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Foreword

In September 2009 the Third International School and Conference on Geo-
metry and Quantization took place at the University of Luxembourg.

The scientific topics discussed were

algebraic-geometric and complex-analytic-geometric aspects of quantization,

e geometric quantization and moduli space problems,

asymptotic geometric analysis,

infinite-dimensional geometry,

relations with modern theoretical physics.

The activity lasted for two weeks. The first week was a school with several
lecture courses aiming at the newcomer to the field. The second week was a
scientific conference.

This volume of the Travaux Mathématiques is an outcome of the school.
Its aim is to give also to those who could not participate an introduction to some
of the hot topics of ongoing research in the field. Furthermore, it was the desire of
the participants to have some written material of the courses available. We asked
the lecturers whether they would be able to produce such a write-up related to
their lectures. We are happy that most of them could manage to contribute.
Additionally, the contribution of Ma and Marinescu supplements in an ideal way
the material presented at the school

The contribution of Armen Sergeev deals with the quantization of universal
Teichmiiller space. First the complex geometry of the universal Teichmiiller space
is described. It is realized as an open subset of the complex Banach space of holo-
morphic quadratic differentials on the unit disc. The quotient of the diffeomor-
phism group of the circle modulo Md&bius transformations is treated as a regular
part of it. Based on this its quantization is considered. For the regular part the
quantization is obtained by embedding it into a suitable Hilbert—Schmidt-Siegel
disc. This method, however, does not apply to the full universal Teichmiller space.
For its quantization he uses an approach similar to the ”quantized calculus” of
Connes and Sullivan.



Johannes Huebschmann considers stratified Kéahler spaces. Such a space is a
stratified symplectic space together with a complex analytic structure which is
compatible with the stratified symplectic structure. In particular, each stratum is
a Kahler manifold in an obvious manner. Holomorphic quantization on a stratified
Kahler space then yields a costratified Hilbert space, a quantum object having the
classical singularities as its shadow. Given a Kahler manifold with an hamiltonian
action of a compact Lie group that also preserves the complex structure, reduction
after quantization coincides with quantization after reduction in the sense that
not only the reduced and unreduced quantum phase spaces correspond but the
invariant unreduced and reduced quantum observables as well. He illustrates
his approach with a quantum (lattice) gauge theory which incorporates certain
classical singularities. He explicitly calculates energy eigenvalues and tunneling
probabilities between different strata.

Tatsuya Tate deals with asymptotic analysis over complex polytopes. More
precisely, he presents results on its relation to representation theory of compact
Lie groups and asymptotic formulas for sections of line bundles over toric Kéhler
manifolds. In the frame of his presentation an important tool is the lattice path
counting functions which he introduce and for which he shows asymptotic formu-
las.

For Kéahler manifolds the Berezin-Toeplitz operator and the Berezin-Toeplitz
deformation quantization are naturally adapted quantization schemes. Hence, it
is not surprising that they appeared both in the school and in the conference. It
is the goal of the contribution of Martin Schlichenmaier to give an introduction
to the basic definitions and to the results concentrating on the case of compact
quantizable Kahler manifolds. The results on the correct semi-classical limit and
the existence of the Berezin-Toeplitz star product are presented. Coherent states,
co- and covariant Berezin symbols, and the Berezin transform are introduced. For
the asymptotic expansion of the Berezin transform the off-diagonal asymptotic
expansion of the Bergman kernel places a crucial role (which was obtained by
Schlichenmaier and Karabegov).

In the contribution of Xiaonan Ma and George Marinescu the authors give a
review on their recent results of the off-diagonal asymptotic expansion of the
Bergman kernel and their application to the Toeplitz operators and Berezin-
Toeplitz quantization. Everything is done in the presence of an auxiliary vector
bundle. Explicit formulas for the coefficients with small indices in the asymptotic
expansions in terms of the metrics involved are given. The results go beyond
the Kahler case as they can be employed to the compact symplectic situation by
choosing an almost-complex structure and an associated Spin® structure. More-
over, they apply also to compact Kéhler (and symplectic) orbifolds and certain
noncompact complete Hermitian manifolds.



Toeplitz operators play an important role in Andersen’s approach to Topo-
logical Quantum Field Theory (TQFT). In the contribution of Jorgen E. An-
dersen and Jakob L. Blaavand this is explained. A review of asymptotic results
on Toeplitz operators is given. For this purpose also the differential geometric
construction of the Hitchin connection on a prequantizable compact symplectic
manifold is reviewed. The asymptotic results relating the Hitchin connection and
Toeplitz operators, is applied in the special case of the moduli space of flat SU(n)-
connections on a surface, and the proof of the asymptotic faithfulness of the SU(n)
quantum representations of the mapping class group is discussed. Furthermore,
the formal Hitchin connections and formal trivializations of these are studied.
These fit together to produce a Berezin—Toeplitz star product, which is indepen-
dent of the complex structure. Explicit examples of the objects in the case of the
abelian moduli space are given and an approach to curve operators in the TQFT
associated to abelian Chern—Simons theory is presented.

Dmitry Talalaev in his contribution considers the very important spectral curve
method in the theory of integrable systems. First, he recalls the classical set-up
and then he introduces its quantum theoretical counter-part. Quite a number of
such quantized systems are discussed in his contribution (Calogero-Moser, Gaudin,
Hitchin, etc.). He closes with a discussion of the relation to the geometric Lang-
lands correspondence.

The organizers of the school thank all lecturers for contributing to the success
of the activity in an essential manner. Furthermore, we thank the participants
for their active role and for their very positive feedback. Last, but not least,
we thank the following institutions for financial support: ESF research network-
ing programme Harmonic and Complex Analysis and its Application (HCAA);
ESF research networking programme Interaction of Low-Dimensional Topology
and Geometry with Physics (ITGP); Mathematics Institute of the University of
Paderborn, in the frame of the DFG-IRTG Geometry and Analysis of Symmetries;
LMAM of the University Paul Verlaine, Metz; Steklov Mathematical Institute in
Moscow; Mathematical Institute of the University of Nagoya. The University of
Luxembourg with its Mathematical Research Unit RMATH contributed both via
financial support and by a lot of engagement to the success of the school and con-
ference. Furthermore, we thank the Fonds National de la Recherche Luxembourg
(FNR) for its support of the accompanying conference GEOQUANT.

Martin Schlichenmaier (for the organisers)
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Quantization of universal Teichmiiller space

by Armen Sergeev

Abstract

In the first part of the paper we describe the complex geometry of the
universal Teichmiiller space 7 which may be realized as an open subset
in the complex Banach space of holomorphic quadratic differentials in the
unit disc. The quotient S of the diffeomorphism group of the circle modulo
Mobius transformations is treated as a regular part of 7. In the second part
we consider the quantization of universal Teichmiller space 7. We explain
first how to quantize the regular part S by embedding it into a Hilbert—
Schmidt Siegel disc. This quantization method, however, does not apply to
the whole universal Teichmiiller space 7. For its quantization we use an
approach, similar to the ”quantized calculus” of Connes and Sullivan.

1 Introduction

The universal Teichmiiller space 7, introduced by Ahlfors and Bers, plays a key
role in the theory of quasiconformal maps and Riemann surfaces. It can be de-
fined as the space of quasisymmetric homeomorphisms of the unit circle S* (i.e.
homeomorphisms of S!, extending to quasiconformal maps of the unit disc A)
modulo Mobius transformations. The space 7 has a natural complex structure,
induced by embedding of 7 into the complex Banach space By(A) of holomorphic
quadratic differentials in the unit disc A. It also contains all classical Teichmiiller
spaces T'(G), where G is a Fuchsian group, as complex submanifolds. The space
S := Diff, (S*)/Mob(S) of normalized diffeomorphisms of the circle may be con-
sidered as a "regular” part of 7.

Our motivation to study 7 comes from the string theory. Physicists have
noticed that the space Q := Cg°(S!,R?) of smooth loops in the d-dimensional
vector space R? may be identified with the phase space of the theory of smooth
bosonic closed strings. By this identification the standard symplectic form (of
type "dp A dq”) on the phase space translates into a natural symplectic form
w on ;3. This form has a remarkable property that it can be extended to the
Sobolev completion of €24, coinciding with the space V; := Hé/ 2(51,Rd) of half-
differentiable vector-functions on S'. Moreover, Vj is the largest space among all
Sobolev spaces HS(S', RY) on which w can be correctly defined. In other words,
Vy is a natural phase space, ”"chosen” by the form w itself. From that point of
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view, it seems more reasonable to consider Vj; as the phase space of bosonic string
theory, rather than €;. In these lectures we set d = 1 for simplicity and study
the space V :=V; = Hé/Q(S’l,R).

According to Nag—Sullivan [7], there is a natural group, attached to the space
V= H&/ 2(5 I R), namely the group QS(S?) of quasisymmetric homeomorphisms
of the circle. Again one can say that the space V itself chooses the "right” group to
be acted on. The group QS(S!) acts on V by reparametrization of loops and this
action is symplectic with respect to the form w. The universal Teichmiiller space
T = QS(S")/Mob(S!) can be identified by this action with the space of complex
structures on V which can be obtained from a reference complex structure by the
action of reparametrization group QS(S'). It is well known that such a space
plays a crucial role in quantization which is the main subject of the second part
of our lectures.

In these lectures we try to define what is the quantum counterpart of the
space 7, provided with the action of the group QS(S!). In order to explain the
arising difficulties we consider first an analogous problem for the regular part S =
Diff, (S1)/Mob(S?) of 7, provided with the action of the group Diff, (S*). This
space can be quantized, using an embedding of S into the Hilbert-Schmidt Siegel
disc Dys. Under this embedding the diffeomorphism group Diff, (S?) is realized
as a subgroup of the Hilbert—Schmidt symplectic group Spyg(V), acting on the
Siegel disc by operator fractional-linear transformations. There is a holomorphic
Fock bundle F over Dyg, provided with a projective action of Spyg(V'), which
covers its action on Dyg. The infinitesimal version of this action is a projective
representation of the Hilbert—Schmidt symplectic Lie algebra spyg(V') in the fibre
Fy of the Fock bundle F. This defines the Dirac quantization of the Siegel disc
Dys. Its restriction to S gives a projective representation of the Lie algebra
Vect(S') of the group Diff, (S') in the Fock space Fy which defines the Dirac
quantization of the space S.

However, the described quantization procedure does not apply to the whole
universal Teichmiiller space 7. By this reason we choose another approach to
this problem, based on Connes quantization. Briefly, the idea is the following.
The QS(S*)-action on the Sobolev space V', mentioned above, cannot be differen-
tiated in the classical sense (in particular, there is no Lie algebra, associated to
QS(S1)). However, one can define a quantized infinitesimal version of this action
by associating with any quasisymmetric homeomorphism f € QS(S') a quantum
differential d?f which is an integral operator on V' with kernel, given essentially
by the finite-difference derivative of f. In these terms the quantization of 7 is
given by a representation of the algebra of derivations of V', generated by quantum
differentials d?f, in the Fock space Fj.
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2 Universal Teichmiiller space

2.1 Definition of universal Teichmiiller space

2.1.1 Quasiconformal maps

Let w: D — w(D) be a homeomorphism of the domain D C C in the extended
complex plane (Riemann sphere) C onto domain w(D) C C which has locally
integrable derivatives (in generalized sense).

Definition 2.1. The homeomorphism w is called quasiconformal if there exist a
function p € L*°(D) with norm ||u|l =: k¥ < 1 such that the following Beltrami
equation

(2.1) w; = paw,

is satisfied for almost all z € D. The function p is called the Beltrami differential
of w and the constant k is often indicated in the name of k-quasiconformal maps.

Remark 2.1. For £ = 0 the equation (2.1) reduces to the Cauchy-Riemann
equation and so determines a conformal map w : D — w(D). Such a map sends
infinitesimally small circles, centered at a point z € D, again into infinitesimally
small circles, centered at w(z). While in the case of a general smooth quasicon-
formal map w such a map sends infinitesimally small circles, centered at z € D,
into infinitesimally small ellipses, centered at w(z), with eccentricity (the ratio
of the large axis to the small one) being uniformly bounded (w.r. to z € D) by
a common constant K < oco. This constant K is related to the above constant

k = ||i||o by the formula
1+k
K=-—""51.
1—k
The least possible constant K is called the maximal dilatation of w and is also
sometimes indicated in the name of K-quasiconformal maps.

Remark 2.2. The term ”Beltrami differential” for u is motivated by the behavior
of p under conformal changes of variable. Namely, according to (2.1), the function
i should transform under a conformal change z — f(z) as

i.e. as a (—1, 1)-differential.

Remark 2.3. Quasiconformal maps w : D — D form a group, i.e. the composi-
tion of quasiconformal maps and the inverse of a quasiconformal map are again
quasiconformal.
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Theorem 2.1 (uniqueness theorem). Suppose that quasiconformal maps wy,ws :
D — D' satisfy the same Beltrami equation in D (i.e. have the same Beltrami
differential in D). Then the maps

wyowy ' and  wg 0wy

are conformal. The composition f ow of a quasiconformal map w : D — D’ with
a conformal map f : D' — D" satisfy the same Beltrami equation in D as w.

Remark 2.4. A quasiconformal map w : D — D’ is always extended to a home-
omorphism w : D — D’ of the closures which is Holder-continuous up to the
boundary.

Theorem 2.2 (existence theorem). For any function p € L*(C) with [|pfle <1
there exists a solution w of the Beltrami equation in C. Any other solution W of
this equation has the form w = w o f where f is a fractional-linear transform.

Remark 2.5. In Theorem 2.2 we have restricted ourselves to the case D = C
since the case of a general domain D C C is easily reduced to the case of the
extended complex plane. Indeed, given a Beltrami differential y € L*>°(D) with
norm ||j||os < 1 we can always extend it (e.g. by zero outside D) to the whole C,
preserving the inequality ||i|lo < 1, and then apply the above theorem to get a
solution of Beltrami equation in C. Its restriction to D yields a solution of Bel-
trami equation in D, defined up to conformal maps, according to the uniqueness
theorem.

2.1.2 Quasisymmetric homeomorphisms

Definition 2.2. A homeomorphism f : S! — S! of the unit circle S!, pre-
serving its orientation, is called quasisymmetric if it extends to a quasiconformal
homeomorphism w : A — A of the unit disc A. The set of all quasisymmetric
homeomorphisms of S* is a group, denoted by QS(S*).

Definition 2.3. The universal Teichmiiller space T is the quotient
T = QS(S*)/Mob(Sh)

where Mob(S') denotes the Mobius group of fractional-linear automorphisms of
the unit disc A, restricted to the unit circle S*.

Remark 2.6. One can avoid taking the quotient by M6bius group in the definition
of 7 by considering only normalized quasisymmetric homeomorphisms, leaving
three fixed points in the circle, say 41,4, invariant.
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Remark 2.7. Any orientation-preserving diffeomorphism in Diff, (S') extends to
a diffeomorphism of the closed unit disc A which is quasiconformal, according
to Remark 2.1. So Diff (S') c QS(S'), and we have the following chain of
embeddings

Mob(S") c Diffy (S') € QS(S") € Homeo, (S') .

Hence,

S = Diff  (S")/M&h(S') — T = QS(S')/Mob(S1).

The space S can be otherwise defined as the space of normalized diffeomorphisms
of S! and will be considered as a "regular” part of 7.

Since quasisymmetric homeomorphisms of S were defined via quasiconformal
maps of A, i.e. in terms of solutions of Beltrami equation in A, one can expect
that there should be a definition of 7 directly in terms of Beltrami differentials.

Denote by B(A) the set of Beltrami differentials in the unit disc A. It can
be identified (as a set) with the unit ball in the complex Banach space L>(A).
Given a Beltrami differential y € B(A), we can extend it to a Beltrami differential
fi on the extended complex plane C by setting /i equal to zero outside the unit
disc A. Then we can apply the existence Theorem 2.2 for quasiconformal maps
on the extended complex plane C and obtain a normalized quasiconformal home-
omorphism w", satisfying Beltrami equation (2.1) on C with potential ji. This
homeomorphism is conformal on the exterior A_ := C\ A of the closed unit disc
A on C and fixes the points +1, —i.

Introduce an equivalence relation between Beltrami differentials in A by iden-
tifying two Beltrami differentials i and v for which the corresponding conformal
maps coincide: w#|ao_ = w”|a_. The universal Teichmiiller space 7 coincides
with the quotient

T =B(A)) ~
of the space B(A) of Beltrami differentials modulo the introduced equivalence
relation.

2.2 Complex structure of universal Teichmiiller space

We introduce a complex structure on the universal Teichmiiller space 7, using its
embedding into the space of holomorphic quadratic differentials.

Consider an arbitrary point [u] of 7, represented by the quasiconformal map
wt. Tts restriction to A_ is a conformal map so we can take its Schwarzian

S(U}M|A_).

Digression 1. Recall that the Schwarzian of a conformal map f is defined by

0515
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A characteristic property of Schwarzian is its invariance under fractional-linear
maps
af +0b
S =S5(f).
(4LE0) =50

By taking the Schwarzian S(w”|a_), we get a holomorphic quadratic differ-
ential in the disc A_ (the latter fact follows from the transformation properties
of Beltrami differentials, prescribed by Beltrami equation (2.1)). Moreover, the
image of this map does not depend on the choice of Beltrami differential p in
the class [p]. Composing this map with a standard fractional-linear isomorphism
A_ — A, we obtain an embedding

(2:2) VT — Bo(A),  [p] — d(p),

having its image in the space By(A) of holomorphic quadratic differentials in the
unit disc A.

The space By(A) of holomorphic quadratic differentials in A is a complex
Banach space, provided with a natural hyperbolic norm, given by

I¥ll> := sup(1 — [2[*)?[v(2)]

for a quadratic differential ¢). It can be proved (cf. [5]) that ||¢[u]||2 < 6 for any
Beltrami differential u € B(A).

The constructed map ¥ : 7 — By(A), called the Bers embedding, is a home-
omorphism of 7 onto an open bounded connected contractible subset in By(A),
containing the ball of radius 1/2, centered at the origin (cf. [5]).

Using the constructed embedding (2.2), we can introduce a complex structure
on the universal Teichmiiller space 7 by pulling it back from the complex Banach
space By(A). Tt provides 7 with the structure of a complex Banach manifold.

2.3 Classical Teichmiiller spaces

The universal Teichmiiller space 7" contains all classical Teichmiiller spaces T'(G)
as complex submanifolds. In particular, it is true for all Teichmiiller spaces of
compact Riemann surfaces of genus g. This property motivates the use of the
term "universal” in the name of 7.

Let X be a compact Riemann surface of genus g > 1, uniformized by the unit
disc A. Such a surface can be represented as the quotient

X =A/G

where G is a discrete (Fuchsian) subgroup of Méb(A).
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Definition 2.4. A quasisymmetric homeomorphism f : S' — S' is called G-
mvariant if

fogo f~teMob(Sh) for any g € G <= fGf' C Mb(Sh).

Denote by QS(S')“ the subgroup of G-invariant quasisymmetric homeomor-

phisms in QS(S'). Then by definition

T(G) := QS(S")%/Mob(Sh).
The universal Teichmiiller space 7 itself corresponds to the Fuchsian group G =
{1}.

Remark 2.8. According to definition of T'(G), due to Teichmiiller, the space
T(G) parameterizes different complex structures on the Riemann surface X/A
which can be obtained from the original complex structure by a quasiconformal
deformation.

2.4 Grassmann realization

2.4.1 Sobolev space of half-differentiable functions

Definition 2.5. The Sobolev space of half-differentiable functions on S' is a
Hilbert space
V= Hy*(s",R),

consisting of functions f € L3(S', R) with zero average over the circle, which have
Fourier decompositions

f(Z):kazk, fk:ffk> z:eiO’

k40
and a finite Sobolev norm
(2.3) 1132 = D EIALP =2) kAl < oo .
k£0 k>0

Properties of V = HY?(S',R):
1. Symplectic structure: define a 2-form w on V' by the formula

w(&m) =2Tm Y k&

k>0
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for vectors £, € V with Fourier series

£(z) = Zﬁkzk, n(z) = anzk.

k#£0 k#£0

This form, which is correctly defined on V' due to condition (2.3), determines
a symplectic form on V. Moreover, HS/ ®(S1,R) is the largest Hilbert space
in the scale of Sobolev spaces H(S',R), s € R, on which this form is

correctly defined.

. Complex structure: the Sobolev space V has a complex structure J°, defined

by the formula

£(2) =) &2 — (J)(2) = =i Y G2 +i ) g

k#0 k>0 k<0

for a vector £(2) = 3, &2 € V.

. Riemannian metric: the introduced symplectic and complex structures on

V' are compatible with each other in the sense that they generate together
a Riemannian metric, defined by

g"(€m) = w(&, J°n) = 2Re Y k&

k>0

In other words, V' has the structure of a Kahler Hilbert space.

. Complexification of V, equal to

V= S0

is a complex Hilbert space with a Kahler metric, given by the Hermitian
extension of the Riemannian metric ¢° on V to VC. The space VC is de-
composed into the direct sum

V(C:W_A,_EBW_

of (Fi)-eigenspaces of the complex structure operator J° € End V. More
explicitly,

Wy={feV®: fl2) =) fiz"}, Wo={feV®: f(z)=) f}

k>0 k<0

This splitting is orthogonal with respect to Hermitian inner product on V°.
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2.4.2 (QS-action on the Sobolev space V'

With any homeomorphism A : S* — S, preserving the orientation, we can asso-
ciate a ”change-of-variable” operator

Ty : L3(SY, R) — L3(SY,R),
defined by
1 27
T(6) = o5 [ <(hio)) ao.
T Jo
This operator has the following remarkable property.

Theorem 2.3 (Nag—Sullivan [7]). (i) The operator Ty, acts on' V', i.e. Ty, : V — V,
if and only if h € QS(S').

(11) The operator Ty, with h € QS(S') acts symplectically on 'V, i.e. it preserves
symplectic form w. Moreover, its complez-linear extension to VC preserves the
subspace W if and only if h € Mcb(S*). In the latter case, Ty, acts as a unitary
operator on W_..

Remark 2.9. We have pointed out in the previous subsection that the Sobolev
space V' is the largest Hilbert space in the scale of Sobolev spaces, on which the
form w is correctly defined. In other words, this space is ”"chosen” by symplec-
tic form w itself. According to Theorem 2.3, the space V also ”chooses” the
reparametrization group QS(S!) in the sense that it is the largest reparametriza-
tion group, leaving V' invariant. So we get a natural phase space (V,w) together
with a natural group QS(S") of its canonical transformations.

According to Theorem 2.3, we have an embedding
(2.4) T = QS(S*)/Mob(S*) — Sp(V)/U(W,).

Here, Sp(V) is the symplectic group of V', consisting of bounded linear symplectic
operators on V', and U(W,) is its subgroup, consisting of unitary operators (i.e.
the operators, whose complex-linear extensions to V' preserve the subspace W.,).

Digression 2. Recall the definition of symplectic group Sp(V'). In terms of
decomposition
V(C == W+ @ W,

any linear operator A : V¢ — VC can be written in the block form

A:(g g).

Such an operator belongs to the symplectic group Sp(V') if it has the form

()
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with components, satisfying the relations
ala—bb=1, ab="4a

where a', b' denote the transposed operators a' : W_ — W_, b* : W_ — W,.
The unitary group U(W, ) is embedded into Sp(V') as a subgroup, consisting of
diagonal block matrices of the form

()

J (V) :=Sp(V)/U(Wy)

on the right hand side of (2.4), can be identified with the space of complex struc-
tures on V', compatible with w. Indeed, any such structure, given by a linear
operator J on V with J? = —I, determines a decomposition

The space

(2.5) Ve=WwaoWw

of V€ into the direct sum of (&i)-eigenspaces, isotropic with respect to w. Con-
versely, any decomposition (2.5) of the space VC into the direct sum of isotropic
subspaces determines a complex structure .JJ on V¢, equal to i/ on W and —il
on W, which is compatible with w. Moreover, a complex structure .J, obtained
from a reference complex structure J° by the action of an element A of Sp(V), is
equivalent to J° if and only if A € U(W,). Hence,

Sp(V)/UWy) =T (V) .

The space on the right can be, in its turn, identified with the Siegel disc D,
defined as the set

D ={Z: W, — W_ is a symmetric bounded linear operator with ZZ < I}.

The symmetricity of Z means that Z' = Z and the condition ZZ < I means
that symmetric operator I — ZZ is positive definite. In order to identify (V)
with D, consider the action of the group Sp(V') on D, given by fractional-linear
transformations A : D — D of the form

Z v+ (aZ +b)(bZ + a)™*

where A = (f} b € Sp(V). The isotropy subgroup at Z = 0 coincides with the

b a
set of operators A € Sp(V') such that b = 0, i.e. with U(W,). So the space

J (V) =Sp(V)/U(Wy)



Universal Teichmiiller Space 17

can be identified with the Siegel disc D.

It can be proved (cf. [7]) that the constructed embedding of universal
Teichmiiller space 7 into the Siegel disc D = Sp(V)/U(W,) is an equivariant
holomorphic map of Banach manifolds.

Restriction of this map to the regular part S of universal Teichmiiller space
yields an embedding

(2.6) S — Spus(V)/U(WS)

where the Hilbert-Schmidt subgroup Spys(V') of Sp(V') consists of bounded linear
operators A € Sp(V'), having block representations of the form

where b is a Hilbert—-Schmidt operator.

Digression 3. Recall that a linear bounded operator T" : H; — Hy from a
Hilbert space H; to a Hilbert space Hs is called Hilbert—Schmidt if there exists
an orthonormal basis {e;} in H; such that the Hilbert—Schmidt norm

o 1/2
172 = <Z IITeiII?b)
i=0

is finite. If this is true for some orthonormal basis {e;} in H; then it is true for
any orthonormal basis in H; and the value of the norm ||T'||; does not depend on
the choice of this basis.

We identify, as above, the right hand side of (2.6) with a subspace Jus(V)
of the space J (V') of compatible complex structures on V. As before, the space
Jus (V) of Hilbert—Schmidt complex structures on V' can be realized as a Hilbert—

Schmidt Siegel disc
Dys = {Z : W, — W_ is a symmetric Hilbert-Schmidt operator with ZZ < I}.

The embedding of § into the Hilbert—Schmidt Siegel disc Dyg is an equivariant
holomorphic map of Banach manifolds.
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3 Quantization of Universal Teichmiiller Space

3.1 Dirac quantization

3.1.1 Definition

We start by recalling a general definition of quantization of finite-dimensional
classical systems, due to Dirac. A classical system is given by a pair (M,.A)
where M is the phase space of the system and A is its algebra of observables.

The phase space M is a smooth symplectic manifold of even dimension 2n,
provided with symplectic 2-form w. Locally, it is equivalent to the standard model,
given by symplectic vector space M, := R?" together with standard symplectic
form wy, given in canonical coordinates (p;, ¢;), i =1,...,n, on R*" by

n
=1

The algebra of observables A is a Lie subalgebra of the Lie algebra C*°(M,R)
of smooth real-valued functions on the phase space M, provided with the Poisson
bracket, determined by symplectic 2-form w. In particular, in the case of standard
model My = (R?*" w,) one can take for A the Heisenberg algebra, generated
by coordinate functions p;,q;, ¢ = 1,...,n, and 1, satisfying the commutation
relations

i, pit =A{a, 4} =0,

{pi,qj}:(sij fOI' i,jzl,...,n.
Remark 3.1. One of usual ways to produce algebras of observables is to consider
a Lie group I' of symplectomorphisms of a symplectic manifold (M,w) and take
for A its Lie algebra Lie(I"), consisting of Hamiltonian vector fields Xy on M. If

M is simply connected then A can be identified with the dual algebra of functions
f, generating Hamiltonian vector fields from Lie(T").

Definition 3.1. The Dirac quantization of a classical system (M, .A) is an irre-
ducible linear representation

r: A— End*H

of the algebra of observables A in the space of linear self-adjoint operators, acting
on a complex Hilbert space H, called the quantization space. The map r should
satisfy the condition

r({7,0)) = £ (rlg) ~ r{g)r(h)

for any f,g € A. We also impose on r the following normalization condition:
r(1)=1.
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Remark 3.2. For complexified algebras of observables A® or, more generally,
complex involutive Lie algebras of observables (i.e. Lie algebras with conjugation)
their Dirac quantization is given by an irreducible Lie-algebra representation

r: A® — End H ,

satisfying the normalization condition and the conjugation law: r(f) = r(f)* for

any [ € A.

Remark 3.3. We are going to apply this definition of quantization to infinite-
dimensional classical systems, in which both the phase space and algebra of ob-
servables are infinite-dimensional. For infinite-dimensional algebras of observables
it is more natural to look for their projective representations. Using such a rep-
resentation for an original algebra A, we can construct the quantization of the
extended system (M, A) with A being a suitable central extension of A.

3.1.2 Statement of the problem

We shall explain first how to quantize the regular part of universal Teichmiiller
space 7T, represented by the classical system

(S, Vect(S1))

where § = Diff (S1)/Mob(S!) and Vect(S?) is the Lie algebra of Diff, (S'), con-
sisting of smooth vector fields on S*.

To quantize this system, we first enlarge it to an extended system, using the
embedding § — Jys(V') from Subsection 2.4.2. This extended system is given by

(Jus(V),spus(V))

where spyg(V) is the Lie algebra of Spyg(V).

3.2 Quantization of S

3.2.1 Fock space

Fix a compatible complex structure J € J(V'), generating a decomposition
(3.1) VE=WweWw

of V€ into the direct sum of +i-eigenspaces of J and provide V¢ with a Hermitian
inner product
< z,w > = w(z, Jw),
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determined by J and symplectic form w.
The Fock space F(V®,.J) is the completion of the algebra of symmetric poly-

nomials on W with respect to a natural norm, generated by < -,- >;. In more
detail, denote by S(W) the algebra of symmetric polynomials in variables z € W.
This algebra is provided with an inner product, generated by < -,- >;. By
definition, this inner product on monomials of the same degree is equal to
S R i Z < 2,2, >y < zn, 2 >y
{i1,in}
where the summation is taken over all permutations {i,...,4,} of theset {1,...,n}.

The inner product of monomials of different degrees is set to zero. The constructed
inner product is extended to the whole algebra S(W) by linearity. The completion

W of S(W) with respect to the introduced norm is called the Fock space of
V€ with respect to complex structure J:

—

Fy;=F(\VEJ):=S(W).

If {w,}, n = 1,2,..., is an orthonormal basis of W one can take for an
orthonormal basis of F'; a family of homogeneous polynomials of the form
1
(3.2) Pr(2) = —= < zyw; > o< 2w, S 2 e W,

V!
where K = (k1,...,k,,0,...), k; e NUO, and k! = kq! - - - kn!.

3.2.2 Symplectic group action on Fock spaces
We unify different Fock spaces F; with J € Jus(V) into a single Fock bundle
Fi= |J Fr— Jus(V)=Spus(V)/UW,).
JeTus(V)

Theorem 3.1 (Shale-Berezin). The Fock bundle
F — Tus(V)

is a holomorphic Hermitian Hilbert-space bundle. The group Spys(V') acts projec-
tively on F by unitary transformations and this action covers the natural action

of Spus(V) on Tus(V') by left translations.

The infinitesimal version of this action yields a projective representation of
symplectic Hilbert-Schmidt algebra spyg(V) in the Fock space Fy = F(VC, J°),
i.e. a quantization of the system

(jHSv SpHS(V)>
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where spyg(V) is a central extension of Lie algebra spyg(V).
The restriction of the constructed Fock bundle F to the submanifold S C Jug
is a holomorphic Hermitian Hilbert-space bundle

Fs = Fy — 8 = Diff(S")/Msb(S")
Jes

together with a projective unitary action of Diff, (S'), covering its action on S
by left translations. The infinitesimal version of this action generates a projective
unitary representation of the Lie algebra Vect(S!) in the Fock space Fyp, i.e. a
quantization of the system

(S, vir)

where vir is the Virasoro algebra, being a central extension of Lie algebra Vect(S!).

3.3 Quantization of 7

3.3.1 Dirac versus Connes quantization

To quantize S, we have used the fact that the symplectic group Spyg(V') acts on
the Fock bundle F — Jus(V). For the whole Teichmiiller space 7" we still have
the embedding

T — JV)=5p(V)/U(W,)

but we cannot construct an Sp(V')-action on F, covering its action on J (V). This
is forbidden by Shale-Berezin theorem. So we employ another approach for the
quantization of 7', using Connes’ definition of quantization.

Recall that in Dirac’s approach we quantize a classical system (M, .A), con-
sisting of the phase space M and the algebra of observables A which is a Lie
algebra, consisting of smooth functions on M. The quantization of this system is
given by a representation r of A in a Hilbert space H, sending the Poisson bracket
{f. g} of functions f,g € A into the commutator [r(f),r(g)] of the correspond-
ing operators. In Connes’ approach the algebra of observables 2l is an associative
involutive algebra, provided with an exterior differential d. Its quantization is, by
definition, a representation m of 2 in a Hilbert space H, sending the differential
df of a function f € 2 into the commutator [S, w(f)] of the operator «(f) with a
self-adjoint symmetry operator S with S? = I.

In the following table we compare Connes and Dirac approaches to quantiza-
tion:
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Dirac approach Connes approach
(M, A) where: (M, ) where:
Z? g M — phase space M — phase space
% S | A - involutive Lie algebra 20 — involutive associative
w0
O = of observables algebra of observables with

differential d

£ representation representation

= r: A— End H , m:2A — End H ,
'g sending sending

3 {f,9} = 5lr(f),r(g)] df — [S,7(f)]
e where S = S*, 82 =1

Remark 3.4. We can reformulate the Connes definition in terms of Lie algebras
by switching to the algebra of derivations of associative algebra of observables
2. Recall that the Lie algebra Der(2() of derivations of [ consists of linear maps
2 — A, satisfying the Leibnitz rule. The Connes quantization means in these
terms the construction of an irreducible representation of Der(2() in the space
End H, considered as a Lie algebra with a Lie bracket, given by commutator.

Remark 3.5. If all observables are smooth functions on M, both approaches are
equivalent to each other. Indeed, the differential df of a smooth observable f is
symplectically dual to the Hamiltonian vector field Xy which establishes a relation
between the associative algebra 2 > f of functions f on M and the Lie algebra
A > X; of Hamiltonian vector fields Xy. A symmetry operator S is determined
by a polarization H = H, & H_ of the quantization space H and related to the
complex structure J (determined by the same polarization) by a simple formula
S =1ilJ.

In the case when the algebra of observables A contains non-smooth functions,
the Dirac approach formally cannot be applied. In Connes approach the differ-
ential df of a non-smooth observable f € 2 is also not defined but its quantum
analogue

d'f =[S, 7(f)]

may still have sense, as it is demonstrated by the example in the next subsection.
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3.3.2 Example

Suppose that 2 is the algebra L>°(S', C) of bounded functions on the circle S
Any function f € 2 determines a bounded multiplication operator in the Hilbert
space H = L*(S',C) by the formula

My:ve H— fve H.

A symmetry operator S in H is given by the Hilbert transform S : L*(S*,C) —
L*(SY, C):

. 1 2m .
(D) = 5-PV. [ K(e)fe)iv
0
where the integral is taken in the principal value sense and the kernel is given by

o —1
B

(3.3) K(p,¢) =1+1icot

Note that for ¢, close to v, this kernel behaves asymptotically like 2/(p — 1)).
The differential df of a general observable f € 2l is not defined in the classical
sense but its quantum analogue

dqf = [S, Mf]

is a bounded operator in H. Moreover, d?f for f € H is a Hilbert—-Schmidt
operator, given by

(34 1)) = 5 [ k(e

with kernel
k(o) == K, ¥)(f(p) = [(¥)) ,
where K(p,1) is defined by (3.3). The kernel k(¢,v) for ¢, close to 1, behaves
asymptotically like
fe¥) — f(e”)

=
Using this fact, it can be checked that the quasiclassical limit of d?f, arranged
by taking the limit ¢ — %, coincides (up to a constant) with the multiplication
operator v — f'v. So the quantization means in this case simply the replacement
of the derivative by its finite-difference analogue.
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3.3.3 Quantization of the universal Teichmiiller space

We apply these ideas to the universal Teichmiiller space 7. In Subsection 2.4.2
we have defined a natural action of the group QS(S') of quasisymmetric homeo-
morphisms of S' on the Sobolev space V. As we have remarked, this action does
not admit the differentiation, so classically there is no Lie algebra, associated with
QS(S1). In other words, there is no classical algebra of observables, associated to
7. (The situation is similar to that in the example above.) However, we shall
construct a quantum algebra of observables, associated to 7.

For that we define a quantum infinitesimal version of QS(S')-action on V,
given by the integral operator d?f, defined by formula (3.4). Then we extend this
operator d?f to the Fock space Fjy by defining it first on elements of the basis (3.2)
of Iy with the help of Leibnitz rule, and then extending to the whole symmetric
algebra S(WW,) by linearity. The completion of the obtained operator yields an
operator d?f on Fy. The operators d?f with f € QS(S'), constructed in this way,
generate a quantum Lie algebra Der?(QS), associated with 7. We consider it as a
quantum Lie algebra of observables, associated with 7. We can also consider the
constructed Lie algebra Der?(QS) as a replacement of the (non-existing) classical
Lie algebra of the group QS(S*).

Compare now the main steps of Connes quantization of 7 with the analogous
steps in Dirac quantization of Jgys.

In the case of Jgus:

1. we start with the Spyg(V')-action on Jys;

2. then, using Shale theorem, extend this action to a projective unitary action
of Spys(V) on Fock spaces F(V, J);

3. an infinitesimal version of this action yields a projective unitary representa-
tion of symplectic Lie algebra spyg(V') in the Fock space Fy.

In the case of 7T:

1. we have an action of QS(S') on the space V'; however, in contrast with Dirac
quantization of Jyg, the step (2) in case of 7 is impossible, since by Shale
theorem we cannot extend the action of QS(S') to Fock spaces F(V,S);

2. we define instead a quantized infinitesimal action of QS(S') on V| given by
quantum differentials d?f;

3. extending operators d?f to the Fock space Fj, we obtain a quantum Lie
algebra Der?(QS), generated by extended operators d?f on Fy.



Universal Teichmiiller Space 25

Conclusion. The Connes quantization of the universal Teichmiiller space 7
consists of two steps:

1. The first step ("the first quantization”) is the construction of quantized
infinitesimal QS(S*)-action on V, given by quantum differentials d¥f with

feQS(Sh).

2. The second step ("the second quantization”) is the extension of quantum
differentials d?f to the Fock space Fy. The extended operators d?f with f €
QS(S') generate the quantum algebra of observables Der?(QS), associated
with 7.

Note that the correspondence principle for the constructed Connes quantiza-
tion of 7 means that this quantization, being restricted to S, coincides with Dirac
quantization of S.
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Singular Poisson-Kahler geometry

of stratified Kahler spaces and quantization

by Johannes Huebschmann

Abstract

In the presence of classical phase space singularities the standard meth-
ods are insufficient to attack the problem of quantization. In certain situ-
ations the difficulties can be overcome by means of Kéhler quantization on
stratified Kdhler spaces. Such a space is a stratified symplectic space to-
gether with a complex analytic structure which is compatible with the strat-
ified symplectic structure; in particular each stratum is a Kéhler manifold in
an obvious fashion. Holomorphic quantization on a stratified Kéahler space
then yields a costratified Hilbert space, a quantum object having the classi-
cal singularities as its shadow. Given a Kahler manifold with a hamiltonian
action of a compact Lie group that also preserves the complex structure,
reduction after quantization coincides with quantization after reduction in
the sense that not only the reduced and unreduced quantum phase spaces
correspond but the invariant unreduced and reduced quantum observables
as well.
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1 Introduction

In the presence of classical phase space singularities the standard methods are
insufficient to attack the problem of quantization. Ordinary Schrodinger quan-
tization leads to a Hilbert space whose elements are classes of L?-functions, and
incorporating singularities here directly seems at present out of sight since we do
not know how to handle the singularities in terms of classes of functions. However,
Hilbert spaces of holomorphic functions are typically spaces whose points are or-
dinary functions rather than classes of functions, and we know well how we can
understand singularities in terms of ordinary functions. We will show here that, in
certain situations, by means of a suitable Kahler quantization procedure on strat-
ified Kahler spaces, we can overcome the difficulties at the quantum level arising
from classical phase space singularities. A stratified Kahler space is a stratified
symplectic space endowed with a complex analytic structure which is compatible
with the stratified symplectic structure; in particular each stratum is a Kahler
manifold in an obvious fashion. Kahler quantization then yields a Hilbert space
whose points are holomorphic functions (or more generally holomorphic sections
of a holomorphic line bundle); the resulting quantum Hilbert space actually ac-
quires more structure which, in turn, has the classical singularities as its shadow,
as we will explain shortly.
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Examples of stratified Kahler spaces abound: Symplectic reduction, applied
to Kahler manifolds, yields a particular class of examples; this includes adjoint
and generalized adjoint quotients of complex semisimple Lie groups which, in
turn, underly certain lattice gauge theories. Other examples come from certain
moduli spaces of holomorphic vector bundles on a Riemann surface and variants
thereof; in physics language, these are spaces of conformal blocks. Still other
examples arise from the closures of holomorphic nilpotent orbits. Symplectic
reduction carries a Kéahler manifold to a stratified Kéahler space in such a way
that the sheaf of germs of polarized functions coincides with the ordinary sheaf of
germs of holomorphic functions. Projectivization of the closures of holomorphic
nilpotent orbits yields exotic stratified Kahler structures on complex projective
spaces and on certain complex projective varieties including complex projective
quadrics. Other physical examples are reduced spaces relative to a constant value
of angular momentum.

In the presence of singularities, a naive approach to quantization might consist
in restriction of the quantization problem to a smooth open dense part, the “top
stratum”. However this naive procedure may lead to a loss of information and
in fact to inconsistent results. To explore the potential impact of classical phase
space singularities on quantum problems, we developed the notion of costrati-
fied Hilbert space. This is the appropriate quantum state space over a stratified
space; a costratified Hilbert space consists of a system of Hilbert spaces, one
for each stratum which arises from quantization on the closure of that stratum,
the stratification is reflected in certain bounded linear operators between these
Hilbert spaces reversing the partial ordering among the strata, and the linear op-
erators are compatible with the quantizations. The notion of costratified Hilbert
space is, perhaps, the quantum structure having the classical singularities as its
shadow. Within the framework of holomorphic quantization, a suitable quanti-
zation procedure on stratified Kahler spaces leads to costratified Hilbert spaces.
Given a Kéahler manifold with a hamiltonian action of a compact Lie group that
also preserves the complex structure, reduction after quantization then coincides
with quantization after reduction in the sense that not only the reduced and unre-
duced quantum phase spaces correspond but the invariant unreduced and reduced
quantum observables as well.

