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Some naturally defined star products

for Kähler manifolds

by Martin Schlichenmaier

Abstract

We give for the Kähler manifold case an overview of the constructions of
some naturally defined star products. In particular, the Berezin-Toeplitz,
Berezin, Geometric Quantization, Bordemann-Waldmann, and Karbegov
standard star product are introduced. With the exception of the Geometric
Quantization case they are of separation of variables type. The classifying
Karabegov forms and the Deligne-Fedosov classes are given. Besides the
Bordemann-Waldmann star product they are all equivalent.

1 Introduction

One of the mathematical basis of quantization is the passage from the commu-
tative world (i.e. the functions on the phase space manifold, also called classical
observables) to the non-commutative world (i.e. non-commutative objects, the
quantum observables associated to the classical observables). There exists differ-
ent methods to achieve this. In operator quantization one assigns to the classical
observables operators acting on a certain Hilbert space. In deformation quanti-
zation one deforms the point-wise commutative product of functions into a non-
commutative product. In “first order” the direction of the deformation is given by
the Poisson structure which governs the classical situation. It turns out that this
can only be done on the level of formal power series over the algebra of functions.
Such a product is called a star product.

In this article we give an overview of certain naturally defined star products
in the case that our “phase-space manifold” is a Kähler manifold. There are
constructions and classifications of star products in the symplectic and even in
the more general Poisson case. And as a Kähler form is a symplectic form they
fall into this classification. But we have an additional complex structure and are
searching for star products respecting it in a certain sense. These will be the star
products of separation of variables type as introduced by Karabegov [15], resp.
Wick or anti-Wick type as considered by Bordemann and Waldmann [6]. We will
give their definition below. Both constructions are quite different. Karabegov
uses local constructions which globalize. Bordemann and Waldmann modified
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Fedosov’s approach accordingly to the Kähler setting. One of the important con-
tributions of Nikolai Neumaier to the field was that he generalizes the construction
of Bordemann-Waldmann and showed that there is a 1:1 correspondence of both
constructions [23].

In this article we will first introduce the notion of a star product of separation
of variables type, discuss the Karabegov construction and make some comments
on the Bordemann-Waldmann construction. These methods work for arbitrary
Kähler manifolds (even for pseudo-Kähler manifolds). Next, for quantizable com-
pact Kähler manifolds (i.e. Kähler manifolds admitting a quantum line bundle) we
explain the construction of the Berezin-Toeplitz star product ?BT . With the help
of the Berezin transform a dual and opposite star product to the Berezin-Toeplitz
will be given, the Berezin star product ?B. In addition, as another naturally de-
fined star product the star product of geometric quantization ?GQ (which is not
of separation of variable type) shows up. They are all equivalent, we will give
the equivalence transformation. Moreover, we have the star product given by the
Bordemann-Waldmann construction ?BW and Karabegov standard star product
?K . We will give their Deligne-Fedosov class and their Karabegov forms. The
Deligne-Fedosov form classifies star products up to equivalence. In contrast, the
Karabegov form classifies star products of separation of variables type up to iden-
tity not only up to equivalence. The Karabegov standard star product has the
same Deligne-Fedosov class as ?BT . Hence, it is equivalent. The star product ?BW
(at least in its original construction) has a different Deligne-Fedosov class. See
Section 7 for detailed results.

The intention of this review is to stay rather short. No proofs are given, also
there are only a limited number of references. For a more detailed exposition,
see the review [35]. For more details of the Berezin-Toeplitz quantization scheme,
also see [33], [34].

There is other interesting work of Nikolai Neumaier together with Michael
Müller-Bahns on invariant star products on Kähler manifolds and quotients, which
is not be covered here. Let me just mention them [24], [25].

It is a pleasure for me to acknowledge inspiring discussions with Pierre Schapira
on the microlocal approach to symplectic geometry and to deformation quantiza-
tion.

