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MULTIPOINT LAX OPERATOR ALGEBRAS.

ALMOST-GRADED STRUCTURE

AND CENTRAL EXTENSIONS

MARTIN SCHLICHENMAIER

Abstract. Recently, Lax operator algebras appeared as a new class of higher genus
current type algebras. Based on I. Krichever’s theory of Lax operators on algebraic curves
they were introduced by I. Krichever and O. Sheinman. These algebras are almost-graded
Lie algebras of currents on Riemann surfaces with marked points (in-points, out-points,
and Tyurin points). In a previous joint article of the author with Sheinman the local
cocycles and associated almost-graded central extensions are classified in the case of one
in-point and one out-point. It was shown that the almost-graded extension is essentially
unique. In this article the general case of Lax operator algebras corresponding to several
in- and out-points is considered. In a first step it is shown that they are almost-graded.
The grading is given by the splitting of the marked points which are non-Tyurin points
into in- and out-points. Next, classification results both for local and bounded cocycles
are shown. The uniqueness theorem for almost-graded central extensions follows. For
this generalization additional techniques are needed which are presented in this article.
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1. Introduction

Lax operator algebras are a recently introduced new class of current type Lie algebras.
In their full generality they were introduced by Krichever and Sheinman in [10]. There
the concept of Lax operators on algebraic curves, as considered by Krichever in [5], was
generalized to g-valued Lax operators, where g is a classical complex Lie algebra. Krichever
[5] extended the conventional Lax operator representation with a rational parameter to
the case of algebraic curves of arbitrary genus. Such generalizations of Lax operators
appear in many fields. They are closely related to integrable systems (Krichever-Novikov
equations on elliptic curves, elliptic Calogero-Moser systems, Baker-Akhieser functions),
see [5], [6]. Another important application appears in the context of moduli spaces of
bundles. In particular, they are related to Tyurin’s result on the classification of framed
semi-stable holomorphic vector bundles on algebraic curves [30]. The classification uses
Tyurin parameters of such bundles, consisting of points γs (s = 1, . . . , ng), and associated
elements αs ∈ Pn−1(C) (where g denotes the genus of the Riemann surface Σ, and n
corresponds to the rank of the bundle). In the following I will not make any reference to
these applications. Beside the above mentioned work the reader might refer to Sheinman
[27], [28] for more background in the case of integrable systems.

Here I will concentrate on the mathematical structure of these algebras. Lax opera-
tor algebras are infinite dimensional Lie algebras of geometric origin and are interesting
mathematical objects. In contrast to the classical genus zero algebras, appearing in Con-
formal Field Theory, they are not graded anymore. In this article we will introduce an
almost-graded structure (see Definition 3.1) for them. Such an almost-grading will be
an indispensable tool. A crucial task for such infinite dimensional Lie algebras is the
construction and classification of central extensions. This is done in the article. We will
concentrate on such central extensions for which the almost-grading can be extended.

In certain respect the Lax operator algebras can be considered as generalizations of the
higher-genus Krichever-Novikov type current and affine algebras, see [7], [24], [25], [22],
[17], [19]. They themselves are generalizations of the classical affine Lie algebras as e.g.
introduced by Kac [3], [4] and Moody [11].
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This article extends the results on the two-point case (see the next paragraph for its
definition) to the multi-point case. As far as the almost-grading in the two-point case is
concerned, see Krichever and Sheinman [10]. For the central extensions in the two-point
case see the joint work of the author with Sheinman [23].

To describe the obtained results we first have to give a rough description of the setup.
Full details will be given in Section 2. Let g be one of the classical Lie algebras 1

gl(n), sl(n), so(n), sp(n) over C and Σ a compact Riemann surface. Let A be a finite
set of points of Σ divided into two disjoint non-empty subsets I and O. Furthermore, let
W be another finite set of points (called weak singular points). Our Lax operator algebra
consists of meromorphic functions Σ → g, holomorphic outside of W ∪ A with possibly
poles of order 1 (resp. of order 2 for sp(n)) at the points in W and certain additional
conditions, depending on g, on the Laurent series expansion there (see e.g. (2.6)). It turns
out [10] that due to the additional condition this set of matrix-valued functions closes to
a Lie algebra g under the point-wise commutator. In case that W = ∅ then g will be
the Krichever-Novikov type current algebra (associated to this special finite-dimensional
Lie algebras). They were extensively studied by Krichever and Novikov, Sheinman, and
Schlichenmaier see e.g. [7], [24], [25], [26], [17], [22], [19]. It has to be pointed out that the
Krichever-Novikov type algebras can be defined for all finite-dimensional Lie algebras g.

If furthermore, the genus of the Riemann surface is zero and A consists only of two
points, which we might assume to be {0} and {∞}, then the algebras will be the usual
classical current algebras. These classical algebras are graded algebras. Such a grading is
used e.g. to introduce highest weight representations, Verma modules, Fock spaces, and
to classify these representations. Unfortunately, the algebras which we consider here will
not be graded. But they admit an almost-grading, see Definition 3.1. As was realized
by Krichever and Novikov [7] for most applications it is a valuable replacement for the
grading. They also gave a method how to introduce it for the two-point algebras of
Krichever-Novikov type.

For the multi-point case of the Krichever-Novikov type algebras such an almost-grading
was given by the author [16], [15], [19], [20], [21], see also [12]. The crucial point is that
the almost-grading will depend on the splitting of A into I and O. Different splittings
will give different almost-gradings. Hence, the multi-point case is more involved than he
two-point case.

For the Krichever-Novikov current algebra g the grading comes from the grading of the
function algebra (to be found in the above cited works of the author). This is due to the
fact, that they are tensor products. If W 6= ∅ the Lax operator algebras are not tensor
products anymore and their almost-grading has to be constructed directly. This has been
done in the two point case by Krichever and Sheinman [10].

Our first result in this article is to introduce an almost-grading of g for the arbitrary
multi-point case. As mentioned above, it will depend in an essential way on the splitting
of A into I ∪O. This is done in Section 3. The construction is much more involved than
in the two-point case.

1As far as G2 is concerned see the recent preprint of Sheinman [29], and the remark at the end of the
introduction.
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Our second goal is to study central extensions ĝ of the Lax operator algebras g. It is
well-known that central extensions are given by Lie algebra two-cocycles of g with values
in the trivial module C. Equivalence classes of central extensions are in 1:1 correspondence
to the elements of the Lie algebra cohomology space H2(g,C). Whereas for the classical
current algebras associated to a finite-dimensional simple Lie algebra g the extension class
will be unique this is not the case anymore for higher genus and even for genus zero in
the multi-point case. But we are interested only in central extensions ĝ which allow us
to extend the almost-grading of g. This reduces the possibilities. The condition for the
cocycle defining the central extension will be that it is local (see (5.13)) with respect to
the almost-grading given by the splitting A = I ∪O. Hence, which cocycles will be local
will depend on the splitting as well.

If g is simple then the space of local cohomology classes for g will be one-dimensional.
For gl(n) we have to add another natural property for the cocycle meaning that it is
invariant under the action of the vector field algebra L (see (5.3)). In this case the space
of local and L-invariant cocycle classes will be two-dimensional.

The action of the vector field algebra L on g is given in terms of a certain connection
∇(ω), see Section 4.2. With the help of the connection we can define geometric cocycles

γ1,ω,C(L,L
′) =

1

2πi

∫

C

tr(L · ∇(ω)L′),(1.1)

γ2,ω,C(L,L
′) =

1

2πi

∫

C

tr(L) · tr(∇(ω)L′),(1.2)

where C is an arbitrary cycle on Σ avoiding the points of possible singularities. The
cocycle γ2,ω,C will only be different from zero in the gl(n) case.

Special integration paths are circles Ci around the points in I, resp. around the points
in O, and a path CS separating the points in I form the points in O.

Our main result is Theorem 6.7 about uniqueness of local cocycles classes and that the
cocycles are given by integrating along CS. The proof presented in Section 6 is based on
Theorem 6.4 which gives the classification of bounded (from above) cohomology classes
(see (5.12)). The bounded cohomology classes constitute a subspace of dimension N ,
(resp. 2N for gl(n)) where N = #I and the integration is done over the Ci, i = 1, . . . , N .

The proof of Theorem 6.4 is given in Section 7 and Section 8. We use recursive tech-
niques as developed in [18] and [19]. Using the boundedness and L-invariance we show
that such a cocycle is given by its values at pairs of homogeneous elements for which
the sum of their degrees is equal to zero. Furthermore, we show that an L-invariant and
bounded cocycle will be uniquely fixed by a certain finite number of such cocycle values.
A more detailed analysis shows that the cocycles are of the form claimed. In Section 8
we show that in the simple Lie algebra case in each bounded cohomology class there is
a representing cocycle which is L-invariant. For this we use the internal structure of the
Lie algebra g related to the root system of the underlying finite dimensional simple Lie
algebra g, and the almost-gradedness of g. Recall that in the classical case g ⊗ C[z, z−1]
the algebra is graded. In this very special case the chain of arguments gets simpler and is
similar to the arguments of Garland [1].
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As already mentioned above, in joint work with Sheinman [23] the two-point case was
considered. This article extends the result to the multi-point case. Unfortunately, it is
not an application of the results of the two-point case. In this more general context the
proofs have to be done anew. (The two-point case will finally be a special case.) Only at
few places references to proofs in [23] can be made.

I like to thank Oleg Sheinman for extensive discussions which were very helpful during
writing this article. After I finished this work he succeeded [29] to give a definition of a
Lax operator algebra for the exceptional Lie algebra G2 in such a way, that all properties
and statements presented here will also be true in this case. Hence, there is now another
element in the list of Lax operator algebra associated to simple Lie algebras.

2. The algebras

2.1. Lax operator algebras.

Let g be one of the classical matrix algebras gl(n), sl(n), so(n), sp(2n), or s(n), where
the latter denotes the algebra of scalar matrices. Our algebras will consist of certain g-
valued meromorphic functions, forms, etc, defined on Riemann surfaces with additional
structures (marked points, vectors associated to this points, ...).

To become more precise, let Σ be a compact Riemann surface of genus g (g arbitrary)
and A a finite subset of points in Σ divided into two non-empty disjoint subsets

(2.1) I := {P1, P2, . . . , PN}, O := {Q1, Q2, . . . , QM}

with #A = N +M . The points in I are called incoming-points the points in O outgoing-
points.

To define Lax operator algebras we have to fix some additional data. Fix K ∈ N0 and
a collection of points

(2.2) W := {γs ∈ Σ \ A | s = 1, . . . ,K}.

We assign to every point γs a vector αs ∈ Cn (resp. from C2n for sp(2n)). The system

(2.3) T := {(γs, αs) ∈ Σ× Cn | s = 1, . . . ,K}

is called Tyurin data. We will be more general than in our earlier joint paper [23] with
Sheinman, not only in respect that we allow for A more than two points also that our K
is not bound to be n · g. Even K = 0 is allowed. In the latter case the Tyurin data will
be empty.

Remark. For K = n · g and for generic values of (γs, αs) with αs 6= 0 the tuples of pairs
(γs, [αs]) with [αs] ∈ Pn−1(C) parameterize framed semi-stable rank n and degree n g
holomorphic vector bundles as shown by Tyurin [30]. Hence, the name Tyurin data.

We fix local coordinates zl, l = 1, . . . , N centered at the points Pl ∈ I and ws centered
at γs, s = 1, . . . ,K. In fact nothing will dependent on the choice of ws. This is essentially
also true for zl. Only its first jet will be used to normalize certain basis elements uniquely.

We consider g-valued meromorphic functions

(2.4) L : Σ → g,
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which are holomorphic outside W ∪ A, have at most poles of order one (resp. of order
two for sp(2n)) at the points in W , and fulfill certain conditions at W depending on T ,
A, and g. These conditions will be described in the following. The singularities at W are
called weak singularities. These objects were introduced by Krichever [5] for gl(n) in the
context of Lax operators for algebraic curves, and further generalized by Krichever and
Sheinman in [10]. The conditions are exactly the same as in [23]. But for the convenience
of the reader we recall them here.

For gl(n) the conditions are as follows. For s = 1, . . . ,K we require that there exist
βs ∈ Cn and κs ∈ C such that the function L has the following expansion at γs ∈W

(2.5) L(ws) =
Ls,−1

ws

+ Ls,0 +
∑

k>0

Ls,kw
k
s ,

with

(2.6) Ls,−1 = αsβ
t
s, tr(Ls,−1) = βtsαs = 0, Ls,0 αs = κsαs.

In particular, if Ls,−1 is non-vanishing then it is a rank 1 matrix, and if αs 6= 0 then it is
an eigenvector of Ls,0.