We illustrate the approach with a certain concrete model: In a particular case,
we describe a quantum (lattice) gauge theory which incorporates certain classi-
cal singularities. The reduced phase space is a stratified Kahler space; we make
explicit the requisite singular holomorphic quantization procedure and spell out
the resulting costratified Hilbert space. In particular, certain tunneling probabil-
ities between the strata emerge, we will explain how the energy eigenstates can
be determined, and we will explore the corresponding expectation values of the
orthoprojectors onto the subspaces associated with the strata in the strong and
weak coupling approximations.
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The physics described in the present lecture notes was worked out in research
collaboration with my physics friends G. Rudoph and M. Schmidt [28], [29]. I am
much indebted to them for having taught me the relevant physics.

2 Physical systems with classical phase space
singularities

2.1 An example of a classical phase space singularity

In R3 with coordinates z,y,r, consider the semicone N given by the equation
2% + y? = r? and the inequality » > 0. We refer to this semicone as the ezotic
plane with a single vertex. The semicone N is the classical reduced phase space
of a single particle moving in ordinary affine space of dimension > 2 with angular
momentum zero. In Section 7 below we will actually justify this claim. The
reduced Poisson algebra (C*°N, {-, - }) may be described in the following fashion:
Let z and y be the ordinary coordinate functions in the plane, and consider the
algebra C'*°N of smooth functions in the variables x,y,r subject to the relation
2?2 4+ y* = 2. Define the Poisson bracket { -, - } on this algebra by

{%?/} = 2T7 {fL‘,’T’} = 2y7 {yar} = —21',

and endow N with the complex structure having z = z + iy as holomorphic
coordinate. The Poisson bracket is then defined at the verter as well, away from
the vertex the Poisson structure is an ordinary symplectic Poisson structure, and
the complex structure does not “see” the vertex. At the vertex, the radius function
r is not a smooth function of the variables x and y. Thus the vertex is a singular
point for the Poisson structure whereas it is not a singular point for the complex
analytic structure. The Poisson and complex analytic structure combine to a
“stratified Kahler structure”. Below we will explain what this means.

2.2 Lattice gauge theory

Let K be a compact Lie group, let £ denote its Lie algebra, and let K be the
complexification of K. Endow £ with an invariant inner product. The polar
decomposition of the complex group K® and the inner product on £ induce a
diffeomorphism

(2.1) T"K~2TK — K xt — K©

in such a way that the complex structure on K€ and the cotangent bundle sym-
plectic structure on T* K combine to K-bi-invariant Kahler structure. When we
then build a lattice gauge theory from a configuration space ) which is the prod-
uct Q = K* of ¢ copies of K, we arrive at the (unreduced) momentum phase
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space

T'Q = T'K" = (K°),
and reduction modulo the K-symmetry given by conjugation leads to a reduced
phase space of the kind

T*Kﬁ//Kg(K(C)Z//K(C

which necessarily involves singularities in a sense to be made precise, however.
Here T*K* / / K denotes the symplectic quotient whereas (K©)* / / K€ refers to
the complex algebraic quotient (geometric invariant theory quotient). The special
case [ = 1, that of a single spatial plaquette—a quotient of the kind K© / / K€ is
referred to in the literature as an adjoint quotient—, is mathematically already
very attractive and presents a host of problems which we have elaborated upon
in [28]. To explain how in this particular case the structure of the reduced phase
space can be unravelled, following [28], we proceed as follows:

Pick a maximal torus 7" of K, denote the rank of T" by r, and let W be the Weyl
group of T"in K. Then, as a space, T*T is diffeomorphic to the complexification
TC of the torus 7' and T, in turn, amounts to a product (C*)" of r copies of
the space C* of non-zero complex numbers. Moreover, the reduced phase space
P comes down to the space T*T /W = (C*)" /W of W-orbits in (C*)" relative to
the action of the Weyl group W.

Viewed as the orbit space T*T' / W, via singular Marsden-Weinstein reduction,
the reduced phase space P inherits a stratified symplectic structure. That is
to say: (i) The algebra C°°(TC)" of ordinary smooth W-invariant functions on
TC inherits a Poisson bracket and thus furnishes a Poisson algebra of continuous
functions on P; (ii) for each stratum, the Poisson structure yields an ordinary
symplectic Poisson structure on that stratum; and (iii) the restriction mapping
from C(T®)W to the algebra of ordinary smooth functions on that stratum is a
Poisson map.

Viewed as the orbit space T / W, the reduced phase space P acquires a com-
plex analytic structure. The complex analytic structure and the Poisson structure
combine to a stratified Kihler structure on P [20], [24], [25]. The precise meaning
of the term “stratified Kahler structure” is that the Poisson structure satisfies (ii)
and (iii) above and that the Poisson and complex structures satisfy the additional
compatibility condition that, for each stratum, necessarily a complex manifold,
the symplectic and complex structures on that stratum combine to an ordinary
Kahler structure.

In Section 12 below we will discuss a model that originates, in the hamiltonian
approach, from lattice gauge theory with respect to the group K. The (classical
unreduced) Hamiltonian H: T*K — R of this model is given by

1
(2.2) Hiz,Y) = —3Y[ + g (3—Retr(z)), 1€ K, Y €¢.
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Here v = 1/¢?, where ¢ is the coupling constant, the notation |-| refers to the norm
defined by the inner product on £, and the trace refers to some representation of
K; below we will suppose K to be realized as a closed subgroup of some unitary
group. Moreover, the lattice spacing is here set equal to 1. The Hamiltonian H
is manifestly gauge invariant.

2.3 The canoe
We will now explore the following special case:
K =SU(2), K®=SL(2,C), W =7Z/2.

A maximal torus T in SU(2) is simply a copy of the circle group S, the space
T*T = TC is a copy of the space C* of non-zero complex numbers, and the W-
invariant holomorphic map

(2.3) f:C"—C, fz)=2+2""

induces a complex analytic isomorphism P — C from the reduced space
P=T'K//K=2TT/W=C'/W

onto a single copy C of the complex line.

Remark. More generally, for K = SU(n), complex analytically, T* K / / K comes
down to (n — 1)-dimensional complex affine space C*!. Indeed, K€ = SL(n, C),
having (C*)"~! as a maximal complex torus. Realize this torus as the subspace of
(C*)™ which consists of all (z1, ..., z,) such that z; ... z, = 1. Then the elementary

symmetric functions oy, ..., 0,1 yield the map
(01,...,0n1): (CHY" 1 — C" 1
z=(21,...,2n) — (01(2),...,0n-1(2))

which, in turn, induces the complex analytic isomorphism
SL(n, (C)//SL(n, C) = ((C*)"*I/W ~ Cnt

from the quotient onto a copy of C"~!. We note that, more generally, when K
is a general connected and simply connected Lie group of rank r (say), in view
of an observation of Steinberg’s [44], the fundamental characters xi,...,x, of
KC furnish a map from K© onto r-dimensional complex affine space A" which
identifies the complex adjoint quotient K© / / K© with A". As a stratified Kihler
space, the quotient has considerably more structure, though. We explain this in
the sequel for the special case under consideration.
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Thus we return to the special case K = SU(2): In view of the realization of
the complex analytic structure via the holomorphic map f: C* — C given by
f(z) = z + 271 spelled out above, complex analytically, the quotient P is just
a copy C of the complex line, and we will take Z = 2 + 27! as a holomorphic
coordinate on the quotient. On the other hand, in terms of the notation

y=x+1iy, Z=X+1iY, r’* =>4+,
x

X:x—l——Q, Y=y— =, 7==
r

the real structure admits the following description: In the case at hand, the
algebra written above as C*(T%)" comes down the algebra C*°(P) of continuous
functions on P = C which are smooth functions in three variables (say) X, Y, 7,
subject to certain relations; the notation C*°(P) is common for such an algebra of
continuous functions even though the elements of this algebra are not necessarily
ordinary smooth functions. To explain the precise structure of the algebra C*°(P),
consider ordinary real 3-space with coordinates X, Y, 7 and, in this 3-space, let
C be the real semi-algebraic set given by

V2= (X2 4+ Y2 +4(r—1)1r, T72>0.

As a space, C' can be identified with P. Further, a real analytic change of coordi-
nates, spelled out in Section 7 of [25], actually identifies C' with the familiar canoe.
The algebra C*°(P) is that of Whitney-smooth functions on C, that is, continuous
functions on C' that are restrictions of smooth functions in the variables X, Y, 7
or, equivalently, smooth functions in the variables X, Y, 7, where two functions
are identified whenever they coincide on C'. The Poisson brackets on C*°(P) are
determined by the formulas

(X, Y} =X>+Y?+4(27 — 1),
{X,7} =2(1-1)Y,
{Y,7} =27X.

On the subalgebra of C*°(P) which consists of real polynomial functions in the
variables X, Y, 7, the relation

Vi (X2 4+ Y24+ 4(r—1)7

is defining. The resulting stratified Kdahler structure on P = C is singular at
—2 € C and 2 € C, that is, the Poisson structure vanishes at either of these two
points. Further, at —2 € C and 2 € C, the function 7 is not an ordinary smooth
function of the variables X and Y, viz.

1 X24Y2 42 X24Y2—4
\/Y2+( - 2 X% 4

T== ,
2 16 8
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whereas away from —2 € C and 2 € C, the Poisson structure is an ordinary
symplectic Poisson structure. This makes explicit, in the case at hand, the singular
character of the reduced space P as a stratified Kahler space which, as a complex
analytic space, is just a copy of C, though and, as such, has no singularities, i. e.
is an ordinary complex manifold.

For later reference, we will now describe the stratification of the reduced con-
figuration space X = T'/W and that of the reduced phase space P = (T x t)/W.
The stratifications we will use arise from the W-orbit type decompositions: We
will not make precise the notion of stratification and that of stratified space, see
e. g. [10].

The torus 7" amounts to the complex unit circle and its Lie algebra t to the
imaginary axis. The Weyl group W = S5 acts on 7" by complex conjugation and on
t by reflection. Hence the reduced configuration space X = T'/W is homeomorphic
to the closed interval [—1, 1] and the reduced phase space P = (T x t)/W to the
well-known canoe, see Figure 1.

Let

X = {1}, X ={-1}, =X, UX_={-1,1}, X =] - 1,1]

so that the orbit type decomposition of X relative to the W-action has the form
X = X UXy. The “piece” X (the open interval) is connected; it is the “top”
stratum, the open, connected and dense stratum. In particular, the restriction to
the pre-image of X} of the orbit projection is a W-covering projection. The lower
stratum Xy decomposes into the two connected components X, and X_; the single
point in X, arises from a fixed point of the WW-action, and the same is true of X_.
Likewise the orbit type decomposition of P relative to the W-action has the form
P = P1UPy. Here the “piece” Py is the “top” stratum, i. e. the open, connected
and dense stratum which is here 2-dimensional. As before, the restriction to the
pre-image of P; of the orbit projection is a W-covering projection. Further, Py
decomposes into two connected components Py, = P, U P_, each containing a
vertex of the canoe; each such vertex arises from a fixed point of the W-action.
Under the identification of P with the complex line C described previously, the
two vertices of the canoe correspond to the points 2 and —2 of C so that

P, ={2CC, P.={-2}CC, P,=C\Py=C\{2 -2}

A closer look reveals that we can see that decomposition of C as arising from
hyperbolic cosine, viewed as a holomorphic function: The two points 2 and —2
are the focal points of the corresponding families of ellipses and hyperbolas in C.
Two of these ellipses and two of these hyperbolas are in fact indicated in Figure
1. We will come back to the stratifications in Sections 10 and 13 below.

Remark 2.1. In the case under discussion (K = SU(2)), as a stratified symplec-
tic space, P is isomorphic to the reduced phase space of a spherical pendulum,
reduced at vertical angular momentum 0 (whence the pendulum is constrained to
move in a plane), see [8].



Singular Poisson-Kahler geometry and quantization 35

P

P P_
Figure 1: The reduced phase space P for K = SU(2).

3 Stratified Kahler spaces

In the presence of singularities, restricting quantization to a smooth open dense
stratum, sometimes referred to as “top stratum”, can result in a loss of information
and may in fact lead to inconsistent results. To develop a satisfactory notion of
Kéhler quantization in the presence of singularities, on the classical level, we
isolated a notion of “Kahler space with singularities”; we refer to such a space as
a stratified Kahler space. Ordinary Kahler quantization may then be extended to
a quantization scheme over stratified Kdhler spaces.

We will now explain the concept of a stratified Kdhler space. In [20] we in-
troduced a general notion of stratified Kéhler space and that of complex analytic
stratified Kahler space as a special case. We do not know whether the two no-
tions really differ. For the present paper, the notion of complex analytic stratified
Kahler space suffices. To simplify the terminology somewhat, “stratified Kahler
space” will always mean “complex analytic stratified Kahler space”.

We recall first that, given a stratified space N, a stratified symplectic structure
on N is a Poisson algebra (C*°N, { -, - }) of continuous functions on N which, on
each stratum, amounts to an ordinary smooth symplectic Poisson algebra. The
functions in C°°°N are not necessarily ordinary smooth functions. Restriction of
the functions in C*°N to a stratum is required to yield the compactly supported
functions on that stratum, and these suffice to generate a symplectic Poisson
algebra on the stratum.

Next we recall that a complex analytic space (in the sense of GRAUERT) is
a topological space X, together with a sheaf of rings Ox, having the following
property: The space X can be covered by open sets Y, each of which embeds
into the polydisc U in some C" (the number n may vary as U varies) as the zero
set of a finite system of holomorphic functions fi,..., f, defined on U, such that
the restriction Oy of the sheaf Ox to Y is isomorphic as a sheaf to the quotient
sheaf Oy / (fi,-.., fy); here Oy is the sheaf of germs of holomorphic functions on
U. The sheaf Oy is then referred to as the sheaf of holomorphic functions on X.
See [11] for a development of the general theory of complex analytic spaces.



36 J. Huebschmann

Definition 3.1. A stratified Kdhler space consists of a complex analytic space N,
together with

(i) a complex analytic stratification (a not necessarily proper refinement of the
standard complex analytic stratification), and with

(ii) a stratified symplectic structure (C*°N,{ -, - }) which is compatible with the
complex analytic structure

The two structures being compatible means the following:
(i) For each point ¢ of N and each holomorphic function f defined on an open
neighborhood U of ¢, there is an open neighborhood V' of ¢ with V' C U such
that, on V, f is the restriction of a function in C*°(N);
(ii) on each stratum, the symplectic structure determined by the symplectic Pois-
son structure (on that stratum) combines with the complex analytic structure to
a Kahler structure.

EXAMPLE 1: The exotic plane, endowed with the structure explained in Subection
2.1 above, is a stratified Kahler space. Here the radius function r is not an ordinary
smooth function of the variables x and y. Thus the stratified symplectic structure
cannot be given in terms of ordinary smooth functions of the variables x and y.

This example generalizes to an entire class of examples: The closure of a
holomorphic nilpotent orbit (in a hermitian Lie algebra) inherits a stratified Kahler
structure [20]. Angular momentum zero reduced spaces are special cases thereof;
see Section 7 below for details.

Projectivization of the closure of a holomorphic nilpotent orbit yields what
we call an exotic projective variety. This includes complex quadrics, SEVERI and
SCORZA varieties and their secant varieties [20], [22]. In physics, spaces of this
kind arise as reduced classical phase spaces for systems of harmonic oscillators
with zero angular momentum and constant energy. We shall explain some of the
details in Section 7 below.

EXAMPLE 2: Moduli spaces of semistable holomorphic vector bundles or, more
generally, moduli spaces of semistable principal bundles on a non-singular com-
plex projective curve carry stratified Kéhler structures [20]. These spaces arise
as moduli spaces of homomorphisms or more generally twisted homomorphisms
from fundamental groups of surfaces to compact connected Lie groups as well. In
conformal field theory, they occur as spaces of conformal blocks. The construction
of the moduli spaces as complex projective varieties goes back to [37] and [42]; see
[43] for an exposition of the general theory. Atiyah and Bott [6] initiated another
approach to the study of these moduli spaces by identifying them with moduli
spaces of projectively flat constant central curvature connections on principal bun-
dles over Riemann surfaces, which they analyzed by methods of gauge theory. In
particular, by applying the method of symplectic reduction to the action of the
infinite-dimensional group of gauge transformations on the infinite-dimensional
symplectic manifold of all connections on a principal bundle, they showed that an
invariant inner product on the Lie algebra of the Lie group in question induces a
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natural symplectic structure on a certain smooth open stratum which, together
with the complex analytic structure, turns that stratum into an ordinary Kahler
manifold. This infinite-dimensional approach to moduli spaces has roots in quan-
tum field theory. Thereafter a finite-dimensional construction of the moduli space
as a symplectic quotient arising from an ordinary finite-dimensional Hamiltonian
G-space for a compact Lie group G was developed; see [17], [18] and the literature
there; this construction exhibits the moduli space as a stratified symplectic space.
The stratified Kahler structure mentioned above combines the complex analytic
structure with the stratified symplectic structure; it includes the Kéhler manifold
structure on the open and dense stratum.

An important special case is that of the moduli space of semistable rank 2
degree zero vector bundles with trivial determinant on a curve of genus 2. As a
space, this is just ordinary complex projective 3-space, but the stratified symplec-
tic structure involves more functions than just ordinary smooth functions. The
complement of the space of stable vector bundles is a Kummer surface. See [16],
[18] and the literature there.

Any ordinary Kahler manifold is plainly a stratified Kéhler space. This kind
of example generalizes in the following fashion: For a Lie group K, we will denote
its Lie algebra by ¢ and the dual thereof by £*. The next result says that, roughly
speaking, Kahler reduction, applied to an ordinary Kéahler manifold, yields a strat-
ified Kahler structure on the reduced space.

Theorem 3.2 ([20]). Let N be a Kdihler manifold, acted upon holomorphically by
a complex Lie group G such that the action, restricted to a compact real form K of
G, preserves the Kdhler structure and is hamiltonian, with momentum mapping
w: N — €. Then the reduced space Ny = ;fl(O)/K inherits a stratified Kdhler
structure.

For intelligibility, we explain briefly how the structure on the reduced space
Ny arises. Details may be found in [20]: Define C*°(Ny) to be the quotient algebra
C>(N)X /I¥, that is, the algebra C°°(N)® of smooth K-invariant functions on
N, modulo the ideal ¥ of functions in C*°(N)¥ that vanish on the zero locus
p~1(0). The ordinary smooth symplectic Poisson structure {-, -} on C*°(N) is
K-invariant and hence induces a Poisson structure on the algebra C*(N)X of
smooth K-invariant functions on N. Furthermore, Noether’s theorem entails that
the ideal I is a Poisson ideal, that is to say, given f € C*°(Ny)X and h € I¥, the
function {f, h} is in I* as well. Consequently the Poisson bracket { -, - } descends
to a Poisson bracket { -, - }o on C*°(NNy). Relative to the orbit type stratification,
the Poisson algebra (C*Ny,{ -, - }o) turns Ny into a stratified symplectic space.

The inclusion of x~1(0) into N passes to a homeomorphism from N, onto the
categorical G-quotient N / / G of N in the category of complex analytic varieties.
The stratified symplectic structure combines with the complex analytic structure
on N / / G to a stratified Kéhler structure. When N is complex algebraic, the
complex algebraic G-quotient coincides with the complex analytic G-quotient.
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Thus, in view of Theorem 3.2, examples of stratified Kahler spaces abound.

EXAMPLE 3: Adjoint quotients of complex reductive Lie groups, see (2.2) above.

Remark 3.3. In [6], ATIYAH AND BOTT raised the issue of determining the sin-
gularities of moduli spaces of semistable holomorphic vector bundles or, more
generally, of moduli spaces of semistable principal bundles on a non-singular com-
plex projective curve. The stratified Kahler structure which we isolated on a
moduli space of this kind, as explained in Example 2 above, actually determines
the singularity structure; in particular, near any point, the structure may be un-
derstood in terms of a suitable local model. The appropriate notion of singularity
is that of singularity in the sense of stratified Kahler spaces; this notion depends
on the entire structure, not just on the complex analytic structure. Indeed, the
examples spelled out above (the exotic plane with a single vertex, the exotic plane
with two vertices, the 3-dimensional complex projective space with the Kummer
surface as singular locus, etc.) show that a point of a stratified Kéhler space may
well be a singular point without being a complex analytic singularity.

4 Quantum theory and classical singularities

According to DIRAC, the correspondence between a classical theory and its quan-
tum counterpart should be based on an analogy between their mathematical struc-
tures. An interesting issue is then that of the role of singularities in quantum
problems. Singularities are known to arise in classical phase spaces. For example,
in the hamiltonian picture of a theory, reduction modulo gauge symmetries leads
in general to singularities on the classical level. This leads to the question what
the significance of singularities on the quantum side might be. Can we ignore
them, or is there a quantum structure which has the classical singularities as its
shadow? As far as know, one of the first papers in this topic is that of EMMRICH
AND ROMER [9]. This paper indicates that wave functions may “congregate” near
a singular point, which goes counter to the sometimes quoted statement that sin-
gular points in a quantum problem are a set of measure zero so cannot possibly be
important. In a similar vein, ASOREY ET AL observed that vacuum nodes corre-
spond to the chiral gauge orbits of reducible gauge fields with non-trivial magnetic
monopole components [4]. It is also noteworthy that in classical mechanics and in
classical field theories singularities in the solution spaces are the rule rather than
the exception. This is in particular true for Yang-Mills theories and for Einstein’s
gravitational theory where singularities occur even at some of the most interesting
and physically relevant solutions, namely at the symmetric ones. It is still not
understood what role these singularities might have in quantum gravity. See, for
example, ARMS, MARSDEN AND MONCRIEF [2], [3] and the literature there.
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5 Correspondence principle and Lie-Rinehart
algebras

To make sense of the correspondence principle in certain singular situations, one
needs a tool which, for the stratified symplectic Poisson algebra on a stratified
symplectic space, serves as a replacement for the tangent bundle of a smooth sym-
plectic manifold. This replacement is provided by an appropriate Lie-Rinechart
algebra. This Lie-Rinehart algebra yields in particular a satisfactory generaliza-
tion of the Lie algebra of smooth vector fields in the smooth case. This enables us
to put flesh on the bones of Dirac’s correspondence principle in certain singular
situations.

A Lie-Rinehart algebra consists of a commutative algebra and a Lie algebra
with additional structure which generalizes the mutual structure of interaction
between the algebra of smooth functions and the Lie algebra of smooth vector
fields on a smooth manifold. More precisely:

Definition 5.1. A Lie-Rinehart algebra consists of a commutative algebra A and
a Lie-algebra L such that L acts on A by derivations and that L has an A-module
structure, and these are required to satisfy

[, aff] = a(a)f + ala, 3],
(ac)(b) = a(a(b)),

where a,b € A and o, € L.

Definition 5.2. An A-module M which is also a left L-module is called a left
(A, L)-module provided

(5.1) alazr) = ala)r + aa(x)
(5-2) (aa)(x) = afa(z))
wherea € A, t € M, a € L.

We will now explain briefly the Lie-Rinehart algebra associated with a Poisson
algebra; more details may be found in [14], [15], and [23]. Thus, let (A,{-, -})
be a Poisson algebra. Let Dy the the A-module of formal differentials of A the
elements of which we write as du, for u € A. For u,v € A, the association

(du, dv) — 7(du, dv) = {u, v}

yields an A-valued A-bilinear skew-symmetric 2-form 7 = 7. .y on D 4, referred to
as the Poisson 2-form associated with the Poisson structure {-, - }. The adjoint

7 Dy — Der(A) = Homy (D4, A)
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of 7 is a morphism of A-modules, and the formula
ladu, bdv] = a{u, b}dv + b{a, v}du + abd{u, v}
yields a Lie bracket [, -] on Dy.

Theorem 5.3 ([14]). The A-module structure on D4, the bracket [-,-], and the
morphism ™ of A-modules turn the pair (A, D) into a Lie-Rinehart algebra.

We will write the resulting Lie-Rinehart algebra as (A, Dy. .y). For intelligibil-
ity we recall that, given a Lie-Rinehart algebra (A, L), the Lie algebra L together
with the additional A-module structure on L and L-module structure on A is
referred to as an (R, A)-Lie algebra. Thus Dy. .4 is an (R, A)-Lie algebra.

When the Poisson algebra A is the algebra of smooth functions C*°(M) on a
symplectic manifold M, the A-dual Der(A) = Homa (D4, A) of D4 amounts to
the A-module Vect(M) of smooth vector fields, and

(5.3) (7%,1d): (D4, A) — (Vect(M), C*°(M))

is a morphism of Lie-Rinehart algebras, where (Vect(M), C*(M)) carries its or-
dinary Lie-Rinehart structure. The A-module morphism 7 is plainly surjective,
and the kernel consists of those formal differentials which “vanish at each point
of” M.

We return to our general Poisson algebra (A,{-,-}). The Poisson 2-form
(...} determines an extension

(5.4) 0—>A—>f{.,.}—>D{.,}—>O

of (R, A)-Lie algebras which is central as an extension of ordinary Lie algebras; in
particular, on the kernel A, the Lie bracket is trivial. Moreover, as A-modules,

(5.5) Liy=Aa Dy,
and the Lie bracket on L. .y is given by
(5.6)  [(a,du), (b dv)] = ({u,b} + {a, v} — {w,v},d{w,v}), a,buve A

Here we have written “L” rather than simply L to indicate that the extension (5.4)

represents the negative of the class of my. .3 in Poisson cohomology H3 ... (A4, A),

cf. [14]. When (A,{-, -}) is the smooth symplectic Poisson algebra of an ordi-

nary smooth symplectic manifold, (perhaps) up to sign, the class of 7. .} comes

essentially down to the cohomology class represented by the symplectic structure.
The following concept was introduced in [15].
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Definition 5.4. Given an (4 ® C)-module M, we refer to an (A4, L. .;)-module
structure

(57) X: Z{'r} E— EndR(M)

on M as a prequantum module structure for (A,{-, -}) provided

(i) the values of x lie in Endc(M), that is to say, for a € A and o € Dy. .4, the
operators x(a, @) are complex linear transformations, and

(ii) for every a € A, with reference to the decomposition (5.5), we have

(5.8) x(a,0) =ialdy.

A pair (M, x) consisting of an (A ® C)-module M and a prequantum module
structure will henceforth be referred to as a prequantum module (for (A,{-, -}).

Prequantization now proceeds in the following fashion, cf. [14]: The assignment
to a € A of (a,da) € L. .y yields a morphism ¢ of real Lie algebras from A to
Ly. .3; thus, for any prequantum module (M, x), the composite of ¢ with —ix is
a representation a — a of the A underlying real Lie algebra having M, viewed
as a complex vector space, as its representation space; this is a representation by
C-linear operators so that any constant acts by multiplication, that is, for any
real number r, viewed as a member of A,

(5.9) F=rld
and so that, for a,b € A,
(5.10) m =1ila, A] (the Dirac condition).

More explicitly, these operators are given by the formula
N 1
(5.11) a(z) = =x(0,da)(z) + ax, a€ A, x € M.
7

In this fashion, prequantization, that is to say, the first step in the realization
of the correspondence principle in one direction, can be made precise in certain
singular situations.

When (A, {-, -}) is the Poisson algebra of smooth functions on an ordinary
smooth symplectic manifold, this prequantization factors through the morphism
(5.3) of Lie-Rinehart algebras in such a way that, on the target, the construction
comes down to the ordinary prequantization construction.

Remark. In the physics literature, Lie-Rinehart algebras were explored in a paper
by KASTLER AND STORA under the name Lie-Cartan pairs [31].
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6 Quantization on stratified Kahler spaces

In the paper [21] we have shown that the holomorphic quantization scheme may
be extended to stratified Kahler spaces. We recall the main steps:

1) The notion of ordinary Kahler polarization generalizes to that of stratified
Kahler polarization. This concept is defined in terms of the Lie-Rinehart algebra
associated with the stratified symplectic Poisson structure; it specifies polariza-
tions on the strata and, moreover, encapsulates the mutual positions of polariza-
tions on the strata.

Under the circumstances of Theorem 3.2, symplectic reduction carries a Kdhler
polarization preserved by the symmetries into a stratified Kahler polarization.

2) The notion of prequantum bundle generalizes to that of stratified prequan-
tum module. Given a stratified Kahler space, a stratified prequantum module is,
roughly speaking, a system of prequantum modules in the sense of Definition 5.4,
one for the closure of each stratum, together with appropriate morphisms among
them which reflect the stratification.

3) The notion of quantum Hilbert space generalizes to that of costratified quantum
Hilbert space in such a way that the costratified structure reflects the stratification
on the classical level. Thus the costratified Hilbert space structure is a quantum
structure which has the classical singularities as its shadow.

4) The main result says that [@Q, R] = 0, that is, quantization commutes with
reduction [21]:

Theorem 6.1. Under the circumstances of Theorem 3.2, suppose that the Kdhler
manifold is quantizable (that is, suppose that the cohomology class of the Kdhler
form is integral). When a suitable additional condition is satisfied, reduction after
quantization coincides with quantization after reduction in the sense that not only
the reduced and unreduced quantum phase spaces correspond but the (invariant)
unreduced and reduced quantum observables as well.

What is referred to here as ‘suitable additional condition’ is a condition on
the behaviour of the gradient flow. For example, when the Kéhler manifold is
compact, the condition will automatically be satisfied.

On the reduced level, the resulting classical phase space involves in general
singularities and is a stratified Kahler space; the appropriate quantum phase space
is then a costratified Hilbert space.

7 An illustration arising from angular momen-
tum and holomorphic nilpotent orbits

Let s and ¢ be non-zero natural numbers. The unreduced classical momentum
phase space of ¢ particles in R?® is real affine space of real dimension 2sf. For
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example, for our solar system, s = 3, and £ is the number of celestial bodies we take
into account, that is, the sun, the planets, their moons, asteroids, etc., and the true
physical phase space is the reduced space subject to the (physically reasonable)
constraint that the total angular momentum of the solar system be constant and
non-zero. The shifting trick reduces this case to that of total angular momentum
zero relative to the planar orthogonal group. The subsequent discussion implies
that the reduced phase space relative to the planar orthogonal group is the space
of complex symmetric (¢x ¢)-matrices of rank at most equal to 2. The true reduced
phase space we are looking for then fibers over a semisimple orbit in sp(¢, R) with
fiber the space of complex symmetric (¢ x ¢)-matrices of rank at most equal to
2. The additional requirement that the total energy be constant then reduces the
system by one more degree of freedom.

We return to the general case. Identify real affine space of real dimension
2s( with the vector space (R*)*‘ as usual, endow R® with the standard inner
product, R? with the standard symplectic structure, and thereafter (R?$)*¢ with
the obvious induced inner product and symplectic structure. The isometry group
of the inner product on R? is the orthogonal group O(s,R), the group of linear
transformations preserving the symplectic structure on R? is the symplectic group
Sp(¢,R), and the actions extend to linear O(s, R)- and Sp(¢, R)-actions on (R?$)**
in an obvious manner. As usual, denote the Lie algebras of O(s,R) and Sp(¢,R)
by so(s,R) and sp(¢, R), respectively.

The O(s,R)- and Sp(¢, R)-actions on (R?*$)*¢ are hamiltonian. To spell out the
O(s, R)-momentum mapping having the value zero at the origin, identify so(s, R)
with its dual so(s,R)* by interpreting a € so(s,R) as the linear functional on
s0(s,R) which assigns tr(a‘z) to « € so(s,R); here 'z refers to the transpose of
the matrix x. We note that, for s > 3,

(s — 2)tr(a'b) = —B3(a,b), a,b € so(s,R),

where 3 is the KILLING form of so(s,R). Moreover, for a vector x € R?, realized
as a column vector, let 'x be its transpose, so that ‘x is a row vector. With these
preparations out of the way, the angular momentum mapping

po: (R*)** — s0(s, R)
with reference to the origin is given by
#o(d1 P, -, de; Pe) = qi'P1r — Pr'dn + - + A’ Pr — Pelae:
Likewise, identify sp(¢,R) with its dual sp(¢,R)* by interpreting a € sp(¢,R) as
the linear functional on sp(¢, R) which assigns 1tr(az) to z € sp(¢, R); we remind

the reader that the Killing form [ of sp(¢,R) is given by

B(a,b) =2(¢ + 1)tr(ab)
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where a,b € sp(¢,R). The Sp(¢, R)-momentum mapping
psp: (RZ)* — sp((, R)
having the value zero at the origin is given by the assignment to

[thla s >QK7P£] € (RS X RS)XE

[a;pr]  — [a;ax]
esp(l,R),
ool o] | <P
where [q;pyx] etc. denotes the (¢ x ¢)-matrix having the inner products q;py etc.
as entries.
Consider the O(s, R)-reduced space

No = 115'(0)/O(s, R).

The Sp(¢, R)-momentum mapping induces an embedding of the reduced space N
into sp(¢,R). We now explain briefly how the image of Ny in sp(¢,R) may be
described. More details may be found in [20], see also [22].

Choose a positive complex structure J on R?* which is compatible with w in
the sense that w(Ju, Jv) = w(u,v) for every u,v € R?; here ‘positive’ means
that the associated real inner product - on R? given by u-v = w(u,Jv) for
u,v € R* is positive definite. The subgroup of Sp(¢,R) which preserves the
complex structure J is a maximal compact subgroup of Sp(¢,R); relative to a
suitable orthonormal basis, this group comes down to a copy of the ordinary
unitary group U(¢). Furthermore, the complex structure J induces a CARTAN
decomposition

(7.1) sp(f,R) = u(l) @ p;

here u(¢) is the Lie algebra of U({), the symmetric constituent p decomposes as
the direct sum
p = SR & S3[R’]

of two copies of the real vector space S3[R’] of real symmetric (¢ x £)-matrices, and
the complex structure J induces a complex structure on S3[R¢] @ SZ[R’] in such a
way that the resulting complex vector space is complex linearly isomorphic to the
complex vector space SA[CY] of complex symmetric (¢ X £)-matrices in a canoni-
cal fashion. We refer to a nilpotent orbit O in sp(¢,R) as being holomorphic if
the orthogonal projection from sp(¢, R) to SZ[C’], restricted to O, is a diffeomor-
phism from O onto its image in SA[C*]. The diffeomorphism from a holomorphic
nilpotent orbit O onto its image in S%[C] extends to a homeomorphism from the
closure O onto its image in SA4[C], and the closures of the holomorphic nilpotent
orbits constitute an ascending sequence

(7.2) 0CO,C---CO,C---COCsp(l,R), 1<k <Y,
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such that the orthogonal projection from sp(f,R) to SA[C'], restricted to Oy, is
a homeomorphism from O, onto SA[C’]. For 1 < k < ¢, this orthogonal projec-
tion, restricted to Oy, is a homeomorphism from O}, onto the space of complex
symmetric (¢ x £)-matrices of rank at most equal to k; in particular, each space
of the kind Oy, is a stratified space, the stratification being given by the rank of
the corresponding complex symmetric (¢ X ¢)-matrices.

The Lie bracket of the Lie algebra sp(¢,R) induces a Poisson bracket on the
algebra C>°(sp(¢,R)*) of smooth functions on the dual sp(¢,R)* of sp(¢,R) in a
canonical fashion. Via the identification of sp(¢, R) with its dual, the Lie bracket
on sp(¢,R) induces a Poisson bracket { -, - } on C*(sp(¢,R)). Indeed, the assign-
ment to a € sp(¢,R) of the linear function

fa:sp((,R) — R

given by f,(x) = str(az) induces a linear isomorphism

(7.3) sp((,R) — sp(,R)";

let
['7 ]* Sp(g, R)* ®5p(€aR)* - 513(671&)*

be the bracket on sp(¢,R)* induced by the Lie bracket on sp(¢,R). The Poisson
bracket { -, -} on the algebra C*(sp(¢,R)) is given by the formula

{f,h}(x) = [f'(2), W (2)]"(z), = € sp(, R).

The isomorphism (7.3) induces an embedding of sp(¢,R) into C*(sp(¢,R)), and
this embedding is plainly a morphism

§:5p(f,R) — C>(sp(¢,R))

of Lie algebras when C*(sp(¢,R)) is viewed as a real Lie algebra via the Poisson
bracket. In the literature, a morphism of the kind 9 is referred to as a comomentum
mapping.

Let O be a holomorphic nilpotent orbit. The embedding of O into sp(¢, R)
induces a map from the algebra C*°(sp(¢,R)) of ordinary smooth functions on
sp(f,R) to the algebra C°(O) of continuous functions on O, and we denote the
image of C*®(sp(¢,R)) in C°(O) by C=(0). By construction, each function in
C*>(0) is the restriction of an ordinary smooth function on the ambient space
sp(¢,R). Since each stratum of O is an ordinary smooth closed submanifold of
sp(¢, R), the functions in C*°(O), restricted to a stratum of O, are ordinary smooth
functions on that stratum. Hence C=(0) is a smooth structure on O. The algebra
C>=(0) is referred to as the algebra of WHITNEY-smooth functions on O, relative
to the embedding of O into the affine space sp(f,R). Under the identification
(7.3), the orbit O passes to a coadjoint orbit. Consequently, under the surjection
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C*>(sp(¢,R)) — C>=(0O), the Poisson bracket { -, -} on the algebra C*(sp(¢,R))
descends to a Poisson bracket on C*(0), which we still denote by {-, -}, with a
slight abuse of notation. This Poisson algebra turns O into a stratified symplectic
space. Combined with the complex analytic structure coming from the projection
from O onto the corresponding space of complex symmetric (¢ x £)-matrices, in this
fashion, the space O acquires a stratified Kdhler space structure. The composite

of the above comomentum mapping J with the projection from C*(sp(¢,R)) to

C*(0O) yields an embedding

(7.4) So: sp(L,R) —s C*(O)

which is still a morphism of Lie algebras and therefore a comomentum mapping
in the appropriate sense.

The Sp(¢, R)-momentum mapping induces an embedding of the reduced space
Ny into sp(¢,R) which identifies Ny with the closure 6min(s’g) of the holomorphic
nilpotent orbit Opin(se) in sp(¢, R). In this fashion, the reduced space Ny inherits
a stratified Kéhler structure. Since the Sp(¢, R)-momentum mapping induces
an identification of Ny with O, for every s < ¢ in a compatible manner, the
ascending sequence (7.2), and in particular the notion of holomorphic nilpotent
orbit, is actually independent of the choice of complex structure J on R?. For a
single particle, i. e. £ = 1, the description of the reduced space Ny comes down to
that of the semicone given in Section 2.1 above.

Thus, when the number ¢ of particles is at most equal to the (real) dimension
s of the space A® in which these particles move, as a space, the reduced space
N amounts to a copy of complex affine space of dimension @ and hence to a
copy of real affine space of dimension ¢(¢ 4+ 1). When the number ¢ of particles
exceeds the (real) dimension s of the space in which the particles move, as a space,
the reduced space N amounts to a copy of the complex affine variety of complex
symmetric matrices of rank at most equal to s.

8 Quantization in the situation of the previous
class of examples

In the situation of the previous section, we will now explain briefly the quan-
tization procedure developed in [21]. Suppose that s < ¢ (for simplicity), let
m = sl, and endow the affine coordinate ring of C™, that is, the polynomial

algebra Clzy, ..., 2|, with the inner product - given by the standard formula
(s.1) v = [upeta, a= i
’ (2m)mm!’

where w refers to the symplectic form on C™. Furthermore, endow the polynomial
algebra C|zy, . .., 2] with the induced O(s, R)-action. By construction, the affine
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complex coordinate ring C[O,] of O, is canonically isomorphic to the algebra

(C[Zl, ey Zm]O(S’R)

of O(s,R)-invariants in C[z1, ..., z,]. The restriction of the inner product - to

C[O;] turns C[O;] into a pre-Hilbert space, and HILBERT space completion yields
a HILBERT space which we write as @[@s]. This is the Hilbert space which arises
by holomorphic quantization on the stratified Kihler space O,; see [21] for details.
On this Hilbert space, the elements of the Lie algebra u(¢) of the unitary group
U(¢) act in an obvious fashion; indeed, the elements of u(¢), viewed as functions

in C*°(0y), are classical observables which are directly quantizable, and quanti-
zation yields the obvious u(¢)-representation on C[O;]. This construction may be
carried out for any s < ¢ and, for each s < ¢, the resulting quantizations yields a

costratified Hilbert space of the kind

C — C[0y] — ... — C[O,).

Here each arrow is just a restriction mapping and is actually a morphism of
representations for the corresponding quantizable observables, in particular, a
morphism of u(¢)-representations; each arrow amounts essentially to an orthog-
onal projection. Plainly, the costratified structure integrates to a costratified
U(¢)-representation, i. e. to a corresponding system of U(¢)-representations. The
resulting costratified quantum phase space for Oy is a kind of singular Fock space.
This quantum phase space is entirely given in terms of data on the reduced level.

Consider the unreduced classical harmonic oscillator energy E which is given
by E = z1Z1+ - - + 2ZmZm; it quantizes to the Euler operator (quantized harmonic
oscillator hamiltonian). For s < ¢, the reduced classical phase space Q4 of /¢
harmonic oscillators in R® with total angular momentum zero and fixed energy
value which is here encoded in the even number 2k fits into an ascending sequence

(8:2) QS CQC- CQ=CP!
of stratified Kahler spaces where
(0+1
CP? =P(S’[CY)), d= % —1.

The sequence (8.2) arises from the sequence (7.2) by projectivization. The param-
eter k (energy value 2k) is encoded in the Poisson structure. Let O(k) be the k’th
power of the hyperplane bundle on CP¢, let

L.t Qs — Q= CP?

be the inclusion, and let Oq, (k) = 1§, O(k). The quantum Hilbert space amounts
now to the space of holomorphic sections of 17, O(k), and the resulting costratified
quantum Hilbert space has the form

(O, (k) «— ... «— I (Oq, (k).
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Each vector space '™ (Oq ,(k)) (1 < ¢’ < s) is a finite-dimensional represen-
tation space for the quantizable observables in C*°(Qy), in particular, a u(¢)-
representation, and this representation integrates to a U(¢)-representation, and
each arrow is a morphism of representations; similarly as before, these arrows are
just restriction maps.

We will now give a description of the decomposition of the space

["(Oq, (k) = Stlp’]

of homogeneous degree k polynomial functions on p = SZ[C] into its irreducible
U(¢)-representations in terms of highest weight vectors. To this end we note that
coordinates 1, ...,x, on C* give rise to coordinates of the kind {z;; =2, 1 <
i,j < £} on SZ[C’], and the determinants

T11 Ti12 T13

T11 T12 5o —
3= | T12 T22 I23 ,etc.

0 = T11, 0y =
T12 T22

T1,3 T23 I33

are highest weight vectors for certain U(¢)-representations. For 1 < s < r and
k > 1, the U({)-representation I'"(Og,(k)) is the sum of the irreducible repre-
sentations having as highest weight vectors the monomials

6000 .80, a+2B+---+sy=kF,
and the restriction morphism
[(Oq, (k) — T"(Oq,_, (k)

has the span of the representations involving d, explicitly as its kernel and, re-
stricted to the span of those irreducible representations which do not involve J,,
this morphism is an isomorphism.