2 Geometric setup – star products

Let (M,ω) be a pseudo-Kähler manifold. This means M is a complex manifold
and ω, the pseudo-Kähler form, is a non-degenerate closed (1, 1)-form. If ω is a
positive form then (M,ω) is a honest Kähler manifold. Despite the fact, that here
we are only interested in the Kähler case, we will need this more general setting
for relating different star products in the Karabegov construction.
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Denote by C∞(M) the algebra of complex-valued (arbitrary often) differen-
tiable functions with associative product given by point-wise multiplication. Ig-
noring the complex structure of M , our pseudo-Kähler form ω is a symplectic
form. A Lie algebra structure is introduced on C∞(M) via the Poisson bracket
{., .}. We recall its definition: First we assign to every f ∈ C∞(M) its Hamil-
tonian vector field Xf , and then to every pair of functions f and g the Poisson
bracket {., .} via

(2.1) ω(Xf , ·) = df(·), { f, g } := ω(Xf , Xg) .

In this way C∞(M) becomes a Poisson algebra.

As we will need it further down let me give the definition of a quantizable
Kähler manifold already here. For a given Kähler manifold a quantum line bundle
for (M,ω) is a triple (L, h,∇), where L is a holomorphic line bundle, h a Hermitian
metric on L, and ∇ a connection compatible with the metric h and the complex
structure, such that the (pre)quantum condition

(2.2)
curvL,∇(X, Y ) := ∇X∇Y −∇Y∇X −∇[X,Y ] = − iω(X, Y ),

in other words curvL,∇ = − iω ,

is fulfilled. If there exists such a quantum line bundle for (M,ω) then M is called
quantizable. Not all Kähler manifolds are quantizable. Exactly those compact
Kähler manifolds are quantizable which can be embedded as complex manifolds
(but not necessarily as Kähler manifolds) into some projective space.

For our Poisson algebra of smooth functions on the manifold M , a star product
for M is an associative product ? on A := C∞(M)[[ν]], the space of formal power
series with coefficients from C∞(M), such that for f, g ∈ C∞(M)

1. f ? g = f · g mod ν,

2. (f ? g − g ? f) /ν = −i{f, g} mod ν.

The star product of two functions f and g can be expressed as

(2.3) f ? g =
∞∑
k=0

νkCk(f, g), Ck(f, g) ∈ C∞(M),

and is extended C[[ν]]-bilinearly. It is called differential (or local) if the Ck( , )
are bidifferential operators with respect to their entries. If nothing else is said one
requires 1 ? f = f ? 1 = f , which is also called “null on constants”.

Two star products ? and ?′ for the same Poisson structure are called equivalent
if and only if there exists a formal series of linear operators

(2.4) B =
∞∑
i=0

Biν
i, Bi : C∞(M)→ C∞(M),
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with B0 = id such that B(f) ?′ B(g) = B(f ? g).
To every equivalence class of a differential star product its Deligne-Fedosov

class can be assigned. It is a formal de-Rham class of the form

(2.5) cl(?) ∈ 1

i
(
1

ν
[ω] + H2

dR(M,C)[[ν]]).

This assignment gives a 1:1 correspondence between equivalence classes of star
products and such formal forms.

The notion of deformation quantization was around quite some time. See e.g.
Berezin [2],[4], Moyal [22], Weyl [37], etc. Finally, the notion was formalized in
[1]. See [12] for historical remarks. In the symplectic case different existence
proofs, from different perspectives, were given by DeWilde-Lecomte [11], Omori-
Maeda-Yoshioka [26], and Fedosov [13]. The general Poisson case was settled by
Kontsevich [21].

In the pseudo-Kähler case we might look for star products adapted to the
complex structure. Karabegov [15] introduced the notion of star products with
separation of variables type for differential star products. Equivalently, Borde-
mann and Waldmann [6] introduced star products of Wick, and anti-Wick type
respectively. There are two different conventions. In Karabegov’s original defini-
tion a star product is of separation of variables type if in Ck(., .) for k ≥ 1 the
first argument is only differentiated in anti-holomorphic and the second argument
in holomorphic directions. For clarification we call this convention separation
of variables (anti-Wick) type and call a star product of separation of variables
(Wick) type if the role of the variables is switched, i.e. in Ck(., .) for k ≥ 1 the
first argument is only differentiated in holomorphic and the second argument in
anti-holomorphic directions. Unfortunately, we cannot simply retreat to one these
conventions, as we really have to deal in the following with naturally defined star
products and relations between them, which are of separation of variables type of
both conventions.