The requirements (2.6) are independent of the chosen coordinates ws and the set of all
such functions constitute an associative algebra under the point-wise matrix multiplication,
see [10]. The proof transfers without changes to the multi-point case. For the convenience
of the reader and for illustration we will nevertheless recall the proof in an appendix to this
article. We denote this algebra by gl(n). Of course, it will depend on the Riemann surface
Σ, the finite set of points A, and the Tyurin data T. As there should be no confusion,
we prefer to avoid cumbersome notation and will just use gl(n). The same we do for the
other Lie algebras.

Note that if one of the αs = 0 then the conditions at the point γs correspond to the
fact, that L has to be holomorphic there. We can erase the point from the Tyurin data.
Also if αs 6= 0 and λ ∈ C, λ 6= 0 then α and λα induce the same conditions at the point
γs. Hence only the projective vector [αs] ∈ Pn−1(C) plays a role.

The splitting gl(n) = s(n)⊕ sl(n) given by

(2.7) X 7→

(
tr(X)

n
In , X −

tr(X)

n
In

)
,

where In is the n× n-unit matrix, induces a corresponding splitting for the Lax operator
algebra gl(n):

(2.8) gl(n) = s(n)⊕ sl(n).

For sl(n) the only additional condition is that in (2.5) all matrices Ls,k are trace-less. The
conditions (2.6) remain unchanged.

For s(n) all matrices in (2.5) are scalar matrices. This implies that the corresponding
Ls,−1 vanish. In particular, the elements of s(n) are holomorphic at W . Also Ls,0, as a
scalar matrix, has every αs as eigenvector. This means that beside the holomorphicity
there are no further conditions. And we get s(n) ∼= A, where A be the (associative)
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algebra of meromorphic functions on Σ holomorphic outside of A. This is the (multi-
point) Krichever-Novikov type function algebra. It will be discussed further down in
Section 3.2.

In the case of so(n) we require that all Ls,k in (2.5) are skew-symmetric. In particular,
they are trace-less. Following [10] the set-up has to be slightly modified. First only those
Tyurin parameters αs are allowed which satisfy αt

sαs = 0. Then the first requirement in
(2.6) is changed to obtain

(2.9) Ls,−1 = αsβ
t
s − βsα

t
s, tr(Ls,−1) = βtsαs = 0, Ls,0 αs = κsαs.

For sp(2n) we consider a symplectic form σ̂ for C2n given by a non-degenerate skew-
symmetric matrix σ. The Lie algebra sp(2n) is the Lie algebra of matrices X such that
Xtσ + σX = 0. The condition tr(X) = 0 will be automatic. At the weak singularities we
have the expansion

(2.10) L(zs) =
Ls,−2

w2
s

+
Ls,−1

ws
+ Ls,0 + Ls,1ws +

∑

k>1

Ls,kw
k
s .

The condition (2.6) is modified as follows (see [10]): there exist βs ∈ C2n, νs, κs ∈ C such
that

(2.11) Ls,−2 = νsαsα
t
sσ, Ls,−1 = (αsβ

t
s + βsα

t
s)σ, βs

tσαs = 0, Ls,0 αs = κsαs.

Moreover, we require

(2.12) αt
sσLs,1αs = 0.

Again under the point-wise matrix commutator the set of such maps constitute a Lie
algebra.

Theorem 2.1. Let g be the space of Lax operators associated to g, one of the above
introduced finite-dimensional classical Lie algebras. Then g is a Lie algebra under the
point-wise matrix commutator. For g = gl(n) it is an associative algebra under point-wise
matrix multiplication.

The proof in [10] extends without problems to the multi-point situation (see the appen-
dix for an example).

These Lie algebras are called Lax operator algebras.

2.2. Krichever-Novikov algebras of current type.

Let A be the (associative) algebra of meromorphic functions on Σ holomorphic outside
of A. Let g be an arbitrary finite-dimensional Lie algebra. On the tensor product g ⊗A
a Lie algebra structure is given by

(2.13) [x⊗ f, y ⊗ g] := [x, y]⊗ (f · g), x, y ∈ g, f, g ∈ A.

The elements of this Lie algebra can be considered as the set of those meromorphic maps
Σ → g, which are holomorphic outside of A. These algebras are called (multi-point)
Krichever Novikov algebras of current type, see [7], [8], [9], [24], [25], [17], [19].

If the genus of the surface is zero and if A consists of two points, the Krichever-Novikov
current algebras are the classical current (or loop algebra) g⊗ C[z−1, z].



8 M. SCHLICHENMAIER

In the case that in the defining data of the Lax operator algebra there are no weak
singularities, resp. all αs = 0, then for the g-valued meromorphic functions the require-
ments reduce to the condition that they are holomorphic outside of A. Hence, we obtain
(for these g) the Krichever-Novikov current type algebra. But note that not for all finite-
dimensional g we have an extension of the notion Krichever-Novikov current to a Lax
operator algebra.

3. The almost-graded structure

3.1. The statements.

For the construction of certain important representations of infinite dimensional Lie
algebras (Fock space representations, Verma modules, etc.) a graded structure is usually
assumed and heavily used. The algebras we are considering for higher genus, or even
for genus zero with many marked points were poles are allowed, cannot be nontrivially
graded. As realized by Krichever and Novikov [7] a weaker concept, an almost-grading,
will be enough to allow to do the above mentioned constructions.

Definition 3.1. A Lie algebra V will be called almost-graded (over Z) if there exists
finite-dimensional subspaces Vm and constants S1, S2 ∈ Z such that

(1) V =
⊕

m∈Z Vm,
(2) dimVm <∞, ∀m ∈ Z,

(3) [Vn, Vm] ⊆
∑n+m+S2

h=n+m+S1
Vh.

If there exists an R such that dimVm ≤ R for all m it is called strongly almost-graded.

Accordingly, an almost-grading can be defined for associative algebras and for modules
over almost-graded algebras.

We will introduce for our multi-point Lax operator in the following such a (strong)
almost-graded structure. The almost-grading will be induced by the splitting of our set
A into I and O. Recall that I = {P1, P2, . . . , PN}. In the Krichever Novikov function,
vector field, and current algebra case this was done by Krichever and Novikov [7] for
the two-point situation. In the two-point Lax operator algebra it was done by Krichever
and Sheinman [10]. In the two-point case there is only one splitting possible. This is in
contrast to the multi-point case which turns out to be more difficult. The multi-point
Krichever-Novikov algebras of different types were done by Schlichenmaier [16],[15]. We
will recall it in Section 3.2.

In Section 3.3 we will single out for each m ∈ Z a subspace gm of g, called (quasi-
)homogeneous subspace of degree m. The degree is essentially related to the order of the
elements of g at the points in I. We will show

Theorem 3.2. Induced by the splitting A = I ∪O the (multi-point) Lax operator algebra
g becomes a (strongly) almost-graded Lie algebra

(3.1)

g =
⊕

m∈Z

gm, dim gm = N · dim g

[gm, gn] ⊆
n+m+S⊕

h=n+m

gh,
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with a constant S independent of n and m.

In addition we will show

Proposition 3.3. Let X be an element of g. For each (m, s), m ∈ Z and s = 1, . . . , N
there is a unique element Xm,s in gm such that locally in the neighbourhood of the point
Pp ∈ I we have

(3.2) Xm,s|(zp) = Xzmp · δps +O(zm+1
p ), ∀p = 1, . . . , N.2

Proposition 3.4. Let {Xu | u = 1, . . . ,dim g} be a basis of the finite dimensional Lie
algebra g. Then

(3.3) Bm := {Xu
m,p, u = 1, . . . ,dim g, p = 1, . . . , N}

is a basis of gm, and B = ∪m∈Z Bm is a basis of g.

Proof. By (3.1) we know that dim gm = N · dim g. The elements in Bm are pairwise
different. Hence, we have #Bm = N · dim g elements {Xu

m,p} in gm. For being a basis it
suffices to show that they are linearly independent. Take

∑
u

∑
p α

u
m,pX

u
m,p = 0 a linear

combination of zero. We consider the local expansions at the point Ps, for s = 1, . . . , N .
From (3.2) we obtain

0 = (
∑

u

αu
m,sX

u)zms +O(zm+1
s ).

Hence 0 =
∑

u α
u
m,sX

u. As the Xu are a basis of g this implies that aum,s = 0 for all u, s.
That B is a basis of the full g follows from the direct sum decomposition in (3.1). �

It is very convenient to introduce the associated filtration

(3.4) g(k) :=
⊕

m≥k

gm, g(k) ⊆ g(k′), k ≥ k′.

Proposition 3.5.

(a) g =
⋃

m∈Z g(m),

(b) [g(k), g(m)] ⊆ g(k+m),

(c) g(m)/g(m+1)
∼= gm.

(d) The equivalence classes of the elements of the set Bm (see (3.3)) constitute a basis for
the quotient space g(m)/g(m+1).

Proof. Equation (3.1) implies directly (a), (b), and (c). Part (d) follows from Proposi-
tion 3.4. �

There is another filtration.

(3.5) g′(m) := {L ∈ g | ordPs(L) ≥ m, s = 1, . . . , N}.

Note that the elements L are meromorphic maps from Σ to g, hence it makes sense to
talk about the orders of the component functions with respect to a basis. The minimum
of these orders is meant in (3.5).

2The symbol δps denotes the Kronecker delta, which is equal to 1 if s = p, otherwise 0.
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Proposition 3.6.

(a) g =
⋃

m∈Z g
′
(m).

(b) The two filtrations coincide, i.e.

g(m) = g′(m), ∀m ∈ Z.

Proof. Let L ∈ g, then as g-valued meromorphic functions the pole orders of the component
functions at the points Ps are individually bounded. As there are only finitely many, there
is a bound k for the pole order, hence L ∈ g(−k). This shows (a) and consequently that

(g′(m)) is a filtration.

By Proposition 3.4 we know that B is a basis of g. Let L ∈ g′(m). Every element of L ∈ g

will be a finite linear combination of the basis elements. The elements of Bk have exact
order k and are linearly independent. Moreover, with respect to a fixed basis element of
the finite dimensional Lie algebra we have N basis elements in Bk with orders given by
(3.2). Hence the individual orders at the points Ps cannot increase with non-trivial linear
combinations. Hence only k ≥ m can appear in the combination. This shows L ∈ g(m).

Vice versa, obviously all elements from Bk for k ≥ m lie in the set (3.4). Hence, we have
equality. �

The second description of the filtration has the big advantage, that it is very naturally
defined. The only data which enters is the splitting of the points A into I ∪ O. Hence,
it is canonically given by I. In contrast, it will turn out that in the multi-point case if
#O > 1 there might be some choices necessary to fix gm, like numbering the points in O,
resp. even some different rules for the points in O. But via Proposition 3.6 we know that
the induced filtration (3.4) will not depend on any of these choices.

Here we have to remark that we supplied above a proof of Proposition 3.6. But it
was based on results (i.e. Theorem 3.2 and Proposition 3.3) which we only will prove in
Section 3.3. Our starting point there will be the filtration g′(m), hence we cannot assume

equality from the very beginning.

We have the very important fact

Proposition 3.7. Let Xk,s and Ym,p be the elements in gk and gm corresponding to
X,Y ∈ g respectively then

(3.6) [Xk,s, Ym,p] = [X,Y ]k+m,sδ
p
s + L,

with [X,Y ] the bracket in g and L ∈ g(k+m+1).

Proof. Using for Xk,s and Ym,p the expression (3.2) we obtain

[Xk,s, Ym,p]|(zt) = [X,Y ]zk+m
s δpt δ

s
t +O(zk+m+1

t ),

for every t. Hence, the element

[Xk,s, Ym,p]− ([X,Y ])k+m,sδ
p
s

has at all points in I an order ≥ k +m + 1. With (3.5) and Proposition 3.6 we obtain
that it lies in g(k+m+1), which is the claim. �
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3.2. The function algebra A and the vector field algebra L.
Before we supply the proofs of the statements in Section 3.1 we want to introduce those

Krichever-Novikov type algebras which are of relevance in the following. We start with
the Krichever-Novikov function algebra A and the Krichever-Novikov vector field algebra
L. Both algebras are almost-graded algebras

(3.7) A =
⊕

m∈Z

Am, L =
⊕

m∈Z

Lm,

where the almost-grading is induced by the same splitting of A into I ∪ O as used for
defining the Lax operator algebras. Recall that I = {P1, . . . , PN} and O = {Q1, . . . , QM}.

Let A, respectively L, be the space of meromorphic functions, respectively of meromor-
phic vector fields on Σ, holomorphic on Σ \ A. In particular, they are holomorphic also
at the points in W . Obviously, A is an associative algebra under the product of functions
and L is a Lie algebra under the Lie bracket of vector fields. In the two point case their
almost-graded structure was introduced by Krichever and Novikov [7]. In the multi-point
case they were given by Schlichenmaier [15], [16]. The results will be described in the
following.