This situation may be interpreted in the following fashion: The composite

por: Og Csp(l,R) =2 sp(f,R)* — u(f)*

is a singular momentum mapping for the U(¢)-action on Oy; actually, the adjoint
u(f) — C>=(0,) of u?* amounts to the composite of (7.4) with the inclusion of
u(f) into sp(¢,R). The irreducible U({)-representations which correspond to the
coadjoint orbits in the image

/L2k<08’ \ OS’—l) - u(ﬂ)*

of the stratum Oy \ Oy _1 (1 < s’ < s) are precisely the irreducible representations
having as highest weight vectors the monomials

5005 .60 (a+2B8+ -+ sy=k)

involving 64 explicitly, i. e. with v > 1.
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9 Holomorphic half-form quantization on the
complexification of a compact Lie group

Recall that, given a general compact Lie group K, via the diffeomorphism (2.1),
the complex structure on K© and the cotangent bundle symplectic structure on
T*K combine to K-bi-invariant Kéahler structure. A global Kéhler potential is
given by the function s defined by by

k(ze™)=|Y|]?, z€ K, Y €t

The function x being a Kahler potential signifies that the symplectic structure on
T*K = K€ is given by i00k. Let ¢ denote the symplectic (or Liouville) volume
form on T*K = K®, and let 5 be the real K-bi-invariant (analytic) function on
K€ given by

sin(ad(Y"))

) = K.Y
n(xe™) 2d(Y) ,x €K, Y et

cf. [12] (2.10). Thus n? is the density of Haar measure on K€ relative to Liouville
measure €.
Half-form Kéihler quantization on K leads to the Hilbert space

HL*(KC, e "/pe)

of holomorphic functions on K that are square-integrable relative to e~/ ine [12].
Thus the scalar product in this Hilbert space is given by

1

(V1,12) = vol(K)

. sze’”/hné-
K

Relative to left and right translation, HL?*(K®,e™*/"ne) is a unitary (K x K)-re-
presentation, and the Hilbert space associated with P by reduction after quanti-
zation is the subspace

HLz(KC, e—li/hn€>K

of K-invariants relative to conjugation.

Let e denote the Liouville volume form of T*T' = T. There is a function v
on this space, made explicit in [28], such that the restriction mapping induces an
isomorphism

(9.1) HLA(KC, e/ pe)X — HLH(TC, e/ fyep)V
of Hilbert spaces where the scalar product in HL?*(T, e*/"yer)W is given by

1
vol(K)

(9.2) E¢2€_H/575T .
7C
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10 Singular quantum structure: costratified
Hilbert space

Let N be a stratified space. Thus N is a disjoint union N = UN,, of locally closed
subspaces N,, called strata, each stratum being an ordinary smooth manifold,
and the mutual positions of the strata are made precise in a way not spelled
out here. Let Cy be the category whose objects are the strata of N and whose
morphisms are the inclusions Y’ C Y where Y and Y’ range over strata. We define
a costratified Hilbert space relative to N or associated with the stratification of N
to be a system which assigns a Hilbert space Cy to each stratum Y, together with
a bounded linear map Cy, — Cy, for each inclusion Y; C Y, such that, whenever
Y; C Y, and Y, C Y3, the composite of Cy, — Cy, with Cy, — Cy; coincides with
the bounded linear map Cy, — Cy, associated with the inclusion Y; C Y.

We now explain the construction of the costratified Hilbert space associated
with the reduced phase space P. This costratified structure is a quantum analogue
of the orbit type stratification.

In the Hilbert space

H = HL*(K®, e/ ne) & HIX(TC, e/ yep)V,

we single out subspaces associated with the strata in an obvious manner. For the
special case

K =SU(2), P=T'K//K =C,

this comes down to the following procedure:

The elements of H are ordinary holomorphic functions on K. Being K-
invariant, they are determined by their restrictions to T®; these are W-invariant
holomorphic functions on TC, and these W-invariant holomorphic functions, in
turn, are determined by the holomorphic functions on

P=K“//K-=T/W=C

which they induce on that space. In terms of the realization of P as the complex
line C, the stratification of P reproduced in Subsection 2.3 above is given by the
decomposition C = P, UP_UP; of C into

P, ={2}CC, P.={-2} CC, P,=C\ Py =C\{2,-2}.
The closed subspaces
V+:{f€7'f;f‘p+:0}§7'(
V,:{fEH;f‘P_zo}QH

are Hilbert spaces, and we define the Hilbert spaces H and H_ to be the orthog-
onal complements in H so that

H:V+EBH+:V_EBH_;
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moreover, we take H; to be the entire space H. The resulting system
{Hu Hh H-I—a H_}J

together with the corresponding orthogonal projections, is the costratified Hilbert
space associated with the stratification of P. By construction, this costratified
Hilbert space structure is a quantum analogue of the orbit type stratification of P.

11 The holomorphic Peter-Weyl theorem

Choose a dominant Weyl chamber in the maximal torus t. Given the highest
weight A (relative to the chosen dominant Weyl chamber), we will denote by x%
the irreducible character of K€ associated with \.

Theorem 11.1 (Holomorphic Peter-Weyl theorem). The Hilbert space
HL?(KC, e "/ Tpe)

contains the vector space C[KC| of representative functions on K€ as a dense
subspace and, as a unitary (K x K)-representation, this Hilbert space decomposes
as the direct sum

HLY(KC, e "/ Tye) = éxeﬁv; ® V)
of (K x K)-isotypical summands, each such summand being written here as V'@V,
where Vy refers to the irreducible K-representation associated with the highest

weight X.

A proof of this theorem and relevant references can be found in [26]. The
holomorphic Peter-Weyl theorem entails that the irreducible characters x§ of K€
constitute a Hilbert space basis of

H = HL*(KC, e "/mpe)X.

Given the highest weight A\, we will denote by x) the corresponding irreducible
character of K; plainly, x, is the restriction to K of the character x§. As usual,
let p = % Y acr+ @, the half sum of the positive roots and, for a highest weight A,
let

(11.1) Cy = () mE)/2ehA o

where |\ + p| refers to the norm of A + p relative to the inner product on ¢. In
view of the ordinary Peter-Weyl theorem, the {x\}’s constitute an orthonormal
basis of the Hilbert space L?(K,dz)X.
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Theorem 11.2. The assignment to x of C;l/zxf, as X ranges over the highest
weights, yields a unitary isomorphism

(11.2) LA(K,dx)® — HL*(KC, e "/ pe)K
of Hilbert spaces.

By means of this isomorphism, the costratified Hilbert space structure aris-
ing from stratified Kdhler quantization as explained earlier carries over to the
Schrédinger quantization.

12 Quantum Hamiltonian and Peter-Weyl
decomposition

In the Kahler quantization, only the constants are quantizable while in the
Schrodinger quantization, functions that are at most quadratic in generalized
momenta are quantizable. In particular, the classical Hamiltonian (2.2) of our
model is quantizable in the Schrodinger quantization, having as associated quan-
tum Hamiltonian the operator

2
(12.1) H= —%AK+g(3—X1)
on L*(K,dx)X. The operator Ag, in turn, arises from the non-positive Laplace-
Beltrami operator Ay associated with the bi-invariant Riemannian metric on
K as follows: The operator Ak is essentially self-adjoint on C°°(K) and has a
unique extension Ag to an (unbounded) self-adjoint operator on L?*(K,dxz). The
spectrum being discrete, the domain of this extensions is the space of functions
of the form f =Y e, such that Y |a,|* 2 < oo where the ¢,’s range over
the eigenfunctions and the \,’s over the eigenvalues of Ag-.

Since the metric is bi-invariant, so is A, whence Ay restricts to a self-adjoint
operator on L?(K,dz)¥, which we still write as Ag. By means of the isomorphism
(11.2), we then transfer the Hamiltonian, in particular, the operator Ak, to a self-
adjoint operators on H. Schur’s lemma then tells us the following:

(1) Each isotypical (K x K)-summand L?*(K,dz)y of L*(K,dx) in the Peter-Weyl
decomposition is an eigenspace for Ag;

(2) the representative functions are eigenfunctions for Ag;

(3) the eigenvalue —¢e) of A corresponding to the highest weight A is given by

ex= (A +pl" = o).

Thus, in the holomorphic quantization on T*K = K€, the free energy oper-
ator (i. e. without potential energy term) arises as the unique extension of the
operator —%AK on H to an unbounded self-adjoint operator, and the spectral
decomposition thereof refines to the holomorphic Peter-Weyl decomposition of H.
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13 The lattice gauge theory model arising from
SU(2)

In the rest of the paper we will discuss somewhat informally, for the special case
where the underlying compact group is K = SU(2), some of the implications
for the physical interpretation ; see [29] for a leisurely somewhat more complete
introduction and [28] for a systematic description.

To begin with, we write out the requisite data for the special case under
consideration. We denote the roots of K = SU(2) relative to the dominant Weyl
chamber chosen earlier by o and —a, so that o = %oz. The invariant inner product
on the Lie algebra ¢ of K is of the form

1

with a scaling factor 5 > 0 which we will leave unspecified (e.g., § = \/Lg for the
Killing form). Then

o =467, o = 5.
The highest weights are A\, = Fa, where n = 0,1,2,... (twice the spin). Then

(13.2) en=er, = Fn(n+2),  Cp=0Cy, = (hr)* 2007

cf. (11.1) for the significance of the notation C,. We will now write the complex
characters X(E\:n as XC (n > 0). On TC, these complex characters are given by

(13.3) Xy (diag(z, 27 1)) = 2"+ 2" 24 427", z € C\ {0},
whereas, on T, the corresponding real characters take the form

o sin ((n+ 1))
13.4 n(di e ") = —————=, eR, >0.
(134) o (ding(e"e ) = 2 PR, n>
The Weyl group W permutes the two entries of the elements in 7. Hence, the
reduced configuration space X = T'/W can be parametrized by = € [0, 7| through
x — diag(e'”,e7*). In this parametrization, the measure v on T is given by

vol(K)

vdt = sin?(z) dx .

™

It follows that the assignment to ¢ € C*°(T)" of the function
T V2 sinx ¢ (diag(e™, e)), x € [0, 7],

defines a Hilbert space isomorphism from L2?(K,dz)¥, realized as a Hilbert space
of W-invariant L*-functions on T, onto the ordinary L?[0, ], where the inner
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product in L?[0, 7] is normalized so that the constant function with value 1 has
norm 1. In particular, given n > 0, the character y,, is mapped to the function
given by the expression

(13.5) Xn(z) = V2 sin((n + 1)) .

In view of the isomorphism between L?(K,dz)® and L?[0, 7| and the isomorphism
(11.2), we can work in an abstract Hilbert space H with a distinguished orthonor-
mal basis {|n) : n = 0,1,2,...}. We achieve the passage to the holomorphic
realization HL?*(K®, e "/ ne)X | to the Schrodinger realization L?(K,dz)X, and
to the ordinary L2-realization L?[0, 7| by substitution of, respectively, C, Y 2)(%,
Xn, and v/2sin(n+ 1)z, for |n). We remark that plotting wave functions in the re-
alization of H by L?[0, 7| has the advantage that, directly from the graph, one can
read off the corresponding probability densities with respect to Lebesgue measure
on the parameter space [0, 7].

We determine the subspaces H, for the special case K = SU(2). The orbit
type strata are P,, P_ and P, where P consists of the class of £1 and P; =
P\ (P UP-). (Recall that via the complex analytic isomorphism (2.3), Py is
identified with the subset {£2} of C.) Since P, is dense in P, the space V; reduces
to zero and so ‘H; = H. By definition, the subspaces V. and V_ consist of the
functions ¥ € H that satisfy the constraints

(13.6) p(1)=0,  P(-1)=0,
respectively. One can check that the system {x¢ — (n+1)x§ : n=1,2,3,...}

forms a basis in V; and that the system {X;CL—F(—I)"”THX(E :n=0,2,3,...} forms
a basis in V_. Taking the orthogonal complements, we arrive at the following.

Theorem 13.1. The subspaces Hy and H_ have dimension 1. They are spanned
by the normalized vectors

1 00 B .
(13.7) vy = v E nzo(n+ e RB2 (n+1)2/2 In) |

1 00 N R (na1)?
(138) ¢_ = N E n:()(_l) <n+ 1)6 hB? (n+1)%/2 |7’L>,

respectively. The normalization factor N is determined by the identity
N? = z:nQe_hﬁZ”2 .
n=1

Hence, in Dirac notation, the orthogonal projections 14 : H — Hy are given
by the expressions

(13.9) I = [¢4) (]
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In terms of the f-constant A5(Q) = 323> Q" the normalization factor N is
determined by the identity

]_ 2 2
(13.10) N? = §e—hﬂ ACHEDY
The following figure shows plots of ¢, in the realization of H via L?[0, 7] for
hB3* = 1/128 (continuous line), 1/32 (long dash), 1/8 (short dash), 1/2 (alternating

short-long dash).

T < ji\
WP
14 Tunneling between strata
Computing the inner product of ¥, and ¢_,
1 > 2,2 0’ ( - e_hﬁ2)
N = _1n+12—hﬁn:_3—
<¢+7w > N2 ;( ) n-e Hé(e_hBQ) ?

we observe that the subspaces H; and H_ are not orthogonal. They share a cer-
tain overlap which depends on the combined parameter 23?. The absolute square
|(4,1_)|? yields the tunneling probability between the strata P, and P_, i. e.,
the probability for a state prepared at P, to be measured at P_ and vice versa.
The following figure shows a plot of the tunneling probability against h3%. For
large values, this probability tends to 1 whereas for A3* — 0, i.e., in the semiclas-
sical limit, it vanishes.

o O o o
N O o 0

15 Energy eigenvalues and eigenstates

Passing to the realization of H via L2[0, 7] and applying the general formula for
the radial part of the Laplacian on a compact group, see [13, §11.3.4], from the
description (12.1) of the quantum Hamiltonian, viz.

h? v

H—_"Av 23—
5 K+2(3 X1),
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we obtain the formal expression

PR LY

2 da?
for H on L?[0,7]. Hence the stationary Schrodinger equation can be written as
d? - 2K -
(15.1) o2 20 cos(x) + 25 +1-30) |¢(z) =0,

where v = EQLﬂQ = W, and FE refers to the eigenvalue. The change of variable
y = (z — m)/2 leads to the Mathieu equation

d2
(15.2) 32 (y) + (a —2qcos(2y)) f(y) =0,
where
S8FE - -
(15.3) a:h262+4—121/, qg=4v;

here f refers to a Whitney smooth function on the interval [—7/2,0] satisfying
the boundary conditions

(15.4) f(=m/2) = f(0) = 0.

For the theory of the Mathieu equation and its solutions, called Mathieu functions,
see [1]. For certain characteristic values of the parameter a depending analytically
on ¢ and usually denoted by bg,12(q), n = 0,1,2,..., solutions satisfying (15.4)
exist. Given a = bg,12(q), the corresponding solution is unique up to a complex
factor and can be chosen to be real-valued. It is usually denoted by ses,12(¥y;q),
where ‘se’ stands for sine elliptic.

Thus, in the realization of H via L?[0, 7], the stationary states are given by

(15.5)  &u(z) = (=1)"1V2 (seQn+2 (x ; W;@))  on=0,1,2,...,

and the corresponding eigenvalues by

R2B% ([ bany2(47)
2 4

The factor (—1)"! ensures that, for 7 = 0, we get &, = x,. According to [1,
§20.5], for any value of the parameter ¢, the functions

ﬁseZnJrZ(y;Q)a n:0717277"' )

form an orthonormal basis in L?[—7/2,0] and the characteristic values satisfy
ba(q) < ba(q) < bg(q) < ---. Hence, the &,’s form an orthonormal basis in H and
the eigenvalues F,, are nondegenerate.

Figure 2 shows the energy eigenvalues FE,, and the level separation E, .; — E,
for n = 0,...,8 as functions of . Figure 3 displays the eigenfunctions &,, n =
0,...,3, for v = 0,3,6,12,24. The plots have been generated by means of the
built-in Mathematica functions MathieuS and MathieuCharacteristicB.

E, =

+317—1) .
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100 12

N s o ®

10 20 30 40 ' 10 20 30 40

Figure 2: Energy eigenvalues E,, (left) and transition energy values E, .1 — E,
(right) for n = 0,...,7 in units of h23? as functions of v.

Figure 3: Energy eigenfunctions &, ...,&3 for = 0 (continuous line), 3 (long
dash), 6 (short dash), 12 (alternating short-long dash), 24 (dotted line).
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16 Expectation values of the costratification
orthoprojectors

0.6 A\
0.4 >\ X\H
A
QU
0 2.5 5 7.5 10 2.5 1
2 1
P—,na hﬁ )
1
0.8
0.6
0.4 »7":7‘:,}“‘A\
0.2 )(
NN
e A
0 2.5 5 7.5 10 12.5 15
2 1
P—,n; hﬁ - 8
1
0. 0.8
0. 0.6
0. 0.4
0. o2l . .
o
0 2.5 7.5 10 12.5 1
2 1
Pf,na hﬁ — 33

Figure 4: Expectation values P, , and P_, for n = 0 (continuous line), n = 1
(long dash), n = 2 (short dash), n = 3 (long-short dash), n = 4 (dotted line) and
n =5 (long-short-short dash), plotted over log 7 for h3* = %, %, 3%

On the level of the observables, the costratification is given by the orthopro-
jectors Il onto the subspaces Hi. We discuss their expectation values in the
energy eigenstates,

Pi,n = <5n’Hi€n> s

i.e., the probability that the system prepared in the stationary state &, is measured
in the subspace Hy. According to (13.9),

(16.1) Piy = [(€altha) ]

As seg,1 0 is odd and m-periodic, it can be expanded as

seanva(yia) = ) Byrls(a)sin((2k +2)y),
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with Fourier coefficients B35 (¢) satisfying certain recurrence relations [1, §20.2].
Due to (13.5),

(16.2) (€ulk) = (1) By (47)

whence (13.7) and (13.8) yield the expressions

(163) (galvs) = TS (1)t 1) O B ),
_].n e8] 2 2
164) (v = SIS (b ) g ),

Together with (16.1), this procedure leads to formulas for Py ,. The functions
P, depend on the parameters ki, 3* and v only via the combinations h3? and
v =v/(h*B3*). Figure 4 displays Py, for n =0,...,5 as functions of o for three
specific values of A%, thus treating 7 and h3? as independent parameters. This
is appropriate for the discussion of the dependence of the functions P, ,, on the
coupling parameter ¢ for fixed values of h and 3?. The plots have been generated
by Mathematica through numerical integration.

For n = 0, the function P, , has a dominant peak which is enclosed by less
prominent maxima of the other P, ,’s and moves to higher 7 when 73* decreases.
That is to say, for a certain value of the coupling constant, the state 1, which
spans H, seems to coincide almost perfectly with the ground state. If the two
states coincided exactly then (16.2) would imply that, for a certain value of ¢, the
coefficients B2y 2(g) would be given by (—1)"+5L(k 4 1)e~ " *:+1%/2 However,
this is not true; the latter expressions do not satisfy the recurrence relations valid

for the coefficients ngjg(q) for any value of q.

17 Outlook

For K = SU(2) it remains to discuss the dynamics relative to the costratified
structure and to explore the probability flow into and out of the subspaces H.
More generally, it would be worthwhile carrying out this program for K = SU(n),
n > 3. For K = SU(3), the orbit type stratification of the reduced phase space
consists of a 4-dimensional stratum, a 2-dimensional stratum, and three isolated
points. Thereafter the approach should be extended to arbitrary lattices.

The notion of costratified Hilbert space implements the stratification of the
reduced classical phase space on the level of states. The significance of the strat-
ification for the quantum observables remains to be clarified. Then the physical
role of this stratification can be studied in more realistic models like the lattice
QCD of [30, 32, 33].

A number of applications of the theory of stratified Kéahler spaces have already
been mentioned. Using the approach to lattice gauge theory in [19], we intend
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to develop elsewhere a rigorous approach to the quantization of certain lattice
gauge theories by means of the Kahler quantization scheme for stratified Kahler
spaces explained in the present paper. We plan to apply this scheme in partic-
ular to situations of the kind explored in [34]-[36] and to compare it with the
approach to quantization in these papers. Constrained quantum systems occur
in molecular mechanics as well, see e. g. [45] and the references there. Perhaps
the Kéhler quantization scheme for stratified Kéahler spaces will shed new light on
these quantum systems.
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Problems on asymptotic analysis over convex polytopes

by Tatsuya Tate!

Abstract

In this paper, a survey of results in two topics on asymptotic analy-
sis over convex polytopes, obtained in the papers [22, 25], one of which
is related to representation theory of compact Lie groups and another is
asymptotic formulas of sections of a line bundle over a toric Kéahler mani-
fold, is given.

1 Introduction

Convex polytopes often appear in many areas of mathematics. In particular, they
play essential roles in representation theory of compact Lie groups and the the-
ory of toric varieties. Combinatorial aspects of polytopes describe some algebraic
structures in representation theory and geometrical structures in the theory of
toric varieties. In representation theory, multiplicities of weights or irreducible
summands are important quantities. But, many of the well-known formulas on
multiplicities are given as alternating sums, and it would not be so easy to find
effective estimates for these quantities. Then, as in [12], it would be reasonable to
find asymptotic formulas for these quantities. Problems on asymptotic behavior
of sections of line bundles over compact Kéhler manifolds are intensively investi-
gated. They are interesting problems in themselves, and also they often provide
important information for complex geometrical problems. There is an enormous
literature in this direction. We just refer to [6] for this direction.

In this paper, we give a survey of results on asymptotic analysis in these
two topics, obtained in the papers [22, 25]. Let us give a brief account on the
materials discussed here. First, we give an asymptotic formula of a quantity called
a lattice path counting function. This quantity is defined as the number of lattice
paths on a lattice in a vector space starting from the origin each step of which
is in a fixed finite subset of the lattice. This quantity is a natural generalization
of the binomial coefficient, and it goes well with the probability theory. Main
result for this quantity is regarded as a result on large deviation, but we also give
other asymptotic formulas, for example, corresponding to the local central limit
theorem.

'Research partially supported by JSPS Grant-in-Aid for Scientific Research (No. 21740117)
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Second topic is on an asymptotic behavior of distribution functions of sections
of line bundles over a compact toric Kahler manifold, which we call toric mono-
mials. In general, problems on asymptotic behavior of eigenfunctions of elliptic
operators with discrete spectrum is very difficult. Indeed, one of simplest problems
in this direction would be to find weak limits of modulus square of eigenfunctions.
But, this problem is already hard. Indeed, it is known as quantum ergodicity
problems when the classical counterpart is chaotic and there are many open prob-
lems. Even if the classical dynamical system is completely integrable, this problem
is still difficult to resolve completely. (To our knowledge, one can find complete
answer to this problem only in the case of the standard sphere. See [15].) So then,
it would be useful to find reasonable and simple ‘toy model’ where one can settle
almost all problems in this topic, such as weak limits, estimation of supremum
norm, asymptotics of LP-norm, pointwise asymptotics and asymptotic behavior of
distribution functions. The toric varieties often provide a simple model for diffi-
cult problems, and this is the case with us. Namely, the projective toric Kahler
manifolds are regarded as compactified phase spaces with completely integrable
systems (torus actions on toric manifolds) whose joint eigenfunctions are toric
monomials. So, our toric monomials are regarded as a model of (micro-local lifts
of) joint eigenfunctions for completely integrable system.

Throughout this paper, the parameter which is made to tend to infinity is
denoted by N. We note here that in each topic we are going to address the
parameter N has a physical meaning. For the lattice path counting functions
and the multiplicities of weights, the parameter N can be regarded as ‘number of
particles’, because it is the parameter for tensor powers of a fixed representation
and the ‘classical phase space’ of it would be N-fold product of a coadjoint orbit.
Hence the limit N — oo would be regarded as a thermodynamic limit. For
the asymptotics of distribution functions of toric monomials, the limit N — oo
represents a semiclassical limit, because it is the parameter for the tensor power
of a fixed line bundle over a toric Kahler manifold.

The organization of this paper is as follows. In Section 2, we define the lattice
path counting functions and investigate its properties. In particular, we give an
asymptotic formula (2.14) for the lattice path counting function. The formula
(2.14) is a general formula, and we then use the formula (2.14) to give various
asymptotic properties of the lattice path counting functions. These asymptotic
formulas are used, in Section 3, to find asymptotic formulas for multiplicities of
weights and irreducibles in the high tensor powers of a fixed irreducible representa-
tion of a compact Lie group. Section 4 is devoted to the study of toric monomials
of a projective smooth toric variety. In particular, we give a sketch of proof of an
asymptotic formula for the rescaled distribution functions of toric monomials.

Acknowledgments This paper was written based on the lectures given by the
author in the International School on Geometry and Quantization held at the
University of Luxembourg (August 31 — September 5, 2009). The International
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2 Asymptotic behavior of
lattice path counting functions

In this section, we consider a problem on asymptotic behavior of lattice paths. In
particular, we give various asymptotic results for the lattice path counting func-
tions, which are explained their naturality along with their probabilistic back-
ground.

2.1 Lattice path counting functions

To begin with, let us prepare notation. Let X be a real vector space of dimension
m, and let I be a lattice in X, that is, I is a co-compact discrete subgroup of X.
Let X* be the dual space of X, and let I* be the dual lattice of I, that is, I* is
the lattice in X* defined by I* = {y € X*; (y,x) € Z,x € I}. Let S C I* be a
finite subset which is assumed to satisfy the following non-degeneracy condition;

(2.1) spang{a — G; a, 5 € S} = X"

For each positive integer N, we define the set S(N) of lattice paths of length N
with steps in S by

(2.2) S(N)={~ryeI";y=01+-+ [y forsome [,...,0y € S}.

Fix a positive function ¢ : S — R.y on S which we call a weight function.
Then, the main object in this section is the weighted lattice path counting function
P o I — R with weight ¢ defined by

S cB)eBy) ity €SV,
(2.3) PE(y) = { _orooes

0 if v & S(NV).

The function P§, often appears especially in probability theory and represen-
tation theory. We will explain a representation theoretical aspect of the function
P%; in the next section. In this section, we discuss its probabilistic aspect and
derive various asymptotic formulas for P§ as N — oo. Here is a typical example.
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Example 2.1. Set X = R™ and use the standard Euclidean inner product to
identify X* with R™. We take the standard lattice Z™ for I = I*. Let {e1,...,en}
be the standard basis of Z™ and let ¥ = ch(0,ey,...,e,). Here, for a subset
A C X*, ch(A) denotes the convex hull of A. Fix a positive integer p and set
S = (pX) NZ™, the lattice points in the dilated polytope p¥. Define the weight
function ¢ : S — R by

i ):@ Bl pl( — 18Dy

where = (f1,...,0n) € R™ and || = Z;n:l B;. Then, it is easy to show that
S(N) = (NpX)NZ™ and

Pi = (7). vesw.

Remark 2.2. For our finite set S in X*, set P = ch(S). By definition, P is a
convex polytope in X*. Clearly the set S(N) of lattice paths of length N with
each step in S is contained in NP N I*. However, in general, it is not necessary
to have S(N) = (NP) N I*. Indeed, let X = X* = R3 [ = [* = Z3 and
S = {(0,0,0),(1,0,0),(0,1,0),(1,1,2)}. The set S\ {(0,0,0)} forms a basis of

3 (but not of Z?), and hence P is a simplex. Then, the point (1,1,1) is in
(2P) N Z? but not in S(2). It is a bit subtle problem whether or not we have
(NP)NZ™ = S(N) for general S. It is related to the (projective) normality of
the toric variety defined by the finite set S. See Section 4.

2.2 Asymptotic behavior of the binomial coefficients

In Example 2.1 we see that the lattice path counting functions Pg; are regarded as
a generalization of the binomial (multinomial) coefficients. In elementary proba-
bility theory, asymptotic properties of the binomial coefficients (kN ) as N — oo
are related to the (local) central limit theorem or de Moivre- Laplace theorem.
(In probability theory, the parameter N is the number of Bernoulli trials.) We
just remind to the readers the following asymptotic properties of the binomial
coefficients. In the following, we set dy(k) = k — N/2. (For the proof, one just
use Stirling’s formula.)

(CL) 2V Zee 5 if d (k) = o(N?/%),

2 _2dN(k)2_Nf(2d1\27(k)/N) . .

(24) (N)~ (MD) 2% /e H d(k) = o),
(

(

Sp) e Meleer(o) sl if k~aN,0<a<1
\/277Na(1 a) ’ ’

RE) M if k =k, N — k.

ko!

\
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Here, in the second line, the function f(x) is given by
(2.5) f(x)+ 2% = g(x) == (1+ ) log(1 + ) + (1 — 2)log(1l — z).

Let us consider the above asymptotic behavior of the binomial coefficients. In the
case of (CL) and (MD), the exponent in the exponential is given by

N 2dy (k)?

So2dx(k)/2) = —= S
But in the case of (CL), the first term 22 of the function g(z) dominates the
decay rate because N f(2dy(k)/N) = o(N~'/3). We call the case (CL) central
limit region for k since the asymptotic form of the binomial coefficients in this
region is Gaussian. (Note that, in the central limit region, if dy (k) = o(N'/?),
the exponent dy(k)?/N is bounded.) In the next case (MD), called moderate
deviations, the second term is of order o(N) which is the same as that of the
first term. Thus, one can not ignore the second term in this region. Both cases
of (CL) and (MD), the growth is governed by the exponent log2. But, in the
case of strong deviations (SD), the growth is governed by the positive number
alog(l/a) + (1 — a)log(1/(1 — a)) which is strictly less than log2 if a # 1/2.
Finally, in the case of (RE), which we call the region of rare events, the binomial
coefficients have polynomial growth rate rather than the exponential one.

S F(dx(k)/N).

2.3 Probabilistic aspects

In the previous subsection, we described the asymptotic behavior of the binomial
coefficients, which is related to the central limit theorem and other limit theorems
in probability theory. In this subsection, we give an account on probabilistic
aspects of the lattice path counting function Pg (7). Consider the function kg on
X defined by

(2.6) E(r) =) cla)e!™™),  reX.
a€esS

Then, it is easy to show that

(2.7) KS(r)™ = D PR()el ™.

vel*

Thus, if we set V(S,¢) = > cgc(a), then V(S,¢) = k§(0) and V(S,¢)V =
Zwe - P§ (7). Therefore, for any positive integer N, the measures

1
dmy = —a—x > Pi(7)5
MmN V (S, )N P P ()0

(2.8) 1
d:U’N - V(S, C)N Z PN(V)(;ﬁ('y—NmEC)J

yer*
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are probability measures on X*. Here mj . € Int (P) denotes the center of mass
given by

(2.9) mg, = @ > cla)a,

a€esS

and J, denotes the Dirac delta measure at x. The measure dmy is supported on
the polytope P = ch (S) while the support of the measure duy is larger than P; it
is supported on /NP if the center of mass my, is the origin. The limit theorem
we would like to mention first is the following.

Theorem 2.3. The measures dmy tend weakly to 5m§c as N — oo.

The above theorem, which is known as the law of large numbers, suggests that
the normalized lattice path counting function V (S, ¢) ™ P% () decreases when 7 is
far from Nmj .. The measure duy measures its decay when y—Nmj . = O(N'/2).
The precise statement is given as a central limit theorem.

Theorem 2.4. The measures duy tend weakly to the Gaussian measure

o~ (A 1nz)/2

dx
(2m)m/2+/det A

as N — oo, where the positive definite symmetric matriz A is given by

1
(2.10) A= mZa@Ja —mg, Q@ mg.,.
acs

For simplicity, we explain in the case where mj . is the origin. If F'is a subset
in X*, according to the central limit theorem, uy(F) = my(N~Y2F) tends to
C [, e~ (A2 gy — O N-™/2 Say2p e~ (A7ww)/2N gy Thus, when v € NY2F,
that is v = O(N'/?), the central limit theorem suggests that, on average, the be-
havior of the quantity V (S, ¢) NP (7) would be expressed as CN~™/2¢~(A711:7)/2N.
When, v — Nm¥ = O(N), which means that 7 is in the region of strong devi-
ations as explained for the case of binomial coefficients, the averaged behavior
of V(S,¢) NP (v) is described by the following theorem, which is known as the
large deviation principle.

Theorem 2.5. Set I5(x) = sup{(xz,7) —log(k$(7)/V(S,¢))}, x € X*. Then the
TeX

function Is is lower semi-continuous, and, for any closed set F' and open set U
of the polytope P, the measures dmy satisfies the following.

1 1
: 1 < _inf I o1 S inf (),
h]IVn_iip N logmy (F) < ;ggls(x), h]\/HLloElJf N logmy(U) > ;25 I5(x)
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The function /§ in Theorem 2.5 is called the rate function in the theory of large
deviations. Theorem 2.5 says that when v — Nm% = O(N) (that is, v/N € F
for fixed subset F), V(S, )~V P (7) behaves, on average, like e=V/5("). Theorems
2.3, 2.4 and 2.5 are proved by a standard method, although complete proofs can
be found in [25]. In the next subsection, we derive much more precise asymptotic
formulas for V' (.S, ¢)"VP%(v), which support the above discussion.

2.4 Asymptotic behavior of
lattice paths counting functions

The various aspects of asymptotic behavior of the binomial coefficients as ex-
plained above suggest that our weighted lattice path counting function P§(7)
would also has similar asymptotic behavior. Indeed this is true. In the rest of
this section, we give such results. To introduce such results, let us prepare some
more notation. In the following, the setting up described in Subsection 2.1 is used.
Since the differences o — 3 (o, § € S) spans the whole space X* as in the assump-
tion (2.1), these spans over Z a sublattice of I*, which is denoted by L(S)*. Then,
its dual lattice L(S) in X contains the original lattice I. We set Z(S) = I*/L(S)*,
which is a finite abelian group. It is easy to see that the Hessian of the function
log kg,

(2.11) A5(1) == V2 log k§ (1), T e X,

is positive definite, and hence log k§(7) is a convex function on X. By using this
fact, one can show that the gradient,

(2.12) pe(r) == Viog kS(7), T e X,

defines a diffeomorphism pg : X — Int (P), where Int (P) is the interior of the
polytope P = ch(S). (Note that by the assumption (2.1), the polytope P is of
dimension m.) See [7] or [8] for the proof of this fact. Denote the inverse map of
pS s X — Int (P) by 7§ : Int (P) — X. Define the smooth function 6% on Int (P)
by

(2.13) ds(z) =log ki(15(x)) — (x, 75(x) ), x € Int (P).

Theorem 2.6. Take x, € Int (P) and yn € (NP)NI* such that yv = Nx,+0(N).
Then, we have

| Z(S)|eNos (/)
Vdet Ag(75(yw/N))

(2.14) PS(yn) = (2rN) ™2 (1+O(NY).

In particular, we have

N—oo

3 1 C (&
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Remark 2.7. In [25], the assumption that, the lattice points vy is in S(N) for
every sufficiently large N, is imposed. However, in the proof of Theorem 2.6,
we only use the integral formula (2.20) below, and this comes from the fact that
PS(7) is the coefficients of ¢X7%) in the Fourier series k§(i¢)". Thus, we do not
need to impose such an assumption.

Remark 2.8. It is easy to show that the rate function I§ in the large deviation
principle (Theorem 2.5) is given by

I5(x) = =65(x) + logV(S,¢), x € Int(P).

Example 2.9. Let us examine the formula (2.15) for the binomial coefficients.
As in Example 2.1 with m = 1, let p be a positive integer, and let S = ¥ N7Z =
{0,1,...,p} with ¥ = ch (0,p) = [0,p]. Define ¢: S — R.g by ¢(5) = (g) Then,
as in Example 2.1, we have P (y) = (A; p). In this case, the finite abelian group
Z(S) is trivial. The function kg on X* = R is given by k§(7) = (1 4 €7)P, and
hence

T

c pe
He(T) = T

Tg(x)zlog( >, relnt(P), Te X =R

p—x
This shows that the function 6§ in this case is given by

P’

x®(p — x)p~®

5%(2) = log ( ) . zent(P)=(0,p).

Then, the formula (2.15) can be deduced easily from Stirling’s formula.

In the previous sections, we saw that P§(yn) behaves differently when ~y
have different behavior as N — oo. In turn, Theorem 2.6 contains only one
asymptotic formula (2.14). However, the asymptotic formula (2.14) in Theorem
2.6 is rather general. Indeed one can prove various asymptotic results from this
formula similar to what was described for binomial coefficients. Let us explain how
one can deduce them from just one formula (2.14). First, we note that since the
weight function c is positive everywhere on the finite set S, the center of mass my,
defined in (2.9) is in Int (P). Hence we can take yy = Nmk+dy with dy = o(N?),
0 < s <2/3 for the sequence vy in Theorem 2.6. A direct computation using the
Taylor expansions around x = mj, of the functions \/det Ag(7¢(x)) and dg(x)
show that

/et AS(r5 (v /N)) = Vet A(L+ O(N-0-9)),
No§(yn/N) = NlogV(S,¢) — { A Yy, dn ) /(2N) + o( N**72),

where the symmetric matrix A is defined in (2.10). From these combined with
the formula (2.14), we obtain the following local central limit theorem.
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Theorem 2.10. Let 0 < s <2/3 and yx = Nm§ ,+ dy with dy = o(N®). Then,
we have

2| Z(S)|V (S, )N e (A7 ddn )/ (2N)
vdet A

Next, we take yv = Na + f for some f € L(S)* and a € SN Int (P). Then,
one can apply directly Theorem 2.6. But in this case, one can also take vy = Na
in the sketch of proof of Theorem 2.6 explained in the next subsection, and one
has the following.

Py (v) = (27N) (1+o(N*79)).

Theorem 2.11. Let f € L(S)* and let « € SN Int (P). Then we have

—m21Z(5) |e=(fi7§(@)+No5(e)

P5(Na + f) = (27N) ey A
(§} STSa

(1+O(N"Y).

Remark 2.12. Theorem 2.11 is a result on large deviations. For results on large
deviations in a more general setting and from a geometrical point of view, see [16].

2.5 Method of stationary phase and sketch of proof

In this subsection, we give a sketch of proof of Theorem 2.6. To prove Theorem
2.6, we use a theorem on the method of stationary phase. First of all, let us give
some account on this method.

Let U C R™ be an open set. Let u € C3°(U) and ® € C*°(U) with Re® > 0.
Consider the following integral

(2.16) IN(u):/Ue_N@(z)u(:v) dzx.

We call the function ® the phase function for the integral I (u). The method of
stationary phase is a method for studying asymptotic behavior of the integral of
the form Iy(u) as N — oo. To explain this method, suppose first that V& # 0
near supp (u). In this case, the first order differential operator,

I 1 0% 0
|V (x)? = Oxj 0’
. 2 |02 [ e
is well-defined near supp (u), where |V ()| = E | Then it is straightfor-
x,
j=11""

ward to see that L(e™¥*) = Ne ?®. Substituting this into the definition (2.16)
of the integral Iy(u) and integrating by parts show

1
In(u) = N/UeN(I’(tLu) dz,
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iy . . . 1 09
where "L is the adjoint operator of L given by "Lu = ; oz, <|V 2 Oz, u)
Repeating this procedure, one has Iy(u) = O(N~°°), namely, for any positive
integer k, one has |[Iy(u)| < C,N=* with a positive constant Cj.

Next, suppose that the phase function ® satisfies Re (®) > 0 near supp (u).
Then, since supp (u) is assumed to be compact, one can find a positive constant
« such that Re (®) > « near supp (u). This shows that Iy(u) = O(e®). There-
fore, one find that the contribution to Iy(u) as N — oo comes from neighborhoods
of points © € U where Re (®)(z) = 0 and V®(z) = 0. Traditional method of sta-
tionary phase considers the case where the phase function ® is pure imaginary,
namely Re (®) = 0. In this case, we set & = i¢ with a real-valued function ¢.
Suppose also that there exists a point x, € U such that V¢(z,) = 0, the Hessian
V2¢(x,) is non-degenerate and Ve(x) # 0 for points x different from z,. Then,
by the Morse lemma, there exists a neighborhood V' of x, and a diffeomorphism
k:V — k(V) C R™ such that x(x,) =0, Vk(z,) = Id and

(ZSOK_l(y) = o(x,) + (Ay,y)/2, A= v2¢($0)-

Changing a variable = = (y) will show that Iy(u) = Iy (@) 4+ O(N~>°), where
equals |det Vi (y)|u(k~'y) times a cut-off function near the origin and

In(@) = e—iN¢(wo)/ e—iN<Ay7y>/2ﬂ(y) dy.
k(V)

Using Plancherel formula and the well-known formula,

—imsgn(A)/4

eTmE A aee)em
(27 N)™/2| det A|'/2 ’

FHem MM (g) =

where F~1 is the inverse of the Fourier transform J, shows that the integral Iy (u)

equals
e—iNqS(xo)—iw sgn(A)/4

HATIEE)/CNF ¢) g
(27 N)™72| det A|1/2 / . ae) de

modulo terms of order O(N~>°). Then, a Taylor expansion of the exponential
function shows that the integral Iy (u) has the following asymptotic expansion

27?) m/2 6_¢N¢(mo)—iw sgn(V2¢(zo))/4

(2.17) In(u) ~ ( v FES TN S (A ()N,

k>0

where Ay, is a differential operator of order 2k with Aqg = I. This is a usual method
of stationary phase. However, in the above lines, we used the Morse lemma, and
the differential operators A, contains derivatives of the diffeomorphism «. Hence
it is not suitable to compute lower order terms explicitly. Furthermore, as is seen
below, in our case, the phase function ® itself depends on the parameter N. So,
one can not apply, at least directly, the above method. Fortunately, there is a
version of the method of stationary phase which is quite useful.
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Theorem 2.13. Let U be an open set in R™ and let K be a compact set in U. Let
u € CP(K) and let & € C(U) such that Re (®) > 0. Suppose that there exists
a point x, € K such that Re (®(z,)) =0, V®(z,) = 0, det V>®(x,) # 0 and that
V&(z) #0 for x € K different from x,. Then, for each positive integer k,

2\ ™2 o~ No(xo) k-1 '
(2.18) In(u) = (%) Z(Lju)(xo)]\f—ﬂ + Ri(N),

Vdet V2O(z,) 4=

with the error estimate

(2.19) |Ri(N)| < Cr(®)]|ul|cor @y N7*,
where C(®) is a positive constant. The differential operator L; at x, is given by
‘ 1 ~ )
(Lyu)(zo) = (=1 ) 2] [(V2®(2,) 7' D, D )" (ggu)] (o),
= !

go(r) = B(x) — Ds) — (VAB(a)(z — 20), 7~ x,).

Furthermore, suppose that B is a subset of C*°(U) such that;

e cvery ® € B satisfies Re (®) > 0, Re (®(x,)) =0, VO(x,) = 0, det V2®(z,) #
0 and that V®(z) # 0 for x € K different from x,, where x, is fized;

o ||®f|cser1(yy is bounded from above uniformly in ® € B;

o |z — x,|/|VP(x)| is bounded from above uniformly in x € U and ® € B.
Then, the constant Cy(P) in (2.19) can be taken to be independent of & € B.

See [13, Section 7] for the proof of the above theorem.