3 Star product of separation of variables type

3.1 The Karabegov construction

Let (M,ω−1) be a pseudo-Kähler manifold. We will explain the construction of
Karabegov of star products of separation of variables type (anti-Wick convention),
see [15, 16]. In this context it is convenient to denote the pseudo-Kähler form ω
by ω−1. We will switch freely between these two conventions.

A formal form

(3.1) ω̂ = (1/ν)ω−1 + ω0 + ν ω1 + . . .
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is called a formal deformation of the form (1/ν)ω−1 if the forms ωr, r ≥ 0, are
closed but not necessarily nondegenerate (1,1)-forms on M . Karabegov showed
that to every such ω̂ there exists a star product ?. Moreover he showed that
all deformation quantizations with separation of variables on the pseudo-Kähler
manifold (M,ω−1) are bijectively parameterized by the formal deformations of
the form (1/ν)ω−1. By definition the Karabegov form of the star product ? is
kf(?) := ω̂, i.e. it is taken to be the ω̂ defining ?. Karabegov calls the unique star
product ?K with classifying Karabegov form (1/ν)ω−1 the standard star product.

Let me sketch the principle idea of his construction. First, assume that we
have such a star product (A := C∞(M)[[ν]], ?). Then for f, g ∈ A the operators
of left and right multiplication Lf , Rg are given by Lfg = f ? g = Rgf . The
associativity of the star-product ? is equivalent to the fact that Lf commutes
with Rg for all f, g ∈ A. If a star product is differential then Lf , Rg are formal
differential operators. Now Karabegov constructs his star product associated to
the deformation ω̂ in the following way. First he chooses on every contractible
coordinate chart U ⊂M (with holomorphic coordinates {zk}) its formal potential

(3.2) Φ̂ = (1/ν)Φ−1 + Φ0 + νΦ1 + . . . , ω̂ = i∂∂̄Φ̂.

Then the construction is done in such a way that the left (right) multiplication
operators L∂bΦ/∂zk

(R∂bΦ/∂z̄l
) on U are realized as formal differential operators

(3.3) L∂bΦ/∂zk
= ∂Φ̂/∂zk + ∂/∂zk, and R∂bΦ/∂z̄l

= ∂Φ̂/∂z̄l + ∂/∂z̄l.

The set L(U) of all left multiplication operators on U is completely described as
the set of all formal differential operators commuting with the point-wise mul-
tiplication operators by antiholomorphic coordinates Rz̄l

= z̄l and the operators
R∂bΦ/∂z̄l

. From the knowledge of L(U) the star product on U can be reconstructed.

This follows from the simple fact that Lg(1) = g and Lf (Lg)(1) = f ? g. The op-
erator corresponding to the left multiplication with the (formal) function g can
recursively (in the ν-degree) be calculated from the fact that it commutes with the
operators R∂bΦ/∂z̄l

. The local star-products agree on the intersections of the charts
and define the global star-product ? on M . See the original work of Karabegov
[15] for these statements.

In [18], [19] Karabegov gave a more direct construction of the star product ?K
with Karabegov form (1/ν)ω.

3.2 Karabegov’s formal Berezin transform

Given a pseudo-Kähler manifold (M,ω−1). In the frame of his construction and
classification Karabegov assigned to each star products ? with the separation
of variables property the formal Berezin transform I?. It is the unique formal
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differential operator on M such that for any open subset U ⊂M , antiholomorphic
functions a and holomorphic functions b on U the relation

(3.4) a ? b = I(b · a) = I(b ? a),

holds true. The last equality is automatic and is due to the fact, that by the
separation of variables property b ? a is the point-wise product b · a. He shows

(3.5) I =
∞∑
i=0

Ii ν
i, Ii : C∞(M)→ C∞(M), I0 = id, I1 = ∆.

Karabegov’s classification gives for a fixed pseudo-Kähler manifold a 1:1 corre-
spondence between (1) the set of star products with separation of variables type
in Karabegov convention and (2) the set of formal deformations (3.1) of ω−1.
Moreover, the formal Berezin transform I? determines the ? uniquely.