The homogeneous spaces Am have as basis the set of functions {Am,s, s = 1, . . . , N}
given by the conditions

(3.8) ordPi
(Am,s) = (n+ 1)− δsi , i = 1, . . . , N,

and certain compensating conditions at the points in O to make it unique up to multipli-
cation with a scalar. For example, in case that #O =M = 1 and the genus is either 0, or
≥ 2, and the points are in generic position, then the condition is (with the exception for
finitely many m)

(3.9) ordQM
(Am,s) = −N · (n+ 1)− g + 1.

To make it unique we require for the local expansion at the Ps (with respect to the chosen
local coordinate zs)

(3.10) An,s|(zs) = zns +O(zn+1
s ).

For the vector field algebra Lm we have the basis {em,s | s = 1, . . . , N}, where the
elements em,s are given by the condition

(3.11) ordPi
(em,s) = (n + 2)− δsi , i = 1, . . . , N,

and corresponding compensating conditions at the points in O to make it unique up to
multiplication with a scalar. In exactly the same special situation as above the condition
is

(3.12) ordQM
(em,s) = −N · (n+ 2)− 3(g − 1).

The local expansion at Ps is

(3.13) en,s|(zs) = (zn+1
s +O(zn+2

s ))
d

dzs
.
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There are constants S1 and S2 (not depending on m,n) such that

(3.14) Ak · Am ⊆
k+m+S1⊕

h=k+m

Ah, [Lk,Lm] ⊆
k+m+S2⊕

h=k+m

Lh.

This says that we have almost-gradedness. In what follows we will need the fine structure
of the almost-grading

Ak,s · Am,t = Ak+m,s δ
t
s + Y, Y ∈

k+m+S1∑

h=k+m+1

Ah,(3.15)

[ek,s, em,t] = (m− k) ek+m,s δ
t
s + Z, Z ∈

k+m+S2∑

h=k+m+1

Lh.(3.16)

Again we have the induced filtrations A(m) and L(m).

The elements of the Lie algebra L act on A as derivations. This makes the space A an
almost-graded module over L. In particular, we have

(3.17) ek,s .Am,r = mAk+m δ
r
s + U, U ∈

k+m+S3∑

h=k+m+1

Ah,

with a constant S3 not depending on k and m.

Induced by the almost-grading ofA = ⊕mAm we get an almost-grading for the Krichever-
Novikov type algebra of current type by setting

(3.18) g⊗A =
⊕

m∈Z

(g⊗A)m with (g ⊗A)m := g⊗Am, ∀m ∈ Z.

3.3. The proofs.

Readers being in a hurry, or readers only interested in the results may skip this rather
technical section (involving Riemann-Roch type arguments) during a first reading and
jump directly to Section 4.

Recall the definition

(3.19) g′(m) := {L ∈ g | ordPs(L) ≥ m, s = 1, . . . , N}

of the filtration. We will only deal with this filtration in this section, hence for notational
reason we will drop the ′ in the following. Finally, the primed and unprimed will coincide.

Proposition 3.8. Given X ∈ g, X 6= 0, s = 1, . . . , N , m ∈ Z then there exists at least
one Xm,s such that

(3.20) Xm,s|(zp) = Xzms δsp +O(zm+1
p ).

The proof is based on the theorem of Riemann-Roch. The technique will be used all-
over in this section. Hence, we will introduce some notation, before we proceed with the
proof. For any m ∈ Z we will consider certain divisors

(3.21) Dm = (Dm)I +DW + (Dm)O.
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Where

(3.22)

(Dm)I = −m
N∑

s=1

Ps,

(Dm)O =

M∑

s=1

as,mQs, as,m ∈ Z

DW = ǫ
K∑

s=1

γs, ǫ = 1, for gl(n), sl(n), so(n), ǫ = 2, for sp(n).

Recall that the genus of Σ is g. Denote by K a canonical divisor. Set L(D) the space
consisting of meromorphic functions u on Σ for which we have for their divisors (u) ≥ −D.
Riemann-Roch says

(3.23) dimL(D)− dimL(K −D) = degD − g + 1.

In particular, we have

(3.24) dimL(D) ≥ degD − g + 1.

We have several cases which we will need in the following

(1) If degD ≥ 2g − 1 then we have equality in (3.24).
(2) If D is a generic divisor then also for g ≤ degD ≤ 2g − 2 we have equality.
(3) If D ≥ 0 and D is generic we have dimL(D) = 1 for 0 ≤ degD ≤ g − 1.
(4) IfD 6≥ 0 (meaning that there is at least one point in the support of D with negative

multiplicity) and D is generic we have dimL(D) = 0 for 0 ≤ degD ≤ g − 1.
(5) For g = 0 every divisor is generic and we have equality in (3.24) as long as the

right hand side is ≥ 0, i.e. dimL(D) = max(0,degD + 1).

See e.g. [13] for informations on divisors, Riemann-Roch and their applications, see also
[2].

In case that u = (u1, u2, . . . , ur) is a vector valued function we define L(D) to be the
vector space of vector valued functions with (u) ≥ −D. This means that (ui) ≥ −D for
all i = 1, . . . , r. Now all dimension formulas have to be multiplied by r:

(3.25) dimL(D) ≥ r(degD − g + 1).

We apply this to our Lax operator algebra g by considering the component functions ui,
i = 1, . . . , r = dim g with respect to a fixed basis. We set

(3.26) L′(D) := {u ∈ L(D) | u gives an element of g} ⊆ L(D).

In L′(Dm) we have to take into account that at the weak singular points γs we have H
additional linear conditions for the elements of the solution space L(Dm) to be fulfilled.
They are formulated in terms of the corresponding αs for some finite part of the Laurent
series. In total this are finitely many conditions. In case that the αs are generic they will
exactly compensate for the possible poles at γs [10]. But for the moment we still consider
them to be arbitrary.
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By the very definition of the filtration we always have

(3.27) g(m) = L′((Dm)I) and g(m) ≥ L′(Dm).

Proof. (Proposition 3.8) We start with a divisor Dm by choosing the part (Dm)O = T such
that the degree of the divisors Dm and Dm−

∑
Pi is still big enough such that for both the

case (1) of the Riemann-Roch equality (3.25) is true and that dimL(D) = l ≥ r(N+1)+H.
Hence, after applying the H linear conditions we have dimL′(D) ≥ r(N + 1). Let Ps be
a fixed point from I. We consider

(3.28) D′
m = Dm −

N∑

i=1

Pi, D′′
m = D′

m + Ps.

This yields

(3.29) dimL′(D′
m) = l − rN, dimL′(D′′

m) = l − rN + r.

The element in L′(D′
m) have orders ≥ (m+ 1) at all points in I. The elements in L′(D′′

m)
have orders ≥ (m+ 1) at all points Pi, i 6= s and orders ≥ m at Ps. From the dimension
formula (3.29) we conclude that there exists r elements which have exact order m at Ps

and orders ≥ (m + 1) at the other points in I. This says that there is for every basis
element Xu in the Lie algebra g an element Xu

m,s ∈ g which has exact order m at the
point Ps and order higher than m at the other points in I and can be written there as
required in (3.20). By linearity we get the statement for all X ∈ g. �

Remark. 1. By modifying the divisor T in its degree we can even show that there exists
elements such that the orders of Xm,s at the points Pp, p 6= s are equal to m+ 1.
2. We remark that for this proof no genericity arguments, neither with respect to the
points A and W , nor with respect to the parameter αs were used. Hence, the statement
is true for all situations.
3. In the very definition of Xm,s the local coordinate zs enters. In fact it only depends on
the first order jet of the coordinate, two different elements will just differ by a rescaling.
4. The elements Xm,s are highly non-unique. For introducing the almost-grading we will
have to make them essentially unique by trying to find a divisor T as small as possible
but such that the statement is still true. Further down, we will come back to this.

Proposition 3.9. Let Xu, u = 1, . . . ,dim g be a basis of g and

(3.30) Xu
m,s, u = 1, . . . ,dim g, s = 1, . . . , N, m ∈ Z

any fixed set of elements chosen according to Proposition 3.8 then

(a) These elements are linearly independent.

(b) The set of classes [Xu
m,s], u = 1, . . . ,dim g, s = 1, . . . , N will constitute a basis of the

quotient g(m)/g(m+1).

(c) dim g(m)/g(m+1) = N · dim g.

(d) The classes of the elements Xu
m,s will not depend on the elements chosen.
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Proof. By the local expansion it follows like in the proof of Proposition 3.4 that the
elements (3.30) are linearly independent, hence (a). Furthermore, by ignoring higher
orders, i.e. elements from g(m+1) they stay linearly independent. Hence (b), and (c)

follows. Part (d) is true by the very definition of the elements. �

Given X ∈ g we will denote for the moment by Xm,s any element fulfilling the conditions
in Proposition 3.8.

As the proof of Proposition 3.7 stays also valid for these elements we have

Proposition 3.10. The algebra g is a filtered algebra with respect to the introduced filtra-
tion (g(m)) i.e.

(3.31) [g(m), g(k)] ⊆ g(m+k).

Moreover,

(3.32) [Xk,s, Ym,p] = [X,Y ]k+m,sδ
p
s + L, L ∈ g(m+k+1).

Our next goal is to introduce the homogeneous subspaces gm. A too naive method
would be to take the linear span of a fixed set of elements (3.30) for gm. The condition of
almost-gradedness with respect to the lower bound would be fulfilled by m + k, but not
necessarily for the upper bound. To fix this we have to place more strict conditions on the
pole orders at O, and we have to specify the divisor (Dm)O in a coherent manner (with
respect to m). By our recipe the elements will become essentially unique in the generic
situation at least for nearly all m. For non-generic αs it might be necessary to modify the
prescription for individual component functions. But all these modifications will change
only the upper bound by a constant.

Remark. Before we advance we recall that for A and for the usual Krichever-Novikov
current algebra g⊗A we have an almost-graded structure.
1. As explained in Section 2 we have the direct sum decomposition (2.8). Moreover, s(n) ∼=
A. Hence the scalar part is almost-graded and fulfills Theorem 3.2 and Proposition 3.3.
If we show the statements for sl(n) then it will follow for gl(n). Hence, it is enough to
consider in the following the case of g simple.
2. Moreover, if the Tyurin data is empty (or all αs = 0) then our Lax operator algebras
reduce to the Krichever-Novikov current algebras. For those we have the statements.
Hence, it is enough to consider Lax operator algebras with non-empty Tyurin data. The
reader might ask why we make such a different treatment. In fact, for non-empty Tyurin
data the proof will need less case distinctions.

We will now give the general description for the generic situation for g simple, and
proof the claim about almost-gradedness in detail. For the non-generic situation we will
show where things have to be modified.

Recall that for the divisor Dm we had the decomposition (3.21). The terms (Dm)I and
DW stay as above. For (Dm)O we require

(3.33) (Dm)O =
M∑

i=1

(aim+ bm,i)Qi,
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with ai, bm,i ∈ Q such that aim + bm,i ∈ Z, ai > 0 and that there exists a B such that
|bm,i| < B,∀m ∈ Z, i = 1, . . . ,M . Furthermore,

(3.34)
M∑

i=1

ai = N,
M∑

i=1

bm,i = N + g − 1, (Dm+1)O > (Dm)O.

For the degrees we calculate

(3.35) deg((Dm)O) = m ·N + (N + g − 1), deg((Dm+1)O) = deg((Dm)O) +N.

Example. 1. For M = 1 we have the unique solution

(3.36) (Dm)O = (N ·m+ (N + g − 1)QM .

2. For N ≥M the prescription

(3.37) (Dm)O = (m+ 1)

M−1∑

j=1

Qj +
(
(N −M + 1)(m + 1) + g − 1

)
QM

will do. Apart from the DW the corresponding divisor Dm was introduced in [15] where
the almost-grading in case of multi-point Krichever-Novikov algebras and tensors has been
considered for the first time (see also [12]).
3. In [15] also prescriptions for the case N < M were given. We will not reproduce it
here.

Hence in all cases we can find such divisors.
Now we set

(3.38) gm := {L ∈ g |(L) ≥ −Dm}.

Proposition 3.11.

(a) dim gm = N dim g.

(b) A basis of gm is given by elements Xu
m,s, u = 1, . . . ,dim g, s = 1, . . . , N fulfilling the

conditions

(3.39) Xu
m,s|

(zp) = Xuzms δsp +O(zm+1
p ).

Proof. We set r := dim g. First we deal with the generic situation. As explained above at
the weak singular points we have exactly as much relations as we get parameters by the
poles. Hence for the calculation of dimL′(D) the contribution of the degree of DW (which
is ǫ ·K) will be canceled by the relations (which are r · ǫ ·K). Here ǫ is equal to 1 or 2,
depending on g. For the degree of Dm we calculate

(3.40) degDm = g + (N − 1) + ǫK ≥ g.

We stay in the region where equality for (3.25) is true and calculate

(3.41) dimL′(Dm) = dimL(Dm)− ǫrK = rN + rǫK − ǫrK = rN.

