and CH
returns Dy (c) back to B;

e Challenge phase: B may submit a pair (mg,m1) of equal-length messages to CH, and receives in return
an encryption ¢ < Epp(my);

e Second query phase: B may make more "decryption" queries to CH, subject to the restriction that the
challenge ¢ itself may not be submitted;

o Guess phase: B outputs a bit b. The game ends and the final output of the game is b.

Enc is said to be an adaptive, chosen-ciphertext-secure (IND-CCA-2-secure) public-key encryption scheme if
for every PPTA B, the expression

‘P{B(GéND—CCA—Q(ln)) _ 1} _ P[B(G{ND—CCA—2(177)) _ 1} ’

87

is negligible in 7.

Multiple adaptive challenges For the proofs of security of Protl and Prot2, we need the following
challenge-adaptive versions of the above game. Let R be the randomness space of the encryption algorithm
£. Below we make the randomness explicit in the notation, i.e. the encryption &,;(m) of message m will be
denoted &,1,(m;7) for r € R. The games G4~ INP=CCA=2 fo1) € {0,1} are defined as follows:

At the beginning of either game, on input 17, CH runs K(17) to get (pk, sk) and outputs gives pk to B.
CH also initializes a set CER that starts out empty. B may then make any number of the following queries:

e Challenge query: B submits to CH a pair (mg, m;) of equal-length messages. CH samples r from R —CER,
computes ¢ < Ep(mp;), adds 7 to CER, and gives ¢ to B;

e Decryption query: B submits to CH a string v and CH responds with Dy (y). The string v cannot have
been previously obtained from CH as a "challenge" query.

Eventually, B stops the game and outputs a single bit b. The total output of the game is b.

Using a hybrid argument (slightly modified to accommodate the fact that the same encryption randomness
cannot be used twice to answer challenge queries), it is possible to show that if Enc is IND-CCA-2-secure,
then the expression

’P[B(GghadINDCCA2<1n)) _ 1} _ P[B<G(1:h7ad71NDfCCA72(1n)) _ 1H
is negligible in 7.

B.2 EU-ACMA-secure Signatures

Let Sig := (K,S,V) be a signature scheme. We consider the following attack game GFU—ACMA played
between challenger CH and a probabilistic, polynomial-time adversary B5.

At the beginning of the game, CH runs K(17) to get (pk, sk), and hands pk to B. B may then make any
number of the following queries:
o Signature query: B submits a message m to CH, and CH returns to B a signature o < Ssi(m) on m;

e Forgery query: B submits to CH a pair (m, 7), where m was not previously submitted to CH in a "signature"
query. If V,i(m,7) = 1, the game ends, with total output 1. Otherwise, the game continues.

Eventually, the game is halted. If it is halted without outputting 1, its total output is 0. We say that Sig is
Ezistentially Unforgeable Against Chosen-Message Attacks (EU-ACMA-secure) if the expression

P[B(GEU—ACMA(ln)) _ 1}

is negligible in 7.

88