3.3 Dual and opposite star products

Given for the pseudo-Kähler manifold (M,ω−1) a star product ? of separation of
variables type (anti-Wick) then Karabegov defined with the help of I = I? the
following associated star products. First the dual star-product ?̃ on M is defined
for f, g ∈ A by the formula

(3.6) f ?̃ g = I−1(I(g) ? I(f)).

It is a star-product with separation of variables (anti-Wick) but now on the
pseudo-Kähler manifold (M,−ω−1). Denote by ω̃ = −(1/ν)ω−1 + ω̃0 + νω̃1 + . . .
the formal form parameterizing the star-product ?̃. By definition ω̃ = kf(?̃). Its
formal Berezin transform equals I−1, and thus the dual to ?̃ is again ? .

Given a star product, the opposite star product is obtained

(3.7) f ?op g = g ? f

by switching the arguments. Of course the sign of the Poisson bracket is changed
and we obtain a star product for (M,−ω−1). Moreover, it switches anti-Wick with
Wick type.

Finally, we take the opposite of the dual star-product, ?′ = ?̃op, given by

(3.8) f ?′ g = g ?̃ f = I−1(I(f) ? I(g)).

It defines a deformation quantization with separation of variables on M , but now
of Wick type. The pseudo-Kähler manifold will again (M,ω−1). Indeed the formal
Berezin transform I establishes an equivalence of the deformation quantizations
(A, ?) and (A, ?′).
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If ? is star product of anti-Wick type with kf(?) = ω̂ then its Deligne-Fedosov
class calculates as

(3.9) cl(?) =
1

i
([ω̂]− δ

2
).

See [20, Eq. 2.2], which corrects a sign error in [16]. Here [..] denotes the de-Rham
class of the forms and δ is the canonical class of the manifold, i.e. the first Chern
class of the canonical holomorphic line bundle KM , resp. δ := c1(KM). Recall
that KM is the nth exterior power of the holomorphic bundle of 1-differentials.
Furthermore, we have for the opposite star product cl(?op) = −cl(?).

For the standard star product ?K given by the Karabegov form ω̂ = (1/ν)ω−1

we obtain

(3.10) cl(?K) =
1

i
(
1

ν
[ω−1]− δ

2
).

In the following we will calculate Karabegov forms of star products of separa-
tion of variables type with respect to both conventions, Wick and anti-Wick. But
to obtain a 1:1 correspondence we have to fix one convention. Here we refer to
the anti-Wick type product. If ? is of Wick type we set

(3.11) kf(?) := kf(?op),

which is a star product of separation of variables (anti-Wick) type but now for
the pseudo-Kähler manifold (M,−ω).

3.4 Bordemann and Waldmann construction

Bordemann and Waldmann [6] gave another construction of a star product of
separation of variables (Wick) type for a general (pseudo)Kähler manifold. It is a
modification of Fedosov’s geometric existence proof. They showed that the fibre-
wise Weyl product used by Fedosov could be substituted by the fibre-wise Wick
product. Using a modified Fedosov connection a star product ?BW of Wick type is
obtained. Karabegov calculated its Karabegov form as −(1/ν)ω, see Karabegov
[17]. Recall that by our convention this is the Karabegov form of the opposite
?opBW . Its Deligne class class calculates as

(3.12) cl(?BW ) = −cl(?opBW ) =
1

i
(
1

ν
[ω] +

δ

2
).

Later Neumaier [23] was able to show that each star product of separation of
variables type can be obtained by the Bordemann-Waldmann construction by
adding a formal closed (1, 1) form as parameter in the construction.
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Remark 3.1. In fact, Karabegov in [17] changed the set-up and conventions of
Bordemann-Waldmann by constructing via their method a star product which is of
anti-Wick type (in contrast to the original Wick type). He obtained as classifying
Karabegov form (1/ν)ω and hence the standard star product ?K with Deligne-
Fedosov class (3.10) as the Bordemann-Waldmann star product in Karabegov’s
normalisation. By taking the opposite in the Bordemann-Waldmann construction
one obtains the Karabegov modification but now with respect to the pseudo-
Kähler form −ω.