As by definition gm = L′(Dm) we get (a).

Next we consider D′
m = Dm −

∑N
i=1 Pi. For its degree we calculate deg(Dm −

∑N
i=1 Pi) =



MULTIPOINT LAX OPERATOR ALGEBRAS 17

g − 1 + ǫK. As K ≥ 1 we are still in the domain where we have equality for Riemann-
Roch. Hence dimL′(D′

m) = 0. Now for D′′
m = D′

m + Ps we calculate dimL′(D′′
m) = r.

This shows that for every basis element Xu of g there exists up to multiplication with a
scalar a unique element Xu

m,s ∈ gm which has the local expansion

(3.42) Xu
m,s|

(zp) = Xuδpszp +O(zm+1
p ).

Hence, (b).
In the non-generic case we have to change the pole orders in the definition of the divisor
part (Dm)O in a minimal way by adding or subtracting finitely many points to reach the
situation such that we obtain exactly the dimension formula and existence of the basis of
the required type. We have to take care that the number of changes maximally needed will
be bounded independent of m. In fact this number is bounded by the number of points
Q from O needed to add to the divisor Dm of the generic situation (which is of degree
N + g− 1+ ǫK) to reach a divisor D′

m with degD′
m ≥ 2g− 1+H, where H is the number

of relations for the αs. �

Proposition 3.12.

(3.43) g =
⊕

m∈Z

gm.

Proof. The elements Xu
m,s introduced as the basis elements in gm are elements of the

type of Proposition 3.8 with respect to the grading. By Proposition 3.9 they stay linearly
independent even if we considered allm’s together, as their classes are linearly independent.
Hence, the sum on the r.h.s. of (3.43) is a direct sum.
To avoid to take care of special adjustments to be done for the non-generic situations we
consider m≫ 0 and the divisor

(3.44) Em := −(Dm)I +DW + (Dm)O = m

N∑

i=1

Pi +DW + (Dm)O,

where (Dm)O is the divisor used for fixing the basis elements in gm, see (3.33). For its
degree we have

(3.45) degEm = 2mN + (N + g − 1) + ǫK.

For m ≫ 0 we are in the region where (3.25) is an equality. Hence, after subtraction the
relations we get

(3.46) dimL′(Em) = dim g · ((2m+ 1)N) .

The basis elements

(3.47) Xu
k,s, u = 1, . . . ,dim g, s = 1, . . . , N, −m ≤ k ≤ m

are in L′(Em). This is shown by considering the orders at I and O. For I it is obvious. For
O we have to use from (3.34) the fact that (D(k+1))O > (Dk)O. Hence, −(Dm)O is a lower
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bound for the O-part of the divisors for the element (3.47). But these are (2m+1)·N ·dim g

linearly independent elements. Hence,

(3.48) L′(Em) =
m⊕

k=−m

gk.

An arbitrary element L ∈ g has only finite pole orders at the points in I and O. Hence,
there exists an m such that L ∈ L′(Em). This is again obvious for the points in I. For
the points in O we use that by the conditions for (Dm)O, see (3.33) for all i = 1, . . . ,M
we have that ai > 0. Hence every pole order at O will be superseded by a (Dm)O with m
suitably big. This shows the claim. �

Proposition 3.13. There exist a constant S independent of n and m such that

(3.49) [gm, gk] ⊆
m+k+S⊕

h=m+k

gh.

Proof. We will give the proof for the generic case (and g simple) first and then point out
the modification needed for the general situation. Let L ∈ [gm, gk] then

(3.50) (L) ≥ −(Dm +Dk)I −DW − (Dm +Dk)O

(observe that DW does not redouble here). We consider the divisors Dh. Recall the
formula (3.33). As all ai > 0 there exists an h0 such that ∀h ≥ h0 we have

(3.51) (Dh)O ≥ (Dm +Dk)O

Hence, there exists also a smallest h ∈ Z such that (3.51) is still true. We call this hmax.
Again by (3.34) hmax ≥ m+ k. Now we consider the divisor

(3.52) Em = (Dm +Dk)I +DW + (Dhmax
)O.

From (3.35) we calculate

(3.53) deg((Dhmax)O) = deg((Dm +Dk)O) + (hmax − (m+ k))N.

Hence,

(3.54) deg(Em) = −(m+ k)N + ǫK + hmax ·N + (N + g − 1).

As deg(Em) ≥ g and under the assumption of genericity we stay in the region where

(3.55) dimL′(Em) = deg g · (hmax − (m+ k) + 1)N.

As in the proof of Proposition 3.12 we get that the elements (3.47) for m+ k ≤ h ≤ hmax

lie in L′(Em). They are linearly independent, hence

(3.56) L′(Em) =

hmax⊕

h=n+m

gh.

By (3.50) the L, we started with, lies also in L′(Em) and consequently also on the right
hand side of (3.56).
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To show almost-grading we have to show that there exists an S (independent of m and k
such that hmax = m+ k + S. The relation (3.51) can be rewritten as

(3.57) aih+ bh,i ≥ ai(m+ k) + bm,i + bk,i, ∀i = 1, . . . ,M.

This rewrites to

(3.58) h ≥ (m+ k) +
bm,i + bk,i − bh,i

ai
, ∀i = 1, . . . ,M.

The minimal h for which this is true is

(3.59) hmax = (m+ k) + min
i=1,...,M

⌈
bm,i + bk,i − bh,i

ai
⌉,

where for any real number x the ⌈x⌉ denotes the smallest integer ≥ x. As our |bm,i| are
bounded uniformly by B the 3.term in (3.59) will be uniformly bounded by a constant S
too. Hence, we get almost-grading. In the case of non-generic points and αs’s the divisors
at O have to be modified by finitely many modifications. Hence the constant S has to be
adapted by adding a finite constant to it. But still everything remains almost-graded. �

From the proof we can even calculate hmax if needed. As an example we give

Corollary 3.14. In the generic simple Lie algebra case for N ≥ M with the standard
prescription (3.37) we have hmax = n+m+ S with

(3.60) S =





0, g = 0, N =M = 1,

1, g = 0, M > 1,

1, g = 1

1 + ⌈ g−1
N−M+1⌉, g ≥ 2.

Proof. For the standard prescription we have

(3.61)
ai = 1, i = 1, . . . ,M − 1, aM = N −M + 1,

bi = bm,i = 1, i = 1, . . . ,M − 1, bM = bm,M = N −M + g.

Hence,

(3.62) S = max
i=1,...,M

⌈
bi
ai
⌉.

which yields the result. �

Now we are ready to collect the results of Propositions 3.11, 3.12 and 3.13. The state-
ments are exactly the statements both of Theorem 3.2 and Proposition 3.3. All statements
of Section 3.1 are now shown to be true. In particular, now we know that both filtrations
(3.5) and (3.4) coincide. Hence, (3.4) is also canonically defined by the splitting of A into
I and O.

A Lie algebra V is called perfect if V = [V,V]. Simple Lie algebras are of course perfect.
The usual Krichever-Novikov current algebras g for g simple are perfect too [19, Prop.
3.2]. Lax operator algebras are not necessarily perfect (at least we do not have a proof of
it). Lemma 3.15 below might be considered as a weak analog of that property.
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Lemma 3.15. Let g be simple and y ∈ g then for every m ∈ Z there exists finitely many
elements y(s,1), y(s,2) ∈ g, i = 1, . . . , l = l(m) such that

(3.63) y −
l∑

s=1

[y(s,1), y(s,2)] ∈ gm.

Proof. Let y be an element of g. Hence there exists a k such that y ∈ g(k), but y 6= g(k+1).

In particular there exists for every point Pi elements Xi
k,i such that

(3.64) y −
N∑

i=1

Xi
k,i ∈ g(k+1),

where Xi
k,i = (Xi)k,i is the element corresponding to Xi ∈ g. As g is perfect we have

Xi = [Y i, Zi] with elements Y i, Zi ∈ g. We calculate

(3.65) Xi
k,i = [Y i

0,i, Z
i
k,i] + yi, y(i) ∈ g(k+1).

In total

(3.66) y(k) = y −
N∑

i=1

[Y i
0,i, Z

i
k,i] ∈ g(k+1).

Using the same again for y(k) etc., we can approximate y to every finite order by sums of
commutators. �

4. Module structure

4.1. Lax operator algebras as modules over A.

The space g is an A-module with respect to the point-wise multiplication. Obviously,
the relations (2.5), (2.6), (2.9), (2.11), are not disturbed.

Proposition 4.1.

(a) The Lax operator algebra g is an almost-graded module over A, i.e. there exists a
constant S4 (not depending on k and m) such that

(4.1) Ak · gm ⊆
k+m+S4⊕

h=k+m

gh.

(b) For X ∈ g

(4.2) Am,s ·Xn,p = Xm+n,s δ
s
p + L, L ∈ g(m+n+1).

Proof. We consider the orders of the elements in I and O. As in the proof of Proposi-
tion 3.13 the existence of a constant S4 follows so that (4.1) is true. Hence (a).
We study the lowest order term of Am,s·Xn,r at the points Pi ∈ I. Using (3.20), (3.8),(3.10)
we see that if s 6= r then Am,s ·Xn,r ∈ g(m+n+1) as all orders are ≥ n+m+ 1. The same
is true for s = r for the element Am,s ·Xn,s −Xm+n,s. Hence the claim. �
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Warning: in general we do not have Am,s · X0,s = Xm,s as the orders at O do not
coincide. Also, Am,s ·X does not necessarily belong to g.

4.2. Lax operator algebras as modules over L.
Next we introduce an action of L on g. This is done with the help of a certain connection

∇(ω) following the lines of [5], [6], [10] with the modification made in [23]. The connection
form ω is a g-valued meromorphic 1-form, holomorphic outside I, O and W , and has a
certain prescribed behavior at the points in W . For γs ∈W with αs = 0 the requirement
is that ω is also regular there. For the points γs with αs 6= 0 it is required that it has an
expansion of the form

(4.3) ω(zs) =

(
ωs,−1

zs
+ ωs,0 + ωs,1 +

∑

k>1

ωs,kz
k
s

)
dzs.

For gl(n): there exist β̃s ∈ Cn and κ̃s ∈ C such that

(4.4) ωs,−1 = αsβ̃
t
s, ωs,0 αs = κ̃sαs, tr(ωs,−1) = β̃tsαs = 1.

For so(n): there exist β̃s ∈ Cn and κ̃s ∈ C such that

(4.5) ωs,−1 = αsβ̃
t
s − β̃sα

t
s, ωs,0 αs = κ̃sαs, β̃tsαs = 1.

For sp(2n): there exist β̃s ∈ C2n, κ̃s ∈ C such that

(4.6) ωs,−1 = (αsβ̃
t
s + β̃sα

t
s)σ, ωs,0 αs = κ̃sαs, αt

sσωs,1αs = 0, β̃tsσαs = 1.

The existence of nontrivial connection forms fulfilling the listed conditions is proved by
Riemann-Roch type argument as Proposition 3.8. We might even require, and actually
always will do so, that the connection form is holomorphic at I. Note also that if all
αs = 0 we could take ω = 0.

The connection form ω induces the following connection ∇(ω) on g

(4.7) ∇(ω) = d+ [ω, .].

Let e ∈ L be a vector field. In a local coordinate z the connection form and the vector
field are represented as ω = ω̃dz and e = ẽ d

dz
with a local function ẽ and a local matrix

valued function ω̃. The covariant derivative in direction of e is given by

(4.8) ∇(ω)
e = dz(e)

d

dz
+ [ω(e), . ] = e. + [ ω̃ẽ , . ] = ẽ ·

( d
dz

+ [ ω̃ , . ]
)
.

Here the first term (e.) corresponds to taking the usual derivative of functions in each
matrix element separately, whereas ẽ· means multiplication with the local function ẽ.

Using the last description we obtain for L ∈ g, g ∈ A, e, f ∈ L

(4.9) ∇(ω)
e (g · L) = (e.g) · L+ g · ∇(ω)

e L, ∇
(ω)
g·eL = g · ∇(ω)

e L,

and

(4.10) ∇
(ω)
[e,f ] = [∇(ω)

e ,∇
(ω)
f ].

The proofs of the following statements are completely the same as the proofs for the
two-point case presented in [23]. Hence, they are here omitted.
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Proposition 4.2.

(a) ∇
(ω)
e acts as a derivation on the Lie algebra g, i.e.

(4.11) ∇(ω)
e [L,L′] = [∇(ω)

e L,L′] + [L,∇(ω)
e L′].

(b) The covariant derivative makes g to a Lie module over L.

(c) The decomposition gl(n) = s(n)⊕ sl(n) is a decomposition into L-modules, i.e.

(4.12) ∇(ω)
e : s(n) → s(n), ∇(ω)

e : sl(n) → sl(n).

Moreover, the L-module s(n) is equivalent to the L-module A.

Proposition 4.3.

(a) g is an almost-graded L-module.