Remark 2.14. It is easy to see that the third condition for B C C*(U) in
Theorem 2.13 can be replaced by supgep ||V2®(x,) || < oo. More precisely, if
|®]|cs < a and ||V2®(x,) || < 3 for each ® € B, then, one can show that, when

r—
|z — x| <1/2a8, we have —0‘ < 2(3. In particular, in the case where we can

[Vo(z)l
shrink the domain of integration suitably, the assumption that V®(z) # 0 for x
different from x, is satisfied if the Hessian at x, is non-degenerate and its inverse
is bounded from above.

We now give a sketch of proof of Theorem 2.6. We extend elements in X™ to
the complex linear form on X ® C. We write elements in X ® C as w = 7 + i,
7, € X. Then, the function k§ on X is naturally extended to X®C, and by (2.7),
the lattice path counting function Pg () has the following integral representation,

| et dp,
TTYL
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where T™ = X /27[ is an m-dimensional torus, and the Lebesgue measure dy is
normalized so that the volume of 7" is (27)™. Since the function k(z) = k§(7+i¢)
(z =€ 7,0 € X) is holomorphic on the complex torus exp(X ® C) = (C*)™
we can change the contour in the integral to obtain

(2.21)

P]C\/('YN) =

m

1 B . kS(T 4 ip) N
< (YN/N,T) N/ iN{(yN/Np) S d
(27T)m[ S(T)e ] € ]{?E(T) P,

which is valid for arbitrary 7 € X. It is easy to show that |k§(T +ip)| < k§(7T),
and the equality holds if and only if ¢ € 27L(S). Since I C L(S), there is a
natural surjective homomorphism 7g : 7™ — T'(S) := X/27L(S). Then, the
above equality condition is equivalent to say that |kg (7 +ig)| = k§(7) if and only
if ¢ (mod 27[) is in the kernel ker(mg) of mg, and which is naturally isomorphic
to the finite abelian group Z(S). Since (2.21) holds for any 7 € X, we choose T
as v = 7$(yn/N). Then, we have

SN /N) — kg'(TN)e_<'7N/N77'N )

We take a neighborhood U of the identity 0 € ker(mg) = Z(S) so that U N
ker(mg) = {0} and take a cut-off function p € C3°(U) which is 1 near ¢ = 0. For
any g € ker(mg), we set U, = U + g and py(¢) = p(¢ — g). Then, if we take U so
small, there exists a constant a > 0 such that

eNIs( 'YN/N
(2.22) Py(w) = Z Ing

g€ker(rmg)
modulo terms of order O(e*)

(2.23)
Ing =/ e NN@p (p)dp, Py, =i( /N, @) —log(
Ug

, where Iy 4 is given by

ks(Tn + i)
kg(Tw) ) '

Note that, if we introduce the function

kS(T+1
O(r) 1= il (), ) — o ()

on B x U,, where B is a closed ball with center 75(x,), then we have Oy ,(p) =
®(7n,¢). From this expression, one can show that ||®y4||cx(v,) is bounded from
above independently of N, where k is any integer greater than [m /2] +1. We take
a representative ¢, € X of g € ker(mg) and identify U, with a neighborhood of
¢, Note that Re®(7,¢) > 0 and the equality holds for (r,¢) € B x U, if and
only if ¢ = ¢,. Then, we see that V®y 4(p,) = 0. Furthermore, Re @y 4(¢p) = 0
on U, if and only if ¢ = ¢,. A direct computation shows eV®¥s(?s) = 1 and
V20 ,(p,) = A%(7n). Since 7y tends to 75(x,) and since z, € Int (P), A% (7n)
has inverse whose norm is bounded uniformly in N. Therefore, Theorem 2.13 is
applied and a direct computation shows Theorem 2.6.
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3 Asymptotics of multiplicities
in high tensor powers

In Section 2, we derived asymptotic formula for the lattice path counting function
PS(y) for general weight function ¢ on the set S of steps. In this section, we
give an application of the formula in Theorem 2.11 to representation theory of
compact connected Lie groups.

3.1 Quick review of representation theory of
compact Lie groups

The representations we are going to consider is them for compact connected Lie
groups. For structure theory and representation theory of compact Lie groups, we
refer the readers to [3]. In the following we prepare and review some terminology
for representation theory of compact Lie groups. Let G be a compact connected
Lie group. For simplicity, we assume that G is semi-simple, that is, assume that
the center Z(G) of G is finite. Let T" be a maximal torus in G and let g and
t be the Lie algebra of G and T, respectively. Let g* and t* be the dual space
of g and t, respectively. Since T is abelian and compact, the exponential map
exp : t — T is a surjective homomorphism, and its kernel I = ker(exp) is a lattice
in t so that 7" = t/I. The dual lattice I* of I is called the weight lattice or
the lattice of integral forms. The Weyl group W is the quotient group N(T')/T
of the normalizer N(T') of T" by T, which is known to be a finite group. The
maximal torus T acts on the complexified Lie algebra g¢ = g ® C by the adjoint
representation Ad : G — GL(g®), and then g° is decomposed into irreducible
components of T-action as
i“ =P,

a€ER

where, for each 0 # a € I*, we set
go = {z € %5 Ad (exp(p))z = ™z, o € t}.
The set R, called the root system, is defined by R = {a € t*\ {0}; g» # 0}.

The elements in R are called the roots. Since we have assumed that the group
G is semi-simple, we have spang(R) = t*. Furthermore, there exists a basis
{ag,...,;am} C Rof t* (m =dimT) such that each &« € R can be represented as
a Z-linear combination of {ay, ..., @y},

m
Q= Z Uz (Oé)Oéj,
j=1

where n;(«) > 0 for all j or n;(«) <0 for all j. Such a basis {a1,...,a,,} C Ris
called a system of simple roots. Let Ry = {a € R; n;(a) >0,j=1,...,m} and
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set R_ = —R,. Then, it is well-known that R C R and R = R, U R_ (disjoint
union). The elements in R, are called the positive roots. The Weyl group W is
finite and acts on t and t*. We choose a W-invariant inner product on t which
is denoted (-,-), and this inner product naturally induces a W-invariant inner
product on t* which we continue to write as (-,-). A positive Weyl chamber,
denoted by C, is a cone in t* defined by

C={pet:(pa)>0, ach}

Then, the famous Weyl character formula states that there exists a bijection be-
tween C' N I* and the set of characters (restricted to the maximal torus T') of
irreducible representations of G. Furthermore, for each A\ € C N I*, the corre-
sponding irreducible representation, denoted by V), has the character x, on T
given by

AN+ p)(p)
Alp) 7

where p is half the sum of the positive roots, p = %Zaem a, and for o € t*, the
alternating sum A(«) is defined by

(3-2) Al)(p) = ) sgn(w)ef™ ) pet,

weWw

(3.1) (t) = t=exp(p) €T, p et

where sgn(w) is the determinant of the transformation w : t — t. The function
A(yp) is defined by A(p) = A(p)(¢), which is called the Weyl denominator. Note
that, since W preserves the inner product on t, sgn(w) = £1. The integral form
A € C'NI*is called the dominant weight of the irreducible representation Vj.

3.2 Multiplicities in high tensor powers

Let Vy be the irreducible representation of G with the dominant weight A € CNI*,
and let NV be a positive integer. Then, the tensor product V/\®N is a representation
space of T', and hence one has a weight space decomposition

(3.3) VPN = @B Vaw(w), Van(p) = {v € VPV; exp(p)v = 79, o €t}

HeET*
We set
my (A p) = dime Van(p), pel’,

and call my(A; @) the multiplicity of the weight p in V)\®N . The space V/\®N is also a
representation space of the compact Lie group GG, and hence it can be decomposed
into irreducible summands,

V)\®N: @ aN()VPJ)V;u

neCNI*
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where ay(\; 1) € Z, is the number of times V,, appears in V2. We call ay(A; i)
the multiplicity of the irreducible representation V), in V/\®N . A natural problem
in this setting is whether or not one can find an effective formula for the multi-
plicities my(A; ) or an(A; i) in terms of N, A and p. For example, when N = 2,
Steinberg’s formula states that as(\; ) can be written as

(34)  a(Np) = > sen(ow)p(v(A+ p) +wh+ p) — (n+2p)),

v, weW

where p is Kostant’s partition function,

(3.5) P(A) =43 (Malo € Ry); na € Zog, A= Y ey

acR4

One can also use Steinberg’s formula repeatedly to represent ay(A; i) in terms of
Kostant’s partition function. However, this formula is an alternating sum and it
is easy to imagine that the result becomes quite complicated as N becomes large.
Hence it would not be so easy to estimate how large the multiplicity ay(A; ) is
from this formula for large V.

In the rest of this section, we give results on the asymptotics of the multi-
plicities my(A; 1) and ay(A; 1) which is an application of Theorem 2.11. For any
A€ CNI* define Sy = {p € I*; mi(\; ) # 0}. Namely, S is the set of weights
occurring in the irreducible representation V). Let P(\) denote the convex hull of
the orbit W - X of the Weyl group through \. Let A* be the lattice in t* spanned
by the root system R over 7Z, which is often called the root lattice. Define the
map py : t — t* by

1
mi(A;v)e

oy 2 s el

HESH

(3.6) ir(e) = 5

VES)

It is well-known that W - A C S\ C P(\). Since each coefficient of p € S,
in the definition the map u, is positive, the image of the map u, is contained
in the (relative) interior Int (P(\)) of the polytope P()). Furthermore, as for
the case of the map ug defined by (2.12), it turns out that the map py is a
diffeomorphism from t onto Int (P(\)) if the dominant weight A is in the interior
C of the closed positive Weyl chamber C. (See below for this point.) Denote by
7y : Int (P(X)) — t the inverse of the map p,.

Theorem 3.1. Let A € C'NI* and v, € S\. Suppose that v, is in the interior of
the polytope P(\). Take f € A*. Then, we have the following formula.

—m/2 |Z(G)|eNorwo)={fima(vo))

(3.7)  mn(A\;Nv,+ f) = (2rN) (1+O(N™Y)),
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where Z(G) is the center of G, and the function §y on Int (P(X)) and the positive
definite matriz A\(v,) is given by

dr(x) = log (Z ml()\;u)ew’”(”))) —(z,\(z)), =€ lInt(P(N)),

HESH
ml(/\; Iu)e(ﬂﬂ'x(w,))
ZVESA my (A7 V)€<V’7—A(Vo)>

A(vo) =

HESK

U U —V, V.

Note that we have some other asymptotic results for the multiplicities my (A; )
of weights in tensor power V/\®N . See [25]. By using Theorem 3.1, one can find the
following asymptotic result for the multiplicities of irreducible representations in
V/\®N .

Theorem 3.2. Let A € C N I* and let v, € C'N Sy NInt (P(N)). Then, we have

the following formula.

(3.8)

|Z(G)|A(Ta(vo)/(2mi))e™ P7rle))
det A)\<I/O)

an(\; Nv,) = (20N) "™/ 2Noxve) ( - 0(N1)> ,

where the Weyl denominator A is extended to the complexification t® C.

Remark 3.3. By using the Weyl denominator formula, we have

A(a(v,)/(2m1)) = H (elomo))/2 _ o=(am(v0))/2)

acER

So, for example, when 7,(1,) is in a wall of a Weyl chamber, that is, there is a
a € R, such that (a,7\(v,)) = 0, we have A(7\(v,)/(27i)) = 0, and hence the
leading term in the asymptotic formula (3.8) vanishes. In this case, the formula
(3.8) is not relevant to estimate the multiplicity ax(\; Nv,).

Remark 3.4. Theorems 3.1 and 3.2 are formulas in large deviation. The local
central limit theorems for the multiplicities ay (A; ), muy(A; ) also hold true. See
[2], [25] for these formulas.

3.3 Multiplicities versus lattice path counting functions

In this subsection, we give a sketch of proof of Theorems 3.1 and 3.2. Indeed,
these are proved by using the asymptotic formula in Theorem 2.11 of lattice path
counting function P§(y). Let us explain how the lattice path counting function
comes into the discussion. To use the lattice path model, we need to specify the
vector space X, the lattice I, the finite set S in the dual lattice I* satisfying the
non-degeneracy condition (2.1) and the weight function ¢ : S — R.,.
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In the representation theoretical setting, we take t for the vector space X and
the integer lattice ker(exp) for the lattice I. The finite set S is the set S of
weights occurring in the fixed irreducible representation V. We define the weight
function ¢y on Sy by setting cx(p) = mq(A; ). Then, we can consider the lattice
path counting function Py = Py on I*. To be precise, we need to check that Sy
satisfies the condition (2.1) and to specify the lattice L(S))*. Let {aq, ..., an} be
the system of simple roots which defines the fixed positive Weyl chamber C'. We
identify t and t* by using the fixed W-invariant inner product. For any root o € R,
define a¥ = <Ofa)04 € t. The vector a” is called an inverse root (or co-root). It is
well-known that the set RY of all @V, o € R, is again a root system, but what we
need is the fact that R is contained in the integer lattice /. From this and the
assumption that A € C' N I*, that is A is not in the wall of the chamber C| the
pairing (\, ") is a positive integer for each « € R,. The reflection s, : t* — t*
with respect to « is given by

sa(z) =2 — (2,0 ), z €L

The reflection with respect to the simple roots a; (j = 1,...,m) is denoted by
s;. Then, it is well-known that s; € W (actually, s;’s generate 1) and the set of
weights Sy in V), is invariant under the action of the Weyl group W. Since, A € S
with mq(A\; ) = 1, we see

1
(A af)

a; = (A —5;(N) € spang{p —v; p,v € Sp}.

This shows that Sy satisfies the condition (2.1). Indeed, one can say more. It is
well-known that A — ja is contained in S for any positive root o and any integer j
with 0 < j < (A, a) (see [14]). This shows that the lattice L(Sy)* coincides with
the root lattice A*. Then, the finite group Z(S)), which is defined as the quotient
I*/L(S\)* = L(S\)/1, is isomorphic to the quotient A/I, where A is the lattice
in t dual to A*. The latter group A/l is known to be isomorphic to the center
Z(@G). Thus, the lattice path counting function P (7) satisfies the assumptions
made for Theorem 2.11, and hence we can apply it. But then the crucial fact is
that we have

(3.9) Pa(p) =mn(Np), pel”

Indeed, in this case the function ky := kg defined in (2.6) is given by

a(r) = Y mi(h et et

HESK

which coincides with the character x(7/(27i)). Since x¥ is the character of the
representation V¥ of G, (3.9) follows from (2.7) and (3.3). Hence, Theorem 3.1
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follows directly from Theorem 2.11. To prove Theorem 3.2, we just need to use
Theorem 3.1 with f = p—wp, w € W (these are indeed elements in L(S5)* = A*),
and the following identity;

(3.10) an(Xp) =Y sen(w)my (X p+ p — wp).

weWw

This formula is obtained in [10]. To prove this, we observe that the character x}’
of VEN can be written as

(3.11) XN =Y an( )X

peCNI*

Then, multiplying this identity by the Weyl denominator A and using the Weyl
character formula (3.1), we see

(3.12) AxY = Z sgn(w)ay (\; M)e%m(wp)_

nelCnI*, wew

But, the weight decomposition (3.3) tells us that

(3.13) AxY = Z sgn(w)my (\; y)e?matwe),

yeI*, weW

In (3.12), note that, when p € C we have u+p € C, and hence w(p -+ p) = pu+p
if and only if w = 1. Thus, the coefficient of e>™#+2) in (3.12) is ax(\; i) while
that in (3.13) is the right hand side of (3.10). From this, we conclude (3.10) and
hence Theorem 3.2.

4 Distribution laws for toric monomials

In the previous sections, we consider the lattice path counting function or mul-
tiplicities of group representations. In these topics, the limit N — oo can be
regarded as a kind of thermodynamic limit because /N can be regarded as a ‘num-
ber of particles’. In turn, the problem we are going to address in this section is
in the semiclassical limit. Namely, we consider asymptotic behavior of sections of
a line bundle over a projective toric varieties.

4.1 Toric varieties from monomial embeddings

In this section, for simplicity, we set X = X* = R™ and [ = [* = Z™. Let
S C Z™ be a finite set and put s = #5. As in the previous sections, we fix a
positive function ¢ on S. Assume that the set S satisfies the following stronger
assumption than (2.1):

(4.1) spanz{a — 3; o, € S} =Z™.
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We denote the standard coordinates on C* by ¢ = ((4)aecs and the homogeneous
coordinates of points in the complex projective space CP*~! of dimension s — 1 by
[€] = [Calaes, ¢ € C*\ {0}. Denote by T = (C*)™ a complex torus of dimension
m and consider the map

(4.2) g : T — CP*1, ®g(t) = [e(a)V*t)qes,

where, for t = (t1,...,ty,) € T¢ and a = (aq,...,qy) € Z™, we set t¢ =
t§* -+ t%. The condition (4.1) assures that the map ®g is injective and is an
embedding, which we call a monomial embedding. Define

——Zariski

(4.3) Og = 5(TE), Mg = Og

)

where (’)_SzariSki denotes the Zariski closure of Og, which means that Mg is the

smallest algebraic variety containing Og. We call the projective variety Mg a
toric variety. Usually, toric varieties are, by definition, algebraic varieties which is
irreducible, normal, and on which 77" acts algebraically with an open dense orbit.
Our varieties of the form Mg admit these properties except the normality. The
structures and properties of the varieties of the form Mg are described in [9] and
in the article by A. Cannas da Silva in [1]. In this section, we give a brief account
on these varieties. First, we give just one example. For other examples, see [1]
where one can find many examples and exercises.

Example 4.1. Let m = 1. Take a positive integer p. Set S = {0,1,...,p}. Take
¢ = 1. Then, the monomial embedding &g : C* — CP? is given by ®g(t) = [1 :
t:t?:--.:tP]. Hence the variety Mg coincides with the image of the Veronese
embedding V : CP! — CPP? given by

p—1

V(i z)) =28 m2l e 287 ay  2P)

This shows that Mg is isomorphic to CP*.

We introduced the variety Mg by using the positive function ¢ on S. But, the
structure of Mg does not depend on the choice of the function c. Indeed, let X
be the variety of the form Mg obtained by letting ¢ = 1. Let C € GL(s,C) be
the diagonal matrix whose components are given by c(a)l/ 2 o€ S. Then, we
have Mg = C'X. However, when the variety Mg is smooth, the Kéhler structure
on Mg induced by the Fubini-Study form on CP*~! depends on the choice of the
weight function c.

Thus, for simplicity, we set ¢ = 1 in the rest of this subsection. Let Z3 denotes
the set of lattice points in R® whose components are all non-negative integers.
Then it is not hard to show that, the homogeneous ideal Iy C C[Z?,] defining the
variety Mg, where C[Z%] denotes the algebra of polynomials in s-variables over
C, is generated by

(oo

v,V €7, E I/aOézg v, E VQZE 1/;}
(0%

a€Ees a€eS a
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To look closer at the ideal Ig, we set A(S) := {(a, 1) € Z™; a € S}. Let Sy
denote the additive semigroup generated by A(S) and let C[S4(s)] the semigroup
algebra. As an algebra, C[S4(s)] has generators (z,w)@V) = 22w (a € S), where
z and w are a complex m-variables and a complex variable, respectively. Let
7 : R® — R™ be the linear map defined by 7(z) = > zala, 1), = (Za)aes,
and let 7 : C[Z%] — C[S4(s)] be a surjective homomorphism defined by

F(() = 2T e Tare — (3, 0)™®),
The following lemma is easy to prove and hence we omit the proof.

Lemma 4.2. We have ker(w) = Is. In particular, Ig is a prime homogeneous
tdeal and Mg s irreducible. The homogeneous coordinate ring of Mg is isomorphic
to the semigroup ring C[Sa(s)).

Let ¢ : T¢" — T¢ be an injective homomorphism defined by ¢(t) = (t*)aes-
Then, T acts on CP*~! through the homomorphism ¢ and the monomial em-
bedding ®g : T — CP* ! is equivariant. Clearly, the image Og of ®g is
an orbit of T{-action on CP*"!. Furthermore, it is not hard to show that
Os = A{[(] € Mg;( # 0,a € S}, and hence Og is open in Mg. Thus, up
to the normality, the variety Mg is toric.

In general, a projective variety X in CP*~! is said to be normal if the local
ring o, is integrally closed the function field of X for each p € X (see [11]). For
each a € S, let U, C CP*! be the open set given by {(, # 0}. We know that
U, = C* ! and {U,}aes covers CP*~!. When X C CP*~! is a projective variety,
each U, N X is an affine variety. Then, the normality of X is equivalent to the
condition that the affine coordinate ring of X N U, is integrally closed for each
a € S. To describe the conditions for the normality of our variety Mg, let us
prepare some more notation. We set P = ch (), the convex hull of S. Then, the
set V(P) of vertices of P isin S. For any p € V(P), let S, C Z™ be the semigroup
generated by {a — p; o € S}. Then, we have the following theorem.

Theorem 4.3. Suppose that the finite set S in Z™ satisfies the condition (4.1).
Then, the following conditions are equivalent.

1. The projective variety Mg defined by (4.3) is normal.

2. For allp € V(P), we have S, = K(S,) NZ™, where K(S,) denotes the cone
generated by S,.

3. There exists a positive integer N, such that for any integer N > N,, we have
S(N) = (NP)NZ™, where S(N) is defined in (2.2)

Note that the second condition in Theorem 4.3 comes from the fact that the
family of open sets {U, N Mg}pcv(p) is an open covering. See [21, Lemma 13.10,
Theorem 13.11] for the proofs of this fact and Theorem 4.3.
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Remark 4.4. A projective variety X is said to be projectively normal if its homo-
geneous coordinate ring is integrally closed. For the toric variety Mg constructed
above (with S satisfying (4.1)), the projective normality is equivalent to that we
have Sus) = K(Sas)) NZ™. See [9], [21]. Furthermore, under the assumption
(4.1), one can show that this condition holds if and only if S(N) = (NP)NZ™
for any positive integer N. As we will see in the next section, if S = PNZ™ with
the Delzant lattice polytope P, the corresponding toric variety Mg is smooth and
normal. However, even in this case, it is not clear whether Mg is projectively
normal or not. See [4], [19] for this issue.

4.2 Smooth projective toric varieties

We have constructed a toric variety Mg from a finite set S C Z™ satisfying the
condition (4.1) through the monomial embedding ®g : T — CP*"!, s = 4S. Our
interest is in asymptotic analysis, and it would be reasonable to use smooth toric
variety. In this section, we consider such a variety. From now on, we assume that
our finite set S is of the form S = P NZ™ where P is a lattice polytope, which
means that each vertex of the polytope P lies in the lattice Z™. In this case, we
write ®p, Op, Mp instead of &g, Og, Mg, respectively. Furthermore, we assume
that the polytope P is Delzant. Recall that a polytope P in R™ is said to be
Delzant if, for each vertex p of P, there exist exactly m edges emanating from p
and there exists a lattice basis {wy, ..., w,,} of Z™ such that each edge emanating
from p lies on the half line {p + tw;; t > 0} for some j. Then, the following fact
is well-known.

Proposition 4.5. The toric variety Mg constructed above is smooth if S is of the
form S = PNZ™ with a Delzant lattice polytope P.

In [9], the corresponding fact is in Corollary 3.2, Chapter 5. There, the con-
ditions for Mg to be smooth is described in a different fashion. However, one can
check that the Delzant condition implies these conditions. In the following we
give a sketch of proof of Proposition 4.5, which is similar to the proof of the fact
that the complex projective space is smooth.

Proof. Define the map us : CP® — R® by

el
i) = 3 o e

where e, (a € S) is the standard basis of R®. We then define the map % : Mp —
R™ by the composition

(4.4) 1o s Mp <5 CP* 5 R* 2 R™,
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where the linear map p : R® — R™ is defined as p(e,) = a, « € S = PNZ™. Note
that the map % depends on the choice of the weight function c on S = PN Z™.
The map p% is continuous in the usual topology on Mg and its image coincides
with the Delzant polytope P. It is not so hard to show that u%(Mp\ Op) = 0P,
where Op = ®g(T¥") is the image of the monomial embedding &g : T — CP*~L.
(To prove this, one will need to use the fact that Op is dense in Mp in the usual
topology. See [17] for this fact.) Furthermore, one can show that the following
holds.

1. For each face f of P, we have (u$) ' (f) ={[C] € Mp; (o =0, a € S\ f}.

2. For each face f, we have (u$)~L(rif) = {[¢] € (u$) 71 f); (o # 0, a € SNf},

where rif is the relative interior of f in the affine hull of f.
3. For each face f, (u%)~!(rif) is a T&-orbit.

4. For each vertex p € V(P), the open set U, N Mp = {[(] € Mp; (, # 0} is
given by

(4.5) UynMp= |J  (up)'0if).

f:faceof P, pef

(The correspondence between the open faces of P and the T{-orbit in Mp is
proved in [9]. But, one can show the above facts in an elementary method
similar to the proof of Lemma 3.10 in [24]. Note that the above facts hold
for general finite set S satisfying (4.1).) From these facts, the decomposition
Mp = U (1%) ' (rif) gives the orbit decomposition of the T{-action on Mp.

f:faceof P
Now, fix a vertex p of P. Since P is Delzant, there exists a lattice basis {v;}7L,

of Z™ such that each edge emanating from p lies in a half line {p + tv;; t > 0}.
Define a matrix I', with integer components by the formula I'yjv; = e; (j =
1,...,m) where {e;}7., is the standard basis of Z™. Since {v;} is a lattice basis,
the determinant of I', is £1. Then, we define a map

(4.6) ¢p: C" = U,NMp, ¢,(w)= [wrp(o‘_p)]aes.

Note that ¢, is well-defined because I',(a — p) € Z7'. (This follows from the fact
that each o — p can be written as a linear combination of v; with coefficients in
Z..) Define

wp : UpmMP _>(Cm7 wp([Ca]aES) = (%7“'7%) )
p P

where a; € S is characterized by v; = a; — p. Let us show that ¢, V=1, It
is easy to show that ¢yep,(w) = w for w € C™. To prove ¢,o1),([¢]) = [(] for
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[C] € U, N Mp, we need to use the structure of the orbit decomposition described
above. We set a —p = 377" | ¢cj(a)v; with ¢j(a) € Z;. We fix [(alacs € Uy N Mp
and put

c1(a) cm(a)
m () (@) wesmpoam
Gp Cp
Then, we must show that [(,]aes = [MaJacs. There are m facets (faces of codi-
mension 1) of P containing the vertex p, which we denote by Fi, ..., F,,, where

F; is characterized by o; € F; (j=1,...,m). For any I C {1,...,m}, we set

fI:ﬂFj7

jeI

which is a face of P containing p. All the faces containing p are of the form f;
for some I C {1,...,m}. By (4.5), there is a unique I C {1,...,m} such that
[Calaes € (u5) 7 (rifr). By the fact that (u%)~'(rifr) is a TZ-orbit, there exist
c € C* and z € T such that ¢, = cz* (e« € SN fr), (o =0 (. € S\ fr). Note
that o; & fr if and only if j € I. From this one can show that o € S\ f; if and
only if ¢;(a) # 0 for some j € I. Thus, we have A, = 0 for o € S\ f;. Since
Ca; = 2% for j & I, we have, for « € SN fr,

_ Co‘j 5@ _ aj—p\ci(a) _ o _ —1
Aa H(Cp) H(z ) 2% =c " (,,
J¢l J¢l
which shows [Aa]o = [Calacs. Therefore, we have v, = ¢ !, and hence ¢, is
a homeomorphism. Now, it is not so hard to show, by a direct computation
with the orbit decomposition described above, that the coordinate change gzﬁq_logbp
(p,q € V(P)) is holomorphic. O

4.3 Toric monomials

In the rest of this section, let P be a Delzant lattice polytope and let S = PNZ™.
Then, we have a compact complex submanifold Mp := Mg in CP*~!. Denote the
inclusion of Mp into CP*~! by 1p : Mp — CP*~L. Let wrg be the Fubini-Study
Kahler form on CP*~!. Then, the 2-form w$ = tpwrg is a Kahler form on Mp.
The 2-form w$% is integral in the sense that there exists a line bundle L% over
Mp such that ¢;(L%) = [w$] in (the image of) H*(Mp,Z). Indeed, let O(1) —
CP#~! denote the hyperplane section bundle. The bundle O(1) is the dual to the
tautological line bundle over CP*~!. Then, the pull-back L} = 1pO(1) — Mp
has this property.

Our toric variety Mp is smooth and hence is normal as a projective variety.
(Normality is checked by the second condition in Theorem 4.3 and the Delzant
condition.) Thus, it is equivariantly equivalent to a toric variety constructed from
a fan. The fan corresponding to Mp is the ‘normal fan’ of the Delzant polytope
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P ([9]). We do not need to use the fan in this paper, and hence we omit the
description of Mp in terms of the fan. However, we mention that we can use
the theory of toric variety constructed from the fan, as described in [7], [20]. For
example, the space of global holomorphic sections H(Mp, (L%)®N) of the N-
th tensor power of the line bundle L} is decomposed into weight spaces for the
T#-action as

H(Mp, (Lp)*M) = @ CxY (N=>1),

a€(NP)NZ™

where Y is a weight vector with weight . The sections x? are just monomials
on the open orbit Op = T"'. We call these sections toric monomials. Our purpose
is to investigate various asymptotic formulas for sections in H°(Mp, (L%)®Y) as
N — oo. So, it is useful to describe concretely the sections XY (a € (NP)NZ™)
for every sufficiently large N. Since our variety Mp is normal, there exists a
positive integer N, such that we have

(4.7) H°(Mp, (L%)*") = ipH(CP*™', O(N))

for every N > N,. (One can also use the third condition in Theorem 4.3 to prove
(4.7).) Recall that the holomorphic sections of O(N) — CP*~! are regarded as
homogeneous polynomials in C* of degree N. In particular, for N = 1, define
Aa € (C°) (. € S = PNZ™) as the coordinate functions on C°. Then, the set
{Aa}aes gives a basis of HO(CP*~!,O(1)). Hence, the sections

Xo = c(a) ipha € H'(Mp, L), a €S,
form a basis of H*(Mp, L%). For N > N,, we set
XN =X5 ® - @xsy, a=p1+ -+ 0y E(NP)NZ™, 3; €S.

This does not depend on the choice of (i, ..., By for fixed a € (NP)NZ™. Then
the toric monomials XY, o € (NP) NZ™ form a basis of H*(Mp, (L$)®N). Tt is
proved by a direct computation that the basis {xY; a € (NP)NZ™} forms an
orthogonal basis with respect to the inner product

(s,t) = /M WY ((2), £(2) ()™ foml,

where hY is the Hermitian metric on (L%)®Y induced from the Fubini-Study
Hermitian metric on O(1). Thus, we normalize each x2 as

1
N N
Pa = Xa s
Il

ae(NP)NZ"

to form an orthonormal basis {¢Y ; o € (NP)NZ™} of H*(Mp, (L%)®N). Then,
our problem is to investigate asymptotic behavior of [ (2)|% = W (0N (2), o (2)).
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Remark that the map p% : Mp — P C R™ defined by (4.4) is the moment map
for symplectic action of the real torus 7™ on the symplectic manifold (Mp,w$).
The moment map p% is (by definition) invariant under 7™ -action and, when it is
restricted to the open orbit Op := Og (S = PNZ™), the map p% : Op — Int (P)
defines, by using the coordinate z = e™/?*% (7, € R™) on Op, the map R™ —
Int (P) denoted also by u$%. The map p% is given explicitly by

a7T>

4. (1) = c(a)e!
(4.8) pp(T) ; ZBES o(B)elBr)
The map (4.8) is the same as that defined in (2.12). Then, we have its potential
function k% on R™ defined in (2.6). The function k¢, defines a function on the open
orbit Op, which is also denoted by k%, by k%(®s(2)) = k&(7), 2 = 7/>H% € T,
7,0 € R™.  An important fact is that the function k% so defined is a Kahler
potential of w$ on Op. Indeed one can check directly that

a, T€R™

V=1 _
$ = ——00log kp.
wp o ogkp
From this, the volume form dvol = (w$)™/m! is given, on the open orbit Op, by

1
(4.9) dvol = 2 det A%(7) drde,

where A% (1) = V21og k% (1) is a positive definite symmetric matrix.

4.4 Asymptotic behavior of toric monomials

There are various aspects of asymptotic behavior of | (2)|%. In this subsection,
we give some of asymptotic results for this functions. The results in this subsection
can be found in [22]. Among results in [22], the most typical result is the following.
To state the theorem, let us prepare some notation. As mentioned in Section 2, the
map p% : R™ — Int (P) defined in (4.4), (4.8) is a diffecomorphism. We denote its
inverse map by 75 : Int (P) — R™. Denote by % the function on Int (P) defined
by the formula (2.13). Then, we define the function b% on Int (P) x Int (P) by

(4.10) bp(x,y) = 0p(y) — 0p(x) + (y — 2, 7p(y) )-
For simplicity of notation, we set

(4.11) c(Px) = ! z € Int (P).

VAt Ap (7))’
Theorem 4.6. Let D, (t) denote the distribution function of the the push-forward
measure ([N (2)|%).dvol on the real line, which is defined explicitly by

(4.12) D, (t) == vol (z € Mp; [N (2)[p > 1).

Suppose that the sequence of lattice points ay € (NP)NZ™ satisfies ay = Nz, +
O(1) with a point x, in Int (P).
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1. Fort >0, we have

(mm)™/? log N\ ™/
(4.13) DaN(t)NC(P,xO)F(m/2+1)( N ) ’

2. For 0 <t < ¢(P,x,), we have

' N m/2 N m/2
i (5) Dw((%) t

(4.14)
B 1 ! c(P, z,) m/2
T (P lm2+ 1) B\ ¢ '
3. Fort >0, we have
(4.15) lim D, (e ™) = vol(z € Int (P); b%(,, ) < 1),

N—oo
where vol denotes the Euclidean volume.

Remark 4.7. The formula (4.14) is also proved in [5]. The Kéhler structure used
in [5] is the one naturally induced from the standard Kéhler form on C? (d is the
number of facets of P) through the GIT description of the toric manifold Mp.

Before giving a sketch of proof, we give an explanation on Theorem 4.6. For
simplicity, consider the case where ay = Na with a € Int (P)NZ™. The sections
o, are expected to concentrate on the fiber (u%)~!(a) of the moment map pS :
Mp — P. (Indeed, one can show that the measure | |% dvol tends weakly to
the uniform measure on the fiber (u%)~*(a) = T™.) Since the function |p¥ |3 is
invariant under the action of the real torus 7™, and since Mp/T™ is homeomorphic
to P, this function induces a function on the polytope P. So, suppose that the
function |p¥,|% is like a Gaussian bump around «. Consider its sub-level sets,
Ly(t) = {|¢N,|% >t} in Int (P). When ¢ is a fixed positive constant, which is the
case of the formula (4.13), since the Gaussian bump becomes quite sharp around
a as N tends to infinity, the volume of the sub-level set Ly(f) becomes small as
N — o0, and how small it becomes does not depend on the constant ¢ because
the corresponding measure finally converges to the Dirac delta at «. This is the
formula (4.13). Thus, to find a correct limit of Dy,(t), we need to rescale the
constant t so that ¢ = ¢ty depends on N. The formula (4.14) gives the correct
rescaling when ¢t = ¢y becomes large as N — oo. In this case, since the level
sets become upper and upper as N tends to infinity, the rescaling in (4.14) gives
the information around the center of the concentration. The formula (4.14) shows
that the way of concentration is rather universal, because it does not depend much
on the geometry of Mp. In turn, in the formula (4.15), the rescaling ¢t = ty is
made by eV which decays as N tends to infinity. This means that the level sets
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become lower and lower as N tends to the infinity. In this rescale, the distribution
function can grasp the information about the tale of the bump, and the formula
(4.15) shows that the tale of the bump contains much geometric information, and
such information is contained in the function b%(«, -).

Remark 4.8. We have explained Theorem 4.6 by supposing that the function
| N3 looks like Gaussian. Indeed this is seen by the pointwise asymptotics of
this function (see Theorem 4.9 below). However, one could accept this exposition
by the following fact. Suppose we are given a Gaussian function

( ) €7<Au,u>/2 R
u)=——, u€R”
g vdet A
on R™ with the measure
d det A p
va= (2m)m/2 “

so that / g(u)dva(u) = 1. Then, a direct computation tells us that the distri-
Rm

bution function is given by

va(u € R™; g(u) > t) = m (log (CTA)>m/2

for 0 < ¢t < ¢4 with the constant ¢4 = 1/v/det A. Therefore, one can say that the
rescaled distributions in (4.14) for the toric monomials have a universal Gaussian
form around the center of the localization.

4.5 Inverting a moment problem

Among various asymptotic formulas in Theorem 4.6, we give a sketch of proof of
the formula (4.14). The formula (4.14) is one of consequences of the following
theorem about pointwise asymptotic behavior of |¢Y (2)[3.

Theorem 4.9. Let an € (NP)NZ™ be a sequence of lattice points in NP such
that ay = Nz, + O(1) with a point x, € Int (P). Then, we have

[ ()P =

N

( ) C(P, Io) (—) e_N[b%’(afo,af)+<$o—aN/N,T;)(CC)_T;)(I0)>](1 + O(N_l)),

2m
where we write z = e™P@/2T% with x € Int (P). This holds uniformly in z €
T = Op.

Remark 4.10. A special boundary case where ay = Na with a € 0PNZ™ is also
handled in [22] by using the local coordinates on U, N Mp (p € V(P)) described
in the proof of Proposition 4.5. In [23], general boundary case is analyzed.
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Indeed, taking k-th power of the formula (4.16) in Theorem 4.9, combined with
a technical estimate, shows the following asymptotic formula for the L**-norms.

Theorem 4.11. Suppose that the sequence ay € (NP)NZ™ of lattice points and
a point x, € Int (P) satisfy the condition in Theorem 4.6. Then, for the L**-norm
|02 M2k of the section oY has the following asymptotic behavior;

c(P, z,)F! (N

N |2k (k=tim/2 1
am W= () aron),

where Oy, means that the estimate O(N ') depends on k.

Let us explain how one can deduce the formula (4.14) from Theorem 4.11. To
take the rescaling in the formula (4.14) into account, let us introduce the measure
dvy and the function fy on Mp defined by

N m/2 N —m/4
tov=(50) " dvotn @)= (35)  lem ol

so that || fx|lz2(avy) = 1. According to the formula (4.17), we have

c(P,x,)* ! _
(4.18) HfNH%lgk(va) = W(l +OR(NTY)).

Consider the push-forward measure |fy|?dvy. By using the pointwise asymptotic
formula (4.16), one can show that

(4.19) Jim ||l = e(P,z,),

and hence the support of the push-forward measures |fy|2dvy are contained in
a bounded set in [0, +00) independent of N. The distribution function Fy(t) :=
(|fn2dvn)([t, +00)) of the measure | fy|?dvy is given by the rescaled distribution
function, Fiy(t) = (25)™/?Da, ((££)™/2¢t), in the formula (4.14). The limit of the
k-th moment as N — oo of the measure |fxy|?dvy is given by

(4.20)
c(P, x)F 1 _ c(P,x)
/R o d(| ) () = Sy = S W) 1+ o) — 20— km/)

Now, we note that the measure

dpn () = zd(| fx|2dvy)(z)

on the real line is a probability measure supported in a bounded interval in [0, +00)
independent of N. Then, if the sequence of probability measures dpy tend weakly
to a probability measure, say dp, the limit measure dp would be supported on
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[0,c(P,x)] by (4.19), and the distribution function Fy(t) would have a limit be-
cause

Flt) = [ X @) A xEdin)@) = [ Sxeo @) do (o)
= [ S xo@) dola).

where X(;+o0) is the characteristic function of the interval (¢, 400). Furthermore,
by (4.20), we must have

k . . k o C(P7 x>k
/x dp(r) = lim [ a*dpy(z) = (it D2
So, we arrive at a moment problem, that is, to find a probability measure dp whose

. . c(P,x)*
k-th moment is given by i

(e For this, we have the following lemma.

Lemma 4.12. Let p be a compactly supported probability measure on R. Suppose
that there exists a positive integer h and a positive number ¢ such that, for any

non-negative integer k,
k
k o C
[ o0 = gz g

dp(x) = T}ll/z)X(o,c)(x) (log (%))h/z_l :

See (22, Lemma 4.1] for the proof of Lemma 4.12. From (4.20) and Lemma
4.12, it is not hard to show the formula (4.14). Therefore, what we need is to
prove Theorem 4.9.

Then, we have

4.6 Pointwise asymptotic formula

In this subsection, we give a sketch of proof of Theorem 4.9. Since the formula 4.16
is a local estimate on Op = T2, we use the local coordinates z = e™/>*% 7 €
R™, on T#'. By definition of the Fubini-Study Hermitian metric on (L$)®V =
tpO(N), the modulus square of the monomial 7 can be written as

Y (2)|5 = e Niogkp(—{rax/N)] - _ or/2+ie
N , ]
Hence to consider the pointwise behavior of SﬁgN - HxéNHXéVN, it is enough to

consider behavior of the L*-norm [|x} ||. By (4.9), we have

(4.21) Y12 = / ¢~ Nlos k5 (I1~(rea /)] ot Ap(7) dir.
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The critical point of the function log k% (7)— (7, an /N ) is given by u$%(7) = an /N,
that is 7 = 75(an/N), which depends on the parameter N. So, we discuss as
follows. We note that, in (4.21), the function det Ap(7) is a positive integrable
function on R™ by (4.9) and the fact that the open orbit Op is dense in Mp. Since
an/N =z, + O(N™'), we can choose an open ball U in Int (P) around z, such
that U C Int (P) and ax /N € U for every sufficiently large N. As in [22, Lemma
3.3], there exist positive constants R, ¢ such that log k% (7) — (7,2 ) > ¢|7]| for any
(z,7) € U x R™, |7| > R. We may choose R > 0 so that |7&(ay/N)| < R for
every sufficiently large N. Thus, the integral in (4.21) equals

(4.22) [ et (r) det Ap(r) dr

modulo a term of order O(e=*®), where we inserted a cut-off function 0 < g(7) <
1 satisfying g(7) = 1 for |7| < 2R. Changing the integral variable 7 = 75(z), the
integral in (4.22) is written in the form

(4.23) e~ NOp(re) / e Nt Ry (20, 2)g(Tp(x)) da,
Int (P)

where the function b%(x,, x) is defined in (4.10) and the function Ry (z,, z) is given
by Ry(7,,7) = eloN=N2om:@)) - Since ay = Nz, + O(1), derivatives of Ry(z,,7)
of any order are bounded by constants on the support of g(75(z)). For fixed
z, € Int (P), it is easy to show that the function b%(x,, x) has unique critical point
at © = x, with Hessian A%(75(x,)). Since b%(x,, z,) = 0, a standard argument
involving the Morse lemma and the Fourier transform of Gaussian functions as in
Section 2 shows

(4.24)

N o — S (x To—Q 75 (x —
||Xé\/N||2 _ (%) \/detA%(TE(x()))e N[6% (x0)+(zo—an /N, T5( o)>](1+O(N 1))

From this and a direct computation, one conclude (4.16).
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Berezin-Toeplitz quantization for compact Kahler manifolds.