3.5 Reshetikhin and Takhtajan construction

Reshetikhin and Takhtajan [28] presented another general method. It is based on
formal Laplace expansions of formal integrals related to the star product. The co-
efficients of the star product can be expressed with the help of partition functions
of a restricted set of locally oriented graphs (Feynman diagrams) fulfilling some
additional conditions and equipped with additional data. For details see [28], and
some more remarks in [35, Section 9.2]. This approach should be compared with
the Kontsevich approach in the Poisson case which also uses graphs [21].

4 The Berezin - Toeplitz star product

4.1 Toeplitz operators

For the rest of the article our manifold will be a compact and quantizable Kähler
manifold (M,ω), ω = ω−1, with quantum line bundle (L, h,∇). We consider all
positive tensor powers of the quantum line bundle: (Lm, h(m),∇(m)), here Lm :=
L⊗m and h(m) and∇(m) are naturally extended. Let the Liouville form Ω = 1

n!
ω∧n

be the volume form on M and set for the product and the norm on the space
Γ∞(M,Lm) of global C∞-sections

(4.1) 〈ϕ, ψ〉 :=

∫
M

h(m)(ϕ, ψ) Ω , ||ϕ|| :=
√
〈ϕ, ϕ〉 .

Let L2(M,Lm) be the L2-completed space with respect to this norm. Furthermore,
let Γhol(M,Lm) be the (finite-dimensional) subspace corresponding to the global
holomorphic sections, and

(4.2) Π(m) : L2(M,Lm)→ Γhol(M,Lm)

the orthogonal projection.

For a function f ∈ C∞(M) the associated Toeplitz operator T
(m)
f (of level m)

is defined as

(4.3) T
(m)
f := Π(m) (f ·) : Γhol(M,Lm)→ Γhol(M,Lm) .
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In words: One takes a holomorphic section s and multiplies it with the differen-
tiable function f . The resulting section f · s will only be differentiable. To obtain
a holomorphic section, one has to project it back on the subspace of holomorphic
sections.

The linear map

(4.4) T (m) : C∞(M)→ End
(
Γhol(M,Lm)

)
, f → T

(m)
f = Π(m)(f ·) ,m ∈ N0

is the Toeplitz or Berezin-Toeplitz quantization map (of level m). The Berezin-
Toeplitz (BT) quantization is the map

(4.5) C∞(M)→
∏
m∈N0

End(Γhol(M,L(m))), f → (T
(m)
f )m∈N0 .

Let for f ∈ C∞(M) by |f |∞ the sup-norm of f on M and ||T (m)
f || the operator

norm with respect to the norm (4.1) on Γhol(M,Lm).

Theorem 4.1. [Bordemann, Meinrenken, Schlichenmaier] [5]
(a) For every f ∈ C∞(M) there exists a C > 0 such that

(4.6) |f |∞ −
C

m
≤ ||T (m)

f || ≤ |f |∞ .

In particular, limm→∞ ||T (m)
f || = |f |∞.

(b) For every f, g ∈ C∞(M)

(4.7) ||m i [T
(m)
f , T (m)

g ]− T (m)
{f,g}|| = O(

1

m
) .

(c) For every f, g ∈ C∞(M)

(4.8) ||T (m)
f T (m)

g − T (m)
f ·g || = O(

1

m
) .

4.2 Star Product

Based on the Toeplitz operators and in generalization of the Theorem 4.1 we
obtained

Theorem 4.2. [5],[29],[30],[31],[20] There exists a unique differential star
product

(4.9) f ?BT g =
∑

νkCk(f, g)

such that

(4.10) T
(m)
f T (m)

g ∼
∞∑
k=0

(
1

m

)k
T

(m)
Ck(f,g).
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This star product is of separation of variables type (Wick) with classifying Deligne-
Fedosov class cl and Karabegov form kf

(4.11) cl(?BT ) =
1

i
(
1

ν
[ω]− δ

2
), kf(?BT ) =

−1

ν
ω + ωcan.