(b) For the corresponding L-action we have

(4.13) ∇(ω)
ek,s

Xm,r = m ·Xk+m,s δ
r
s + L, L ∈ g(k+m+1).

Proof. (a) By Proposition 4.2 g is an L-module. It remains to show that there is an upper
bound for the order of the elements of the type n+m+S5, with S5 independent of n and
m (but may depend on ω). We write (4.8) for homogeneous elements and obtain

(4.14) ∇(ω)
ek,s

Xm,r = ek,s .Xm,r + [ ω̃ẽk,s ,Xm,r].

The form ω has fixed orders at I and at O, the action of L on A is almost-graded, and
the bracket corresponds to the commutator in the almost-graded g. By considering the
corresponding bounds for the order of poles at I and O we get such an universal bound.
(b) Locally at Pi, i = 1, . . . , N we have

(4.15) Xm,r |(zi) = Xzmi δ
r
i +O(zm+1

i ), ek |(zi) = zk+1
i δki

d

dz
+O(zk+2

i ).

This implies

(4.16) ek,s .Xm,r(zi) = mXzk+m
i δri δ

s
i +O(zk+m+1

i ), ω̃ẽk(zi) = Bzk+1
i +O(zk+2

i ),

with B ∈ gl(n). Hence

(4.17) [ ω̃ẽk ,Xm] = O(zk+m+1
i ),∀i,

and the second term will only contribute to higher order. It remains the first term in
(4.14). If r 6= s then ek,s .Xm,r(zi) ∈ O(zk+m+1

i ) for all i. If r = s then (ek,s .Xm,s −

mXm+k,s)(zi)) ∈ O(zk+m+1
i ). Hence, (4.13) follows. �

4.3. Module structure over D1 and the algebra D1
g.

The Lie algebra D1 of meromorphic differential operators on Σ of degree ≤ 1 holomor-
phic outside of I ∪ O is defined as the semi-direct sum of A and L with the commutator
between them given by the action of L on A. It is the vector space direct sum D1 = A⊕L
with Lie bracket

(4.18) [(g, e), (h, f)] := (e.h − f .g, [e, f ]).
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In particular

(4.19) [e, h] = e.h.

It is an almost-graded Lie algebra [18].

Proposition 4.4. The Lax operator algebras g are almost-graded Lie modules over D1 via

(4.20) e.L := ∇(ω)
e L, h.L := h · L.

Proof. As g is an almost-graded A- and L-module it is enough to show that the relation
(4.19) is satisfied. For e ∈ L, h ∈ A, L ∈ g using (4.8) we get

e.(h.L) − h.(e.L) = ∇(ω)
e (hL)− h∇(ω)

e (L) =

ẽ

(
d(hL)

dz
+ [ω̃, hL]

)
− hẽ

(
dL

dz
+ [ω̃, L]

)
=

(
ẽ
dh

dz

)
L = (e.h)L = [e, h] .L.

�

The Lax operator algebra g is a module over the Lie algebra L which acts on g by
derivations (according to Proposition 4.2). Proposition 4.2 says that this action of L on g

is an action by derivations. Hence as above we can consider the semi-direct sum D1
g = g⊕L

with Lie product given by

(4.21) [e, L] := e.L = ∇(ω)
e L,

for the mixed pairs. See [19] for the corresponding construction for the classical Krichever-
Novikov algebras of affine type.

5. Cocycles

In this section we will study 2-cocycles for the Lie algebra g with values in C. It is well-
known that the corresponding cohomology space H2(g,C) classifies equivalence classes of
(one-dimensional) central extensions of g.

For the convenience of the reader we recall that a 2-cocycle for g is a bilinear form
γ : g× g → C which is (1) antisymmetric and (2) fulfills the condition

(5.1) γ([L,L′], L′′) + γ([L′, L′′], L) + γ([L′′, L], L′) = 0, L, L′, L′′ ∈ g .

A 2-cocycle γ is a coboundary if there exists a linear form φ on g such that

(5.2) γ(L,L′) = φ([L,L′]), L, L′ ∈ g.

Given a 2-cocycle γ for g, the associated central extension ĝγ is given as vector space
direct sum ĝγ = g⊕ C · t with Lie product

(5.3) [L̂, L̂′] = [̂L,L′] + γ(L,L′) · t, [L̂, t] = 0, L, L′ ∈ g.

Here we used L̂ := (L, 0) and t := (0, 1). Vice versa, every central extension

(5.4) 0 −−−−→ C
i2−−−−→ ĝ

p1
−−−−→ g −−−−→ 0,

defines a 2-cocycle γ : g → C by choosing a section s : g → ĝ.
Two central extensions ĝγ and ĝγ′ are equivalent if and only if the defining cocycles γ

and γ′ are cohomologous.
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5.1. Geometric cocycles.

Next we introduce geometric 2-cocycles. Let ω be a connection form as introduced in
Section 4.2 for defining the connection (4.7). Furthermore, let C be a (not necessarily
connected ) differentiable cycle on Σ not meeting the sets A = I ∪O and W .

As in the two point situation considered in [23] we define the following bilinear forms
on g:

(5.5) γ1,ω,C(L,L
′) =

1

2πi

∫

C

tr(L · ∇(ω)L′), L, L′ ∈ g,

and

(5.6) γ2,ω,C(L,L
′) =

1

2πi

∫

C

tr(L) · tr(∇(ω)L′), L, L′ ∈ g.

The following propositions and their proofs remain the same as in [23] (of course now to
be interpreted in this more general context), and we will not repeat them.

Proposition 5.1. The bilinear forms γ1,ω,C and γ2,ω,C are cocycles.

Proposition 5.2.

(a) The cocycle γ2,ω,C does not depend on the choice of the connection form ω.
(b) The cohomology class [γ1,ω,C ] does not depend on the choice of the connection form ω.
More precisely

(5.7) γ1,ω,C(L,L
′)− γ1,ω′,C(L,L

′) =
1

2πi

∫

C

tr
(
(ω − ω′)[L,L′]

)
.

As γ2,ω,C does not depend on ω we will drop ω in the notation. Note that γ2,C vanishes

on g for g = sl(n), so(n), sp(2n). But it does not vanish on s(n), hence not on gl(n).

5.2. L-invariant cocycles.

As explained in Section 4.2 after fixing a connection form ω′ the vector field algebra L

operates on g via the covariant derivative e 7→ ∇
(ω′)
e .

Definition 5.3. A cocycle γ for g is called L-invariant (with respect to ω′) if

(5.8) γ(∇(ω′)
e L,L′) + γ(L,∇(ω′)

e L′) = 0, ∀e ∈ L, ∀L,L′ ∈ g.

Proposition 5.4. (a) The cocycle γ2,C is L-invariant.
(b) If ω = ω′ then the cocycle γ1,ω,C is L-invariant.

The proof is the same as presented in [23] for the two point case.

We call a cohomology class L-invariant if it has a representing cocycle which is L-
invariant. The reader should be warned that this does not mean that all representing
cocycles are L-invariant. On the contrary, see Corollary 6.5. Clearly, the L-invariant
classes constitute a subspace of H2(g,C) which we denote by H2

L(g,C).
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5.3. Some remarks on the cocycles on D1
g.

In the following let ω = ω′. The property of L-invariance of a cocycle has a deeper
meaning. In Section 4.3 we introduced the algebra D1

g . The Lax operator algebra g is a

subalgebra of D1
g . Given a 2-cocycle γ for g we might extend it to D1

g as a bilinear form
by setting (L,L′ ∈ g, e, f ∈ L)

(5.9) γ̃(L,L′) = γ(L,L′), γ̃(e, L) = γ̃(L, e) = 0, γ̃(e, f) = 0.

Proposition 5.5. The extended bilinear form γ̃ is a cocycle for D1
g if and only if γ is

L-invariant.

Proof. The conditions defining a cocycle are obviously fulfilled for the triples of elements
consisting either of currents or of vector fields. The only condition which does not follow
automatically from (5.9) for γ̃ is

(5.10) γ̃([L,L′], e) + γ̃([L′, e], L) + γ̃([e, L], L′) = 0.

Using (4.21) we get that (5.10) is true if an only if

(5.11) γ(∇(ω)
e L,L′) + γ(L,∇(ω)

e L′) = 0,

which is L-invariance. �

5.4. Bounded and local cocycles.

Definition 5.6. Given an almost-graded Lie algebra V =
⊕

m∈Z Vm. A cocycle γ is called
bounded (from above) if there exists a constant R1 ∈ Z such that

(5.12) γ(Vn,Vm) 6= 0 =⇒ n+m ≤ R1.

Similarly bounded from below is defined.
A cocycle is called local if and only if it is bounded from above and below. Equivalently,
there exist R1, R2 ∈ Z such

(5.13) γ(Vn,Vm) 6= 0 =⇒ R2 ≤ n+m ≤ R1.

The almost-grading of V can be extended from V to the corresponding central extension

V̂γ (5.3) by assigning to the central element t a certain degree (e.g. the degree 0) if and
only if the defining cocycle for the central extension is local.

We call a cohomology class bounded (resp. local) if it contains a bounded (resp. local)
representing cocycle. Again, not every representing cocycle of a bounded (resp. local)
class is bounded (resp. local). The set of bounded cohomology classes is a subspace
of H2(g,C) which we denote by H2

b(g,C). It contains the subspace of local cohomology
classes denoted by H2

loc(g,C). This space classifies the almost-graded central extensions of
g up to equivalence. Both spaces admit subspaces consisting of those cohomology classes
admitting a representing cocycle which is both bounded (resp. local) and L-invariant.
The subspaces are denoted by H2

b,L(g,C), resp. H
2
loc,L(g,C).

If we consider our geometric cocycles γ2,C and γ1,ω,C obtained by integrating over an
arbitrary cycle then they will neither be bounded, nor local, nor will they define a bounded
or local cohomology class.
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Next we will consider special integration paths. Let Ci be positively oriented (deformed)
circles around the points Pi in I, i = 1, . . . , N and C∗

j positively oriented ones around the
points Qj in O, j = 1, . . . ,M . The cocycle values of γ if integrated over such cycles can
be calculated via residues, e.g.

(5.14) γ1,ω,Ci
(L,L′) = resPi

(tr(L · ∇(ω)L′)), i = 1, . . . , N .

Proposition 5.7. (1) The 1-form tr(L · ∇(ω)L′) has no poles outside of A = I ∪O.
(2) The 1-form tr(L) · tr(dL′) has no poles outside of A = I ∪O.

Proof. For (1) see [10]. For (2) see [23]. �

A cycle CS is called a separating cycle if it is smooth, positively oriented of multiplicity
one, it separates the points in I from the points in O, and it does not meet A or W . It
might have multiple components. For our cocycles (5.5), (5.6) we integrate the forms of
Proposition 5.7 over closed curves C. By this proposition the integrals will yield the same
results if [C] = [C ′] in H0(Σ \ A,Z). Note that the weak singular points will not show up
in this context. In this sense we can write for every separating cycle

(5.15) [CS ] =

K∑

i=1

[Ci] = −
M∑

j=1

[C∗
j ].

The minus sign appears due to the opposite orientation. In particular the cocycle values
obtained by integrating over a CS can be obtained by calculating residues either over the
points in I or the points in O.

Theorem 5.8. Let ω coincides with the connection form ω′ associated to the L-action
then
(a) For i = 1, . . . , N the cocycles γ1,ω,Ci

and γ2,Ci
with Ci a circle around Pi will be

bounded from above and L-invariant.
(b) For j = 1, . . . ,M the cocycles γ1,ω,C∗

j
and γ2,C∗

j
with C∗

j a circle around Qj will be

bounded from below and L-invariant.
(c) The cocycles γ1,ω,CS

and γ2,CS
with CS a separating cycle will be local and L-invariant.

(d) In case (a) and (c) the upper bound will be zero.

Proof. The statement about L-invariance follows from Proposition 5.4. In fact only for
this ω = ω′ is needed.
As explained above the cocycle calculation if integrated over Ci (or over C∗

j ) reduces to

the calculation of residues. Let L ∈ gn, L
′ ∈ gm then ordPi

(L) ≥ n and ordPi
(L′) ≥ m.

As ω is holomorphic at Pi we obtain

ordPi
(dL′) ≥ m− 1, ordPi

(∇(ω)L′) ≥ m− 1 .

Hence, if n + m > 0 neither one of the 1-forms appearing in the cocycle definition has
poles at I and consequently no residues. This shows (a).
For (b) we have to consider the orders at the points in O of the basis elements of gm. By
the prescriptions (3.33) and (3.34) and taking into account possible poles of ω at O we
find an R2 such that if n + m ≤ R2 the integrands will not have poles anymore. This
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shows (b).
Using (5.15) we can obtain the values of the cocycles integrated over CS either by adding
up the values obtained by integration either over I or over O. Hence boundedness from
below and from above. Hence, locality.
That zero is an upper bound followed already during the proof. �

6. Classification Results

Recall that we are in the multi-point situation A = I ∪ O with #I = N . The Ci, C
∗
j ,

and CS are the special cycles introduced in Section 5.4. If we will use the word bounded
for a cocycle we always mean bounded from above if nothing else is said.