An introduction

by Martin Schlichenmaier

Abstract

The Berezin-Toeplitz operator and Berezin-Toeplitz deformation quan-
tization schemes give quantization methods adapted to a Kahler structure
on a manifold to be quantized. Here we present an introduction both to
the definitions of its basic objects and to the results.

1 Introduction

For quantizable Kéhler manifolds the Berezin - Toeplitz (BT') quantization scheme,
both the operator quantization and the deformation quantization, supplies canoni-
cally defined quantizations. What makes the Berezin-Toeplitz quantization scheme
so attractive is that it does not depend on further choices and that it does not
only produce a formal deformation quantization, but one which is deeply related
to some operator calculus.

Some time ago, in joint work with Martin Bordemann and Eckhard Mein-
renken, the author showed that for compact Kahler manifolds it is a well-defined
quantization scheme with correct semi-classical limit [14]. From the point of view
of classical mechanics compact Kahler manifolds appear as phase space manifolds
of restricted systems or of reduced systems. A typical example of its appearance
is given by the spherical pendulum which after reduction has as phase-space the
complex projective space.

Very recently, inspired by fruitful applications of the basic techniques of the
Berezin-Toeplitz scheme beyond the quantization of classical systems, the inter-
est in it revived considerably. For example these techniques show up in non-
commutative geometry. More precisely, they appear in the approach to non-
commutative geometry using fuzzy manifolds. The quantum spaces of the Berezin-
Toeplitz quantization of level m, defined in Section 3 further down, are finite-
dimensional in the compact case and the quantum operator of level m constitute
finite-dimensional non-commutative matrix algebras. This is the arena of non-
commutative fuzzy manifolds and gauge theories over them. The classical limit,
the commutative manifold, is obtained as limit m — oc.
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Another appearance of Berezin-Toeplitz quantization techniques as basic in-
gredients is in the pioneering work of Jgrgen Andersen on the mapping class group
(MCG) of surfaces in the context of Topological Quantum Field Theory (TQFT).
Andersen gave also a lecture course at the school on his achievements. Beside
other results, he was able to proof the asymptotic faithfulness of the mapping
class group action on the space of covariantly constant sections of the Verlinde
bundle with respect to the Axelrod-Witten-de la Pietra and Witten connection
[3, 4], see also [51]. Furthermore, he showed that the MCG does not have Kazh-
dan’s property T'. Roughly speaking, a group has property T says that the identity
representation is isolated in the space of all unitary representations of the group
[5]. In these applications the manifolds to be quantized are the moduli spaces of
certain flat connections on Riemann surfaces or, equivalently, the moduli space of
stable algebraic vector bundles over smooth projective curves. Here further excit-
ing research is going on, in particular, in the realm of TQFT and the construction
of modular functors [6], [7, §].

In general quite often moduli spaces come with a natural quantizable Kahler
structure. Hence, it is not surprising that the Berezin-Toeplitz quantization
scheme is of importance in moduli space problems. Non-commutative deforma-
tions, and a quantization is a non-commutative deformation, yield also infor-
mations about the commutative situation. These aspects clearly need further
investigations.

It was the goal of the lecture course and it is the goal of this write-up to
present a short introduction to the basic definitions and results on Berezin-Toeplitz
quantization (both operator and deformation quantization) without proofs and
too many details. The language presented was used in other lectures at the school
and talks at the conference. The author hopes that it will be equally useful to
the reader who aims to get a quick introduction to this exciting field. For a
more detailed review, see [53]. There an extended list of references to the original
literature and to reviews of other people concentrating on different aspects of the
theory can be found, e.g. see [2], [54].

2 The geometric set-up

2.1 Quantizable Kahler manifolds

We will only consider phase-space manifolds which carry the structure of a Kahler
manifold (M, w). Recall that in this case M is a complex manifold (let us say of
complex dimension n) and w, the Kéhler form, is a non-degenerate closed positive
(1,1)-form. This means that the Kéhler form w can be written with respect to
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local holomorphic coordinates {z;} as

i=1,...,n

(2.1) w=1Y gij(z)dz A dz;,

1,j=1

with local functions g;;(z) such that the matrix (g;;(2))i j=1,.. » is hermitian and
positive definite.

Denote by C*(M) the algebra of complex-valued (arbitrary often) differen-
tiable functions with point-wise multiplication as associative product. A sym-
plectic form on a differentiable manifold is a closed non-degenerate 2-form. In
particular, we can consider our Kahler form w as a symplectic form.

For a symplectic manifold M we can introduce on C* (M) a Lie algebra struc-
ture, the Poisson bracket {.,.}, in the following way. First we a assign to every
f e C>®(M) its Hamiltonian vector field Xy, and then to every pair of functions
f and g the Poisson bracket {.,.} via

(2.2) WXy, ) =df(),  A{f,g}=wlXsX,) .

This defines a Lie algebra structure in C*°(M). Moreover, we obtain the Leibniz
rule

{fg.h}t = fg.h}t +{f.h}g,  Vf.g.h e C*(M).
Such a compatible structure is called a Poisson algebra.

The next step in the geometric set-up is the choice of a quantum line bundle.
A quantum line bundle for a given symplectic manifold (M, w) is a triple (L, h, V),
where L is a complex line bundle, h a Hermitian metric on L, and V a connection
compatible with the metric i such that the (pre)quantum condition

CUI"VL7v<X, Y) = VXVY - VyVX - V[)Qy] = —iw(X, Y),

resp. curvpy = —lw

(2.3)

is fulfilled. A symplectic manifold is called quantizable if there exists a quantum
line bundle.

In the situation of Kahler manifolds we require for a quantum line bundle that
it is holomorphic and that the connection is compatible both with the metric h
and the complex structure of the bundle. In fact, by this requirement V will be
uniquely fixed. If we choose local holomorphic coordinates on the manifold and
and a local holomorphic frame of the bundle the metric A will be represented by a
function h. In this case the curvature of the bundle can be given by 00 log h and
the quantum condition reads as

(2.4) 190logh = w .
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2.2 Examples
(a) Of course, C" is a Kéhler manifold with Kéhler form

(2.5) w=1)Y dyNdz, .

k=1
The Poisson bracket writes as
.\~ (0f 99 9f 9g
2.6 = At A T
( ) {f’ g} ! kz:; (6§k 82k 0zk 6Zk
The quantum line bundle is the trivial line bundle with hermitian metric fixed by

the function (z) = exp(— 3. _, Zxzk)-

(b) The Riemann sphere is the complex projective line P*(C) = C U {oo} =
S2. With respect to the quasi-global coordinate z the form can be given as

1
2. = ———=dzANdZ .
(2.7) w e 2 Ndz

For the Poisson bracket one obtains

8f dg 9f0
(2.8) {f.g} = i(1+ 22)? (a—ga—i—a—fa—@ .

Recall that the points in P'(C) correspond to lines in C? passing through the
origin. If we assign to every point in P*(C) the line it represents we obtain
a holomorphic line bundle, called the tautological line bundle. The hyper plane
section bundle is dual to the tautological bundle. It turns out that it is a quantum
line bundle. Hence P!(C) is quantizable.

(c) The above example generalizes to the n-dimensional complex projective
space P"(C). The Kéhler form is given by the Fubini-Study form

(2.9) wps = i (1+ fw/?) > iy dwi A dw; — szzl wiw;dw; N\ dw; |

(1+ w|?)”
The coordinates w;, j = 1,...,n are affine coordinates w; = z;/2 on the affine
chart Uy :={(z0 : 21 : -+ : z,) | 20 # 0}. Again, P*(C) is quantizable with the

hyper plane section bundle as quantum line bundle.

(d) The (complex-) one-dimensional torus can be given as M = C/I"; where
I';:={n+m7|n,m e Z} is alattice with 7 € C, Im 7 > 0. As Ké&hler form we
take

17

(2.10) w= dz Ndz ,

Im 7
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with respect to the coordinate z on the covering space C. Clearly, this form
is invariant under the lattice I'. and hence well-defined on M. For the Poisson
bracket one obtains

Im7 (O0f 09 Of Og
0z 0z 020z)

(211 (g} =i—

The corresponding quantum line bundle is the theta line bundle of degree 1,
i.e. the bundle whose global sections are scalar multiples of the Riemann theta
function.

(e) The unit disc
(2.12) D:={z€C| |z <1}
is a (non-compact) Kéhler manifold. The Kéahler form is given by

21

2.13 =————dzNdz .

(2.13) w (e Z2Ndz

For every compact Riemann surface M of genus g > 2 the unit disc D is the
universal covering space and M can be given as a quotient of D by a Fuchsian
subgroup of SU(1,1), whose elements act by fractional linear transformations.

b
Recall for R = (% d) with |a|> — [b]* = 1 (as an element of SU(1,1)) the

fractional linear transformation is given as

az +b
(2.14) 2z R(z): T ra
The Kéhler form (2.13) is invariant under fractional linear transformations. Hence,
it defines a Kéhler form on M. The quantum bundle is the canonical bundle,
i.e. the bundle whose local sections are the holomorphic differentials. Its global
sections can be identified with automorphic forms of weight 2 with respect to the
Fuchsian group.

2.3 Conditions for being quantizable

The above examples might create the wrong impression that every Kéhler manifold
is quantizable. This is not the case. Above we introduced one-dimension tori.
Higher dimensional tori can be given as Kahler manifold in a completely analogous
manner as quotients C"/L were L is a 2n—dimensional lattice. But only those
higher dimensional complex tori are quantizable which are abelian varieties, i.e.
which admit enough theta functions. It is well-known that for n > 2 a generic
torus will not be an abelian variety.
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In the language of differential geometry a line bundle is called a positive line
bundle if its curvature form (up to a factor of 1/i) is a positive form. As the
Kaéhler form is positive the quantum condition (2.3) yields that a quantum line
bundle L is a positive line bundle.

Now let M is a quantizable compact Kéhler manifold with quantum line
bundle L. Kodaira’s embedding theorem says that L is ample, i.e. that there
exists a certain tensor power L™ of L such that the global holomorphic sections
of L can be used to embed the phase space manifold M into a projective space
of suitable dimension.

The embedding is defined as follows. Let 'y, (M, L™0) be the vector space
of global holomorphic sections of the bundle L™°. Fix a basis sg, $1,...,sy. We
choose local holomorphic coordinates z for M and a local holomorphic frame e(z)
for the bundle L. After these choices the basis elements can be uniquely described

by local holomorphic functions $g, 51, ..., 5n defined via s;(z) = §;(2)e(z). The
embedding is given by the map
(2.15) M — PN(C), =z é(2) = (80(2) : 81(2) : - : 5n5(2)) .

Note that the point ¢(z) in projective space neither depends on the choice of local
coordinates nor on the choice of the local frame for the bundle L. Furthermore,
a different choice of basis correspond to a PGL(N, C) action on the embedding
space and hence the embeddings are projectively equivalent. The “map” (2.15)
could be given for every line bundle having nontrivial global sections. But it
might happen that all sections have common zeros. For those points the map will
not be defined. Furthermore, to be an embedding it should separate points and
tangent directions. A line bundles whose global holomorphic sections will define
an embedding into projective space, is called a very ample line bundle.

By this embedding quantizable compact Kahler manifolds are complex sub-
manifolds of projective spaces. By Chow’s theorem [52] they can be given as
zero sets of homogenous polynomials, i.e. they are smooth projective varieties.
The converse is also true. Given a smooth subvariety M of P*(C) it will become
a Kéahler manifold by restricting the Fubini-Study form. The restriction of the
hyper plane section bundle will be an associated quantum line bundle.

At this place a warning is necessary. the embedding is only an embedding as
complex manifolds, not an isometric embedding as Kéahler manifolds. This means
that in general ¢! (wpg) # w.

3 Berezin-Toeplitz operators

In this section we will consider an operator quantization. This says that we will as-
sign to each differentiable (differentiable to every order) function f on our Kéhler
manifold M (i.e. on our “phase space”) the Berezin-Toeplitz (BT) quantum oper-
ator Ts. More precisely, we will consider a whole family of operators T}m). These
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operators are defined in a canonical way. As we know from the Groenewold-van
Howe theorem we cannot expect that the Poisson bracket on M can be repre-
sented by the Lie algebra of operators if we require certain desirable conditions,
see [1] for further details. The best we can expect is that we obtain it at least
“asymptotically”. In fact, this is true.

3.1 Definition of the operators

Let (M,w) be a quantizable Kahler manifold and (L, h, V) a quantum line bundle.
We assume that L is already very ample. We consider all its tensor powers

(3.1) (L™, R, v ),

Here L™ := L®™. If | corresponds to the metric h with respect to a local holo-
morphic frame e of the bundle L then h™ corresponds to the metric h™ with
respect to the frame e®” for the bundle L™. The connection V™ will be the
induced connection.

We introduce a scalar product on the space of sections. We adopt the con-
vention that a hermitian metric (and a scalar product) is anti-linear in the first
argument and linear in the second argument. First we take the Liouville form
Q= %w/\” as volume form on M and then set for the scalar product and the
norm

(3.2) <%M:Aﬂwmw9, lell == Ve @)

for the space I'o, (M, L™) of global C*-sections. Let L?(M, L™) be the L2-completed
space of bounded sections with respect to this norm. Furthermore, let I‘Sgl(M ,L™)
be the closed subspace consisting of those global holomorphic sections which are
bounded. These spaces are the quantum spaces of the theory. Note that in
case that M is compact 'y, (M, L™) = F,(LIL)I(M, L™) and the spaces are finite-
dimensional. Let

(3.3) ™ : L2(M, L™) — T\ (M, L™)
be the projection.

Definition 3.1. For f € C*(M) the Toeplitz operator T}m) (of level m) is defined
by

m m b m b m
(3.4) T =10 (f) . T (M, L™) — T\ (M, L™) .

In words: One takes a holomorphic section s and multiplies it with the differen-
tiable function f. The resulting section f -s will only be differentiable. To obtain
a holomorphic section, one has to project it back on the subspace of holomorphic
sections.
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The linear map
(3.5) T : C®(M) — End(Tyy(M,L™)),  f— T/ =1™(f) ,meN,.

is the Toeplitz or Berezin-Toeplitz quantization map (of level m). It will neither
be a Lie algebra homomorphism nor an associative algebra homomorphism as in
general

T}m) T;m) = T10™) (£ TI () TI0™) £ 110 (fg-) T = T};”)_
Definition 3.2. The Berezin-Toeplitz (BT) quantization is the map

(3.6) (M) — ] End(Tuy(M.L™),  f = (T} )meno-

meENy

In case that M is a compact Kahler manifold on a fixed level m the BT quanti-
zation is a map from the infinite-dimensional commutative algebra of functions to
a noncommutative finite-dimensional (matrix) algebra. The finite-dimensionality
is due to the compactness of M. A lot of classical information will get lost. To
recover this information one has to consider not just a single level m but all
levels together as done in the above definition. In this way a family of finite-
dimensional(matrix) algebras and a family of maps is obtained, which in the
classical limit “converges” to the algebra C*(M).

3.2 Approximation results for the compact Kahler case

In the following we will only deal with compact quantizable Kahler manifolds. We
assume that the quantum line bundle L is already very ample (i.e. its sections
give an embedding into projective space). This is not much of a restriction. If L
is not very ample we choose mgy € N such that the bundle L™ is very ample and
take this bundle as quantum line bundle with respect to the rescaled Kéahler form
mow on M. The underlying complex manifold structure will not change.

Recall that in the compact case we have ' (M, L™) = Fg;)l(M , L™). Denote
for f € C°(M) by |f|e the sup-norm of f on M and by

. [rsREll
(3.7) |7y = sup L
€T o1 (M,L™) ||SH
s#£0

the operator norm with respect to the norm (3.2) on I'y, (M, L™). The following
theorem was shown in 1994.

Theorem 3.3. [Bordemann, Meinrenken, Schlichenmaier] [14]
(a) For every f € C®(M) there exists a C > 0 such that

C (m)
. -— < | < )
(3.8) | floo < || f Il < [fle
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In particular, lim,, ||T}m)|| = [fl-
(b) For every f,g € C(M)

. (7(m) (m) m 1
3.9 T T — T = O(=).
(3.9) lm i [T, Tg™ ] = T ] ()
(c) For every f,qg € C*(M)
m m m 1
(3.10) 1TTm ~ TP = O(—)

These results are contained in Theorem 4.1, 4.2, and in Section 5 in [14]. The
proofs make reference to the symbol calculus of generalised Toeplitz operators as
developed by Boutet-de-Monvel and Guillemin [17]. See [53] for a sketch. Only on
the basis of this theorem we are allowed to call our scheme a quantizing scheme.
The properties in the theorem might be rephrased as the BT operator quantization
has the correct semiclassical limit. In other words it is a strict quantization in the
sense of Rieffel [44] as formulated in the book by Landsman [36]. This notion is
closely related to the notion of continuous field of C*-algebras.

Let us summarize further properties in the following

Proposition 3.4. Let f,g € C*(M), n = dim¢c M then

(a)

(3.11) lim || [T/, T = 0.

m—00 9

(b) The Toeplitz map

C*(M) — End(Tpe (M, L™)), f— Tjgm)’

1S surjective.

(c)

(3.12) ¢

m)* _ (m)
f — Tf .

In particular, for real valued functions f the associated Toeplitz operator Ty is
selfadjoint.

(d) Let A € End(Tyo (M, L™)) be a selfadjoint operator then there exists a real
valued function f, such that A = T}m).

(e) Denote the trace on End(Lpy (M, L™)) by Te(™ then

(3.13) o) (76™) = (W/Mm+o<ml)) |
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For the proofs, resp. references to the proofs, I refer to [53]. I like to stress the fact
that the Toeplitz map is never injective on a fixed level m. But from HTJST;H — 0
for m — 0 we can conclude that f = g.

There exists another quantum operator in the geometric setting, the operator
of geometric quantization introduced by Kostant and Souriau. In a first step the
prequantum operator associated to the bundle L™ for the function f € C*°(M)
is defined as

(3.14) P = v\ o + 1 - id.

Here V(™ is the connection in L™, and X}(cm) the Hamiltonian vector field of f

with respect to the Kéhler form w™ = m - w, i.e. mw(X(m .) = df(.). Next
one has to choose a polarization. In general it will not be unique. But in our
complex situation there is canonical one by taking the projection to the space
of holomorphic sections. This polarization is called Kahler polarization. The
operator of geometric quantization is then defined by

(3.15) QY =1 P

The Toeplitz operator and the operator of geometric quantization (with respect
to the Kéhler polarization) are related by

Proposition 3.5. (Tuynman Lemma) Let M be a compact quantizable Kdihler
manifold then

_ o p(m)
(3.16) Q" = T

where A is the Laplacian with respect to the Kahler metric given by w.

For the proof see [56], and [13] for a coordinate independent proof.

In particular the operators Q; and the T ) have the same asymptotic behaviour.
It should be noted that for (3.16) the compactness of M is essential.

Remark 3.6. Above we introduced Berezin-Toeplitz operators also for non-compact
Kéahler manifolds. Unfortunately, in this context the proofs of Theorem 3.3 do not
work. One has to study examples or classes of examples case by case and to check
whether the corresponding properties are correct. See [53] for list of references in
this context.

4 Berezin-Toeplitz deformation quantization

4.1 What is a star product?

There is another approach to quantization. Instead of assigning noncommutative
operators to commuting functions one might think about “deforming” the point-
wise commutative multiplication of functions into a non-commutative product. It
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is required to remain associative, the commutator of two elements should relate to
the Poisson bracket of the elements, and it should reduce in the “classical limit”
to the commutative situation.

It turns out that such a deformation which is valid for all differentiable func-
tions cannot exist. A way out is to enlarge the algebra of functions by considering
formal power series over them and to deform the product inside this bigger al-
gebra. A first systematic treatment and applications in physics of this idea were
given 1978 by Bayen, Flato, Fronsdal, Lichnerowicz, and Sternheimer [9]. There
the notion of deformation quantization and star products were introduced. Earlier
versions of these concepts were around due to Berezin [10], Moyal [39], and Weyl
[58]. For a presentation of the history see [54]. We will show that for compact
Kahler manifolds M, there is a natural star product.

We start even more general, with a Poisson manifold (M, {.,.}), i.e. a differen-
tiable manifold with a Poisson bracket for the function such that (C*(M), -, {.,.})
is a Poisson algebra. Let A = C°°(M)[[v]] be the algebra of formal power series
in the variable v over the algebra C*°(M).

Definition 4.1. A product » on A is called a (formal) star product for M (or for
C*>(M)) if it is an associative C[[v]]-linear product which is v-adically continuous
such that

1. A/vA=C>®(M),ie. frgmodv=f-g,

2. %(f*g—g*f)modvz—i{f,g},
where f,g € C*(M).

Alternatively we can write

(4.1) Fxg=>Y _Ci(f,.9,

=0
with C;(f,g) € C*°(M) such that the C; are bilinear in the entries f and g. The
conditions (1) and (2) can be reformulated as

(42> CO(fag):fgv and Cl(fvg)_ol(g7f):_1{fvg}

By the v-adic continuity (4.1) fixes x on A. A (formal) deformation quantization
is given by a (formal) star product. 1 will use both terms interchangeable.

There are certain additional conditions for a star product which are sometimes
useful.

1. We call it “null on constants”, if 1 x f = fx1 = f, which is equivalent to
the fact that the constant function 1 will remain the unit in A. In terms of
the coefficients it can be formulated as Cy(f,1) = Ci(1, f) = 0 for & > 1.
Here we always assume this to be the case for star products.
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2. We call it selfadjoint if f* g =g+ f, where we assume 7 = v.

3. We call it local if

supp Cj(f,g) Csupp f Nsuppg,  Vf, g€ C®(M).

From the locality property it follows that the C; are bidifferential operators
and that the global star product defines for every open subset U of M a star
product for the Poisson algebra C*°(U). Such local star products are also
called differential star products.

In the usual setting of deformation theory there always exists a trivial defor-
mation. This is not the case here, as the trivial deformation of C*(M) to A,
which is nothing else as extending the point-wise product to the power series, is
not allowed as it does not fulfill Condition (2) in Definition 4.1 (at least not if the
Poisson bracket is non-trivial). In fact the existence problem is highly non-trivial.
In the symplectic case different existence proofs, from different perspectives, were
given by DeWilde-Lecomte [22], Omori-Maeda-Yoshioka [41], and Fedosov [29].
The general Poisson case was settled by Kontsevich [35].

The next question is the classification of star products.

Definition 4.2. Given a Poisson manifold (M, {.,.}). Two star products x and *’
associated to the Poisson structure {.,.} are called equivalent if and only if there
exists a formal series of linear operators

(4.3) B=>Y By,  B;j:C®(M)—C™(M)
=0

with By = i¢d such that

(4.4) B(f)+ B(g) = B(f * g)-

For local star products in the general Poisson setting there are complete clas-
sification results. Here I will only consider the symplectic case. To each local star
product * its Fedosov-Deligne class

(15) cl(x) € <[] + Hin(M) ]

can be assigned. Here HZp(M) denotes the 2nd deRham cohomology class of
closed 2-forms modulo exact forms and H3,(M)|[[v]] the formal power series with
such classes as coefficients. Such formal power series are called formal deRham
classes. In general we will use [a] for the cohomology class of a form «. This
assignment gives a 1:1 correspondence between the formal deRham classes and
the equivalence classes of star products.
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For contractible manifolds we have H3,(M) = 0 and hence there is up to
equivalence exactly one local star product. This yields that locally all local star
products of a manifold are equivalent to a certain fixed one, which is called the
Moyal product. For these and related classification results see [23], [31], [12], [40].

For our compact Kéhler manifolds we will have many different and even non-
equivalent star products. The question is: is there a star product which is given
in a natural way? The answer will be yes: the Berezin-Toeplitz star product
to be introduced below. First we consider star products respecting the complex
structure in a certain sense.

Definition 4.3. (Karabegov [32]) A star product is called star product with sep-
aration of variables if and only if

(4.6) fxh=f-h, and hxg=h-g,

for every locally defined holomorphic function g, antiholomorphic function f, and
arbitrary function h.

Recall that a local star product * for M defines a star product for every open
subset U of M. We have just to take the bidifferential operators defining x. Hence
it makes sense to talk about x-multiplying with local functions.

Proposition 4.4. A local x product has the separation of variables property if
and only if in the bidifferential operators Cy(.,.) for k > 1 in the first argument
only deriwatives in holomorphic and in the second argument only derivatives in
antiholomorphic directions appear.

In Karabegov’s original notation the réles of the holomorphic and antiholo-
morphic functions is switched. Bordemann and Waldmann [15] called such star
products star products of Wick type. Both Karabegov and Bordemann-Waldmann
proved that there exists for every Kahler manifold star products of separation of
variables type. See also Reshetikhin and Takhtajan [43] for yet another construc-
tion. But I like to point out that in all these constructions the result is only a
formal star product without any relation to an operator calculus, which will be
given by the Berezin-Toeplitz star product introduced in the next section.

Another warning is in order. The property of being a star product of separation
of variables type will not be kept by equivalence transformations.

4.2 Berezin-Toeplitz star product
Again we restrict the situation to the compact quantizable Kéhler case.

Theorem 4.5. There exists a unique (formal) star product xpr for M

(4.7) frprg=>_vCi(f.9), Cj(f,g)€C(M),
j=0
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in such a way that for f,g € C°(M) and for every N € N we have with suitable
constants Ky(f,g) for allm

J N
(m) rp(m 1 (m) 1
as e - 3 () 1< mvra ()

0<j<N
The star product is null on constants and selfadjoint.

This theorem has been proven immediately after [14] was finished. It has been
announced in [46],[47] and the proof was written up in German in [45]. A complete
proof published in English can be found in [49].

For simplicity we write

(4.9) T~ Y (g) Tery  (m— o),
=0

but we will always assume the strong and precise statement of (4.8).

Next we want to identify this star product. Let Kj; be the canonical line
bundle of M, i.e. the n* exterior power of the holomorphic 1-differentials. The
canonical class ¢ is the first Chern class of this line bundle, i.e. § := ¢;(Kyy). If
we take in K the fiber metric coming from the Liouville form 2 then this defines
a unique connection and further a unique curvature (1, 1)-form weq,. In our sign
conventions we have § = [Weqn).

Together with Karabegov the author showed

Theorem 4.6. [34] (a) The Berezin-Toeplitz star product is a local star product
which 1s of separation of variable type.
(b) Its classifying Deligne-Fedosov class is

(410) cfonr) = 1 (3161~ 3)

1 14

for the characteristic class of the star product xgr.
(c) The classifying Karabegov form associated to the Berezin-Toeplitz star product
18

1
4.11 —— can-
( ) Vw+w

Remark 4.7. The Karabegov form
(4.12) O=(1/v)w_14+wy+rw +...

is a formal series, where w_; is the Kahler form w of the manifold and the forms
wy, T > 0, are closed but not necessarily nondegenerate (1,1)-forms on M. It was
shown in [32] that all deformation quantizations with separation of variables on
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the pseudo-Kéhler manifold (M, w_;) are bijectively parameterized by such formal
forms (4.12). They might be considered as formal deformations of (1/v)w_;. The
reason that we have —1w in (4.11) is that in Karabegov’s terminology the role of

the holomorphic and anti-holomorphic variables are switched. For a description
of Karabegov’s construction, see [53]. There details about the identification of the

Berezin-Toeplitz star product in his classification can be found, see also [34].

Remark 4.8. By Tuynman’s lemma (3.16) the operators of geometric quanti-
zation with Kéahler polarization have the same asymptotic behaviour as the BT
operators. As the latter defines a star product xgr it can be used to give also a
star product xg¢ associated to geometric quantization. Details can be found in
[49]. This star product will be equivalent to the BT star product, but it is not
of separation of variables type. The equivalence is given by the C[[v]]-linear map
induced by

(4.13) B(f)=f—-v—=f=(id—v—=)f.
We obtain B(f) xgr B(g9) = B(f *¢q 9)-

Remark 4.9. From (3.13) the following complete asymptotic expansion for
m — oo can be deduced [49], [16]):

(4.14) T(T) o~ me (i (l)jrj(f)>, with 7;(f) € C.

We define the C[[v]]-linear map
(4.15) Tr: C°(M)[[v] = v "C[[v]], Trf:=v" Z VT (f),

where the 7;(f) are given by the asymptotic expansion (4.14) for f € C*°(M) and
for arbitrary elements by C[[v]]-linear extension.

Proposition 4.10. [49] The map Tr is a trace, i.e., we have

(4.16) Tr(fxg) =Tr(g* f) .

5 Berezin’s coherent states, symbols, and trans-
form

5.1 The disc bundle

We will assume that M is a compact quantizable Kéhler manifold with very
ample quantum line bundle L, i.e. L has enough global holomorphic sections
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to embed M into projective space. From the bundle! (L, h) we pass to its dual
(U, k) := (L*,h™") with dual metric k. Inside of the total space U we consider
the circle bundle

(5.1) Q:={AeU]|k\A =1},
the (open) disc bundle, and (closed) disc bundle respectively
(5.2) D={) eU|k\N <1}, D:={eU|k\X <1}

Let 7 : U — M the projection (maybe restricted to the subbundles).

For the projective space PV (C) with the hyperplane section bundle H as quan-
tum line bundle the bundle U is just the tautological bundle. Its fiber over the
point z € PV(C) consists of the line in CN¥*! which is represented by 2. In partic-
ular, for the projective space the total space of U with the zero section removed
can be identified with C¥*1\ {0}. The same picture remains true for the, via
the very ample quantum line bundle in projective space embedded, manifold M.
The quantum line bundle will be the pull-back of H (i.e. its restriction to the
embedded manifold) and its dual is the pull-back of the tautological bundle.

In the following we use F \ 0 to denote the total space of a vector bundle F
with the image of the zero section removed. Starting from the real valued function
k(A) == k(XA \) on U we define a := L(0—0) logk on U \ 0 (the derivation are
taken with respect to the complex structure on U) and denote by « its restriction
to . With the help of the quantization condition (2.3) we obtain da = 7*w (with
the deRham differential d = dg) and that in fact 4 = 5=7"Q A a is a volume
form on (). Indeed « is a contact form for the contact manifold (). As far as the
integration is concerned we get

(5.3) /Q (7 F) = /M fQ, WfeC=(M).

Recall that Q is the Liouville volume form on M.

With respect to p we take the L2-completion L?(Q, 1) of the space of functions
on (). By the natural circle action the bundle Q is an S'-bundle and the tensor
powers of U can be viewed as associated line bundles. Sections of L™ = U™
can be identified with functions 1) on @) which satisfy the equivariance condition
(eA) = ™p(N), i.e. which are homogeneous of degree m. This identification is
given via the map

(54) Y LAM,L™) = LX(@Q,p), s+ s where ty(a) =a""(s(r(a))),

which turns out to be an isometry onto its image, where on L?(M, L™) we take
the scalar product (3.2).

! As the connection V will not be needed anymore, I will drop it in the notation.



Berezin-Toeplitz quantization 113

The generalized Hardy space 'H is the closure of the space of those functions
in Lz(Q,_,u) which can be extended to holomorphic functions on the whole disc
bundle D. The generalized Szego projector is the projection

(5.5) :L2(Q, 1) — H .

The space H is preserved by the S'-action. It can be decomposed into eigenspaces
H=11"_ H™) where ¢ € S acts on H(™ as multiplication by ¢™. The Szegd
projector is S! invariant and can be decomposed into its components, the Bergman
projectors

(5.6) I L2(Q, ) — H™.
If we restrict (5.4) on the holomorphic sections we obtain the isometry
(5.7) Yo : Dhot (M, L™) 22 H™).

In the case of PV(C) this correspondence is nothing else as the identification of
the global sections of the m'* tensor powers of the hyper plane section bundle
with the homogenous polynomial functions of degree m on CV*1.

Remark 5.1. In this set-up the notion of Toeplitz structure (I, X3), as developed
by Boutet de Monvel and Guillemin in [17, 30] can be applied. After some work
this leads to a proof of most of the statements in Theorem 3.3. A sketch of these
techniques and of the proof can be found in [53]

5.2 Coherent States

We recall the correspondence (5.4) ts(a) = a®™(s(7(«))) of m-homogeneous
functions ¢s on U with sections of L™. To obtain this correspondence we fixed
the section s and varied a.

Now we do the opposite. We fix a € U \ 0 and vary the sections s. Obviously
this yields a linear form on T’y (M, L™) and hence with the help of the scalar
product (3.2) we make the following

Definition 5.2. (a) The coherent vector (of level m) associated to the point
a € U\ 0 is the unique element ™ of Chot(M, L™) such that

(5.8) (et s) = ¥s(@) = a®"(s(7()))

for all s € Fhol(M; Lm)
(b) The coherent state (of level m) associated to x € M is the projective class

(5.9) elm = [e™)] € P(T'ho (M, L™)), a€ Tt Hx),a#0.
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Of course, we have to show that the object in (b) is well-defined. Recall that
(.,.) denotes the scalar product on the space of global sections I's (M, L™). In
our convention it will be anti-linear in the first argument and linear in the second
argument. The coherent vectors are antiholomorphic in « and fulfill
(5.10) elm =gm . e(m), ceCr:=C\{0}.

cx

Note that e = 0 would imply that all sections will vanish at the point z = 7(a).
Hence, the sections of L cannot be used to embed M into projective space, which
is a contradiction to the very-ampleness of L. Hence, e # 0 and due to (5.10)

the class
[ef™] = {s € Thu(M,L™) | e € C* : s =c-e™}

is a well-defined element of the projective space P(I';, (M, L™)), only depending
onx=r7(a) € M.

This kind of coherent states go back to Berezin. A coordinate independent
version and extensions to line bundles were given by Rawnsley [42]. They also
exist in the non-compact setting, as the linear form given by the evaluation of the
sections is continuous, see again [42].

The coherent states play an important role in the work of Cahen, Gutt, and
Rawnsley on the quantization of Kédhler manifolds [18, 19, 20, 21], via Berezin’s
covariant symbols. In these works the coherent vectors are parameterized by the
elements of L \ 0. The definition here uses the points of the total space of the
dual bundle U. It has the advantage that one can consider all tensor powers of L
together on an equal footing.

Remark 5.3. The coherent state embedding is the antiholomorphic embedding
(5.11) M — PTwa(ML™) = PYC), e[,

Here N = dim ', (M, L™) — 1. Here we will understand under 77'(x) always
a non-zero element of the fiber over . The coherent state embedding is up to
conjugation the embedding (2.15) with respect to an orthonormal basis of the
sections.

5.3 Berezin symbols

In this subsection I will be rather short, but details and complete proofs can be
found in [53]. We start with the

Definition 5.4. The covariant Berezin symbol o™ (A) (of level m ) of an operator
A € End(I' (M, L™)) is defined as

(512) o™(A): M - C, 1 ™ (A)x) =
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As the factors appearing in (5.10) will cancel, it is a well-defined function on M.
We introduce the the coherent projectors used by Rawnsley

pomy _ lea) e

T e ey

(5.13) acTtHz).

in the convenient bra-ket notation of physicists. With their help the covariant
symbol can be expressed as

(5.14) o™ (A)(z) = Tr(AP™).
From the definition of the symbol it follows that o™ (A) is real analytic and that
oM (A*) = gm)(A).

Rawnsley [42] introduced a very helpful function on the manifold M relating
the local metric in the bundle with the scalar product on coherent states.
In our dual description we define it in the following way.

Definition 5.5. Rawnsley’s epsilon function is the function

h(m) (e(()m) , e&m))
ey

a s Ca

(5.15) M — C*(M), z— ™ (z) = (z), act(z).

Indeed it is an extremely interesting function encoding geometric information.
In [53, Prop. 6.6] it is shown that for any orthonormal basis sq, s, ..., s of
Cho(M, L™) it calculates to

k

(5.16) e () =" hM(s;,55)(x).

j=1
The function €™ is strictly positive. Hence, we can define the modified measure
(5.17) Q) (z) := ™ (2)Q(z)
for the space of functions on M and obtain a modified scalar product (., .>£m) for
C>®(M).

In the case that the functions €™ will be constant as function of the points
of the manifold it calculates as

o dim Fhol (M, Lm)

5.18 (m)
( ) ¢ vol M

Here vol M denotes the volume of the manifold with respect to the Liouville
measure. Now the question arises when €™ will be constant, resp. when the
measure Q™ will be the standard measure (up to a scalar). If there is a transitive
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group action on the manifold and everything, e.g. Kéhler form, bundle, metric,
is homogenous with respect to the action this will be the case. An example is
given by M = PY(C). By a result of Rawnsley [42], resp. Cahen, Gutt and
Rawnsley [18], €™ = const if and only if the quantization is projectively induced.
This means that under the conjugate of the coherent state embedding (2.15), the
Kahler form w of M coincides with the pull-back of the Fubini-Study form. Note
that in general situations this is not the case.

Definition 5.6. Given an operator A € End(I'y, (M, L™)) then a contravariant
Berezin symbol 5™ (A) € C®(M) of A is defined by the representation of the
operator A as integral

(5.19) A= / 57 (A) () PO 0 (1),

if such a representation exists.

Very important is that we put “a” and not “the” in the definition, as in general
the contravariant symbol will not be unique. But

Proposition 5.7. The Toeplitz operator T}m) admits a representation (5.19) with
(5.20) Ty = f

i.e. the function f is a contravariant symbol of the Toeplitz operator T;m). More-
over, every operator A € End(Lyo (M, L™)) has a contravariant symbol.

As the Toeplitz map is surjective the last statement in the proposition is clear.
We introduce on End(I',q (M, L™)) the Hilbert-Schmidt norm

(5.21) (A,C) s = Tr(A*-C) .

Theorem 5.8. The Toeplitz map f — T}m) and the covariant symbol map
A — oc™(A) are adjoint:

(5.22) (AT) g = (@A), 0"
Let us collect some related results

Proposition 5.9.

(a)

(5.23) (A, B) g = (0")(4), 5 (B) .

(b) The covariant symbol map o™ is injective.

(¢)

(5.24) Tr A = / oM (4) Qi) — / 5 (4) Q).
M M
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Remark 5.10. Under certain very restrictive conditions Berezin covariant sym-
bols can be used to construct a star product, called the Berezin star product. As
said above the symbol map

(5.25) o™ : End(Tho (M, L™)) — C=(M)

is injective. Its image is a subspace A™ of C=(M), called the subspace of
covariant symbols of level m. If ™ (A) and o™ (B) are elements of this subspace
the operators A and B will be uniquely fixed. Hence also 0™ (A - B). Now one
takes

(5.26) "™ (A) () 0™ (B) := "™ (A B)

as definition for an associative and noncommutative product *(,,) on A The
crucial problem is how to relate different levels m to define for all possible symbols
a unique product not depending on m. In certain special situations like those
studied by Berezin himself [11] and Cahen, Gutt, and Rawnsley [18] the subspaces
are nested into each other and the union A = J, oy A is a dense subalgebra of
C*°(M). Indeed, in the cases considered, the manifold is a homogenous manifold
and the epsilon function €™ is a constant. A detailed analysis shows that then a
star product can be given.

For further examples, for which this method works (not necessarily compact)
see other articles by Cahen, Gutt, and Rawnsley [19, 20, 21]. For related results
see also work of Moreno and Ortega-Navarro [38], [37]. In particular, also the work
of Englis [27, 26, 25, 24]. Reshetikhin and Takhtajan [43] gave a construction of a
(formal) star product using formal integrals in the spirit of the Berezin’s covariant
symbol construction.

6 Berezin transform

Starting from f € C*°(M) we can assign to it its Toeplitz operator T}m) €

End (T (M, L™)) and then assign to T}m) the covariant symbol (™ (T}m)). It is
again an element of C*°(M).

Definition 6.1. The map
(6.1) Co®(M) = C¥(M),  f s IO (f) = o™ (T}™)
is called the Berezin transform (of level m).

From the point of view of Berezin’s approach the operator T}m) has as a con-
travariant symbol f. Hence I(™) gives a correspondence between contravariant
symbols and covariant symbols of operators. The Berezin transform was intro-
duced and studied by Berezin [11] for certain classical symmetric domains in C".
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These results where extended by Unterberger and Upmeier [57], see also Englis
[25, 26, 27] and Englis and Peetre [28]. Obviously, the Berezin transform makes
perfect sense in the compact Kahler case which we consider here.

Theorem 6.2. [3/] Given x € M then the Berezin transform 1™ (f) evaluated
at the point x has a complete asymptotic expansion in powers of 1/m as m — oo

1
mi’

(62 (@) ~ 3@

where I; : C°(M) — C*(M) are maps with

(6.3) L(f)=f  L{f)=Af

Here the A is the usual Laplacian with respect to the metric given by the
Kahler form w.

Complete asymptotic expansion means the following. Given f € C*°(M),
x € M and an r € N then there exists a positive constant A such that

(6.4 M@ - MA@ < o

Remark 6.3. The asymptotic of the Berezin transform is rather useful. It con-
tains a lot of geometric information about the manifold. Moreover, the asymptotic
expansion of the Berezin transform supplies a different proof of Theorem 3.3, part
(a), using the relation

(6.5) I (oo = 10T < T < | fleo -
(see [53].

Remark 6.4. The Berezin transform can be expressed by the Bergman kernels.
Recall from Section 5 the Szegd projectors IT : L?(Q, 1) — H and its components
1™ L2(Q, u) — H™), the Bergman projectors. The Bergman projectors have
smooth integral kernels, the Bergman kernels B,,(«, ) defined on @ x @, i.e.

(6.6) f10(0)(0) = [ Bl Bw(@n(s).
The Bergman kernels can be expressed with the help of the coherent vectors.

(6.7) Bo(o, B) = (™. ™), a8 €Q.
Let 2,y € M and choose «, § € Q with 7(«) = x and 7() = y then the functions

(6.8) U () 1= B, ) = (e&m), e((lm)>,
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(6.9) Un(2,9) = Bra(, B) - BB, @) = (0, V) - (e, ™)

are well-defined on M and on M x M respectively. An integral representation of
the Berezin transform is obtained by

(199 ) (2) = m /Q Bl B) BB, 0)7" F(B)1(5)
1

_ /M om0, ) F () 2y) -

(6.10)

In [34] an asymptotic expansion of the Bergman kernel is shown. The above
formula is then the starting point in [34] for the proof of the existence of the
asymptotic expansion of the Berezin transform. Again I refer to [53] for more
details and more arguments.

Remark 6.5. As everything is ready now I like to close with a result of the
pullback of the Fubini-Study form. Starting from the Ké&hler manifold (M,w)
and after choosing an orthonormal basis of the space 'y, (M, L™) we obtain an
embedding

qg(m) - M — PN(m)

of M into projective space of dimension N(m). On P¥(™ we have the standard
Kihler form, the Fubini-Study form wgrg. The pull-back (¢(™)*wrg will not de-
pend on the orthogonal basis chosen for the embedding. But in general it will not
coincide with a scalar multiple of the Kahler form w we started with.

It was shown by Zelditch [59], by generalizing a result of Tian [55], that
(fb(m))*ng admits a complete asymptotic expansion in powers of % as m — 00.
In fact it is related to the asymptotic expansion of the Bergman kernel (6.8) along
the diagonal. The pull-back can be given as [59, Prop.9]

(6.11) (gb(m))*wFS = mw + 190 log u, () .