First, the asymptotic expansion in (4.10) has to be understood in a strong operator
norm sense. Second, recall the definition of the canonical class δ as the first Chern
class of the canonical bundle KM . If we take in KM the fiber metric coming from
the Liouville form Ω then this defines a unique connection and further a unique
curvature (1, 1)-form ωcan. In our sign conventions we have δ = [ωcan], and the
formula for cl(?BT ) follows as this class is equal to −cl(?opBT ) which by (3.9) can
be calculated from kf(?BT ).

Remark 4.3. It is possible to incorporate an auxiliary hermitian line (or even
vector) bundle in the whole set-up. In this way it is possible to do quantization
with meta-plectic correction, see [35, Rem. 3.7].

4.3 Geometric Quantisation

Kostant and Souriau introduced the operators of geometric quantization in this
geometric setting. In our compact Kähler setting and if one chooses the Kähler po-
larization for the passage of prequantization to quantization then Tuynman lemma
[36] gives the following relation between the operators of geometric quantization
and Toeplitz quantization

(4.12) Q
(m)
f = i · T (m)

f− 1
2m

∆f
,

where ∆ is the Laplacian with respect to the Kähler metric given by ω. As a
consequence the operators Q

(m)
f and T

(m)
f have the same asymptotic behavior for

m→∞.

Using Theorem 4.1, Theorem 4.2 and the Tuynman relation (4.12) one can
show that there exists a star product ?GQ given by asymptotic expansion of the
product of geometric quantization operators. The star product ?GQ is equivalent
to ?BT , via the equivalence transformation B(f) := (id− ν∆

2
)f . In particular, it

has the same Deligne-Fedosov class. But it is not of separation of variables type,
see [31].

5 The Berezin transform

Recall that we are in the quantizable compact Kähler case. In the Karabegov
construction to every star product ? a unique formal Berezin transform I? was
assigned. But to understand the relations between the different star products
better we will need the geometric Berezin transform. For its definition we first
have to introduce coherent vectors and covariant symbols.
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5.1 The disc bundle

Without restriction we might assume that our quantum line bundle L is very
ample. This means it has enough global holomorphic sections to embed the man-
ifold into projective space. If not then at least by the quantum condition the line
bundle L will be positive and a certain positive tensor power will be very ample.
This tensor power will be a quantum line bundle for a rescaled Kähler form.

We pass to the dual line bundle (U, k) := (L∗, h−1) with dual metric k. Inside
the total space U , we consider the circle bundle

Q := {λ ∈ U | k(λ, λ) = 1},

and denote by τ : Q → M (or τ : U → M) the projections to the base manifold
M .

The bundle Q is a contact manifold, i.e. there is a 1-form ν such that
µ = 1

2π
τ ∗Ω ∧ ν is a volume form on Q. Denote by L2(Q, µ) the corresponding

L2-space on Q. Let H be the space of (differentiable) functions on Q which can
be extended to holomorphic functions on the disc bundle (i.e. to the “interior”
of the circle bundle), and H(m) the subspace of H consisting of m-homogeneous
functions on Q. Here m-homogeneous means ψ(cλ) = cmψ(λ). We introduce the
following (orthogonal) projectors: the Szegö projector

(5.1) Π : L2(Q, µ)→ H,

and its components the Bergman projectors

(5.2) Π̂(m) : L2(Q, µ)→ H(m).

The bundle Q is a S1−bundle, and the Lm are associated line bundles. The
sections of Lm = U−m are identified with those functions ψ on Q which are
homogeneous of degree m. This identification is given on the level of the L2

spaces by the map

(5.3) γm : L2(M,Lm)→ L2(Q, µ), s 7→ ψs where

(5.4) ψs(α) = α⊗m(s(τ(α))).

Restricted to the holomorphic sections we obtain the unitary isomorphism

(5.5) γm : Γhol(M,Lm) ∼= H(m).

5.2 Coherent vectors

If we fix in the relation (5.4) α ∈ U \ 0 and vary the sections s we obtain a linear
evaluation functional. The coherent vector (of level m) associated to the point

α ∈ U \ 0 is the element e
(m)
α of Γhol(M,Lm) with

(5.6) 〈e(m)
α , s〉 = ψs(α) = α⊗m(s(τ(α)))



198 Martin Schlichenmaier

for all s ∈ Γhol(M,Lm). A direct verification shows e
(m)
cα = c̄m · e(m)

α for c ∈ C∗ :=

C \ {0}. Moreover, as the bundle is very ample we get e
(m)
α 6= 0.