Proposition 6.1. The cocycles γ1,ω,Ci
, i = 1, . . . , N (and γ2,Ci

, i = 1, . . . , N for gl(n))
are linearly independent.

Proof. Assume that there is a linear relation

(6.1) 0 =

N∑

i=1

αiγ1,ω,Ci
+

N∑

i=1

βiγ2,Ci
, αi, βi ∈ C.

The last sum will not appear in the simple algebra case. Recall that for a pair L,L′ ∈ g

the above cocycles can be calculated by taking residues

(6.2) 0 =

N∑

i=1

αi resPi
(tr(L · ∇(ω)L′)) +

N∑

i=1

βi resPi
(tr(L) · tr(∇(ω)L′)).

In the first sum the Cartan-Killing form is present which is non-degenerated. Hence there
exist X,Y ∈ g such that tr(XY ) 6= 0 and tr(X) = tr(Y ) = 0. For k = 1, . . . , N , using the
almost-graded structure and following Proposition 3.3 we take L = X1,k and L′ = Y−1,k.
In the neighbourhood of the point Pl, l = 1, . . . , N we have

(6.3)
L(zl) = Xzlδ

k
l +O(z2l ), L′(zl) = Y z−1

l δkl +O(z0l ),

∇(ω)L′(zl) = −Y z−2
l δkl +O(z−1

l ),

as ∇(ω)L′ = dL′ + [ω,L′]. Hence,

(6.4) resPl
(tr(L · ∇(ω)L′)) = −tr(XY )δkl .

As tr(X) = 0 the second sum will vanish anyway and we conclude αk = 0, for all k =
1, . . . , N . For the second sum we take X = Y a nonvanishing scalar matrix and chose
L = X1,k and L′ = X−1,k. We obtain βk = 0 for all k = 1, . . . , N . �

Proposition 6.2. (g = gl(n)) Let γ =
∑N

i=1 βiγ2,Ci
be a nontrivial linear combination,

then it is not a coboundary.

Proof. Recall from (2.8) that s(n) is an abelian subalgebra of gl(n). Hence, every cobound-
ary restricted to it will be identically zero. If we take again as in the previous proof elements
X1,k and X−1,k from the scalar subalgebra we obtain as above βk = 0. �



28 M. SCHLICHENMAIER

Proposition 6.3. Let γ =
∑N

i=1 αiγ1,ω,Ci
be a non-trivial linear combination then it is

not a coboundary.

Proof. Assume that γ is a coboundary. This means that there exists a linear form φ : g →
C such that ∀L,L′ ∈ g

(6.5) γ(L,L′) =

N∑

i=1

αi resPi
tr(L · ∇(ω)L′) = φ([L,L′]).

Assume that γ 6= 0, hence one of the coefficients αk will be non-zero. Take H ∈ h

with κ(H,H) 6= 0, where h is the Cartan subalgebra of the simple part of g and κ its
Cartan-Killing form. Let H0,k ∈ g be the element defined by (3.2). In particular, we have

H0,k = H+O(zk). We set3 H(n,k) := H0,k ·An,k ∈ g and hence H(n,k) = H ·An,k+O(zn+1
k )

in the neighbourhood of the point Pk. Recall that from the local forms (3.2) and (3.8) of
our basis elements we have in the neighbourhood of points Pl with l 6= k

(6.6) Hn,k = O(zn+1
l ), An,k = O(zn+1

l ), H(n,k) = O(zn+1
l ).

In the following, let n 6= 0. We have

(6.7) ∇(ω)H(n,k) = ∇(ω)(H0,k · An,k) = ∇(ω)(H0,k) ·An,k +H0,k dAn,k.

The expression ∇(ω)H0,k is of nonnegative order, An,k is of order n, H0,k of order 0 and
dAn,k of order n− 1 at the point Pk. Hence

(6.8) ∇(ω)H(n,k) = H0,k dAn,k +O(znk )dzk.

Now we compute
(6.9)

γ(H(−1,k),H(1,k)) =
N∑

i=1

αi resPi
tr(H(−1,k) · ∇

(ω)H(1,k)) = αk resPk
tr(H(−1,k) · ∇

(ω)H(1,k)).

The last equality follows from the fact that by (6.6) we do not have any poles at the points
Pl for l 6= k. From the above it follows

(6.10) (αk)
−1γ(H(−1,k),H(1,k)) = resPk

tr(H0,kA−1,kH0,kdA1,k) = resPk
tr(H2

0,k

dzk
zk

).

As H2
0,k = H2 +O(zk) we obtain

(6.11) (αk)
−1γ(H(−1,k),H(1,k)) = resPk

(tr(H2)
dzk
zk

) = tr(H2) = β · κ(H,H) 6= 0,

with a non-vanishing constant β relating the trace form with the Cartan-Killing form. But

(6.12) [H(−1,k),H(1,k)] = [H0,kA−1,k,H0,kA1,k] = [H0,k,H0,k]A−1,kA1,k = 0.

The relations (6.11) and (6.12) are in contradiction to (6.5). �

Now we are able to formulate the basic theorem.

3Notice that H(n,k) and Hn,k, in general, are different but coincide up to higher order.
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Theorem 6.4.

(a) If g is simple (i.e. g = sl(n), so(n), sp(2n)) then the space of bounded cohomology
classes is N -dimensional. If we fix any connection form ω then this space has as basis
the classes of γ1,ω,Ci

, i = 1, . . . , N . Every L-invariant (with respect to the connection ω)
bounded cocycle is a linear combination of the γ1,ω,Ci

.

(b) For g = gl(n) the space of local cohomology classes which are L-invariant having
been restricted to the scalar subalgebra is 2N-dimensional. If we fix any connection form
ω then the space has as basis the classes of the cocycles γ1,ω,Ci

and γ2,Ci
, i = 1, . . . , N .

Every L-invariant local cocycle is a linear combination of the γ1,ω,Ci
and γ2,Ci

.

Proof of the theorem. Here we only outline the proof. The technicalities are postponed
until Sections 7 and 8.

By Propositions 7.8 and 7.10 it follows that L-invariant and bounded cocycles are
necessarily linear combinations of the claimed form. This proves the theorem for the
cohomology space Hb,L(g,C). For the scalar subalgebra we are done since we included
the L-invariance into the conditions of the theorem. For semi-simple algebras we have
to show that there is an L-invariant representative in each local cohomology class. But
by Theorem 8.1 the space Hb(g,C) is at most N-dimensional. As by Proposition 6.3 no
non-trivial linear combination of the cocycles γ1,ω,Ci

is a coboundary, this space is exactly
N-dimensional and [γ1,ω,Ci

] for i = 1, . . . , N constitute a basis. �

We conclude the following.

Corollary 6.5. Let g be a simple classical Lie algebra and g the associated Lax operator
algebra. Let ω be a fixed connection form. Then in each [γ] ∈ Hb(g,C) there exists a
unique representative γ′ which is bounded and L-invariant (with respect to ω). Moreover,

γ′ =
∑N

i=1 aiγ1,ω,Ci
, with ai ∈ C.

Proposition 6.6.

(a) Let γ be a bounded and L-invariant cocycle which is a coboundary, then γ = 0.
(b) Let g be simple, then the cocycle γ1,ω′,Ci

is L-invariant with respect to ω, if and only
if ω = ω′.

Proof. (a) By Theorem 6.4 we get γ =
∑N

i=1(αiγ1,ω,Ci
+ βiγ2,Ci

), with all βi = 0 for the
case g is simple. The summands constitute a basis of the cohomology. Hence, γ can only
be a coboundary if all coefficients vanish.
(b) As γ1,ω,Ci

and γ1,ω′,Ci
are local and L-invariant with respect to ω their difference

γ1,ω,Ci
− γ1,ω′,Ci

is also local and L-invariant. By Proposition 5.2 it is a coboundary.
Hence by part (a) γ1,ω,Ci

− γ1,ω′,Ci
= 0. The relation (5.7) gives the explicit expression for

the left hand side. Assume ω 6= ω′. Let m be the order of the element

(6.13) θ = ω − ω′ = (θmz
m
i +O(zmi ))dzi

at the point Pi. As g is simple the trace form tr(A · B) is nondegenerate and we find

(6.14) θ̂ = θ̂−m−1z
−m−1
i +O(z−m

i ),
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such that β = tr(θm · θ̂−m−1) 6= 0. By Lemma 3.15 we get θ̂ = [L,L′]+L′′ with ordPi
(L′′) ≥

−m. Hence,

(6.15) 0 6= β = tr(θm · θ̂−m−1) =
1

2π i

∫

Ci

tr
(
(ω − ω′) · ([L,L′] + L′′)

)

=
1

2π i

∫

Ci

tr
(
(ω − ω′) · [L,L′]

)
= γ1,ω,Ci

(L,L′)− γ1,ω′,Ci
(L,L′) = 0

which is a contradiction. �

After these results which are valid for bounded cocycles we will deduce the corresponding
classification theorem for local cocycles. In some sense this is the main theorem of this
article. It will show for example that for Lax operator algebras associated to simple Lie
algebras there is up to rescaling and equivalence only one non-trivial almost-graded central
extension.

Recall the relation for the separating cycle

(6.16) [CS ] =

N∑

i=1

[Ci] = −
M∑

j=1

[C∗
j ],

and the corresponding relation for the cocycle obtained by integration.

Theorem 6.7.

(a) If g is simple (i.e. g = sl(n), so(n), sp(2n)) then the space of local cohomology classes
is one-dimensional. If we fix any connection form ω then this space will be generated by
the class of γ1,ω,CS

. Every L-invariant (with respect to the connection ω) local cocycle is
a scalar multiple of γ1,ω,CS

.

(b) For g = gl(n) the space of local cohomology classes which are L-invariant having
been restricted to the scalar subalgebra is two-dimensional. If we fix any connection form
ω then the space will be generated by the classes of the cocycles γ1,ω,CS

and γ2,CS
. Every

L-invariant local cocycle is a linear combination of γ1,ω,CS
and γ2,CS

.

Proof. Let γ be a local cocycle. This says it is bounded from above and from below. For
simplicity we abbreviate in this proof

(6.17) γ1,i := γ1,ω,Ci
γ2,i := γ2,Ci

, γ∗1,j := γ1,ω,C∗

j
, γ∗2,j := γ2,C∗

j
.

If we switch the role of I and O we get an inverted almost-grading. Every bounded from
below cocycle of the original grading, will get bounded from above with respect to the
inverted grading. Hence we can employ Theorem 6.4 in both directions and obtain for the
same cocycle two representations

(6.18) γ =

N∑

i=1

aiγ1,i +

N∑

i=1

biγ2,i = −
M∑

j=1

a∗jγ
∗
1,j −

M∑

j=1

b∗jγ
∗
2,j , with ai, a

∗
j , bi, b

∗
j ∈ C.

If either N = 1 or M = 1 then via (6.16) the cocycle is obtained via integration over a
separating cycle. Hence the statement.
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Otherwise both N,M > 1. By Proposition 6.1 the type (1) and type (2) cocycles
are linearly independent, hence can be treated independently also in this context. First
consider type (1). Note that from (6.16) we get the relation that

(6.19)
N∑

i=1

γ1,i = −
M∑

j=1

γ∗1,j.

Hence,

(6.20) γ∗1,1 = −
N∑

i=1

γ1,i −
M∑

j=2

γ∗1,j .

From (6.18) we get

(6.21) 0 =

N∑

i=1

aiγ1,i +

M∑

j=1

a∗jγ
∗
1,j .

If we plug (6.20) into this relation we obtain

(6.22) 0 = (a1 − a∗1)

N∑

i=1

γ1,i +

N∑

i=2

(ai − a1)γ1,i +

M∑

j=2

(a∗k − a∗1)γ
∗
1,j.

Fix a k. We take X,Y ∈ g such that tr(XY ) 6= 0. By Riemann-Roch there exists L′, L ∈ g

such that around the point Pk we have

(6.23) L(zk) = Xzk +O(z2k), L′(zk) = Y z−1
k +O(z0k),

both holomorphic at the points in O and at Pl, l 6= 1, k. The elements might have pole
orders of sufficiently high degree at P1 to guarantee existence. The weak singularities will
not disturb. By construction

(6.24)
γ1,k(L,L

′) 6= 0, γ1,l(L,L
′) = 0, l = 2, . . . , N, l 6= k,

γ∗1,j(L,L
′) = 0, j = 1, . . . ,M.

Hence

(6.25)
N∑

i=1

γ1,i(L,L
′) = −

M∑

j=1

γ∗1,j(L,L
′) = 0.