If we replace in the asymptotic expansion 1/m by the formal variable v, and
denote the resulting formal series by F(.), we obtain the Karabegov form of the
star product “dual” to the Berezin-Toeplitz star product:

(6.12) B =TF((¢"™) wrs).
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Abstract

We survey recent results [33, 34, 35, 36] about the asymptotic expansion
of Toeplitz operators and their kernels, as well as Berezin-Toeplitz quan-
tization. We deal in particular with calculation of the first coefficients of
these expansions.
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1 Introduction

The aim of the geometric quantization theory of Kostant and Souriau is to relate
the classical observables (smooth functions) on a phase space (a symplectic mani-
fold) to the quantum observables (bounded linear operators) on the quantum space
(sections of a line bundle). Berezin-Toeplitz quantization is a particularly efficient
version of the geometric quantization theory [2, 3, 19, 25, 40]. Toeplitz operators
and more generally Toeplitz structures were introduced in geometric quantization
by Berezin [3] and Boutet de Monvel-Guillemin [9]. Using the analysis of Toeplitz
structures [9], Bordemann-Meinrenken-Schlichenmaier [7] and Schlichenmaier [38]
gave asymptotic expansion for the composition of Toeplitz operators in the Kahler
case.

The expansions we will be considering are asymptotic expansions relative to
the high power p of the quantum line bundle. The limit p — oo is interpreted
as semi-classical limit process, where the role of the Planck constant is played by
h=1/p.

The purpose of this paper is to review some methods and results concerning
Berezin-Toeplitz quantization which appeared in the recent articles [34, 35, 36]
and in the book [33]. Our approach is based on kernel calculus and the off-
diagonal asymptotic expansion of the Bergman kernel. This method allows not
only to derive the asymptotic expansions of the Toeplitz operators but also to
calculate the first coefficients of the various expansions. Since the formulas for
the coefficients encode geometric data of the manifold and prequantum bundle
they found extensive and deep applications in the study of Kéhler manifolds (see
e.g. [16, 17, 18, 20, 21, 26, 43, 44|, to quote just a few). We will also twist the
powers of the prequantum bundle with a fixed auxiliary bundle, so the formulas
for the coefficients also mirror the curvature of the twisting bundle.

The paper is divided in three parts, treating the quantization of Kahler man-
ifolds, of Kahler orbifolds and finally of symplectic manifolds.

In these notes we do not attempt to be exhaustive, neither in the choice of
topics, nor in what concerns the references. For previous work on Berezin-Toeplitz
star products in special cases see [11, 37]. We also refer the reader to the survey
articles [1, 30, 39] for more information for the Berezin-Toeplitz quantization and
geometric quantization. The survey [30] gives a review in the context of Kéahler
and symplectic manifolds and explores the connections to symplectic reduction.

2 Quantization of Kahler manifolds

In this long section we explain our approach to Berezin-Toeplitz quantization of
symplectic manifolds by specializing to the Kahler case. The method we use
is then easier to follow and the coefficients of the asymptotic expansions have
accurate expressions in terms of curvatures of the underlying manifold.
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In Section 2.1, we review the definition of the Bergman projector, introduce
the Toeplitz operators and their kernels.

In Section 2.2, we describe the spectral gap of the Kodaira-Laplace operator.
On one hand, this implies the Kodaira-Serre vanishing theorem and the fact that
for high powers of the quantum line bundle the cohomology concentrates in degree
zero. On the other hand, the spectral gap provides the natural framework for the
asymptotic expansions of the Bergman and Toeplitz kernels.

In Section 2.3 we describe the model operator, its spectrum and the kernel of
its spectral projection on the lowest energy level. The expansion of the Bergman
kernel, which we study in Section 2.4, is obtained by a localization and rescaling
technique due to Bismut-Lebeau [5], and reduces the problem to the model case.

With this expansion at hand, we formulate the expansion of the Toeplitz kernel
in Section 2.5. Moreover, we observe in Section 2.6 that these expansion charac-
terizes the Toeplitz operators and this characterization implies the expansion of
the product of two Toeplitz operators and the existence of the Berezin-Toeplitz
star product.

In Section 2.7, we explain how to apply the previous results when the Rie-
mannian metric used to define the Hilbertian structure on the space of sections is
arbitrary.

In Section 2.8, we turn to the general situation of complete Kéhler manifolds
and show how to apply the introduced method in this case.

2.1 Bergman projections, Toeplitz operators, and their
kernels

We consider a complex manifold (X, .J) with complex structure J, and complex
dimension n. Let L and F be two holomorphic vector bundles on X. We assume
that L is a line bundle i.e. tk L = 1. The bundle E is an auxiliary twisting
bundle. It is interesting to work with a twisting vector bundle E for several
reasons. For example, one has to deal with (n,0)-forms with values in L”, so one
sets B = A"(T*19 X). From a physical point of view, the presence of E means a
quantization of a system with several degrees of internal freedom.

We fix Hermitian metrics h*, h¥ on L, E. Let ¢'* be a J-invariant Rieman-
nian metric on X, i.e., g7X(Ju, Jv) = g?¥(u,v) for all x € X and u,v € T, X.
The Riemannian volume form of ¢g7* is denoted by dvy. On the space of smooth
sections with compact support 65°(X, [P ® E) we introduce the L2-scalar product
associated to the metrics h”, h* and the Riemannian volume form dvx by

(2.1) (s1,80) = /X<51(:L’),52(a:)>Lp®E dvx(z).
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The completion of 65°(X, LP @ E) with respect to (2.1) is denoted as usual by
L*(X, [P ® E). We consider the space of holomorphic L? sections:

(2.2) Hy(X, [P ® E) := {s € L*(X, [’ ® E) : s is holomorphic} .

Let us note an important property of the space H ?2) (X, L? ® E), which follows
from the Cauchy estimates for holomorphic functions. Namely, for every compact
set K € X there exists Cx > 0 such that

(2.3) sup |S(z)| < Ck||S|lr2, forall S € Hiy (X, LP @ E).
zeK

We deduce that H&) (X, LP ® E) is a closed subspace of L*(X, [P ® E); one can

also show that Hy (X, LP ® E) is separable (cf. [45, p.60]).

Definition 2.1. The Bergman projection is the orthogonal projection
P, [*(X,[?®FE) — H&)(X, PR F).

In view of (2.3), the Riesz representation theorem shows that for a fixed x € X
there exists P,(z,-) € L*(X, (L ® F), ® (L ® E)*) such that

(2.4) S(x) = /XPp(x, 2')S(x")dvx (z'), forall S € Hy (X, [P QE).

Definition 2.2. The section P,(-,-) of (L? ® E)X (L? ® E)* over X x X is called
the Bergman kernel of LP ® E.

Set d, := dim H{y (X, L ® E) € NU {oo}. Let {SP}% . be any orthonormal
basis of H(Og) (X, LP®E) with respect to the inner product (2.1). Using the estimate
(2.3) we can show that

dy
(25)  Blaa) =) S2) @ (SHE)) € (P e B (1P e B,

i=1
where the right-hand side converges on every compact together with all its deriva-
tives (see e.g. [45, p.62]). Thus P,(-,-) € €°(X x X, (LP @ E)X (L" @ E)*). It
follows that

26)  (P,S)(x) = /X Py(2, 2/)S(2')dvx ('), for all S € [2(X, [’ @ E).

that is, P,(+,-) is the integral kernel of the Bergman projection P,. We recall that
a bounded linear operator T on L?*(X, LP® E) is called Carleman operator (see e.g.
[22]) if there exists a kernel T'(+, -) such that T'(x,-) € L*(X, (LP®F),® (LF @ E)*)
and

@7 (TS)(x) = /X T(w,2)S(2)dvx (2'), for all S € [2(X, [? @ E).
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Hence P, is a Carleman operator with smooth kernel Py(-, ).

The Bergman kernel represents the local density of the space of holomorphic
sections and is a very efficient tool to study properties of holomorphic sections. It
is an “objet souple” in the sense of Pierre Lelong, that is, it interpolates between
the rigid objects of complex analysis and the flexible ones of real analysis.

Note that P,(z,z) € End(F),, since End(L?) = C. Using (2.5) and the
formula Trp [SP(z) ® (SF(x))*] = |SP(z)|?, we obtain immediately

(2.8) d, = / Trg Py(z,x) dvx(z) .

X
Definition 2.3. For a bounded section f € (X, End(E)), set
(2.9) Tip: (X, [?QF) — L*(X,[’®FE), T;,=P,fP,

where the action of f is the pointwise multiplication by f. The map which
associates to f € €°°(X,End(F)) the family of bounded operators {77} ,}, on
L*(X, [P ® E) is called the Berezin-Toeplitz quantization.

Note that T% , is a Carleman operator with smooth integral kernel given by

(2.10) Ty p(x,a’) = /XPp(x,x”)f(:v”)Pp(x”,:v') dox(z").

For two arbitrary bounded sections f,g € €°°(X,End(F)) it is easy to see
that T, , 0Ty , is not in general of the form T, ,,. But we have T} , 0Ty , ~ Ty p
asymptotically for p — oco. In order to explain this we introduce the following
more general notion of Toeplitz operator.

Definition 2.4. A Toeplitz operator is a sequence {T},},en of linear operators
T, : L*(X,[? ® E) — L*(X, L? ® E) verifying T, = P, T, P,, such that there
exist a sequence gy € € (X, End(F)) such that for any & > 0, there exists C > 0
with

k
(2.11) ‘ 7, - ZTgl,pp*‘H <Cup*1  for any p € N*,
=0
where || - || denotes the operator norm on the space of bounded operators. The

section gy is called the principal symbol of {T},}.
We express (2.11) symbolically by

(2.12) T, = Z Ty pp  + O,

If (2.11) holds for any k € N, then we write (2.12) with & = +o00. One of our
goals is to show that T} , o T, , is a Toeplitz operator in the sense of Definition
2.11. This will be achieved by using the asymptotic expansions of the Bergman
kernel and of the kernels of the Toeplitz operators.
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2.2 Spectral gap and vanishing theorem

In order to have a meaningful theory it is necessary that the spaces H ?2) (X, LPRF)
are as large as possible. In this section we describe conditions when the growth
of d, = dim H?Q) (X, LP ® E) for p — oo is maximal.

For this purpose we need Hodge theory, so we introduce the Laplace operator.
Let 709X be the holomorphic tangent bundle on X, 7YX the conjugate of
THOX and T*OYX the dual bundle of TV X. We denote by A?(T*®YX) the
bundle of (0, g)-forms on X and by Q%¢(X, F) the space of sections of the bundle
AYT*ODX) ® F over X, for some vector bundle F' — X.

The Dolbeault operator acting on sections of the holomorphic vector bundle
LP ® E gives rise to the Dolbeault complex

(QO"(X, [’ ® E), 5”®E) .

Its cohomology, called Dolbeault cohomology, is denoted by H**(X,L? @ F).
=LPRE,x
We denote by 0

product (2.1). Set

.. HLPRE . 9
the formal adjoint of 0 with respect to the L*-scalar

Dp _ \/5(5Lp®E' + 5LP®E,*) ’

DLP@E _ lDQ _ 5LP®E ELP(X)E,* + ELP(@E,* 5LP®E
27p :

(2.13)
The operator O0X"®¥ is called the Kodaira-Laplacian. Tt acts on Q%*(X, [P @ E)
and preserves its Z-grading.

Let us consider first that X is a compact Kahler manifold endowed with a
Kéhler form w and L is a prequantum line bundle. The latter means that there
exists a Hermitian metric A* such that the curvature R* = (V)? of the holomor-
phic Hermitian connection V¥ on (L, h') satisfies

_Volp

2.14
(2.14) W=

In particular, L is a positive line bundle.
By Hodge theory, the elements of Ker((J*'®E), called harmonic forms, repre-
sent the Dolbeault cohomology. Namely,

(2.15) Ker(Dj|qo.q) = Ker(D2|gos) ~ H*(X, [P @ E).

and the spaces H*(X, L’ @ E) are finite dimensional. Note that H*°(X, L @ F)
is the space of holomorphic sections of [P ® E, denoted shortly by H°(X, LP @ E).
Since X is compact we have H*(X, [F @ E) = H(OQ) (X, L? ® E) for any Hermitian
metrics on LP, E and volume form on X. A crucial tool in our analysis of the

Bergman kernel is the following spectral gap of the Kodaira-Laplacian.
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Theorem 2.5 ([6, Th. 1.1], [33, Th. 1.5.5]). There exist constants positive Cy, C,
such that for any p € N and any s € Q*7°(X, [? ® E) = @5, "X, [* @ E),

(2.16) 1Dpslize = (2Cop — Cr)llsll

The spectrum Spec(0d,) of the Kodaira Laplacian O,, is contained in the set
{0}UlpCo — 3C1, + 0.

Theorem 2.5 was first proved by Bismut-Vasserot [6, Th.1.1] using the non-
kahlerian Bochner-Kodaira-Nakano formula with torsion due to Demailly, see e.g.
[33, Th. 1.4.12] (note that g7 is arbitrary, we don’t suppose that it is the metric
associated to w, i.e., g7 (u,v) = w(u, Jv) for u,v € T, X). By Theorem 2.5, we
conclude:

Theorem 2.6 (Kodaira—Serre vanishing Theorem). If L is a positive line bundle,
then there exists po > 0 such that for any p = po,

(2.17) HY> (X, [?® E)=0 for any ¢ > 0.

Recall that for a compact manifold X and a holomorphic vector bundle F', the
Euler number x (X, F') is defined by

(2.18) (X, F) = i(—nq dim H*(X, F).

q=0

By the Riemann-Roch-Hirzebruch Theorem [33, Th. 14.6] we have
(2.19) (X, F) = / Td (TM9X) ch(F),
be

where Td and ch indicate the Todd class and the Chern character, respectively.
By the Kodaira-Serre vanishing (2.17),

(2.20) dy = dm H'(X, I’ ® B) = x(X, I’ ® E), p>po.

Therefore, for p > po,

dim H'(X, [P ® E) = / Td (TM0X) ch(LF ® E)
X

(2.21) — 1k(E) /X 0151[!1)71 o +/X (cl(E) L rk(2E) cl(T(l’O)X)> C(ln([:)i)'l Pl

+ O(p"?).

Note that the first Chern class ¢;(L) is represented by w (see (2.14)) and ¢1(E) is
represented by % Tr[R”]. As a conclusion we have:
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Theorem 2.7. Let (X,w) be a compact Kdhler manifold and let (L,h%) be a
prequantum line bundle satisfying (2.14). Then d, is a polynomial of degree n
with positive leading term = [ ci(L)™ (the volume of the manifold (X,w)).

Let us consider now the general situation of a (non-compact) complex man-
ifold (X,J). As before we are given a Hermitian metric on X, that is, a J-
compatible Riemannian metric g7*. We denote by © the associated (1, 1)-form,
ie., O(u,v) = g™ (Ju,v), for all x € X and u,v € T,X. We say that the Her-
mitian manifold (X, ©) is complete if the Riemannian metric g”X is complete.
Consider further a Hermitian holomorphic vector bundle (F,h") — X. Let us
denote by Q?é%(X, F) = L*(X,A(T*®V X)® F). We have the complex of closed,
densely defined operators

=F =F
(2:22) sy~ (6 F) =% QX F) 72 gt (X F),

where T" and S are the maximal extensions of 5F, ie.,
—F ° =F ,
Dom(d" ) = {s € Q3}(X, F): 9 s € Q3 (X, F)}

where 9" s is calculated in the sense of distributions. Note that Im(T) C Ker(95),
so ST = 0. The ¢-th L? Dolbeault cohomology is defined by

Ker(d") N Q0 (X, F)

(2.23) HY(X,F) = ——5 .
Im(3") NQR(X, F)

2)

Consider the quadratic form @) given by
Dom(®) := Dom(.S) N Dom(T™),

2.24
(2.24) Q(s1,82) =(Ss1,Ss9) + (T"s1,T"sy), for s1,s9 € Dom(Q).

where 7™ is the Hilbertian adjoint of 7. For the following result due essentially
to Gaffney one may consult [33, Prop.3.1.2, Cor. 3.3.4].

Lemma 2.8. Assume that the Hermitian manifold (X, ©) is complete. Then the
Kodaira-Laplacian OF : Q0 (X, F) — Q(()é;(X, F) is essentially self-adjoint. Its
associated quadratic form is the form Q given by (2.24).

We denote by R the curvature of the holomorphic Hermitian connection
Vet on K% = det(T19X). We have the following generalization of Theorems
2.5 and 2.6.

Theorem 2.9 ([33, Th.6.1.1], [34, Th.3.11]). Assume that (X,©) is a complete
Hermitian manifold. Let (L,h*) and (E,h¥) Hermitian holomorphic vector bun-

dles of rank one and r, respectively. Suppose that there exist € > 0, C > 0 such
that:

(2.25) V—-IR">e0, V-1(R* +R")>-COldg, 00|~ <C,
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Then there exists C; > 0 and py € N such that for p = py the quadratic form @),
associated to the Kodaira-Laplacian O, := O ®F satisfies

(2.26)  Qp(s,5) = Cip|ls|32, for s € Dom(Q,) N Q(()g(X, LP®FE), q¢>0.
Especially

(2.27) H! (X, IP @ E) =0, forp>po, ¢>0
and the spectrum Spec(UJ,) of the Kodaira Laplacian O, acting on L*(X, [P @ E)
is contained in the set {0} U [pCy, o0].

Thus we are formally in a similar situation as in the compact case, that is, the
higher L? cohomology groups vanish. But we cannot invoke as in the compact
case the index theorem to estimate the dimension of L? holomorphic sections of
L? ® E. Instead we can use an analogue of the local index theorem, namely the
asymptotics of the Bergman kernel. Let us denote by ag, ..., «a, the eigenvalues
of %RL with respect to ©.

Theorem 2.10 ([34, Cor.3.12]). Under the hypotheses of Theorem 2.9 we have
(2.28) Py(w,x) = p"bo(a) + O(p"™"), p— o0,

uniformly on compact sets, where by = oy ..., Idg. Hence

(2.29) lim inf p~" dim Hfy (X, 1/ & E) > rkff) / (\/2? RL>n.
oo I

The asymptotics (2.28) are a particular case of the full asymptotic expansion
of the Bergman kernel, see Corollary 2.15. It can be also deduced with the help
of L? estimates of Hormander as done by Tian [41]. The estimate (2.29) shows
that dim H (02) (X,LP ® F) has at least polynomial growth of degree n. It fol-
lows from Fatou’s lemma, applied on X with the measure ©"/n! to the sequence
p " Trg P,(z, ) which converges pointwise to Trg by on X.

2.3 Model situation: Bergman kernel on C”

We introduce here the model operator, a Kodaira-Laplace operator on C", and
describe explicitly its spectrum. The expansion of the Bergman and Toeplitz
kernels will be expressed in terms of the kernel of the projection on Ker(.#). Our
whole analysis and calculations are based on the Fourier expansion with respect
to the eigenfunctions of .Z.

Let us consider the canonical real coordinates (Zi, ..., Zs,) on R?" and the
complex coordinates (z1, ..., 2,) on C". The two sets of coordinates are linked by
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the relation z; = Zoj_1 ++v/—125;, j = 1,...,n. We endow C" with the Euclidean
metric g7¢". The associated Kihler form on C" is

VI
w:szldzj/\dzj.

We are interested in the space (L?(R?"), || - ||z2) of square integrable functions on
R?" with respect to the Lebesgue measure. We denote by dZ = dZ, - - - dZ,, the
Euclidean volume form. For o = (e, ..., ) € N*, z € C", put z* = 2" -+ 207,

Let L = C be the trivial holomorphic line bundle on C™ with the canonical
section 1: C" — L, z — (2,1). Let h% be the metric on L defined by

(2.30) [1pe(2) == exp(=5 X070, [%[°) = p(Z)  for z € C".

The space of L2-integrable holomorphic sections of L with respect to h* and dZ is
the classical Segal-Bargmann space of L?-integrable holomorphic functions with
respect to the volume form pdZ. It is well-known that {z° : 3 € N*} forms an
orthogonal basis of this space.

To introduce the model operator .Z we set:

0
(2.31) bi = -2

9
= =2
9z, A )

2 Zl

. . =L
We can interpret the operator £ in terms of complex geometry. Let 0 be

the Dolbeault operator acting on Q%*(C", L) and let 9" be its adjoint with
respect to the L%-scalar product induced by ¢”¢" and h*. We have the isometry
Q% (C",C) — Q%*(C", L) given by a — p~ta. If

—L,x=L

O =970 + 99"
denotes the Kodaira Laplacian acting on Q%*(C", L), then
pOfp™: Q% (C",C) — Q" (C",C),
pOFpt = %$+Z27Td§j Ni g,
j=1 0z
pDL,{)_l‘Qo,o = %f

The operator .Z is the complex analogue of the harmonic oscillator, the operators
b, b™ are creation and annihilation operators respectively. Each eigenspace of .
has infinite dimension, but we can still give an explicit description.

Theorem 2.11 ([33, Th. 4.1.20], [34, Th. 1.15]). The spectrum of £ on L*(R*")
15 given by

(2.32) Spec(Z) = {47T|a| € N”}.
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Fach )\ € Spec(Z) is an eigenvalue of infinite multiplicity and an orthogonal basis
of the corresponding eigenspace is given by

(2.33) By = {07 (% =15 2) o € N with 4rla] = A, § € N" |

where b* = b ---b%.  Moreover, |J{Bx : A € Spec(Z)} forms a complete
orthogonal basis of L*(R*™). In particular, an orthonormal basis of Ker(.Z) is

(2.34) {a(2) = () 20" TP g e e}

Let &2 : L*(R*) — Ker(.%) be the orthogonal projection and let & (Z, Z')
denote its kernel with respect to dZ’. We call Z(-,-) the Bergman kernel of .Z.
Obviously (7, Z") = 35 ¢5(2) Pg(2') so we infer from (2.34) that

(2.35) P(2,2') = exp (= 5 0 (|l + |2 - 22%)))

2.4 Asymptotic expansion of Bergman kernel

In Sections 2.4-2.6 we assume that (X,w) is a compact Ké&hler manifold and
(L, h*) is a Hermitian holomorphic line bundle satisfying (2.14). For the sake of
simplicity, we suppose that Riemannian metric g7 is the metric associated to w,
that is, g7~ (u,v) = w(u, Jv) (or, equivalently, © = w).

In order to state the result about the asymptotic expansion we start by describing
our identifications and notations.

Normal coordinates. Let a* be the injectivity radius of (X, g7X). We denote
by B*(z,e) and B?*%(0,¢) the open balls in X and T, X with center z and
radius ¢, respectively. Then the exponential map T,X > Z — exps(Z) € X is
a diffeomorphism from B=X(0,¢) onto B¥(z,¢) for ¢ < a*. From now on, we
identify B7=X(0, ) with BX(z, ¢) via the exponential map for ¢ < a®. Throughout
what follows, € runs in the fixed interval 0, a™ /4].

Basic trivialization. We fix zy € X. For Z € B™0X (0, ¢) we identify (L2, hk),
(Ez,h%) and (LPQFE) 7 to (Lgy, hk,), (Eyy, hE ) and (LPQE),, by parallel transport
with respect to the connections V¥, V¥ and VE®E along the curve

vz :[0,1] 2 u — exp) (uZ).

This is the basic trivialization we use in this paper.
Using this trivialization we identify f € €°°(X, End(F)) to a family { f., }zoex
where f,, is the function f in normal coordinates near x, i.e.,

fun s B0X(0,2) = End(E,,),  foy(Z) = f 0 expl(2).

In general, for functions in the normal coordinates, we will add a subscript xg
to indicate the base point zy € X. Similarly, P,(z,2’) induces in terms of the
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basic trivialization a smooth section (Z,2') +— P, ,,(Z,Z') of #* End(E) over
{(Z,2") € TX xxTX :|Z|,|Z'| < e}, which depends smoothly on xy. Here
we identify a section S € €°(TX xx TX,n* End(E)) with the family (S,).ex,
where S, = S|r-1(2).

Coordinates on T, X. Let us choose an orthonormal basis {w;}?; of Tg%’o)X .
Then e9;_1 = \/Li(wj +w,) and ey = %(w]'_wj), j=1,...,n form an orthonor-
mal basis of T}, X. We use coordinates on T, X ~ R?" given by the identification

(2.36) R™ 3 (Z1,..., Zon) — Y Zie; € Ty, X.

In what follows we also use complex coordinates z = (z1,. .., z,) on C" ~ R?",
Volume form on T,,X . Let us denote by dvrx the Riemannian volume form on
(T, X, gT=0™), there exists a smooth positive function k,, : T, X — R, satisfying

(2.37) dvx(Z) = kg (Z)dorx(Z), Kz (0) =1,

where the subscript x of k,,(Z) indicates the base point zy € X.
Sequences of operators. Let ©, : [*(X,[P ® E) — L[*(X,[* ® E) be a
sequence of continuous linear operators with smooth kernel ©,(-,-) with respect
to dux (e.g.©, = Tf,). Let m : TX xx TX — X be the natural projection
from the fiberwise product of TX on X. In terms of our basic trivialization,
©,(z,y) induces a family of smooth sections Z, Z" — O, ,,(Z,Z") of #* End(FE)
over {(Z,2") € TX xxTX :|Z|,|Z'| < e}, which depends smoothly on z.

We denote by |0, 4,(Z, Z')|41(x) the €' norm with respect to the parameter
xo € X. We say that

Op20(Z,Z")=0(p~>), p— o0

if for any [, m € N, there exists Cy,,, > 0 such that |0, ,,(Z, Z)|smx) < Cim p~t.

The asymptotics of the Bergman kernel will be described in terms of the
Bergman kernel 2, (-,) = Z2(-,-) of the model operator .£ on T,, X = R?".
Recall that Z(-,-) was defined in (2.35).

Notation 2.12. Fix k € N and ¢’ €]0,a*[. Let
{Qra0 € End(E)y[Z, 2] : 0< 7 <k, 30 € X}

be a family of polynomials in Z, Z’, which is smooth with respect to the parameter
xo € X. We say that

k
(238) P "Opol(Z,2) 2D (Queo Pun) (VD2 BZ )P+ O(p ),

r=0
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on{(Z,2") e TXxxTX :|Z|,|Z'| < €'} if there exist Cy > 0 and a decomposition

k
P "Opay(2, Z') Z Qroao P (VP2 NP L )ty (Z) ) P (2 )p ™"
=0

= \an,wo(z? Z' ) + O(pioo) )

(2.39)

where U, ;. , satisfies the following estimate: for every [ € N there exist Cy ; > 0,
M > 0 such that for all p € N*

(240) |\I]p,k,$0(Zy Z/)‘(za”l(X) < Ck,lpi(k+1)/2(1+\/ﬁ|2|—|—\/§|Z/|>M 6700\/177|Z7Z/|7
on {(Z,2") € TX xx TX : |Z|,|2'| < £'}.

The sequence P,. We can now state the asymptotics of the Bergman kernel.
First we observe that the Bergman kernel decays very fast outside the diagonal of
X x X.

Let f: R — [0,1] be a smooth even function such that f(v) =1 for |v| < /2,
and f(v) =0 for |v| > €. Set

(2.41) F(a) = ( /_ - f(v)dv>_1 /_ T et (),

[e.9] o0

Then F(a) is an even function and lies in the Schwartz space S(R) and F'(0) = 1.
We have the far off-diagonal behavior of the Bergman kernel:

Theorem 2.13 ([15, Prop.4.1)). For any l,m € N and € > 0, there exists a
positive constant Cp e > 0 such that for any p > 1, z,2’ € X, the following
estimate holds:

(2.42) [F(Dy)(@,2") = Py, ) pm ) < Ciomed™

Especially,

(243) | Py, 2)|gmxxx) < Cimep™', on{(z,2') € X x X :d(z,2') > ¢}.

The €™ norm in (2.42) and (2.43) is induced by VL, VE hE h¥ and g"*.
Next we formulate the near off-diagonal expansion of the Bergman kernel.

Theorem 2.14 ([15, Th. 4.18']). There exist polynomials J, ,, € End(E),,[Z, Z']
in Z, Z'" with the same parity as r, such that for any k € N, € €]0,a™ /4], we have

k
(244) P Puo(Z,2) 2N (Jray Pa)(VBZ B2 ) E + Oy

r=0

),

on the set {(Z,2") € TX xx TX :|Z|,|Z'| < 2¢}, in the sense of Notation 2.12.
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Let us briefly explain the idea of the proof for Theorems 2.13—2.14. Using the
spectral gap property from Theorem 2.5, we obtain (2.42). By finite propagation
speed of solutions of hyperbolic equations, we obtain that F(D,)(z,z') = 0 if
d(z,2') =2 € and F(Dp)(x,-) depends only on the restriction D,|p(), so (2.43)
follows. This shows that we can localize the asymptotics of P,(x,2’) in the
neighborhood of zy. By pulling back all our objects by the exponential map to
the tangential space and suitably extending them we can work on R?". Thus we
can use the explicit description of the Bergman kernel of the model operator .Z
given in Section 2.3. To conclude the proof, we combine the spectral gap property,
the rescaling of the coordinates and functional analytic techniques inspired by
Bismut-Lebeau [5, §11].

By setting b, (x0) = (Jar, 2y P2, ) (0, 0), we get from (2.44) the following diagonal
expansion of the Bergman kernel.

Corollary 2.15. For any k,l € N, there exists Cy; > 0 such that for any p € N,

k

(2.45) P,(x,x) — Z b, (z)p" " < Cpp" 1,

€1(X)

where by(x) = Idg.

The existence of the expansion (2.45) and the form of the leading term was
proved by [41, 12, 46].

The calculation of the coefficients b, is of great importance. For this we need
Jr.zo, Which are obtained by computing the operators .%, ,, defined by the smooth
kernels

(2.46) Fy o2, 2) = T, (2, 2P (2. ')

with respect to dZ’. Our strategy (already used in [33, 34]) is to rescale the
Kodaira-Laplace operator, take the Taylor expansion of the rescaled operator and
apply resolvent analysis.

Rescaling O, and Taylor erpansion. For s € €>*(R*",E,,), Z € R,
|Z] < 2¢, and for t = \/iﬁ, set

(2'47) (StS)(Z)_l IS(Z/t>7 B

% = S7 Y22 (20,)k V28,

Then by [33, Th.4.1.7], there exist second order differential operators O, such
that we have an asymptotic expansion in ¢ when t — 0,

(2.48) L=L+ Y 'O+ 0",

r=1
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From [33, Th. 4.1.21,4.1.25], we obtain

(2.49) L = Zb bt = O, = 0.
Resolvent analysis. We define by recurrence f,.()\) € End(L*(R*", E,,)) by
(250) N =0O-2)" (N =0-%) Z O;fr-i

Let 0 be the counterclockwise oriented circle in C of center 0 and radius /2.
Then by [34, (1.110)] (cf. also [33, (4.1.91)])

1
(2.51) Fy 0y = —27T\/__1/6fr(/\)d)\

Since the spectrum of .Z is well understood we can calculate the coefficients
Py zo- Set P =1d — 2. From Theorem 2.11, (2.49) and (2.51), we get

Fo,00 =P P12y =0,
(2.52) Fowog = — L NP0, P — PO,L P
Fy gy = — L P03 — POL P
and
Frwg = L PLOL PO — LT PHO,P
+ POL PO, Pt — 2O, L7 Pt
+ L PLO0, 20, LD — 20, 22O, P
— PO, POL 2P — PLL 20,20, P.

(2.53)

In particular, the first two identities of (2.52) imply
(2.54) Jowe =1, Jia=0.

In order to formulate the formulas for b; and b, we introduce now more no-
tations. Let VX be the Levi-Civita connection on (X, g?*). We denote by
RTX = (VTX)2 the curvature, by Ric the Ricci curvature and by rX the scalar
curvature of V¥,

We still denote by V¥ the connection on End(FE) induced by V. Consider
the (positive) Laplacian A acting on the functions on (X, g7%) and the Bochner
Laplacian A¥ on (X, E) and on €>(X,End(E)). Let {e.} be a (local) or-
thonormal frame of (T'X, g"X). Then

(2.55) AP =N (VEVE - vaxek)
k
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Let Q27 (X, End(F)) be the space of (g, r)-forms on X with values in End(E),
and let

(2.56) V009X, End(E)) — Q7 (X, End(E))

be the (1,0)-component of the connection VE. Let (VF)*, VLO*,EE* be the ad-
joints of V¥, V170,5E, respectively. Let D19 D%! be the (1,0) and (0,1) compo-
nents of the connection V"X : (X, T*X) — €><(X,T*X @ T*X) induced by
VX In the following, we denote by

(-, Q%*(X,End(F)) x Q**(X,End(F)) — € (X, End(F))

the C-bilinear pairing (o ® f, B ® g), = (o, B) f - g, for forms «, f € Q**(X) and
sections f,g € €*°(X,End(FE)). Put

(2.57) RY = (R",w)

Let Ric, = Ric(J+, ) be the (1, 1)-form associated to Ric. Set
| Ric,, |* = ZRicw(ei,ej)z, |RTX 2 ZZ (R™X(ei, e5)ex, €1)?,
1<J 1<j k<l

Theorem 2.16. We have

1 v—1
(2.58) by = —r* + S—RY,
8 2

Ar¥X L orxpo 1 X2
48 +%| - 128< )

(2.59) \/3_<27=XRA 4<Ricw,RE) +AERE>
1
g( )2

The terms by, by were computed by Lu [28] (for E' = C, the trivial line bundle
with trivial metric), X. Wang [44], L. Wang [43], in various degree of generality.
The method of these authors is to construct appropriate peak sections as in [41],
using Hormander’s L? d-method. In [15, §5.1], Dai-Liu-Ma computed b; by using
the heat kernel, and in [34, §2], [32, §2] (cf. also [33, §4.1.8, §8.3.4]), we computed
b, in the symplectic case. A new method for calculating by was given in [36].

7T2b2 = —

] Ric,, |* +

— g<RE,RE> + 1 5 aE*vLO*RE.
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2.5 Asymptotic expansion of Toeplitz operators

We stick to the situation studied in the previous Section, namely, (X,w) is a
compact Kihler manifold and (L, hl) is a Hermitian holomorphic line bundle
satisfying (2.14), and g** is the Riemannian metric associated to w.
In order to develop the calculus of Toeplitz kernels we use the Bergman kernel
expansion (2.44) and the Taylor expansion of the symbol. We are thus led to a
kernel calculus on C™ with kernels of the form F'.%, where F' is a polynomial.
This calculus can be completely described in terms of the spectral decomposition
(2.32)-(2.33) of the model operator .Z.

For a polynomial F in Z, Z', we denote by F'Z the operator on L*(R?") defined
by the kernel F(Z,2")Z?(Z,Z') and the volume form dZ according to (2.7).

The following very useful Lemma [33, Lemma 7.1.1] describes the calculus of
the kernels (F2)(Z,2') == F(Z,2\?(Z,7").

Lemma 2.17. For any F,G € C[Z,Z'] there ezists a polynomial H#[F,G] €
C|Z, Z"] with degree deg K [F,G] of the same parity as deg F' + deg G, such that

(2.60) (FP) o (GP))(2,2') = X|F,G|(Z,2)P(Z,Z").

Let us illustrate how Lemma 2.17 works. First observe that from (2.31) and
(2.35), for any polynomial g(z,z) € C[z,Z], we get

bj . P(Z,7') =2n(Z; —2;)P(Z, Z'),
(2.61)

B 0,
[g<z7z)7bj,z] == 28_%9(2,2)

Now (2.61) entails

b
(2.62) 5 2(2,2) = 32 2(2,2) + 5 2(2.2).
Specializing (2.61) for g(z,z) = z; we get

(263) Zi bj 7z@<Z, Z/) = bj ,Z(zlg@)(Z, Z,) + 2(513(@(2, Zl),

Formulas (2.62) and (2.63) give
- 1 1 -
(264) 2z, 2(2,7') = o bj 2P (Z,7') + - 0i; P(Z,2') + 22; P(Z,7').

Using the preceding formula we calculate further some examples for the ex-
pression JZ [F, G] introduced (2.60). We use the spectral decomposition of £ in
the following way. If ¢(Z) = bz exp ( — D |2;]*) with a, 3 € N", then
Theorem 2.11 implies immediately that

(2.65) oz~ ] (- L) iflal=0,

Jj=1

0 if |a| > 0.
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The identities (2.62), (2.64) and (2.65) imply that

H [L2]P = P o(22) =22,
H 21,7, P = (2::P) 0 (2, P) = 2P 0 (z;P) = 27, P,

(2.66) A[zi,2]P = (Z:P) o (2, P) =%, P o (2;P) = zlzj@,
K 2P = (2l P) 0 (5,P) = P o (27, P) = 16, P + 272,
H| Z[P) o (2, P) = P o (2:4;P) = 20; P +Z[%P.

Thus we get
(267) %/[Zi,zj] = lel %[Ez, Zj] = Ez‘Zj,

To simplify our calculations, we introduce the following notation. For any
polynomial F' € C[Z, Z'] we denote by (F'&?), the operator defined by the kernel

P (FP)(\/pZ,/DZ'), that is,
268) (F2))(2) = [ P (FEPBZAFZ)AZ) AL, for o € LR

Let F,G € C[Z,Z']. By a change of variables we obtain

(2.69) (F2)p o (G2))(2,2") = p"(F2) o (GP))(VPZ, /DZ').

We examine now the asymptotic expansion of the kernel of the Toeplitz operators
Ty ,. The first observation is that outside the diagonal of X x X, the kernel of
Ty, , has the growth €'(p~°), as p — oc.

Lemma 2.18 ([35, Lemma4.2]). For everye > 0 and every l,m € N, there ezists
Cime > 0 such that

(2.70) Tt (2, 2 ) em(xx) < Clmep™

for allp > 1 and all (z,2') € X x X with d(xz,2") > &, where the €™ -norm is
induced by V', VE and hL, hE, gTx.

Proof. Due to (2.43), (2.70) holds if we replace T, , by P,. Moreover, from (2.44),
for any m € N, there exist Cy,, > 0, M,,, > 0 such that |P,(z, 2)|[gm(x xx) < Cp*m
for all (z,2") € X x X. These two facts and formula (2.10) imply the Lemma. [

The near off-diagonal expansion of the Bergman kernel (2.44) and the ker-
nel calculus on C" presented above imply the near off-diagonal expansion of the
Toeplitz kernels. (cf.[35, Lemma4.6], [33, Lemma 7.2.4])



Berezin-Toeplitz quantization and its kernel expansion 143

Theorem 2.19. Let f € € (X,End(F)). There exists a family

{Qro(f) € End(E),[2, 2] :7 €N, 29 € X},
depending smoothly on the parameter xy € X, where Q. .,(f) are polynomials
with the same parity as r and such that for every k € N, € €]0,a™ /4],

k

(271) p_anvl’JO(Z? Zl) = Z(Qr,xo (f)gzxo>(\/ﬁz7 \/ﬁZ/)p_T/2 + O(p_(k+1)/2) ,

r=0

on the set {(Z,7") €e TX xx TX :|Z|,|Z'| < 2¢}, in the sense of Notation 2.12.
Moreover, Q, .,(f) are expressed by

P oy 25 1

(272) Qr,:vo(f) = Z %[J”’xo ! 07« al

ri+ra+|al=r

where |-, -] was introduced in (2.60). We have,

(2.73) Qo,20(f) = f(20) € End(E,).

Proof. Estimates (2.10) and (2.70) learn that for |Z|,|Z'| < /2, T}, »,(Z,Z') is
determined up to terms of order &(p~>°) by the behavior of f in B*(zg,¢). Let
p: R —[0,1] be a smooth even function such that

(2.74) p(v) =1 1if |v| <2; pv)=0 if [v| > 4.
For |Z|,|Z'| < /2, we get
Ttp2o(2,2") = O(p™™)

BT [ Bl 200 ) 2 P (2 Z (2 e (2.
T,

o X

We consider the Taylor expansion of f,,:

B N YT k1
Ful?)= 3 G Oy + o)

= 3 e Lo ) WISy ot e,

oz« ol
la|<k

(2.76)

We multiply now the expansions given in (2.76) and (2.44). Note the presence of
Kz, in the definition (2.39) of (2.38). Hence we obtain the expansion of

“1/2(Z)Pp,xo (Z, Zl/)(“xofocoXZH)Pn xo(Z”> Zl)"ﬁl/Q(Z,)

Zo o
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which we substitute in (2.75). We integrate then on T,,X by using the change of
variable \/p Z” = W and conclude (2.71) and (2.72) by using formulas (2.60) and
(2.69).

From (2.54) and (2.72), we get

(277) QO,ID(f) = '%/[L fxo (0)] = fxo(o) = f($0) :
The proof of Lemma 2.19 is complete. O]
As an example, we compute Q1 4,(f). By (2.48), (2.67) and (2.72) we obtain

_ Ofuo vy 1 Ofao O fuo (=
(2.78) Q1o (f) _%[1, 55 (O)ZJ = 500z + 03,
Corollary 2.20. For any f € € (X,End(E)), we have
(2.79) Ty ,(z,x) Zbrf O(p~), b.;€€°(X,End(E)).

Proof. By taking Z = Z' = 0 in (2.71) we obtain (2.79), with b, ;(z) = Q2. ,(f).
[

Since we have the precise formula (2.71) for Qs .(f) we can give a closed
formula for the first coefficients b, ;. In [36], we computed the coefficients by r, b f,
from (2.79). These computations are also relevant in Kéhler geometry (cf. [20],
[21], [26]).

Theorem 2.21 ([36, Th.0.1]). For any f € €°°(X,End(FE)), we have:

X
(2.80) bo,s=f, blf——f+\2_(RAf+fRA) 417TAEf.
If f € €°(X), then
by =mbof + iNf — 3irXAf - g< Ric,, 00 f)
(2.81) " £<df VERE), + (0, VI RF), — L(31,5" RP),
V-1

-5 (ANRF+ 1<85f, R),.
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2.6 Algebra of Toeplitz operators, Berezin-Toeplitz star-
product

Lemma 2.18 and Theorem 2.19 provide the asymptotic expansion of the kernel
of a Toeplitz operator T} ,. Using this lemma we can for example easily ob-
tain the expansion of the kernel of the composition 7% 1, ,, for two sections
fyg € €°(X,End(F)). The result will be an asymptotic expansion of the type
(2.71). Luckily we can show that the existence of a such asymptotic expansion
characterizes Toeplitz operators (in the sense of Definition 2.4). We have the
following useful criterion which ensures that a given family is a Toeplitz operator.

Theorem 2.22. Let {T, : L*(X,[? ® E) — L*(X,L? ® E)} be a family of
bounded linear operators. Then {1,} is a Toeplitz operator if and only if satisfies
the following three conditions:

(i) For anyp e N, P,T,P,=T,.
(i1) For any eo > 0 and any | € N, there exists Cj ., > 0 such that for all p > 1
and all (z,2") € X x X with d(z,z") > €y,

(2.82) T (z,2")| < Creyp™.