Hence, the coherent state (of level m) associated to x ∈M as projective class

(5.7) e(m)
x := [e(m)

α ] ∈ P(Γhol(M,Lm)), α ∈ τ−1(x), α 6= 0.

is well-defined.

Remark 5.1. This coordinate independent version of Berezin’s original definition
of coherent vectors and states and extensions to line bundles were given by Rawns-
ley [27]. It plays an important role in the work of Cahen, Gutt, and Rawnsley on
the quantization of Kähler manifolds [7, 8, 9, 10], via Berezin’s covariant symbols.
In those works the coherent vectors are parameterized by the elements of L \ 0.
The definition here uses the points of the total space of the dual bundle U . It has
the advantage that one can consider all tensor powers of L together on an equal
footing.

5.3 Covariant Berezin symbol

For an operator A ∈ End(Γhol(M,L(m))) its covariant Berezin symbol σ(m)(A) (of
level m) is defined as the function

(5.8) σ(m)(A) : M → C, x 7→ σ(m)(A)(x) :=
〈e(m)
α , Ae

(m)
α 〉

〈e(m)
α , e

(m)
α 〉

, α ∈ τ−1(x) \ {0}.

5.4 Definition of the Berezin transform

Definition 5.2. The map

(5.9) I(m) : C∞(M)→ C∞(M), f 7→ I(m)(f) := σ(m)(T
(m)
f ),

obtained by starting with a function f ∈ C∞(M), taking its Toeplitz operator

T
(m)
f , and then calculating the covariant symbol is called the (geometric) Berezin

transform (of level m).

Theorem 5.3. [20] Given x ∈ M then the Berezin transform I(m)(f) has a
complete asymptotic expansion in powers of 1/m as m→∞

(5.10) I(m)(f)(x) ∼
∞∑
i=0

Ii(f)(x)
1

mi
,

where Ii : C∞(M) → C∞(M) are linear maps given by differential operators,
uniformly defined for all x ∈M . Furthermore, I0(f) = f, I1(f) = ∆f.

Here ∆ is the Laplacian with respect to the metric given by the Kähler form ω.
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5.5 Bergman kernel

Recall from above the Bergman projectors (5.2). They have smooth integral
kernels, the Bergman kernels Bm(α, β) defined on Q×Q, i.e.

(5.11) Π̂(m)(ψ)(α) =

∫
Q

Bm(α, β)ψ(β)µ(β).

The Bergman kernels can be expressed with the help of the coherent vectors.

(5.12) Bm(α, β) = 〈e(m)
α , e

(m)
β 〉.

For the proofs of these properties see [20], or [32].
Let x ∈M and choose α ∈ Q with τ(α) = x then the function

(5.13) um(x) := Bm(α, α) = 〈e(m)
α , e(m)

α 〉,

is well-defined on M .

6 Berezin transform and star products

6.1 Identification of the BT star product

In [20] it was shown that the BT star product ?BT is the opposite of the dual of
the star product ? associated to the geometric Berezin transform introduced in the
last section. To identify ? we will give its classifying Karabegov form ω̂ . Zelditch
[40] proved that the function um (5.13) has a complete asymptotic expansion in
powers of 1/m. In detail he showed

(6.1) um(x) ∼ mn

∞∑
k=0

1

mk
bk(x), b0 = 1.

If we replace in the expansion 1/m by the formal variable ν we obtain a formal
function s defined by

(6.2) es(x) =
∞∑
k=0

νk bk(x).

Now take as formal potential (3.2)

Φ̂ =
1

ν
Φ−1 + s,

where Φ−1 is the local Kähler potential of the Kähler form ω = ω−1. Then
ω̂ = i ∂∂̄Φ̂. It might also be written in the form

(6.3) ω̂ =
1

ν
ω + F(i ∂∂̄ logBm(α, α)).