If we plug (L,L′) into (6.22), all terms in (6.22) will vanish, with the only exception

(6.26) 0 = (ak − a1)γ1,k(L,L
′).

This shows ak − a1 for all k. (In a similar way we get a∗j − a∗1 for all j.) In particular,

our cocycle we started with (resp. the γ1 part of it) is a multiple of the cocycle obtained
by integration over the separating cycle. This was the claim. The proof for the γ2 part
works completely the same if we take X = Y a nonzero scalar matrix. �

As in the bounded case we obtain also for the local case the following corollary.
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Corollary 6.8. Let g be a simple classical Lie algebra and g the associated Lax operator
algebra. Let ω be a fixed connection form. Then in each [γ] ∈ Hloc(g,C) there exists a
unique representative γ′ which is local and L-invariant (with respect to ω). Moreover,
γ′ = aγ1,ω, with a ∈ C.

7. Uniqueness of L-invariant cocycles

7.1. The induction step.

Recall from Section 3 the almost-graded structure of the Lax operator algebra g and
in particular the decomposition g = ⊕n∈Zgn into subspaces of homogeneous elements of
degree n. Also there the basis {Lu

n,p | u = 1, . . . ,dim g, p = 1, . . . , N} of the subspace gn
was introduced (see (3.3)).

Let γ be an L-invariant cocycle for the algebra g which is bounded from above, i.e.
there exists an R (independent of n and m) such that γ(gn, gm) 6= 0 implies n +m ≤ R.
Furthermore, we recall that our connection ω needed to define the action of L on g is
chosen to be holomorphic at the points in I.

For a pair (Lu
n,k, L

v
m,t) of homogeneous elements we call n + m the level of the pair.

We apply the technique developed in [18]. We will consider cocycle values γ(Lu
n,k, L

v
m,t)

on pairs of level l = n +m and will make induction over the level. By the boundedness
from above, the cocycle values will vanish at all pairs of sufficiently high level. It will turn
out that everything will be fixed by the values of the cocycle at level zero. Finally, we
will show that the cocycle is a linear combination of the N (resp. 2N) basic cocycles as
claimed in Theorem 6.4.

For a cocycle γ evaluated for pairs of elements of level l we will use the symbol ≡ to
denote that the expressions are the same on both sides of an equation involving cocycle
values up to values of γ at higher level. This has to be understood in the following strong
sense:

(7.1)
∑

α
(n,p,t)
(u,v) γ(L

u
n,p, L

v
l−n,t) ≡ 0, α

(n,p,t)
(u,v) ∈ C

means a congruence modulo a linear combination of values of γ at pairs of basis elements

of level l′ > l. The coefficients of that linear combination, as well as the α
(n,p,t)
(u,v) , depend

only on the structure of the Lie algebra g and do not depend on γ.
We will also use the same symbol ≡ for equalities in g which are true modulo terms of

higher degree compared to the terms under consideration.

By the L-invariance we have

(7.2) γ(∇(ω)
ek,r

Lu
m,p, L

v
n,s) + γ(Lu

m,p,∇
(ω)
ek,r

Lv
n,s) = 0.

Using the almost-graded structure (4.13) we obtain (up to order > (k +m+ n))

(7.3) mγ(Lu
k+m,p, L

v
n,s) δ

p
r + nγ(Lv

m,p, L
v
n+k,s) δ

s
r ≡ 0,

valid for all n,m, k ∈ Z.
If in (7.3) all three indices r, p and s are different then the term on the left hand side

vanishes. If r = p 6= s then we obtain

(7.4) mγ(Lu
k+m,p, L

v
n,s) ≡ 0.
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which is true for every m. Hence

(7.5) γ(Lu
l,p, L

v
n,s) ≡ 0, for p 6= s .

It remains r = p = s and this yields

(7.6) mγ(Lu
k+m,s, L

v
n,s) + nγ(Lv

m,s, L
v
n+k,s) ≡ 0.

Proposition 7.1. Let m+ n 6= 0 then at level m+ n we have

(7.7) γ(gm, gn) ≡ 0.

Proof. From (7.5) we conclude that only elements with the same second index could con-
tribute in level m+ n. We put k = 0 in (7.6) and obtain

(7.8) (m+ n)γ(Lu
m,s, L

v
n,s) ≡ 0, ∀u, v.

Hence if (m+ n) 6= 0 the claim follows. �

Proposition 7.2.

(7.9) γ(gm, g0) ≡ 0, ∀m ∈ Z.

Proof. We evaluate (7.6) for the values m = 1 and n = 0 and obtain the result. �

Proposition 7.3. (a) We have γ(gn, gm) = 0 if n +m > 0, i.e. the cocycle is bounded
from above by zero.
(b) If γ(gn, g−n) = 0 then the cocycle γ vanishes identically.

Proof. The proof stays word by word the same as in [23]. But as it is one of the central
arguments and for the convenience of the reader we repeat the arguments. If γ = 0 there
is nothing to prove. Assume γ 6= 0. As γ is bounded from above, there will be a minimal
upper bound l, such that above l all cocycle values will vanish. Assume that l > 0, then by
Proposition 7.1 the values at level l are expressions of levels bigger than l. But the cocycle
vanishes there. Hence it vanishes at level l too. This is a contradiction which proves (a).

By induction, using again Proposition 7.1 we obtain that if the cocycle vanishes at level
0, it vanishes everywhere. This proves (b). �

Combining Propositions 7.2 and 7.3 we obtain

Corollary 7.4.

(7.10) γ(gm, g0) = 0, ∀m ≥ 0.

Proposition 7.5.

(7.11) γ(Lu
n,r, L

v
−n,s) = n · γ(Lu

1,r, L
v
−1,r)δ

s
r ,

(7.12) γ(Lu
1,r, L

v
−1,s) = γ(Lv

1,s, L
u
−1,r)

Proof. Assume s 6= r then all expressions are of positive level and vanishes by Proposi-
tion 7.3, hence the statement is true. For r = s we take in (7.6) the values n = −p, m = 1
and k = p− 1. This yields the expression (7.11) up to higher level terms. But as the level
is zero, the higher level terms vanish. Setting n = −1 in (7.11) we obtain (7.12). �
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Independently of the structure of the Lie algebra g, we obtained the following results
for every L-invariant and bounded cocycle γ:

(1) The cocycle is bounded from above by zero.
(2) The cocycle is uniquely given by its values at level zero.
(3) At level zero the cocycle is uniquely fixed by its values γ(Lu

1,s, L
v
−1,s), for u, v =

1, . . . ,dim g and s = 1, . . . , N .
(4) The other cocycle values at level zero are given by γ(Lu

n,s, L
v
−n,r) = 0 if s 6= r,

γ(Lu
0,s, L

v
0,s) = 0 and γ(Lu

n,s, L
v
−n,s) given by (7.11).

Let X ∈ g then we denote as always by Xn,s, s = 1, . . . , N the element in g with leading
term Xzns at Ps and higher orders at the other points in I. We define for s = 1, . . . , N the
maps

(7.13) ψγ,s : g× g → C ψγ,s(X,Y ) := γ(X1,s, Y−1,s).

Obviously, ψγ,s is a bilinear form on g.

Proposition 7.6. (a) ψγ,s is symmetric, i.e. ψγ,s(X,Y ) = ψγ,s(Y,X).
(b) ψγ,s is invariant, i.e.

(7.14) ψγ,s([X,Y ], Z) = ψγ,s(X, [Y,Z]).

Proof. First we have by (7.12)

ψγ,s(X,Y ) = γ(X1,s, Y−1,s) = γ(Y1,s,X−1,s) = ψγ(Y,X).

This is the symmetry. Furthermore, using [X1,s, Y0,s] ≡ [X,Y ]1,s, the fact that the cocycle
vanishes for positive level, and by the cocycle condition we obtain

ψγ,s([X,Y ], Z) = γ([X,Y ]1,s, Z−1,s) = γ([X1,s, Y0,s], Z−1,s) =

− γ([Y0,s, Z−1,s],X1,s)− γ([Z−1,s,X1,s], Y0,s).

The last term vanishes due to Corollary 7.4. Hence

ψγ,s([X,Y ], Z) = γ(X1,s, [Y0,s, Z−1,s]) = γ(X1,s, [Y,Z]−1,s) = ψγ,s(X, [Y,Z]).

�

As the cocycle γ is fixed by the values γ(Lu
1,s, L

v
−1,s), s = 1, . . . , N and they are fixed

by the bilinear maps ψγ,s we proved:

Theorem 7.7. Let γ be an L-invariant cocycle for g which is bounded from above. Then
γ it is bounded from above by zero and is completely fixed by the associated symmetric and
invariant bilinear forms ψγ,s, s = 1, . . . , N on g defined via (7.13).

7.2. Simple Lie algebras g.

By Theorem 7.7 the L-invariant cocycle γ is completely given by fixing the N -tuple
(ψγ,1, ψγ,2, . . . , ψγ,N ) of symmetric invariant bilinear forms ψγ,s. For a finite-dimensional
simple Lie algebra every such form is a multiple of the Cartan-Killing form κ. Hence
the space of bounded cocycles is at most N -dimensional. Our geometric cocycles γ1,ω,Ci

,
see (5.14), for i = 1, . . . , N are L-invariant and bounded cocycles. They are linearly
independent, see Proposition 6.1. Hence, we obtain that every bounded and L-invariant
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cocycle is a linear combination of the γ1,ω,Ci
. Moreover, they are a basis of the space of

L-invariant and bounded cocycles. By Proposition 6.3 they stay linearly independent after
passing to cohomology and we obtain

Proposition 7.8. Let g be simple, then

(7.15) dimHb,L(g,C) = N,

and this cohomology space is generated by the classes of γ1,ω,Ci
, i = 1, . . . , N .

7.3. The case of gl(n).
We have the direct decomposition, as Lie algebras, gl(n) = s(n) ⊕ sl(n). Let γ be a

cocycle of gl(n) and denote by γ′ and γ′′ its restriction to s(n) and sl(n) respectively. As
in [23] we obtain using Lemma 3.15

Proposition 7.9.

(7.16) γ(x, y) = 0, ∀x ∈ s(n), y ∈ sl(n).

Hence we can decompose the cocycle as γ = γ′ ⊕ γ′′. If γ is bounded/local and/or
L-invariant the same is true for γ′ and γ′′.

First we consider the algebra s(n). It is isomorphic to A, the isomorphism is given by

(7.17) L 7→
1

n
tr(L).

In [18, Thm. 5.7] it was shown that the space of L-invariant cocycles for A bounded from
above is N -dimensional and a basis is given by

(7.18) γi(f, g) =
1

2πi

∫

Ci

fdg = resPi
(fdg), i = 1, . . . , N.

Note that as A is abelian there do not exist non-trivial coboundaries. We obtain

(7.19) γ′(L,M) =

N∑

i=1

αi resPi
(tr(L) · tr(dM)) =

N∑

i=1

αiγ2,Ci
(L,M),

by Definition (5.6).

For the cocycle γ′′ of sl(n) we use Proposition 7.8 and obtain γ′′ =
∑N

i=1 βiγ1,ω,Ci
.

Altogether we showed

Proposition 7.10.

(7.20) dimHb,L(gl(n),C) = 2N.

A basis is given by the classes of γ1,ω,Ci
and γ2,Ci

, i = 1, . . . , N .

In this section we showed those parts of Theorem 6.4 which deal with L-invariant
cocycles. In fact we showed the complete theorem under the additional assumption that
our cohomology classes are L-invariant. For the scalar part this is the best what could be
expected. Without L-invariance there will be much more non-trivial cohomology classes
for the scalar algebra, see [18] for more information. In the next section we will present a
way how to get rid of this condition for the simple Lie algebras.
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8. The simple case in general

In this section the Lax operator algebra g is always based on a finite simple classical
Lie algebra. As explained in the previous section if we put L-invariance in the assumption
then Theorem 6.4 would have been proved. One way to complete the general proof is
to to show that after cohomological changes every bounded cocycle has also a bounded
L-invariant representing it. In fact, we will do this. But unfortunately, we do not have
a direct proof. Instead, by a quite different approach we will show that for the simple
Lie algebra case the space of bounded cohomology classes (of the Lax operator algebras)
is at most N -dimensional without assuming L-invariance a priori. Combining this result
with the result of the last section that the space of L-invariant bounded cohomology
classes is N -dimensional we see that in the simple case each bounded cohomology class
is automatically L-invariant. Moreover, we showed there that it has a unique L-invariant
representing cocycle which is given as linear combination of γ1,ω,Ci

, i = 1, . . . , N .
The theorem we are heading for is

Theorem 8.1. Let g be a simple classical Lie algebra over C and g the associated Lax
operator algebra with its almost-grading. Every bounded cocycle on g is cohomologous to
a distinguished cocycle which is bounded from above by zero. The space of distinguished
cocycles is at most N -dimensional.