(111) There exists a family of polynomials {Q, », € End(E).,[Z, Z']}rpex such
that:

(a) each Q, ., has the same parity as r,
(b) the family is smooth in o € X and

(c) there exists 0 < &' < a™ /4 such that for every o € X, every Z,7' € Ty, X
with |Z|,|Z'| < €' and every k € N we have

k
(283) P Ten(Z,2) 2 D Qs P (VPZ,/BZ T+ O ),

r=0
in the sense of Notation 2.12.

Proof. In view of Lemma 2.18 and Theorem 2.19 it is easy to see that conditions
(i)-(iii) are necessary. To prove the sufficiency we use the following strategy. We
define inductively the sequence (g;)i>0, g1 € €*°(X,End(E)) such that

(2.84) T, = Z P,gip™ P, +O(p ™), forevery m > 0.
1=0

Let us start with the case m = 0 of (2.84). For an arbitrary but fixed z, € X, we
set

(285) g0($0> = QO,xo (0, 0) c End(EmO) .
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Then show that

(2.56) Ty~ Ty )an (2.2) = OG5,
which implies the case m = 0 of (2.84), namely,

(2.87) T, =P, g0 P, +O(™").

A crucial point here is the following result.

Proposition 2.23 ([35, Prop.4.11]). In the conditions of Theorem 2.22 we have
Q0,20(Z,2") = Qp,4,(0,0) for all zg € X and all Z, 2" € T, X.

The proof is quite technical, so we refer to [35, p. 585-90].

Coming back to the proof of (2.86), let us compare the asymptotic expansion
of T, and T,, , = P, go P,. Using the Notation 2.12, the expansion (2.71) (for
k =1) reads
(2.88)

P T, p,20(Z, Z") = (go(w0) Py + Q1,20(90) Py p_l/z)(\/il_jzv \/Z_DZ/) + O(p_l) )

since Qo 4,(90) = go(xo) by (2.73). The expansion (2.83) (also for k = 1) takes
the form

(2'89) pinTp,IO = (g()(xo)‘@ﬂfo + Ql,xo‘@ﬂﬁo pil/Q)(\/z_jza \/]_jZ/) + O(pil) )

where we have used Proposition 2.23 and the definition (2.85) of go. Thus, sub-
tracting (2.88) from (2.89) we obtain

(2.90)

P Ty = Too,p)eo(Z: Z") 2 ((Quzg = Q1,20(90)) Pao) (VP Z,\/DZ) 02+ O(07Y).

Thus it suffices to prove:

(291) Fl,x = Ql,a} - Ql,x(g()) =0.

which is done in [35, Lemma4.18]. This finishes the proof of (2.86) and (2.87).
Hence the expansion (2.84) of 7}, holds for m = 0. Moreover, if T}, is self-adjoint,
then from (4.70), (4.71) follows that gy is also self-adjoint.

We show inductively that (2.84) holds for every m € N. To handle (2.84) for
m = 1 let us consider the operator p(7}, — P,g0F,). The task is to show that p(Tp—
Tgmp) satisfies the hypotheses of Theorem 2.22. The first two conditions are easily
verified. To prove the third, just subtract the asymptotics of T}, ,,,(Z, Z') (given by
(2.83)) and Ty, p,2,(Z, Z') (given by (2.71)). Taking into account Proposition 2.23
and (2.91), the coefficients of p° and p~'/2 in the difference vanish, which yields
the desired conclusion. Proposition 2.23 and (2.87) applied to p(1, — Pygo F,) yield
g1 € € (X,End(F)) such that (2.84) holds true for m = 1.

We continue in this way the induction process to get (2.84) for any m. This
completes the proof of Theorem 2.22. n
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Recall that the Poisson bracket { -, -} on (X, 27w) is defined as follows. For
f,9 € €°(X), let £ be the Hamiltonian vector field generated by f, which is
defined by 2mi¢,w = df. Then

(2.92) {f.9} := & (dyg).

Theorem 2.24 ([35, Th.1.1], [33, Th.7.4.1]). The product of the Toeplitz oper-
ators Ty, and T, ,, with f,g € €>°(X,End(E)), is a Toeplitz operator, i.e., it
admits the asymptotic expansion in the sense of (2.12):

(2.93) Typ Tygp = ZP_TTCr(f,g)yp +0(p™),
r=0

where C, are bi-differential operators, C.(f,g) € €°°(X,End(E)), Co(f,9) = fg.
If f,g € (€°(X),{:,-}) with the Poisson bracket defined in (2.92), we have

] V-1

(2.94) (T4, Ty 0] = TT{LM +0(p?).

Proof. Firstly, it is obvious that B, Ty ,T, , P, = Tf,,1, ,. Lemmas 2.18 and
2.19 imply T}, T, , verifies (2.82). Like in (2.75), we have for 2,2’ € T, X,
121, 12"] < e/4:

(295) (Tyy Tyop)un( 2. 2) = / Tyl 2,212 Ty (2 2)

0

X Ko (Z") dopx (Z") + O(p™).

By Lemma 2.19 and (2.95), we deduce as in the proof of Lemma 2.19, that for
2,7 € T,, X, |Z],|Z'"| <e/4, we have
(2.96)
-n N\ ~ & N —T _ k1
P " Trp Tgp)ao(Z, 2") = Z(ano(fag)‘@w()X\/ﬁZ?\/};Z)p 24+ 0(p 7)),

r=0

and with the notation (2.60),

(297) QT:-TO (f7 g) = Z ’%/I:QTLCEO(JC)? QT27CE0 (g)]

r1+ro=r

Thus T} ,T, , is a Toeplitz operator by Theorem 2.22. Moreover, it follows from
the proofs of Lemma 2.19 and Theorem 2.22 that g, = Ci(f,g), where C; are
bi-differential operators.

From (2.60), (2.73) and (2.97), we get
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The commutation relation (2.94) follows from

There are two ways to prove (2.99). One is to compute directly the difference
and to use some of the identities (2.66). This method works also for symplectic
manifolds, see [35, p. 593-4], [33, p. 311]. On the other hand, in the Kéhler case one
can compute explicitly each coefficient C}(f, g) (which in the general symplectic
case is more involved), and then take the difference. The formula for Ci(f, g) is
given in the next theorem. This finishes the proof of Theorem 4.2. O]

Theorem 2.25 ([36, Th.0.3)). Let f,g € €<(X,End(E)). We have
Co(f,9) =f9,

(2.100) Ci(f,g9) =— %(V”]f, 5E9>w € ¢*(X,End(E)),
Ca(f,9) =b2, g = ba gy — brcy(r.9)-

If f,g € €°(X), then

e

472

Culf,9) = 53 (D07, D*Bg) + Y (Ric.,0f A D)

(2.101) .

The next result and Theorem 2.24 show that the Berezin-Toeplitz quantization
has the correct semi-classical behavior.

Theorem 2.26. For f € €(X,End(FE)), the norm of Ty,, satisfies

(2.102) Jim [T, = flloe = sup | f(@)(w)lne/lulpe.

0#u€EE,, zeX
Proof. Take a point zy € X and uy € E,, with |ug|pz = 1 such that | f(x)(uo)| =
| fll..- Recall that in Section 2.4, we trivialized the bundles L, E in normal
coordinates near zg, and ey, is the unit frame of L which trivializes L. Moreover,

in this normal coordinates, ug is a trivial section of E. Considering the sequence
of sections SP = p~"/2P,(e7” @ ug), we have by (2.44),

C
(2.103) T4 2, — f(20)SE, || 2 < %HS&HH,

which immediately implies (2.102). O

Note that if f is a real function, then df (xy) = 0, so we can improve the bound
Cp~'/? in (2.103) to Cp~ 1.
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Remark 2.27. (i) Relations (2.94) and (2.102) were first proved in some special
cases: in [24] for Riemann surfaces, in [14] for C" and in [8] for bounded symmetric
domains in C”, by using explicit calculations. Then Bordemann, Meinrenken and
Schlichenmaier [7] treated the case of a compact Kéhler manifold (with £ = C)
using the theory of Toeplitz structures (generalized Szegd operators) by Boutet
de Monvel and Guillemin [9]. Moreover, Schlichenmaier [38] (cf. also [23], [13])
continued this train of thought and showed that for any f, g € €>°(X), the prod-
uct 1%,, T, , has an asymptotic expansion (4.5) and constructed geometrically an
associative star product.

(ii) The construction of the star-product can be carried out even in the presence
of a twisting vector bundle E. Let f,g € € (X, End(E)). Set

(2.104) Frng =) Cilf,g)h" € €=(X, End(E))[[H],

k=0

where C.,.(f, g) are determined by (4.5). Then (2.104) defines an associative star-
product on €°°(X, End(F)) called Berezin-Toeplitz star-product (cf. [23, 38] for
the Kéhler case with £ = C and [33, 35] for the symplectic case and arbitrary
twisting bundle E). The associativity of the star-product (2.104) follows im-
mediately from the associativity rule for the composition of Toeplitz operators,
(Tf,poTy ) 0Ty, =Tfp0(Ty 0Tk ,) for any f,g,k € €°(X,End(F)), and from
the asymptotic expansion (4.5) applied to both sides of the latter equality.
The coefficients C,.(f, g), r = 0,1, 2 are given by (2.100). Set

(2.105) TENEs ((V109,8" o — (VM1,87g).) -

1
2y —1
If fg =gf on X we have

(2.106) Tt Ty0) = % Trapr+O(@7), p— oo

Due to the fact that {{f,g}} = {f, ¢} if E is trivial and comparing (2.94) to
(2.106), one can regard {{f, g}} defined in (2.105) as a non-commutative Poisson
bracket.

2.7 Quantization of compact Hermitian manifolds

Throughout Sections 2.4-2.6 we supposed that the Riemannian metric ¢’* was

the metric associated to w, that is, g?* (u,v) = w(u, Jv) (or, equivalently, © = w).

The results presented so far still hold for a general non-Kahler Riemannian metric
TX
g .

Let us denote the metric associated to w by grX .= w(-, J+). The volume form

of 2% is given by dvx ., = (2r) "det(RF)dvx (where dvx is the volume form of

g™). Moreover, h := det(Z2)~'h" defines a metric on E. We add a subscript
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w to indicate the objects associated to g2*, h* and hZ. Hence (-,-)  denotes the
L? Hermitian product on 4°°(X, [? ® E) induced by gZX, h% hE. This product
is equivalent to the product (-, -) induced by ¢?*, hl, h¥.

Moreover, H%(X, L? ® E) does not depend on the Riemannian metric on X
or on the Hermitian metrics on L, E. Therefore, the orthogonal projections from
(€*(X, [P ®E),(--),) and (€<(X,LF ® E),(-,-)) onto H*(X, L’ ® E) are the
same. Hence P, = P, ,, and therefore T} , = T% , ., as operators. However, their
kernels are different. If P, ,(z,2'), T} o p(z,2"), (x,2" € X), denote the smooth
kernels of P, ., Ty, . with respect to dvx ,(z’), we have

P,(z,2") = (QW)_"det(RL)(x’)Pp,w(x, x'),

(2.107) / A ,
Ty p(z,2") = (2m)"det(R™)(2") T} p,w(z, 7).

Now, for the kernel P, ,(z,2'), we can apply Theorem 2.14 since gZX(-,-) =
w(-,J+) is a Kéhler metric on TX. We obtain in this way the expansion of
the Bergman kernel for a non-Kéhler Riemannian metric g7 on X, see [33,
Th.4.1.1,4.1.3]. Of course, the coefficients b, reflect in this case the presence of
g'X. For example

(2.108) by = det(RY/(27)) 1dg,
and
(2.109) b, = 8i7r det <]23L_7r> [rf — 2Aw<log(det(RL))> + 4V —1(RF W), | .

Using the expansion of the Bergman kernel P, (-, -) we can deduce the expansion
of the Toeplitz operators 7%, , . and their kernels, analogous to Theorem 2.19,
Corollary 2.20 and Theorem 2.24. By (2.107), the coefficients of these expansion
satisfy

by, = (2%)_”det(RL)bf,r7w,
Cr(f,9) = Crulf,9).

Since X is compact, (2.107) allowed to reduce the general situation considered
here to the case w = © and apply Theorem 2.16. However, if X is not compact,
the trick of using (2.107) does not work anymore, because the operator associated
to g-%, hl, hE might not have a spectral gap. But under the hypotheses of
Theorem 2.9 the spectral gap for D, exists, so we can extend these results to
certain complete Hermitian manifolds in the next section.

(2.110)

2.8 Quantization of complete Hermitian manifolds

We return to the general situation of a complete manifold already considered in
§2.2. The following result, obtained in [34, Th.3.11], extends the asymptotic
expansion of the Bergman kernel to complete manifolds.
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Theorem 2.28. Let (X,0) be a complete Hermitian manifold, (L,h%), (E,hF)
be Hermitian holomorphic vector bundles of rank one and r, respectively. Assume
that the hypotheses of Theorem 2.9 are fulfilled. Then the kernel P,(x,x") has a full
off—diagonal asymptotic expansion analogous to that of Theorem 2.1/ uniformly
forany x,x' € K, a compact set of X. If L = Kx := det(T*(LO)X) 1s the canonical
line bundle on X, the first two conditions in (5.5) are to be replaced by

h" is induced by © and /—1RY" < —e0, V—1RF > —CO1dy.

The idea of the proof is that the spectral gap property (2.26) of Theorem 2.9
allows to generalize the analysis leading to the expansion in the compact case
(Theorems 2.13 and 2.14) to the situation at hand.

Remark 2.29. Consider for the moment that in Theorem 2.28 we have © =
*é—?RL. Since in the proof of Theorem 2.28 we use the same localization technique
as in the compact case, the coefficients J,, in the expansion of the Bergman
kernel (cf. (2.44)), in particular the coefficients b,(z) = Ja..(x) of the diagonal
expansion have the same universal formulas as in the compact case. Thus the
explicit formulas from Theorem 2.16 for b; and by remain valid in the case of
the situation considered in Theorem 2.28. Moreover, in the general case when
%RL > 0 (for some constant £ > 0), the first formulas in (2.107) and (2.108),
(2.109) are still valid.

Let €. (X, End(E)) denote the algebra of smooth sections of X which are
constant map outside a compact set. For any f € €2 (X, End(E)), we con-
sider the Toeplitz operator (1y,,)pen as in (2.9). The following result generalizes

Theorems 4.2 and 2.26 to complete manifolds.

Theorem 2.30 ([35, Th.5.3]). Let (X,0) be a complete Hermitian manifold, let
(L,h*) and (E,h¥) be Hermitian holomorphic vector bundles on X of rank one

and r, respectively. Assume that the hypotheses of Theorem 2.9 are fulfilled. Let
frg € €3 (X,End(F)). Then the following assertions hold:

(i) The product of the two corresponding Toeplitz operators admits the asymptotic
expansion (4.5) in the sense of (2.12), where C, are bi-differential operators,
especially, supp(Cy(f,g)) C supp(f) Nsupp(g), and Co(f,g) = fg.

(i) If f,g € € (X), then (2.94) holds.

(tit) Relation (2.102) also holds for any f € €ong (X, End(E)).

(iv) The coefficients C,.(f, g) are given by C.(f,g) = C.. o(f,g), where w = %RL
(compare (2.110)).
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3 Berezin-Toeplitz quantization on Kahler orb-
ifolds

In this Section we review the theory of Berezin-Toeplitz quantization on Kahler
orbifolds, especially we show that set of Toeplitz operators forms an algebra. Note
that the problem of quantization of orbifolds appears naturally in the study of the
phenomenon of “quantization commutes to reduction”, since the reduced spaces
are often orbifolds, see e.g. [30], or in the problem of quantization of moduli spaces.

Complete explanations and references for Sections 3.1 and 3.2 are contained in
[33, 85.4], [35, §6]. Moreover, we treat there also the case of symplectic orbifolds.

This Section is organized as follows. In Section 3.1 we recall the basic defi-
nitions about orbifolds. In Section 3.2 we explain the asymptotic expansion of
Bergman kernel on complex orbifolds [15, §5.2], which we apply in Section 3.3 to
derive the Berezin-Toeplitz quantization on Kéhler orbifolds.

3.1 Preliminaries about orbifolds

We begin by the definition of orbifolds. We define at first a category M, as
follows : The objects of M are the class of pairs (G, M) where M is a connected
smooth manifold and G is a finite group acting effectively on M (i.e., if g € G
such that gx = « for any # € M, then g is the unit element of G). Consider two
objects (G, M) and (G',M'). For g € G',p € &, we define gp : M — M’ by
(9¢) () = g(p(x)) for x € M. A morphism ® : (G, M) — (G', M) is a family of
open embeddings ¢ : M — M’ satisfying :

i) For each ¢ € @, there is an injective group homomorphism A\, : G — G’ that
makes ¢ be A\g-equivariant.

i) If (g)(M) N (M) # 0, then g € X\, (G).

iii) For ¢ € ®, we have ® = {gp, g € G'}.

Definition 3.1 (Orbifold chart, atlas, structure). Let X be a paracompact Haus-
dorff space. An m-dimensional orbifold chart on X consists of a connected open
set U of X, an object (Gy,U) of M, with dimU = m, and a ramified covering
U - U — U which is Gy-invariant and induces a homeomorphism U ~ U /Gy.
We denote the chart by (Gy,U) —% U.

An m-dimensional orbifold atlas V on X consists of a family of m-dimensional
orbifold charts V(U) = ((Gy,U) -% U) satisfying the following conditions :
(i) The open sets U C X form a covering U with the property:

For any U, U’ € U and x € U NU’, there exists U" € U

Nl
(3.1) such that x e U" cUNU'.
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(i) For any U,V € U,U C V there exists a morphism ¢y : (Gy,U) — (Gy, V),
which covers the inclusion U C V' and satisfies oy = pwyopyy forany U, V. W €
U, withU cV c .

It is easy to see that there exists a unique maximal orbifold atlas Vi con-
taining V; Vayax consists of all orbifold charts (Gy,U) —% U, which are locally
isomorphic to charts from V in the neighborhood of each point of U. A maximal
orbifold atlas Vyay is called an orbifold structure and the pair (X, Vyax) is called
an orbifold. As usual, once we have an orbifold atlas V on X we denote the
orbifold by (X, V), since V uniquely determines V. -

In Definition 3.1 we can replace M, by a category of manifolds with an addi-
tional structure such as orientation, Riemannian metric, almost-complex structure
or complex structure. We impose that the morphisms (and the groups) preserve
the specified structure. So we can define oriented, Riemannian, almost-complex
or complex orbifolds.

Definition 3.2 (regular and singular set). Let (X, V) be an orbifold. For each
x € X, we can choose a small neighborhood (G, (~]x) — U, such that = € (793
is a fixed point of G, (it follows from the definition that such a G, is unique
up to isomorphisms for each z € X). We denote by |G,| the cardinal of G,.
If |G,| = 1, then X has a smooth manifold structure in the neighborhood of z,
which is called a smooth point of X. If |G| > 1, then X is not a smooth manifold
in the neighborhood of x, which is called a singular point of X. We denote by
Xsing = {z € X;|G;| > 1} the singular set of X, and X,ee = {2 € X;|G,| = 1}
the regular set of X.

It is useful to note that on an orbifold (X,V) we can construct partitions
of unity. First, let us call a function on X smooth, if its lift to any chart of the
orbifold atlas V is smooth in the usual sense. Then the definition and construction
of a smooth partition of unity associated to a locally finite covering carries over
easily from the manifold case. The point is to construct smooth Gy-invariant

functions with compact support on (Gy,U).

Definition 3.3 (Orbifold Riemannian metric). Let (X, V) be an arbitrary orb-
ifold. A Riemannian metric on X is a Riemannian metric g7~ on Xyeg such that
the lift of g’ to any chart of the orbifold atlas V can be extended to a smooth
Riemannian metric.

Certainly, for any (Gy,U) € V, we can always construct a Gy-invariant Rie-
mannian metric on U. By a partition of unity argument, we see that there exist
Riemannian metrics on the orbifold (X, V).

Definition 3.4. An orbifold vector bundle E over an orbifold (X,V) is defined
as follows: FE is an orbifold and for any U € U, (GE,py : Ey — U) is a
GE-equivariant vector bundle and (GE, Ey) (resp. (Gy = GE/KE,U), where
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KE = ker(GE — Diffeo(U))) is the orbifold structure of E (resp. X). If GE acts

effectively on U for U € U, ie. KE = {1}, we call E a proper orbifold vector
bundle.

Note that any structure on X or E is locally G, or GE —equivariant
Let E be an orbifold vector bundle on (X V). For U € U, let Epr be the

maximal Kf-invariant sub-bundle of Ey on U. Then (G, Epr) defines a proper
orbifold vector bundle on (X, V), denoted by EP".

The (proper) orbifold tangent bundle T'X on an orbifold X is defined by
(Gy, TU — U ), for U € Y. In the same vein we introduce the cotangent bundle
T*X. We can form tensor products of bundles by taking the tensor products of
their local expressions in the charts of an orbifold atlas.

Let £ — X be an orbifold vector bundle and £ € N U {co}. A section
s: X — FE is called €% if for each U € U, s|y is covered by a GE-invariant ¢*
section 3y : U — Ey. We denote by €%(X, E) the space of €* sections of E on
X.

Integration on orbifolds. If X is oriented, we define the integral [ y a for a
form « over X (i.e. a section of A(T*X) over X) as follows. If supp(a) C U € U
set

(3.2) /Xa;_ﬁ/ﬁal].

It is easy to see that the definition is independent of the chart. For general o we
extend the definition by using a partition of unity.

If X is an oriented Riemannian orbifold, there exists a canonical volume ele-
ment dvx on X, which is a section of A" (7T*X), m = dim X. Hence, we can also
integrate functions on X.

Metric structure on orbifolds. Assume now that the Riemannian orbifold
(X,V) is compact. We define a metric on X by setting for z,y € X,

d(l‘,y) = Infv{ Z ﬁl 1 |8t/yz |dt [O’ 1] - Xa’Y(O) = {E,’y(l) - y7
such that there exist to =0 <t; <--- <tp =1,v([t;i_1,t;]) C Uj,
Ui €U, and a € map 7; : [t;_1,t;] — U, that covers ~y

[ti—1,ti]

Then (X, d) is a metric space. For z € X, set d(z, Xang) := infyex,,, d(z, ).
Kernels on orbifolds. Let us discuss briefly kernels and operators on orb-
ifolds. For any open set U C X and orbifold chart (Gy,U )~l> U, we will

add a superscript ~ to indicate the corresponding objects on U. Assume that
K, @) e €=U x U,m E @ n}E*) verifies

(3.3) (9, DK(97'7,7") = (1,7 ")K(7F,g7')  for any g € Gy,
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where (g1, g2) acts on Ez x E2, by (g1, 92)(61,%) = (9161, 9262).
We define the operator K : ‘K‘X’(U E) — ¢>~(U, E) by

(3.4) (K3)@) = /U (7,733 )dvy (3) for € 62U, E).

For 5 € €°(U, E) and g € Gy, g acts on €°(U, E) by: (g-35)(Z) := g - 5(g~'7).
We can then identify an element s € (U, E') with an element s € %"0([7 , E)
verifying g - s = s for any g € Gy.

With this identification, we define the operator K : 65°(U, E) — €¢>°(U, E) by

(3.5) (Ks)(z = Gul / Kz, z")s(@")dvs(z") for s € €5°(U, E),

where ¥ € 7' (z). Then the smooth kernel K(z, 2’) of the operator K with respect
to dvx is

(3.6) K(z,2') = > (9. D)K(g7'7.7").

9€Gu
_ Let K4, Ky be two operators as above and assume that the kernel of one of
K1, Ko has compact support. By (3.2), (3.3) and (3.5), the kernel of Iy o Iy is
given by

(3.7) (KioKo)(z,a') = > (9. 1)(Ky 0 Ko)(g7'%, 7).

9eGu

3.2 Bergman kernel on Kahler orbifolds

In this section we study the asymptotics of the Bergman kernel on orbifolds.
Dolbeault cohomology of orbifolds. Let X be a compact complex orbifold of
complex dimension n with complex structure J. Let E be a holomorphic orbifold
vector bundle on X.

Let Ox be the sheaf over X of local Gy-invariant holomorphic functions over
U for U € U. The local GE -invariant holomorphic sections of £ — U define a
sheaf Ox(E) over X. Let H'(X Ox(FE)) be the cohomology of the sheaf Ox(FE)
over X. Notice that by Definition, we have Ox(FE) = Ox(EP"). Thus without lost
generality, we may and will assume that E is a proper orbifold vector bundle on
X.

Consider a section s € (X, E) and a local section 5 € €°°(U, Ey) covering

s. Then 8 "3 covers a section of T*®VX @ E over U , denoted EES\U. The family
of sections {5E5|U : U € U} patch together to define a global section 975 of

7OV X @ E over X. In a similar manner we define 9« for a € section a of
AT* OV X)® E over X. We obtain thus the Dolbeault complex (Q%*(X, E),0"):

=E

(3.8) 0— Q"(X,E) 2,5 Q""(X,E) — 0.
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From the abstract de Rham theorem there exists a canonical isomorphism
(3.9) H(Q"*(X,E),8") ~ H*(X, Ox(E)).

In the sequel, we also denote H*(X, Ox(FE)) by H*(X, E).

Prequantum line bundles. We consider a complex orbifold (X, J) endowed
with the complex structure J. Let g7 be a Riemannian metric on 7X compatible
with J. There is then an associated (1, 1)-form © given by O(U, V) = ¢ X (JU, V).
The metric g7 is called a Kihler metric and the orbifold (X, J) is called a Kdhler
orbifold if © is a closed form, that is, d© = 0. In this case © is a symplectic form,
called Kéhler form. We will denote the Kéhler orbifold by (X, J,©) or shortly by
(X,0).

Let (L,h%) be a holomorphic Hermitian proper orbifold line bundle on an
orbifold X, and let (E,hF) be a holomorphic Hermitian proper orbifold vector
bundle on X.

We assume that the associated curvature R of (L,h%) verifies (2.14), i.e.,
(L, h%) is a positive proper orbifold line bundle on X. This implies that w :=
‘é—?RL is a Kihler form on X, (X,w) is a Kéhler orbifold and (L, h%, VL) is a
prequantum line bundle on (X, w).

Note that the existence of a positive line bundle L on a compact complex
orbifold X implies that the Kodaira map associated to high powers of L gives a
holomorphic embedding of X in the projective space. This is the generalization
due to Baily of the Kodaira embedding theorem (see e.g. [33, Theorem 5.4.20]).
Hodge theory. Let ¢'* = w(-, J-) be the Riemannian metric on X induced by
w= %RL. Using the Hermitian product along the fibers of L?, E, A(T**VX),
the Riemannian volume form dvy and the definition (3.2) of the integral on an
orbifold, we introduce an L?*-Hermitian product on Q%*(X, L’ ® FE) similar to
(2.1). This allows to define the formal adjoint 97" ot 07" and the operators
D, and O, as in (2.13). Then D preserves the Z-grading of Q%*(X,LP ® E).
We note that Hodge theory extends to compact orbifolds and delivers a canonical
isomorphism

(3.10) HY(X, L’ @ E) ~ Ker(D2|qo.).

Spectral gap. By the same proof as in [31, Theorems1.1,2.5], [6, Theorem 1],
we get vanishing results and the spectral gap property.

Theorem 3.5. Let (X,w) be a compact Kdihler orbifold, (L, h") be a prequantum
holomorphic Hermitian proper orbifold line bundle on (X,w) and (E,h%) be an
arbitrary holomorphic Hermitian proper orbifold vector bundle on X.

Then there exists C' > 0 such that for any p € N

(3.11) Spec(D2) C {0} UJ4mp — C, 400,
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and D§\90,>o is invertible for p large enough. Consequently, we have the Kodaira-
Serre vanishing theorem, namely, for p large enough,

(3.12) HY(X,[?P® E)=0, forevery q> 0.

Bergman kernel. Asin §2.1, we define the Bergman kernel as the smooth kernel
with respect to the Riemannian volume form dvx () of the orthogonal projection
(Bergman projection) P, from € (X, L ® E) onto H*(X, L’ ® F).

Let d, = dim H°(X,L? ® E) and consider an arbitrary orthonormal basis
{SP} of HY(X, LP ® E) with respect to the Hermitian product (2.1) and (3.2).
In fact, in the local coordinate above, gf (2) are G -invariant on U,, and

3.13) Buy) = 3 86) @ (@)

where we use y to denote the point in ﬁgg representing y € U,.
Asymptotics of the Bergman kernel. The Bergman kernel on orbifolds has
an asymptotic expansion, which we now describe. We follow the same pattern
as in the smooth case. The spectral gap property (3.11) shows that we have the
analogue of Theorem 2.13, with the same F as given in (2.41):

(3.14) \Pp(x,x’) - F(Dp)(x, x/)’%m(XxX) < Cl,m,ap_l'

As pointed out in [29], the property of the finite propagation speed of solutions
of hyperbolic equations still holds on an orbifold (see the proof in [33, Appendix
D.2]). Thus F(D,)(z,2") = 0 for every for z,2’ € X satisfying d(z,2') > e.
Likewise, given z € X, F(D,)(x,-) only depends on the restriction of D, to
B¥(x,¢). Thus the problem of the asymptotic expansion of P,(z,) is local.

For any compact set X C X,eq, the Bergman kernel P,(x, ') has an asymptotic
expansion as in Theorem 2.14 by the same argument as in Theorem 2.13.

Let now x € X and let (Gy,U) U, U be an orbifold chart near z. We
recall that for every open set U C X and orbifold chart (Gy, U ) 2% U, we add
a superscript ~ to indicate the corresponding objects on U. Let 0U = U\ U,
Uy ={x € U,d(z,0U) > €}. Then F(ﬁp)@,f') is well defined for 7,7’ € U; =

7' (Uy). Since g - F(D,) = F(D,)g, we get

(3.15) (9, VE(D) (977, 7) = (1,97 F(D,) (%, 97) ,

for every g € Gy, &,7' € U;. Formula (3.6) shows that for every z, 2’ € U; and
z,x'" € Uy representing x, ', we have

(3.16) F(D,)(x,2") = Y (9. )F(D,)(g "7, 7).

geGu
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In view of (3.16), the strategy is to use the expansion for F'(D,)(-,-) in order
to deduce the expansion for F'(D,)(-,-) and then for P,(-,-), due to (3.14). In the
present situation the kernel & takes the form

(3.17) P27 =exp (=5 3 (AR + 121 - 252))

%

For details we refer to [33, §5.4.3].

3.3 Berezin-Toeplitz quantization on Kahler orbifolds

We apply now the results of Section 3.2 to establish the Berezin-Toeplitz quantiza-
tion on Kahler orbifolds. We use the notations and assumptions of that Section.
Toeplitz operators on orbifolds. We define Toeplitz operators as a family
{T,} of linear operators T, : L*(X,[? ® F) — L*(X,L? ® E) satisfying the
conditions from Definition 2.4.

For any section f € €*°(X,End(F)), the Berezin-Toeplitz quantization of f is
defined by

(3.18) Trp: XX, [’QF) — L*(X,[?®FE), T;,=P,fP,.
Now, by the same argument as in Lemma 2.18, we get

Lemma 3.6. For any € > 0 and any l,m € N there exists Cy . > 0 such that

(319) |Tf,p<$,l'/)|(€m(X><X) < Cl,m,spil

for allp > 1 and all (z,2') € X x X with d(xz,2’) > &, where the €™ -norm is
induced by VI, VE and h*, hE, g™,

As in Section 2.5 we obtain next the asymptotic expansion of the kernel
Ty, p(x,2") in a neighborhood of the diagonal.

We need to introduce the appropriate analogue of the condition introduced in
the Notation 2.12 in the orbifold case, in order to take into account the group
action associated to an orbifold chart. Let {©,},en be a sequence of linear op-
erators O, : L*(X,L? ® F) — L*(X, P ® E) with smooth kernel ©,(z,y) with
respect to dvx(y).

Condition 3.7. Let k € N. Assume that for every open set U € U and every
orbifold chart (G, U) —% U, there exists a sequence of kernels {0, (7, 7')}en
and a family {Q;, 4, }o<r<k, zoex such that

(a) Qp.u € End(E),[Z, 2],

(b) { Q@+ 2 }ren, zoex 1s smooth with respect to the parameter zy € X,
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(c) for every fixed ¢” > 0 and every 7,z € U the following holds

(3.20)
(9,1)0,u(97'7,7") = (1,9 1)O,u(T,97") for any g€ Gy (cf. (3.15)),
ép,U(f, )= 0(p~) for d(z,2") > ",
O,(z.2") = Y (9, 1)0,u(g7'T, ) + O(p™),
geGu

and moreover, for every relatively compact open subset VcU , the relation

(3.21)
k

P " Opvn(Z,2") 23 (Qrz Pr) (P2, B2 )0 E+ O™ ), for Ty €V,

r=0
holds in the sense of (2.38).

Notation 3.8. If the sequence {O,},en satisfies Condition 3.7, we write

k
(3822) P 0pu(2,2) =Y (QraoPu) WPZPZ D+ O 7).

r=0

Note that although the Notations 3.8 and 2.12 are formally similar, they have
different meaning.

Lemma 3.9. The smooth family Q, ., € End(E),,[Z,Z'] in Condition 3.7 is
uniquely determined by ©,,.

Proof. Clearly, for W C U, the restriction of ép,U to W x W verifies (3.20), thus
we can take O, = @P7U|W><W‘ Since Gy acts freely on TJI(Ureg) C U, we deduce
from (3.20) and (3.21) that

(3.23) Op20(Z,2') = ©pv.30(Z2,Z') + O(p™),

for every zy € Uyeg and |Z|,|Z’| small enough. We infer from (3.21) and (3.23)
that Q. », € End(E), [Z,7'] is uniquely determined for z, € Xyeg - Since Q. 4,
depends smoothly on xq, its lift to U is smooth. Since the set Ty 1(Ureg) is dense
in U , we see that the smooth family @), ,, is uniquely determined by ©,,. [

Lemma 3.10. There exist polynomials J,. o, Qro(f) € End(E)y, [Z.7'] so that
Theorem 2.14, Lemmas 2.18, 2.19 and (2.78) still hold under the notation (3.22).
Moreover,

(3.24) Jo.wo =1dg,  Jia =0.
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Proof. The analogues of Theorems 2.13-2.14 for the current situation and (3.15),
(3.16) show that Theorem 2.14 and Lemmas 2.18, 2.19 still hold under the notation
(3.22). By (2.49), we have O; = 0. Hence (2.52) entails (3.24). Moreover, (3.14)
implies

(3.25) Tf,p(éﬂ,ﬂf’)=/XF(Dp)(fﬂ,x”)f(ﬂf”)F(Dp)(x'ﬁx’)dvx(l“”)+ﬁ(p_°°)-

Therefore, we deduce from (3.7), (3.15), (3.16) and (3.25) that Lemmas 2.19 and
(2.78) still hold under the notation (3.22). O

We have therefore orbifold asymptotic expansions for the Bergman and Toeplitz
kernels, analogues to those for smooth manifolds. Following the strategy used in
§2.6 we can prove a characterization of Toeplitz operators as in Theorem 2.22 (see
(35, Th.6.11]).

Proceeding as in §2.6 we can show that the set of Toeplitz operators on a
compact orbifold is closed under the composition of operators, so forms an algebra.

Theorem 3.11 ([35, Th.6.13]). Let (X,w) be a compact Kihler orbifold and let
(L, hY) be a holomorphic Hermitian proper orbifold line bundle satisfying the pre-
quantization condition (2.14). Let (E,h%) be an arbitrary holomorphic Hermitian
proper orbifold vector bundle on X.

Consider f,g € €<(X,End(FE)). Then the product of the Toeplitz opera-
tors Ty, and Ty , is a Toeplitz operator, more precisely, it admits an asymptotic
expansion in the sense of (2.11), where C.(f,g) € € (X,End(F)) and C, are bi-

differential operators defined locally as in (2.93) on each covering U of an orbifold
chart (Gy,U) =% U. In particular Co(f,g) = fg.
If f,g € €*(X), then (2.94) holds.

Relation (2.102) also holds for any f € €°(X,End(FE)).

Remark 3.12. As in Remark 2.27, Theorem 3.11 shows that on every compact
Kihler orbifold X admitting a prequantum line bundle (L, h*), we can define in
a canonical way an associative star-product

(3.26) frng =Y NC(f g) € €>(X,End(E))[[]]

for every f,g € €°°(X,End(FE)), called the Berezin-Toeplitz star-product. More-
over, Ci(f,g) are bi-differential operators defined locally as in the smooth case.

4 Quantization of symplectic manifolds

We will briefly describe in this Section how to generalize the ideas used before
in the Kahler case in order to study the Toeplitz operators and Berezin-Toeplitz
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quantization for symplectic manifolds. For details we refer the reader to [33, 35].
We recall in Section 4.1 the definition of the spin® Dirac operator and formulate
the spectral gap property for prequantum line bundles. In Section 4.2 we state
the asymptotic expansion of the composition of Toeplitz operators.

4.1 Spectral gap of the spin® Dirac operator

We will first show that in the general symplectic case the kernel of the spin®
operator is a good substitute for the space of holomorphic sections used in Kéahler
quantization.

Let (X,w) be a compact symplectic manifold, dimg X = 2n, with compatible
almost complex structure J : TX — TX. Let ¢"* be the associated Rieman-
nian metric compatible with w, i.e., g?*(u,v) = w(u, Jv). Let (L,ht, VL) — X
be Hermitian line bundle, endowed with a Hermitian metric A* and a Hermitian
connection V¥, whose curvature is RY = (V)2 We assume that the prequanti-
zation condition (2.14) is fulfilled. Let (E,h¥ V¥) — X be a Hermitian vector
bundle. We will be concerned with asymptotics in terms of high tensor powers
LP ® E, when p — oo, that is, we consider the semi-classical limit & = 1/p — 0.

Let V9 be the connection on det(TH9X ) induced by the projection of the
Levi-Civita connection V¥ on TW9X . Let us consider the Clifford connec-
tion VO on A*(T*ODX) associated to VIX and to the connection V9 on
det(THOX) (see e.g. [33, §1.3]). The connections V%, V¥ and Vi induce
the connection

V, =V @Id+1deV"®? on A(T*"OVX)® [P @ E.

The spin® Dirac operator is defined by

2n
(4.1) Dy, = ¢(ej)Vye, 1 Q" (X, [P QE) — Q"(X, [’ ® E).
j=1
where {e;}3", local orthonormal frame of TX and c(v) = \/5(6’{70 N —ly,,) is

the Clifford action of v € TX. Here we use the decomposition v = v9 + v 1,
V1,0 S T(I’O)X, Vo,1 S T(O’I)X.

If (X, J,w) is Kéhler then D, = v/2(0 + 9" ) so Ker(D,) = H(X, L? ® E) for
p > 1. The following result shows that Ker(D,) has all semi-classical properties
of H(X, [? ® E). The proof is based on a direct application of the Lichnerowicz
formula for DZQ). Note that the metrics ¢, h* and ¥ induce an L?-scalar product

on Q% (X, [? ® F), whose completion is denoted (Q(()é') (X, LP Q@ E), | - |lz2)-

Theorem 4.1 ([31, Th.1.1,2.5], [33, Th. 1.5.5]). There exists C' > 0 such that for
any p € N and any s € @,.,Q"%(X, L? ® E) we have

(4.2) IDpslz> = (4mp — C)|lsll7- -
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Moreover, the spectrum of Dz verifies
(4.3) Spec(D2) € {0} U [4mp — C, 400

By the Atiyah-Singer index theorem we have for p > 1

(4.4) dimKer(D,) = / TA(TMYX) ch(L? ® FE) = tk(E) p—, / W+ O>(p" Y.
X neJx

Theorem 4.1 shows the forms in Ker(D,) concentrate asymptotically in the L?

sense on their zero-degree component and (4.4) shows that dim Ker(D,) is a poly-

nomial in p of degree n, as in the holomorphic case.

4.2 Toeplitz operators in spin® quantization

Let us introduce the orthogonal projection P, : Q?é; (X,L? @ F) — Ker(D,),
called the Bergman projection in analogy to the Kahler case. Its integral kernel is
called Bergman kernel. The Toeplitz operator with symbol f € €*°(X,End(E))

1S
Tpp: (X, P @ B) = 5 (X, [P QE), Ty, =Pfh,

In analogy to the Kéhler case we define a (generalized) Toeplitz operator is a se-
quence (7T},) of linear operators 7}, € End(Q?ﬁ} (X, LP®E)) verifying T, = P, T, P,,
such that there exist a sequence g; € €°°(X, End(E)) with the property that for
all k£ > 0, there exists Cj, > 0 so that (2.11) is fulfilled.

A basic fact is that the Bergman kernel P,(-,-) of the Dirac operator has an
asymptotic expansion similar to Theorems 2.13 and 2.14. This was shown by Dai-
Liu-Ma in [15, Prop.4.1 and Th. 4.18'] (see also [33, Th.8.1.4]). By the Bergman
kernel expansion of Dai-Liu-Ma we obtain the expansion of the integral kernels of
T}, similar to Theorem 2.19. Moreover, the characterization of Toeplitz oper-
ators in terms of the off-diagonal asymptotic expansion of their integral kernels,
formulated in Theorem 2.22, holds also in the symplectic case (cf. [35, Th.4.9],
(33, Lemmas7.2.2,7.2.4, Th.7.3.1]). We obtain thus the symplectic analogue of
Theorem 2.24.

Theorem 4.2 ([35, Th.1.1], [33, Th.8.1.10]). Let f,g € €>*(X,End(F)). The

composition (T, 0T, ,) is a Toeplitz operator, i.e.,

(4.5) TypoTyp= ZpirTCr(fﬁg),p +0(p™™),

r=0

where C,. are bi-differential operators, Co(f,g) = fg and C,.(f,g) € €>(X, End(F)).
Let f,g € €°°(X) and let {-,-} be the Poisson bracket on (X,2rw), defined as in
(2.92). Then
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and therefore

v—1 -
(4.7) [Tf,paTgvp} = TT{f,g},p +O(p 2)'

Thus the construction of the Berezin-Toeplitz star-product can be carried out
also in the case of symplectic manifolds. Namely, for f, g € €°°(X, End(E)) we set
f*ng = 1o Cu(f,g)h* € €°°(X,End(E))[[h]], where C,(f, g) are determined
by (4.5). Then % is an associative star product.
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Asymptotics of Toeplitz operators and applications in TQFT

by Jorgen Ellegaard Andersen and Jakob Lindblad Blaavand

Abstract

In this paper we provide a review of asymptotic results of Toeplitz oper-
ators and their applications in TQFT. To do this we review the differential
geometric construction of the Hitchin connection on a prequantizable com-
pact symplectic manifold. We use asymptotic results relating the Hitchin
connection and Toeplitz operators, to, in the special case of the moduli
space of flat SU(n)-connections on a surface, prove asymptotic faithfulness
of the SU(n) quantum representations of the mapping class group. We
then go on to review formal Hitchin connections and formal trivializations
of these. We discuss how these fit together to produce a Berezin—Toeplitz
star product, which is independent of the complex structure. Finally we
give explicit examples of all the above objects in the case of the abelian
moduli space. We furthermore discuss an approach to curve operators in
the TQFT associated to abelian Chern—Simons theory.