We use for the replacement of 1/m by the formal variable ν the symbol F.
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6.2 The Berezin star products for arbitrary Kähler mani-
folds

We will introduce for general quantizable compact Kähler manifolds the Berezin
star product. We extract from the asymptotic expansion of the Berezin transform
(5.10) the formal expression

(6.4) I =
∞∑
i=0

Ii ν
i, Ii : C∞(M)→ C∞(M),

as a formal Berezin transform, and set

(6.5) f ?B g := I(I−1(f) ?BT I
−1(g)).

As I0 = id this ?B is a star product for our Kähler manifold, which we call
the Berezin star product. Obviously, the formal map I gives the equivalence
transformation to ?BT . Hence, the Deligne-Fedosov classes will be the same. It
will be of separation of variables type (but now of anti-Wick type). We showed in
[20] that I = I? with star product given by the form (6.3). We can rewrite (6.5)
as

(6.6) f ?BT g := I−1(I(f) ?B I(g)).

and get exactly the relation (3.8). Hence, ? = ?B and both star products ?B and
?BT are dual and opposite to each other.

6.3 The original Berezin star product

Under very restrictive conditions on the manifold it is possible to construct the
Berezin star product with the help of the covariant symbol map. This was done
by Berezin himself [2],[3] and later by Cahen, Gutt, and Rawnsley [7][8][9][10] for
more examples. We will indicate this in the following.

Denote by A(m) ≤ C∞(M), the subspace of functions which appear as level
m covariant symbols of operators. From the surjectivity of the Toeplitz map one
concludes that the covariant symbol map is injective, see [35, Prop.6.5]. Hence,
for the symbols σ(m)(A) and σ(m)(B) the operators A and B are uniquely fixed.
We define a deformed product by

(6.7) σ(m)(A) ?(m) σ
(m)(B) := σ(m)(A ·B).

Now ?(m) defines on A(m) an associative and noncommutative product.
The crucial problem is how to relate different levels m to define for all possible

symbols a unique product not depending on m. In certain special situations like
those studied by Berezin, and Cahen, Gutt and Rawnsley the subspaces are nested
into each other and the union A =

⋃
m∈NA(m) is a dense subalgebra of C∞(M). A

detailed analysis shows that in this case a star product is given. The star product
will coincide with the star product ?B introduced above.
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7 Summary of naturally defined star products

By the presented techniques we obtained for quantizable compact Kähler mani-
folds three different naturally defined star products ?BT , ?GQ, and ?B. All three
are equivalent and have classifying Deligne-Fedosov class

(7.1) cl(?BT ) = cl(?B) = cl(?GQ) =
1

i
(
1

ν
[ω]− δ

2
).

But all three are distinct. In fact ?BT is of separation of variables type (Wick-
type), ?B is of separation of variables type (anti-Wick-type), and ?GQ neither. For
their Karabegov forms we obtained

(7.2) kf(?BT ) =
−1

ν
ω + ωcan. kf(?B) =

1

ν
ω + F(i ∂∂ log um).

The function um was introduced above as the function on M obtained by evalu-
ating the Bergman kernel along the diagonal in Q×Q.

In addition we have the Bordemann-Waldmann [6] star product which exists
for every Kähler manifold. It is of Wick-type. Its Karabegov form [17] is given
by kf(?BW ) = kf(?oppBW ) = −(1/ν)ω and it has Deligne Fedosov class

(7.3) cl(?BW ) =
1

i
(
1

ν
[ω] +

δ

2
).

Hence, it will be only equivalent to the star products above if the canonical class
of the manifold will be trivial. For compact Riemann surfaces this will exactly be
the case if it is a torus.

Another star product is the standard star product (of anti-Wick type) of
Karabegov ?K with Karabegov form kf(?K) = (1/ν)ω. It can be also obtained
in a modified Bordemann - Waldmann approach by an anti-Wick Fedosov type
construction. Via the formula (3.9) its Deligne-Fedosov class cl(?K) calculates to
(7.1). Hence, it is equivalent to the above three star products.

I like to point out, that the Berezin transform, resp. the defining Karabegov
form can be used to calculate the coefficients of these naturally defined star prod-
ucts. This can be done either directly or with the help of the certain type of graphs
(in the latter case see the work of Gammelgaard [14] and Hua Xu [38],[39]). See
[35, Section 8.4, 9.] for an overview on these techniques.
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