Remark. What we will show is the following. Every cocycle bounded from above is co-
homologous to a cocycle which is fixed by its value at N special pair of elements in g

(namely by γ(Hα
1,s,H

α
−1,s) for one fixed simple root α, see below for the notation). Besides

the structure of g we only use the almost-gradedness of g with leading terms given in (8.4).

The presentation is quite similar to [23]. Those proofs which are completely of the same
structure will not be repeated here.

First we need to recall some facts about the Chevalley generators of g. Choose a root
space decomposition g = h ⊕α∈∆ gα. As usual ∆ denotes the set of all roots α ∈ h∗.
Furthermore, let {α1, α2, . . . , αp} be a set of simple roots (p = dim h). With respect to
this basis, the root system splits into positive and negative roots, ∆+ and ∆− respectively.
With α a positive root, −α is a negative root and vice versa. For α ∈ ∆we have dim gα = 1.
Certain elements Eα ∈ gα and Hα ∈ h, α ∈ ∆ can be fixed so that for every positive root
α

(8.1) [Eα, E−α] = Hα, [Hα, Eα] = 2Eα, [Hα, E−α] = −2E−α.

We use also H i := Hαi , i = 1, . . . , p for the elements assigned to the simple roots. A
vector space basis, the Chevalley basis, of g is given by {Eα, α ∈ ∆; H i, 1 ≤ i ≤ p}.
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We denote by ( , ) the inner product on h∗ induced by the Cartan-Killing form of g.
The following relations hold

(8.2)

[Hα,Hβ ] = 0,

[Hα, E±β ] = ±2
(β, α)

(β, β)
E±α,

[H,Eα] = α(H)Eα, H ∈ h,

[Eα, Eβ ] =





Hα, α ∈ ∆+, β = −α,

−Hα, α ∈ ∆−, β = −α,

±(r + 1)Eα+β , α, β, α+ β ∈ ∆,

0, otherwise.

Here r is the largest nonnegative integer such that α− rβ still is a root.

As in the other parts of this article, we denote by Eα
n,s, H

α
n,s the unique elements in gn

(i.e. of degree n) for which the expansions at Ps start with Eαzns and Hαzns respectively,
and at the Points Pi ∈ I, i 6= s it is of higher order.

The following elements form a basis of g:

(8.3) { Eα
n,s, α ∈ ∆; H i

n,s, 1 ≤ i ≤ p | n ∈ Z, s = 1, . . . , N }.

The structure equations, up to higher degree terms, are

(8.4)

[Hα
n,s,H

β
m,r] ≡ 0,

[Hα
n,s, E

±β
m,r] ≡ ±2

(β, α)

(β, β)
E±β

n+m,r δ
s
r ,

[Hn,s, E
α
m,r] ≡ α(H)Eα

n+m,r δ
s
r , H ∈ h,

[Eα
n,s, E

β
m,r] ≡





Hα
n+m,s δ

s
r , α ∈ ∆+, β = −α,

−Hα
n+m,s δ

s
r , α ∈ ∆−, β = −α,

±(r + 1)Eα+β
n+m,s δ

s
r , , α, β, α+ β ∈ ∆,

0, otherwise.

Recall that the symbol ≡ denotes equality up to elements of degree higher than the sum
of the degrees of the elements under consideration. Here, the elements not written down
are elements of degree > n+m. Also recall that by the almost-gradedness there exists a
S, independent of n and m, such that only elements of degree ≤ n+m+ S appear.

Let γ′ be a cocycle for g which is bounded from above. For the elements in g we get

(8.5) E±α = ±1/2[Hα, E±α], H i = [Eαi , E−αi ], i = 1, . . . , p.

Consequently, for g we obtain

(8.6)
E±α

n,s = ±1/2[Hα
0,s, E

±α
n,s ] + Y (n, s, α),

H i
n,s = [Eαi

0,s, E
−αi
n,s ] + Z(n, s, i), i = 1, . . . , p.
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where Y (n, s, α) and Z(n, s, i) are sums of elements of degree between n + 1 and n + S.
Fix a number M ∈ Z such that the cocycle γ′ vanishes for all levels ≥ M . We define a
linear map Φ : g → C by (descending) induction on the degree of the basis elements (8.3).
First

(8.7) Φ(Eα
n,s) := Φ(H i

n,s) := 0, α ∈ ∆, i = 1, . . . , p, s = 1, . . . , N n ≥M.

Next we define inductively (α ∈ ∆+, s = 1, . . . , N)

(8.8)
Φ(E±α

n,s ) := ±1/2γ′(Hα
0,s, E

±a
n,s) + Φ(Y (n, s,±α)),

Φ(H i
n,s) := γ′(Eαi

0,s, E
−αi
n,s ) + Φ(Z(n, s, i)).

The cocycle γ = γ′− δΦ is cohomologous to the original cocycle γ′. As γ′ is bounded from
above, and, by definition, Φ is also bounded from above, the cocycle γ is bounded from
above too.

By the construction of Φ we have Φ([Hα
0,s, E

±α
n,s ] = γ′(Hα

0,s, E
±α
n,s ) and Φ([Eαi

0,s, E
−αi
n,s ]) =

γ′(Eαi

0,s, E
−αi
n,s ). Hence

Proposition 8.2.

(8.9)
γ(Hα

0,s, E
±α
n,s ) = 0, γ(Eαi

0,s, E
−αi
n,s ) = 0,

α ∈ ∆+, i = 1, . . . , p, s = 1, . . . , N, n ∈ Z.

Definition 8.3. A cocycle γ is called normalized if it fulfills (8.9).

By the above construction we showed that every cocycle bounded from above is coho-
mologous to a normalized one, which is also bounded from above. In the following we
assume that our cocycle is already normalized.

Proposition 8.4. Let α1 be a fixed simple root, α and β arbitrary roots and γ a normalized
cocycle, then for all s, r = 1, . . . , N , n,m ∈ Z we have

(8.10)

γ(Eα
m,s,Hn,r) ≡ 0, H ∈ h, α ∈ ∆

γ(Eα
m,s, E

β
n,r) ≡ 0, α, β ∈ ∆, β 6= −α,

γ(Eα
m,r, E

−α
n,s ) ≡ uγ(Hα1

m,r,H
α1
n,r) δ

s
r , α ∈ ∆,

γ(Hα
m,r,H

β
n,s) ≡ tγ(Hα1

m,r,H
α1
n,r)δ

s
r , , α, β ∈ ∆+,

with u, t ∈ C.

(8.11) γ(Hα1
n,r,H

α1
0,s) ≡ 0,

(8.12) γ(Hα1
n+1,s,H

α1

l−(n+1),r) ≡
(
γ(Hα1

n−1,s,H
α1

l−(n−1),s) + 2γ(Hα1
1,s,H

α1)
l−1,s

)
δsr .

For a simple root α1 and for a level l 6= 0 we have

(8.13) γ(Hα1
n,r,H

α1
l−n,s) ≡ 0.
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Proof. In the two point case the statement of the proposition consists of a chain of indi-
vidual statement which were proved in [23]. In fact, the proofs presented there remain
valid if one just adds in all relations there for the Lie algebra elements Yn the second
index to obtain Yn,s. By the almost-graded structure, resp. its fine structure (3.6) for the
expressions [Yn,s, Zm,r] in the relations only terms involving s = r will contribute on the
level under considerations. If s 6= r they will contribute only to higher level. Hence, all
relations there can be read with respect to all the second indices the same up to higher
level. Hence, the proof is completely analogous. �

Proposition 8.5. Let γ be a normalized cocycle. Then
(a) it vanishes for levels greater than zero, i.e.

(8.14) γ(gn, gn) = 0, for n+m > 0.

(b) All levels l < 0 are fixed by the level zero.

Proof. By the propositions above we showed that the expressions at level l of the cocycle
can be reduced to expressions of levels > l and values γ(Hα

n,r,H
α
l−n,r). As long as the level

is 6= 0, by (8.13) also these values can be expressed by higher level. Hence by induction,
starting with the upper bound of the cocycle, we obtain that the upper bound for the level
of the cocycle values is equal to zero. Also it follows that the values at levels l < 0 are
fixed by induction by the values at level zero. �

Hence it remains to consider the level zero.

Proposition 8.6. Let α be a simple root. At level l = 0 the cocycle values for s = 1, . . . , N
are given by the relations

(8.15) γ(Hα
n,s,H

α
−n,r) = n · γ(Hα

1,s,H
α
−1,s) δ

r
s , γ(Hα

0,r,H
α
0,s) = 0.

Proof. If we set the value l = 0 in (8.12) we obtain the relation

(8.16) γ(Hα
n+1,s,H

α
−(n+1),r) ≡

(
γ(Hα

n−1,s,H
α
−(n−1),s) + 2γ(Hα

1,s,H
α
−1,s)

)
· δsr .

As all cocycle values of level l > 0 are vanishing we can replace ≡ by =. Now the claimed
expression follows. �

Proof of Theorem 8.1. After adding a suitable coboundary we might replace the given γ
by a normalized one. Using Proposition 8.2, 8.4, and 8.6 everything depends only on the
values γ(Hα

1,s,H
α
−1,s), s = 1, . . . , N for one (fixed) simple root. This proves that there are

at most N linearly independent normalized cocycles. �

Proposition 8.7. If a normalized cocycle γ is a coboundary then it vanishes identically.

Proof. As explained above, a normalized cocycle is fixed by the values γ(Hα
1,s,H

α
−1,s). We

set

(8.17) Hα
(1,s) := Hα

0,sA1,s ≡ Hα
1,s, and Hα

(−1,s) := Hα
0,sA−1,s ≡ Hα

−1,s.

Hence

(8.18) [Hα
(1,s),H

α
(−1,s)] = [Hα

0,s,H
α
0,s]A1,sA−1,s = 0.
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As the cocycle vanishes for positive levels, and as γ = δφ is assumed to be a coboundary
we get

(8.19) γ(Hα
1,s,H

α
−1,s) = γ(Hα

(1,s),H
α
(−1,s)) = φ([Hα

(1,s),H
α
(−1,s)]) = φ(0) = 0.

Hence, all cocycle values are zero, as claimed. �

Appendix A. Example gl(n)

In this appendix we will reproduce as an illustration for the reader the proof that the
product of two Lax operators for the algebra gl(n) is again a Lax operator. This means
that the equations (2.6) are fulfilled for their product. Hence, gl(n) will be closed under
commutator too. This result is due to Krichever and Sheinman [10]. In a similar manner
the other cases are treated (but now only for the commutators). Furthermore, it is shown

that the connection operators ∇
(ω)
e act indeed on g. The original proofs (involving partly

tedious calculations) can be found in [10], [23], [28].
The singularities at the points in A are not bounded. Hence, they will not create

problems and the proofs need only to consider the weak singular points. Consequently,
the statements are also true in the multi-point case.

We start with two elements L′ and L′′ with corresponding expansions (2.5) and examine
their product L = L′L′′. For this we have to consider each point γs (with local coordinate
ws) of the weak singularities with αs 6= 0 separately. Taking into account only those parts
which might contribute we obtain for L

(A.1) L =
L′
s,−1L

′′
s,−1

w2
s

+
L′
s,−1L

′′
s,0 + L′

s,0L
′′
s,−1

w1
s

+
(
L′
s,−1L

′′
s,1 + L′

s,0L
′′
s,0 + L′

s,1L
′′
s,−1

)
+O(w1

s).

By expanding the first numerator we get

(A.2) L′
s,−1L

′′
s,−1 = αsβ

′
s
t
αsβ

′′
s
t
= 0

as β′s
tαs = 0 by (2.6). Hence, there is no pole of order two appearing.

Next we consider the expression which comes with pole order one.

(A.3) Ls,−1 = L′
s,−1L

′′
s,0 + L′

s,0L
′′
s,−1 = αsβ

′
s
t
L′′
s,0 + L′

s,0αsβ
′′
s
t
.

As by the conditions L′
s,0αs = κ′sαs we can write

(A.4) Ls,−1 = αsβ
t
s, with βts = β′s

t
L′′
s,0 + κ′sβ

′′
s
t
.

For the trace condition we obtain

(A.5) tr(Ls,−1) = (β′s
t
L′′
s,0 + κ′sβ

′′
s
t
)αs = κ′′sβ

′
s
t
αs + κ′sβ

′′
s
t
αs = 0.

Hence, we have the required form.
Finally we have to verify that αs is an eigenvector of Ls,0. First we note that L

′′
s,−1αs = 0

and L′
s,0L

′′
s,0αs = κ′sκ

′′
sαs. Also

(A.6) L′
s,−1L

′′
s,1αs = αs(β

′
s
t
L′′
s,1αs) = (β′s

t
L′′
s,1αs)αs.
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Hence, indeed αs is an eigenvector with eigenvalue β′s
tL′′

s,1αs+κ
′
sκ

′′
s . This shows the claim

that L ∈ gl(n).
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