1 Introduction

Witten constructed, via path integral techniques, a quantization of Chern-Simons
theory in 2 4+ 1 dimensions, and he argued in [Wi] that this produced a TQFT,
indexed by a compact simple Lie group and an integer level k. For the group
SU(n) and level k, let us denote this TQFT by Z ,g"). Combinatorially, this theory
was first constructed by Reshetikhin and Turaev, using representation theory of
U,(sl(n,C)) at ¢ = e@™/(k+n) “in [RT1] and [RT2]. Subsequently, the TQFT’s
Z,g") were constructed using skein theory by Blanchet, Habegger, Masbaum and
Vogel in [BHMV1], [BHMV?2] and [B1].

The two-dimensional part of the TQFT Z ,g”) is a modular functor with a certain

label set. For this TQFT, the label set A,(Cn) is a finite subset (depending on k)
of the set of finite dimensional irreducible representations of SU(n). We use the
usual labeling of irreducible representations by Young diagrams, so in particular
0 e A" is the defining representation of SU(n). Let further A% € A" be the
Young diagram consisting of d columns of length k. The label set is also equipped
with an involution, which is simply induced by taking the dual representation.
The trivial representation is a special element in the label set which is clearly
preserved by the involution.
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( Category of (ex- )
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The three-dimensional part of Z ,g") is an association of a vector,
ZM(M, L)) € 2 (M, 0L, 0N),

to any compact, oriented, framed 3—manifold M together with an oriented, framed
link (L,0L) C (M,0M) and a A,(Cn)-labeling A:m(L) — A,(Cn).

This association has to satisfy the Atiyah-Segal-Witten TQFT axioms (see e.g.
[At], [Se] and [Wi]). For a more comprehensive presentation of the axioms, see
Turaev’s book [T].

The geometric construction of these TQFTs was proposed by Witten in [Wi]
where he derived, via the Hamiltonian approach to quantum Chern-Simons theory,
that the geometric quantization of the moduli spaces of flat connections should
give the two-dimensional part of the theory. Further, he proposed an alternative
construction of the two-dimensional part of the theory via WZW-conformal field
theory. This theory has been studied intensively. In particular, the work of
Tsuchiya, Ueno and Yamada in [TUY] provided the major geometric constructions
and results needed. In [BK], their results were used to show that the category of
integrable highest weight modules of level k for the affine Lie algebra associated
to any simple Lie algebra is a modular tensor category. Further, in [BK], this
result is combined with the work of Kazhdan and Lusztig [KL] and the work of
Finkelberg [Fi] to argue that this category is isomorphic to the modular tensor
category associated to the corresponding quantum group, from which Reshetikhin
and Turaev constructed their TQFT. Unfortunately, these results do not allow
one to conclude the validity of the geometric constructions of the two-dimensional
part of the TQFT proposed by Witten. However, in joint work with Ueno, [AU1],
[AU2|, [AU3] and [AU4], the first author have given a proof, based mainly on the
results of [TUY], that the TUY-construction of the WZW-conformal field theory,
after twist by a fractional power of an abelian theory, satisfies all the axioms of
a modular functor. Furthermore, we have proved that the full 2 4+ 1-dimensional
TQFT resulting from this is isomorphic to the aforementioned one, constructed by
BHMYV via skein theory. Combining this with the theorem of Laszlo [Lal], which
identifies (projectively) the representations of the mapping class groups obtained
from the geometric quantization of the moduli space of flat connections with the
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ones obtained from the TUY-constructions, one gets a proof of the validity of the
construction proposed by Witten in [Wi].

Another part of this TQFT is the quantum SU(n) representations of the map-
ping class groups. Namely, if 3 is a closed oriented surfaces of genus g, I' is the
mapping class group of X, and p is a point on X, then the modular functor induces
a representation

(1.1) Z,gn’d) ' = PAut (Z,in)(Z,p, )\éd))).

For a general label of p, we would need to choose a projective tangent vector
v, € T,X /Ry, and we would get a representation of the mapping class group of

(3, p,v,). But for the special labels )\éd), the dependence on v, is trivial and in
fact we get a representation of I'.

Let us now briefly recall the geometric construction of the representations
Z,g"’d) of the mapping class group, as proposed by Witten, using geometric quan-
tization of moduli spaces.

We assume from now on that the genus of the closed oriented surface ¥ is at
least two. Let M be the moduli space of flat SU(n) connections on ¥ — p with
holonomy around p equal to exp(27id/n)Id € SU(n). When (n,d) are coprime,
the moduli space is smooth. In all cases, the smooth part of the moduli space has a
natural symplectic structure w. There is a natural smooth symplectic action of the
mapping class group I" of ¥ on M. Moreover, there is a unique prequantum line
bundle (£, V, (+,-)) over (M,w). The Teichmiiller space 7 of complex structures
on ¥ naturally, and I-equivariantly, parametrizes Kahler structures on (M,w).
For o € T, we denote by M, the manifold (M,w) with its corresponding Kéahler
structure. The complex structure on M, and the connection V in £ induce the
structure of a holomorphic line bundle on £. This holomorphic line bundle is
simply the determinant line bundle over the moduli space, and it is an ample
generator of the Picard group [DN].

By applying geometric quantization to the moduli space M, one gets, for any
positive integer k, a certain finite rank bundle over Teichmiiller space 7 which
we will call the Verlinde bundle V*) at level k. The fiber of this bundle over a
point o € T is VP = H°(M,, £*). We observe that there is a natural Hermitian
structure (-,-) on H°(M,, L*) by restricting the Lo-inner product on global L.
sections of L£* to HY(M,, LF).

The main result pertaining to this bundle is:

Theorem 1.1 (Axelrod, Della Pietra and Witten; Hitchin). The projectivization
of the bundle V*®) supports a natural flat T-invariant connection V.

This is a result proved independently by Axelrod, Della Pietra and Witten
[ADW] and by Hitchin [H]. In section 2, we review our differential geometric
construction of the connection V in the general setting discussed in [A6]. We
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obtain as a corollary that the connection constructed by Axelrod, Della Pietra
and Witten projectively agrees with Hitchin’s.
Because of the existence of this connection, the 2-dimensional part of the

modular functor Z,i ") is the vector space P(V®)) of covariant constant sections of

P(V®) over Teichmiiller space 7.

Definition 1.2. We denote by Z,gn’d) the representation,
ZY T — Aut(B(V®)),

obtained from the action of the mapping class group on the covariant constant
sections of P(V®)) over 7.

The projectively flat connection V induces a flat connection Ve in End(V (k) )
This flat connectlon can be used to show asymptotically flatness of the quantum
representations Z

Theorem 1.3 (Andersen [A3]). Assume that g > 2, n and d are coprime or that
(n,d) = (2,0) when g = 2. Then, we have that

ﬂk nd) {LH} g=2,n=2andd=0
er(Z
{1} otherwise,

where H 1s the hyperelliptic involution.

In Section 4 we discuss the proof of this Theorem, and how it relies on the
asymptotics of Toeplitz operators T]Ek) associated a smooth function f on M. For
each f € C*°(M) and each point 0 € 7 we have the Toeplitz operator,

k
T}; : HO(M,, £F) — HO(M,, £F),

which is given by
T(k s =m®(fs)

for all s € H°(M,, L*). Here 78 is the orthogonal projection onto HO(M,, £F)
induced from the Ly-inner product on C*°(M, L¥). We get a smooth section of
End(V®),

T € C(T,End(VV)),

by letting T’ (k)( ) = (k) See Section 3 for a discussion of the Toeplitz operators
and their connection to deformation quantization. The sections T ) of End V®

over T are not covariant constant with respect to V¢. However, they are asymp-
totically as k£ goes to infinity. This is made precise when we discuss the formal
Hitchin Connection below.
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The existence of a connection as above is not a unique thing for the moduli
spaces, the construction can be generalized to a general compact prequantizable
symplectic manifold (M, w) with prequantum line bundle (£, (-, -), V). We assume
that 7 is a complex manifold which holomorphically and rigidly (see Definition
2.3) parameterizes Kéhler structures on (M,w). Then, the following theorem,
proved in [A6], establishes the existence of the Hitchin connection (see Defini-
tion 2.4) under a mild cohomological condition.

Theorem 1.4 (Andersen). Suppose that I is a rigid family of Kdhler structures on
the compact, prequantizable symplectic manifold (M,w) which satisfies that there
exists an n € Z such that the first Chern class of (M,w) is n[<] € H*(M,Z)

21

and H'(M,R) = 0. Then, the Hitchin connection V in the trivial bundle H*) =
T x C=(M, LF) preserves the subbundle H®) with fibers H*(M,, LF). It is given

by
1

- _At
VV_VV+4k+2n

{Acw) + 2Vewyar + 4kV'[F]},
where V't is the trivial connection in H®, and V is any smooth vector field on T .

This result is discussed in much greater detail in Section 2, where all ingredients
are introduced.

In Section 5, we study the formal Hitchin connection which was introduced
in [A6]. Let D(M) be the space of smooth differential operators on M acting
on smooth functions on M. Let C;, be the trivial C;°(M)-bundle over 7, where
Cpe(M) is formal power series with coefficients in C*°(M).

Definition 1.5. A formal connection D is a connection in C;, over 7 of the form

Dyvf=VI[fl+DV)(f),

where D is a smooth one-form on 7 with values in D, (M) = D(M)[[h]], f is any
smooth section of Cy, V' is any smooth vector field on 7" and V'[f] is the derivative
of f in the direction of V.

Thus, a formal connection is given by a formal series of differential operators

From Hitchin’s connection in H®, we get an induced connection V¢ in the
endomorphism bundle End(H™®)). As previously mentioned, the Toeplitz opera-
tors are not covariant constant sections with respect to V¢, but asymptotically
in k they are. This follows from the properties of the formal Hitchin connection,
which is the formal connection D defined through the following theorem (proved

in [A6]).
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Theorem 1.6. (Andersen) There is a unique formal connection D which satisfies
that

e (k) (k)
(1.2) VYT~ Loy 1) et/
for all smooth section f of Cp, and all smooth vector fields V' on T . Moreover,

D=0 modh.

Here ~ means the following: For all L € Z we have that

e (k) —(L+1)

uniformly over compact subsets of T, for all smooth maps f : T — C®(M).

Now fix an f € C°°(M), which does not depend on o € 7', and notice how the
fact that D = 0 mod h implies that

H%T}’“H — O(k~Y).

This expresses the fact that the Toeplitz operators are asymptotically flat with
respect to the Hitchin connection.

We define a mapping class group equivariant formal trivialization of D as
follows.

Definition 1.7. A formal trivialization of a formal connection D is a smooth map
P : T —Dy(M) which modulo & is the identity, for all ¢ € 7, and which satisfies

Dy (P(f)) =0,

for all vector fields V on 7 and all f € Cp°(M ) Such a formal trivialization is
mapping class group equivariant if P(¢(c)) = ¢*P(o) for all 0 € 7 and ¢ € T.

Since the only mapping class group invariant functions on the moduli space
are the constant ones (see [Gol]), we see that in the case where M is the moduli
space, such a P, if it exists, must be unique up to multiplication by a formal
constant, i.e. an element of C, = C[[h]].

Clearly if D is not flat, such a formal trivialization cannot exist even locally
on 7. However, if D is flat and its zero-order term is just given by the trivial
connection in C}, then a local formal trivialization exists, as proved in [A6].

Furthermore, it is proved in [A6] that flatness of the formal Hitchin connection
is implied by projective flatness of the Hitchin connection. As was proved by
Hitchin in [H], and stated above in Theorem 1.1, this is the case when M is the
moduli space.
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In Section 5 we discuss how this formal trivialization of a formal connection
give a way of defining a star product from the Berezin—Topelitz star product, which
turn out not to depend on the complex structure o. In Section 5 we furthermore
discuss the lower order terms of formal trivialization and the star product.

In Section 6 we consider the all of the above objects in the case where the man-
ifold M is a principal polarized abelian variety. We furthermore discuss abelian
Chern—Simons theory and the moduli space of U(1)-connections on a closed sur-
face ¥.. We find a flat Hitchin connection on the U(1)-moduli space M and find a
formal trivialization P of the formal Hitchin connection. With this formal trivial-
ization we define the curve operators to a cylinder 3 x [0, 1] with a link v inside,
to be the Toeplitz operator associated to the corresponding holonomy function A,

on M, Z®) =T, }Elj) . With this definition of a curve operator we show that

<h717h72> = lim <Z(k)(2771)7z(k)(2772)>

k—o0

and as required by the TQFT axioms that

ZW (2 x 81 = dim(Z® (%)).

2 The Hitchin connection

In this section, we review our construction of the Hitchin connection using the
global differential geometric setting of [A6]. This approach is close in spirit to
Axelrod, Della Pietra and Witten’s in [ADW], however we do not use any infinite
dimensional gauge theory. In fact, the setting is more general than the gauge
theory setting in which Hitchin in [H] constructed his original connection. But
when applied to the gauge theory situation, we get the corollary that Hitchin’s
connection agrees with Axelrod, Della Pietra and Witten’s.

Hence, we start in the general setting and let (M, w) be any compact symplectic
manifold.

Definition 2.1. A prequantum line bundle (L, (+,), V) over the symplectic man-
ifold (M,w) consist of a complex line bundle £ with a Hermitian structure (-,-)
and a compatible connection V whose curvature is

FV(X, Y) = [VX,Vy] - V[X’y] = —iw(X, Y)

We say that the symplectic manifold (M,w) is prequantizable if there exist a
prequantum line bundle over it.

Recall that the condition for the existence of a prequantum line bundle is
that [22] € Im(H?*(M,Z) — H?(M,R)). Furthermore, the inequivalent choices of
prequantum line bundles (if they exist) are parametriced by H*(M,U(1)) (see e.g.
[Wo)).
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We shall assume that (M, w) is prequantizable and fix a prequantum line bun-
dle (£, (+,-), V).

Before dwelving into the details we discuss general facts about families of
Kahler structures on a symplectic manifold.

Families of Kahler structures

From now on we assume 7 is a smooth manifold. Later we impose extra structure.

A family of Kahler structures on a symplectic manifold (M, w) parametrized
by 7 is a map

I:7T - C®M,EndTM),

that to each element ¢ € 7 associates an integrable and compatible almost
complex structure. [ is said to be smooth if I defines a smooth section of
mh End(TM) — T x M.

For each point o € T we define M, to be M with the Kéahler structure defined
by w and I, := I(0), and the Kéhler metric is denoted by g,-.

Every I, is an almost complex structure and hence induce a splitting of the
complexified tangent bundle T M¢, denoted by TM¢ = T, ®T,, and the projection
to each factor is given by

1 1
a0 = ~(Id —il,) and %! 5([d+ilg).

s =5 o
If 2 = —Id is differentiated along a vector field V on 7T, we get
VI,1L, + LV[I], =0,
and hence V[I], changes types on M,. Then for each o, V[I], give an element of
C*(M, (To)" @ To) & (T5)" @ Ty)).
and we have a splitting V[I], = V[I] + V[I] where

VI, € C°(M,(T,)*®T,) and V[I]! € C®(M,(T,)*®@T,).

This splitting of V'[I] happens for every vector field on 7 and actually induce an
almost complex structure on 7.

Since V[I], is a smooth section of TM¢ ® T*M¢ and the symplectic structure
is a smooth section of T*M¢ ® T*M¢ we can define a bivector field G(V) by
contraction with the symplectic form

G(V)-w=V[I].

G(V) is unique since w is non-degenerate. By definition of the Kéhler metric, g
is the contraction of w and I, g = w - I. We use the --notation for contraction in
the following way

g(X,Y) = (D(X,Y)=w(X,IY) and g¢(X,Y)=—-(Tw)(X,Y)=—-w(X,Y).
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Since w is independent of ¢ taking the derivative of this identity in the direction
of a vector field V on 7 we obtain

Vigl=w-V[I]=w-G(V) - w.

Since g is symmetric so is V]g], and with w being anti-symmetric é(V) is sym-
metric. We furthermore have that w is of type (1,1) when regarded as a Kéhler
form on M,, using this and the fact that V'[I], changes types on M, we get that

G(V) splits as G(V) = G(V) + G(V), where
G(V) e C®(M,S*T')) and G(V)e€ C>®(M,S*(T)).

In the above we have suppressed the dependence on o, since this is valid for any
.

Holomorphic families of Kahler structures

Let us now assume that 7 furthermore is a complex manifold. We can then ask
I:T — C®(M,End(TM)) to be holomorphic. By using the splitting of V[I] we
make the following definition.

Definition 2.2. Let 7 be a complex manifold and I a smooth family of complex
structures on M parametrized by 7. Then [ is holomorphic if

V'[I =V and V"[I]=V[I]"
for all vector fields V on 7.

Assume J is an integrable almost complex structure on 7 induced by the
complex structure on 7. J induces an almost complex structure, [ on 7 x M by

A

(Ve X)=JVelX,

where V+X € T(p)(rxm)- In [AGL] a simple calculation shows that the Nijenhuis
tensor on 7 x M vanish exactly when 7%'V/[[]X = 0 and 7°V"[I]X = 0, which
by the Newlander—Nirenberg theorem shows that I is integrable if and only if
is holomorphic, hence the name.

Remark that for a holomorphic family of Kéhler structures on (M, w) we have

GV w=VI=VI]=GV) w,

which implies G(V’) = G(V). We can in the same way show that G(V) = G(V").
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Rigid families of Kahler structures

In constructing an explicit formula for the Hitchin connection we need the follow-
ing rather restrictive assumption on our family of Kahler structures.

Definition 2.3. A family of Kéhler structures I on M is called rigid if
VxrG(V)=0
for all vector fields V on 7 and X on M,.

Equivalently we could give the above equation in terms of the induced 0,-
operator on M,,

éa(G(V)o) =0,

for all ¢ € 7 and all vector fields V on 7.

There are several examples of rigid families of Kahler structures, see e.g.
[AGL]. It should be remarked that this condition is also built into the arguments
of [H].

The Hitchin connection

Now all tools are defined and we can construct the Hitchin connection. In The-
orem 2.6 we need M to be compact, so let us assume this. Recall the quantum
spaces

H® = HY(M,, LE){s € C=(M, LF) | V2's = 0},
where Vo' = 1(Id +iI,)V.
It is not clear that these spaces form a vector bundle over 7. But by construct-
ing a bundle, where these sit as subspaces of each of the fibers, and a connection

in this bundle preserving H((,k), H®) will be a subbundle over 7.
Define the trivial bundle H®*) = T x C>(M, L) of infinite rank. The finite

dimensional subspaces HY sits inside each of the fibers. This bundle has of course
the trivial connection V¥, but we seek a connection preserving H¥.

Definition 2.4. A Hitchin connection is a connection V in H™®)  which preserves
the subspaces Hék), and is of the form

@:Vt—i-u,

where u € Q1 (T,D(M, L)) is a 1-form on 7 with values in differential operators
acting on sections of £F.

By analyzing the condition V%'V s = 0 for every vector field V on T, we
hope to find an explicit expression for u. If we express the above condition in
terms of u, u should satisfy

0= V2V[s] + V2u(V)s,
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and if we differentiate V%'s = 0 along the a vector field V on 7 we get
0.1 1 , i 0,1
0=VI[V, s = V[é([d +il,)Vs] = §V[IU]V$ + Vo Vs

If we combine the previous two equations we get the following

Lemma 2.5. The connection V = V' + u preserves qw for all o € T if and
only if u satisfy the equation

(2.1) VOlu(V)s = %v[f]av};%

for all o € T and all vector fields V on T .

If the conclusion is true the collection of subspaces HS" C>(M, LF) consti-
tute a subbundle H®) of H*).

Let us now assume that 7 is a complex manifold, and that the family I is
holomorphic. First of all, V10s is a section of (T,)* ® LF, so it is constant in the
T,-direction, which is why V[I]?VL.s = 0, and by holomorphicity V"[I] = V[I]",
so V"[I],V19% = 0. Hence we can choose u(V") = 0, and we therefore only need
to focus on w in the V'-direction.

u(V) should be a differential operator acting on sections of £¥, and be related
to I, so let us construct an operator from 1.

Given a smooth symmetric bivector field B on M we define a differential
operator on smooth sections of £F by

Ap =VE + Vg,

where 6B is the divergence of a symmetric bivector field
d.(B) =TrV,B.

V% is defined by

2
VX,Y == VXVYS - VVXYS7

which is tensorial in the vector fields X and Y. Thus we can evaluate it on a
bivector field, and have thus defined Ap.

Recall the bivector field G(V') defined by G(V) - w = V'[I]. Using the above
construction give a differential operator Ay : C®(M, L*) — C>=(M, LF). Lo-
cally G(V) = >, X; ® Y}, and

(2.2) Acv) = Ve + Vaew) = Y Vx, Vi, + Ve,

J
since §(X; ® Y;) = 0(X;)Y; + Vy,Y;, where 0(X) is the usual divergence of a
vector field, which can be defined in many ways e.g. in terms of the Levi-Cevitta
connection on M, by §(X) =TrV,X.
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The second order differential operator Ag(yy is the cornerstone in the con-
struction of u(V'). The idea in Andersen’s construction is to calculate V&' Agyys
and find remainder terms, which cancel other terms such that Agyy with these
correction terms satisfy equation (2.1). When calculating V%' Agy)s the trace
of the curvature of M, show up — that is the Ricci curvature Ric,. From Hodge
decomposition Ric, = Ricf +2i0,0,F, where Ric? is harmonic and F, is the
Ricci potential. As with the family of Kéhler structures the Ricci potentials F), is
a family of Ricci potentials parametrized by 7 and can therefore be differentiated
along a vector field on 7.

Define u € QY(7,D(M, L)) by

1

(23) V)= 5 om

(Ag(v) + 2vG’(V)-dF + 4/€V/[F]).

Theorem 2.6 (Andersen [A6]). Let (M,w) be a compact prequantizable symplectic
manifold with H'(M,R) = 0 and first Chern class c¢;(M,w) = n[s]. Let I be a
rigid holomorphic family of Kdhler structures on M parametrized by a complex
manifold T. Then

Vy =V + (Agv) +2Vawyar + 4EV'[F])

1
4k + 2n
is a Hitchin connection in the bundle H® over T.

Remark 2.7. The condition ¢;(M,w) = n[5=] = nci(£) can be removed by
switching to the metaplectic correction. Here we make the same construction but
now a square root of the canonical bundle of (M,w) is tensored onto £*. Such a
square root exists exactly if the second Stiefel-Whitney class is 0 — that is if M

is spin, see [AGL] and also [Ch].

Remark 2.8. The condition H'(M,R) = 0 is used to make the calculations in
the proof easier, but there is no known examples of manifolds with H'(M,R) # 0,
which satisfy the remaining conditions where the Hitchin connection cannot be
built in this way. An example is the torus 7" which we will study in much greater
detail in Section 6.

Remark 2.9. By using Toeplitz operator theory, it can be shown that under some
further assumptions on the family of Kéhler structures the Hitchin connection is
actually projectively flat. A proof of this can be found in [G].

Suppose I' is a group which acts by bundle automorphisms of £ over M pre-
serving both the Hermitian structure and the connection in £. Then there is an
induced action of I" on (M, w). We will further assume that I' acts on 7 and that
I is I'-equivariant. In this case we immediately get the following invariance.

Lemma 2.10. The natural induced action of T' on H®) preserves the subbundle
HW®) and the Hitchin connection.
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We are actually interested in the induced connection V¢ in the endomorphism
bundle End(H™®). Suppose @ is a section of End(H®). Then for all sections s
of H® and all vector fields V on 7, we have that

(T5,0)(s) = Ty d(s) — BTy (s)).

Assume now that we have extended ® to a section of Hom(H®) H®)) over 7.
Then

(2.4) VD = VI'd 4 [, u(V)],

where V' is the trivial connection in the trivial bundle End(H™) over 7.

3 Toeplitz operators on compact Kahler mani-
folds

In this section we discuss the Toeplitz operators on compact Kéahler manifolds
(M,w) with Ké&hler structures parametrized by a smooth manifold 7 and their
asymptotics as the level k goes to infinity.

For each f € C°°(M) we consider the differential operator M ](ck) : C®(M, LF) —
C>(M, LF) given by

for all s € HY(M, LF).

These operators act on C*°(M, LF) and therefore also on the trivial bundle
H®)  however they do not preserve the subbundle H®). There is however a
solution to this, which is given by the Hilbert space structure. Integrating the
inner product of two sections of £* against the volume form associated to the
symplectic form gives the pre-Hilbert space structure on C'*(M)

1 m
(s1,89) = m/}w(S]_,Sz)w )

This is not only a pre-Hilbert space structure on C°°(M, L£*) but also on the
trivial bundle H®) which is of course compatible with the trivial connection in
this bundle. This pre-Hilbert space structure induces a Hermitian structure (-, -)
on the finite rank subbundle H® of H®*). The Hermitian structure (-,-) on H®*)
also induces the operator norm on End(H®). By the finite dimensionality of
H((,k) in Hgk) we have the orthogonal projection W((;k) : Hgk) — Hék). From these
projections we can construct the Toeplitz operators associated to any smooth
function f € C*(M). It is the operator T(fz) cHE) — H defined by

Ti(s) = nP(fs)

[
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for any element s € H¥ and any point ¢ € 7. Since the projections form a
smooth map 7 from 7 to the space of bounded operators 1n the Lo-completion
of C°°(M, L*) the Toeplitz operators are smooth sections T ) of the bundle of

homomorphisms Hom(H®*), H*)) and restrict to smooth sectlons of End(H®).

Remark 3.1. It should be remarked that the above construction could be used
for any Pseudo-differential operator A on M with coefficients in £ — it can even
depend on ¢, and we will then consider it as a section of Hom(H®, H*)). However
when we consider their asymptotic expansions or operator norms, we implicitly
restrict them to H*) and consider them as sections of End(H®)) - or as 7(®) Az (k)

We need the following two theorems on Toeplitz operators to proceed. The
first is due to Bordemann, Meinrenken and Schlichenmaier (see [BMS]).

Theorem 3.2 (Bordemann, Meinrenken and Schlichenmaier). For any f € C*°(M)
we have that

. k
Jim (|77 = sup |f(z)].
— o0 zeM

Since the association of the sequence of Toeplitz operators T , ke Z, is
linear in f, we see from this Theorem, that this association is falthful

The product of two Toeplitz operators associated to two smooth functions
will in general not be a Toeplitz operator associated to a smooth function again.
But by Schlichenmaier [Sch], there is an asymptotic expansion of the product in
terms of Toeplitz operators associated to smooth functions on a compact Kahler
manifold.

Theorem 3.3 (Schlichenmaier). For any pair of smooth functions fi, fo € C*(M),
we have an asymptotic expansion

(k) (
T ~ ZTCZ f17f2) ?
=0

where ¢;(f1, fo) € C®°(M) are uniquely determined since ~ means the following:
For all L € Z, we have that

L

(3.1) TP =T

atn k= Ok™)
=0

uniformly over compact subsets of T. Moreover, co(f1, fo) = fifa-

Remark 3.4. In Section 5 it will be useful for us to define new coefficients
5&”(;“, g) € C®°(M) which correspond to the expansion of the product in 1/(k +
n/2) (where n is some fixed integer):

k k —
T}l)O'Tf(Z)U ZTE(S))(fl,fQ),U(k+n/2) :
=0
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Note that the ﬁrst three coefﬁ01ents are glven by é &0 ( f1, fQ) = ( f1, f2),
(i, fo) = ¢ (o, fo) and & (fu, fo) = (i, fo) + 2 (fu, fo).

This Theorem was proved in [Sch] where it is also proved that the formal
generating series for the ¢;(f1, f2)’s gives a formal deformation quantization of the
Poisson structure on M induced by w. An English version is available in [Sch1] see
[Sch2] for further developments. We return to this in Section 5 where we discuss
formal Hitchin connections.

4 Asymptotic faithfulness

In this section we will concentrate on the case where M is the moduli space of flat
SU(n)-connections on ¥ — p with holonomy d around p. As in the introduction X
is a closed oriented surface of genus g > 2, p a point in ¥ and d € Z/nZ ~ Zsy()
in the center of SU(n) is fixed.

As mentioned in the introduction the main result about the Verlinde bundle
V&) from geometrically quantizing the moduli space M is that its projectivization
P(V®) carries a flat connection V. This flat connection induces a flat connection
in V¢ in the endomorphism bundle End(V®) as described in Section 2.

An important ingredient in proving asymptotic faithfulness is the corollary to
Theorem 1.6 saying that Toeplitz operators viewed as a section of End(V™®) is in
some sense asymptotically flat,

IVeT | = Ok,

This can be reformulated in terms of the induced parallel transport between the
fibers of End(V™). Let 09,01 be two points in Teichmiiller space 7, and P, ,,
the parallel transport from oy to o;. Then

k; k _
(4.1) 1P THe — T12 || = O(k7Y),

where [|-|| is the operator norm on H(M,,, Lk ).

Equation (4.1) and Theorem 3.2 together prove asymptotic faithfulness. Below
we explain how.

Recall that the flat connection in the bundle P(V®)) gives the projective rep-
resentation of the mapping class group

Z0D T — Aut(P(VF))

where P(V(¥)) are the covariant constant sections of P(V*)) over Teichmiiller space
with respect to the Hitchin connection V.

Proof of Theorem 1.3. Suppose we have a ¢ € I'. Then ¢ induces a symplecto-
morphism of M which we also just denote ¢ and we get the following commutative
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diagram for any f € C*(M)

®* Ps(o),o
T;k;l Tf('lzf)b,qb(a)l JP¢<U%0T}I§3¢>,¢(U>

P o),0
. ) (o), HO(MO-,;CI;.),

where Pyo) o @ H(My(o), LY ,y) — H°(M,, L5) on the horizontal arrows refer to
parallel transport in the Verlinde bundle itself, whereas Py, , refers to the parallel
transport in the endomorphism bundle End(V}) in the last vertical arrow. Suppose
now ¢ € [\, ker Z,g"’d), then Py, 0 ¢* = Z,gn’d)(qb) € CId and we get that

k k
Tjga) = P(i)(a),oT;O()b’d)(U). By Theorem 4.1 we get that

lim HT

k— oo

k) k)
lim (770 - Tj5 |

(k) (k)
kh_f{io 1Po(0).0 T fop.p(0) = Tfoto

fod)cf“
I =0.

By Bordemann, Meinrenken and Schlichenmaier’s Theorem 3.2, we must have
that f = f o ¢. Since this holds for any f € C*(M), we must have that ¢ acts
by the identity on M. O]

5 The Formal Hitchin connection and Berezin—
Toeplitz Deformation Quantization

In this section we discuss the formal Hitchin connection. We return to the general
setup of compact Kéhler manifolds, where we impose conditions on (M,w,I) as
in Theorem 2.6, thus providing us with a Hitchin connection Vin H® over T
and the associated connection V¢ in End(H®)). Firstly werecall the definition of
a formal deformation quantization and the results about star products from [Sch]
and [KS]. We introduce the space of formal functions Cp°(M) = C*(M)[[h]] as
the space for formal power series in the variable h with coefficients in C'*(M),
and let C;, = C[[h]] denote the formal constants.

Definition 5.1. A deformation quantization of (M,w) is an associative product
*x on Cp°(M) which respects the Cp-module structure. For f,g € C*(M), it is

defined as .
Frg=> (g,

1=0

through a sequence of bilinear operators

D 0®(M)® C®(M)— C®(M),
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which musth satisfy
Of,9)=1rfg and  I(f,9) =g f) = —i{f. g}

The deformation quantization is said to be differential if the operators ¢V are
bidifferential operators. Considering the symplectic action of I on (M, w), we say
that a star product is ['-invariant if

V(fxg) =7 (f) *7"(9)
for all f,g € C*°(M) and all v € T.

Recall Theorem 3.3 where the asymptotic expansion of the product of two
Toeplitz operators associated to smooth functions fi, fo on M create maps ¢;(f1, f2) €
C*°(M). In [Sch] Schlichenmaier also showed that these maps generate a star
product. It was first in [KS] Karabegov and Schlichenmaier showed that it was a
differentiable star product.

Theorem 5.2 (Karabegov & Schlichenmaier). The product x5" given by

o

FxiTg=>_cV(f 9,
=0

where f,g € C*°(M) and c((;l)(f, g) are determined by Theorem 3.3, is a differen-
tiable deformation quantization of (M,w).

Definition 5.3. The Berezin-Toeplitz deformation quantization of the compact
Kéhler manifold (M,,w) is the product +5".

For the remaining part of this paper we let I' be a symmetry group as in
Section 2, that is a group which acts by bundle automorphisms on £ over M
preserving both the Hermitian structure and the connection in £. Such a group
has an induced action on (M,w). Note that I' in the case of moduli spaces is the
mapping class group of the surface.

Remark 5.4. Let I', be the o-stabilizer subgroup of I'. For any element v € I,
we have that

) =1,
This implies the invariance of x5 under the o-stabilizer I',.

Remark 5.5. Using the coefficients from Remark 3.4, we define a new star prod-
uct by

g =Y l(f. )"
1=0
Then

fRtg=((foo )+ (god™)) oo
for all f,g € C;°(M), where ¢(h) = ;2

24nh "




184 Jorgen Ellegaard Andersen and Jakob Lindblad Blaavand

Recall from the introduction the definition of a formal connection in the trivial
bundle of formal functions. Theorem 1.6, establishes the existence of a unique
formal Hitchin connection, expressing asymptotically the interplay between the
Hitchin connection and the Toeplitz operators.

We want to give an explicit formula for the formal Hitchin connection in terms
of the star product ¥°7. We recall that in the proof of Theorem 1.6, given in [A6],
it is shown that the formal Hitchin connection is given by

(5.1)  DV)(f) = =VIFIf + VIFR""f + h(E(V)(f) = HV)Z™ f),
where E is the one-form on 7 with values in D(M) such that

(5.2) Tg;;)f = 7®o(V)* f2® + 72 ®) fo(1)x®),
and H is the one form on 7" with values in C*°(M) such that H(V) = E(V)(1).
In [AG] an explicit expression for the operator F(V) is found by calculating the
adjoint of
1 A
O(V) = _Z(AG(V) + QVG(V)-C[F — QHV/[F])

This operator is essential in the proof of Theorem 2.6 since by comparing the
above equation with Equation 2.3 we see that u(V) = #WO(V) - V'[F].

Theorem 5.6. The formal Hitchin connection is given by

1 1 -
Dy f=VIfl = 7hBaun () + 50V anar (f) + VIERETf = VIFLS
1

= Sh(Beau) (EQXf + nVIFRETf = Ay () f = nVIF]f)

for any vector field V and any section f of C},.

When we geometrically quantize a symplectic manifold, we have to choose a
polarization of the complexified tangent bundle, to reduce the space upon the
quantum operators act. This is equivalent to choosing a compatible complex
structure on the symplectic manifold, hence making it Kahler. It is however
quite unfortunate that the quantum space then depend on the choice of Kahler
structure. The solution to this is the projectively flat Hitchin Connection, which
by parallel transport between the fibers of H*) give us a space of quantum states
as the covariant constant sections of PH®) | which does not depend on the chosen
complex structure. Instead of doing geometric quantization we could do Berezin—
Toeplitz deformation quantization. The created star product «5" depend on the
complex structure, and in the same spirit as above we want to make all these star
products equivalent to a star product which does not depend on ¢. This is the
purpose of the formal Hitchin connection.
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If the Hitchin connection is projectively flat, then the induced connection in
the endomorphism bundle is flat and hence so is the formal Hitchin connection
by Proposition 3 of [A6].

Recall from Definition 1.7 in the introduction the definition of a formal triv-
ialization. As mentioned there, such a formal trivialization will not exist even
locally on 7, if D is not flat. However, if D is flat, then we have the following
result from [A6].

Proposition 5.7. Assume that D is flat and that D = 0 mod h. Then locally
around any point in T, there exists a formal trivialization. If H' (T ,R) =0, then
there exists a formal trivialization defined globally on T . If further HL(T, D(M)) =
0, then we can construct P such that it is I'-equivariant.

An immediate corollary of Proposition 5.7 is

Corollary 5.8. If T is contractible, then any flat formal connection admits a
global formal trivialization that is I'-equivariant.

In the proposition, H}(7, D(M)) refers to the I'-equivariant first de Rham
cohomology of 7 with coefficients in the real vector space D(M) of differential
operators on M. The first steps towards proving that this cohomology group
vanishes in the case where M is the moduli space have been taken in [AV1, AV2,
AV3, Vi].

In [AG] an explicit formula for P up to first order is found.

Theorem 5.9. The I'-equivariant formal trivialization of the formal Hitchin con-
nection exists to first order, and we have the following explicit formula for the first
order term of P

PO = 380(F) + Vx50,

where X}, denotes the (0,1)-part of the Hamiltonian vector field for the Ricci
potential, .

Now suppose we have a formal trivialization P of the formal Hitchin connection
D. We can then define a new smooth family of star products, parametrized by

T, by

[ *eg= Pa_l(PU(f);iTPa(g))
for all f,g € C*(M) and all ¢ € 7. Using the fact that P is a trivialization, it is
not hard to prove

Proposition 5.10. The star products x, are independent of o € T.

This is done by simply differentiating *, along a vector field on 7, see [A6].
Then, we have the following which is proved in [A6].
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Theorem 5.11 (Andersen). Assume that the formal Hitchin connection D is flat
and

Hy(T,D(M)) =0,

then there is a I'-invariant trivialization P of D and the star product

frg =P (Po(f)% " Pal9))

is independent of o € T and T-invariant. If HX(T,C(M)) = 0 and the commu-
tant of T' in D(M) is trivial, then a I'-invariant differential star product on M is
unique.

In [AG] the star product of Theorem 5.11 is identified up to second order in
h.

Theorem 5.12. The star product = has the form

fxg=fg—S{f.qbh+ 002,

We observe that this formula for the first-order term of x agrees with the first-
order term of the star product constructed by Andersen, Mattes and Reshetikhin
in [AMR2], when we apply the formula in Theorem 5.12 to two holonomy functions
Iy, and hoy,

1
h'Yl,)\l * hw,)\z = h71727>\1u>\2 - §h{’71772}7>\1u>\2 + O(hz)

We recall that {71,792} is the Goldman bracket (see [Go2]) of the two simple closed
curves 7y, and s.

A similar result was obtained for the abelian case, i.e. in the case where M is
the moduli space of flat U(1)-connections, by the first author in [A2], where the
agreement between the star product defined in differential geometric terms and
the star product of Andersen, Mattes and Reshetikhin was proved to all orders.

6 Abelian varieties and U(1)-moduli space

In this chapter we will investigate all the previous mentioned objects in the setting
of principally polarized abelian varieties M = V/A, where V is a real vector
space with a symplectic form w, A a discrete lattice of maximal rank such that
w is integral and unimodular when restricted to A. Let now 7 be the space of
complex structures on V', which are compatible with w. Then for any I € 7,
M; = (M,w,I) is an abelian variety. A prime example of an abelian variety is
the abelian moduli space. Here we let 3 be a closed surface of genus g, and M be
the moduli space of flat U(1)-connections on ¥. Then

M = Hom(m (£), U(1)) = HY(S,R)/H'(S, Z).
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There is the usual symplectic structure w on H'(M,R) which is of course integral
and unimodular over the lattice H'(M,Z). We will return to this example below
when we consider abelian Chern—Simons theory.

In the following we will focus on M; being a principal polarized abelian variety,
where the compatible complex structures are parametrized by 7. There exists a
symplectic basis (Aq,...,Ag,) over the integers for A (e.g. [GH, p. 304]). Let
(1, Tp,Y1,---,Y2n) be the dual coordinates on V. Then

w= zn:dxi A dy;.

=1

Let A be the automorphism group of (A,w). Then A injects into the symplec-
tomorphism group of (M,w), and by using the symplectic basis (Aq, ..., \,) we
get an identification A ~ Sp(2n,Z). Notice that A acts on the principal polarized
variety Mj.

Using the symplectic basis we can identify 7" with the Siegel Upper Half Space

H={Z¢eM,,(C)|Z=2"Tm(Z) > 0}.

For any I € 7 we have that (\1,...,\,) is a basis over C for V' with respect to
I. Let (#1,...,%,) be the dual complex coordinates on V relative to the basis
(A, ..., An). The complex structure I determines and is determined by a unique
Z € H such that

z=x+ Zy.

Since any Z € H gives a complex structure, say I(Z), compatible with the sym-
plectic form, we have a bijective map I : H — 7 given by sending Z € H to 1(Z).
For Z € H we use the notation X = Re(Z) and Y = Im(Z).

For each Z € H we explicitly construct a prequantum line bundle on My(z).
We do that by providing a lift of the action A action on V to the trivial bundle
L =V x C, such that the quotient is the prequantum line bundle £;. We only
need to specify a set of multipliers {e)}xca and a Hermitian structure h. The
multipliers are non-vanishing functions on V' that are holomorphic with respect to
I(Z) and depend on Z. They should furthermore satisfy the following functional
equation

6)\/(1) + )\)BA(U) = GA/(U)SA(”U + )\/) = 6)\_;,_)\/(1)),

for all \, N € A. The action of A on £ is given by
A (v,2) = (v+ A ea(2)),

for all A € A and (v,z) € £. For a fixed basis of A the functional equations
determine the multipliers for all A € A. For I(Z) we choose the multipliers

ex(2) =1, i1=1,...,n,
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e,y (2) = e 2T i=1,...,n.
The constructed line bundle is denoted Lz. If we define h(z) = e 2™Y¥, where
Z = X +1iY, it will define a Hermitian structure on V' x C by h(2) (-, )¢ where
(-,-)c is the standard inner product on C". This function satisfies the functional

equation
Bz 4 N) = —h(2),
lex(2)]

and the inner product on V x C is invariant under the action of A and hence
induces a Hermitian structure (-, -) on L£z. By general theory of abelian varieties,
e.g. |[GH, Sect. 2.6], a line bundle with the above multipliers and Hermitian
metric (Lz, (-,-)) has curvature —2miw, and hence is a prequantum line bundle.
Note taht the prequantum condition in Definition 2.1 is scaled with 27. We could
just have used 27w as the symplectic structure. We choose the normalization at
hand to make later equations nicer.

The space of holomorphic sections of L%, H°(Mz, L) has dimension &", and
as in the general theory they give a vector bundle H* over H by letting H ék) =
HO(Mg, L%).

The L2-inner product on H°(M, L%) is given by

(51,32):/M Sl(z)ﬁ—ﬂz)h(z)dfﬂdy,

for S1,82 € HO(Mz, ﬁl%)
A basis for the space of sections are the Theta functions,

H&k)(z, Z) _ Z eﬂik(l+a)-Z(l+a)€27rik(l+oc)~z’
lezn

where o € %Z” /Z™. The Theta functions satisfies the following heat equation,

o0 1 9%

The geometric interpretation of this differential equation is a definition of a
connection V in the trivial C'*°(C")-bundle over H, by

~ 0 1 0?
V_ o = - — :
0Z;;5 8ZZ i 4mik Gziazj

The coordinates z = z + Zy identify H°(Mz, L%) as a subspace of C*°(C") and
H® as a subbundle of the trivial C°°(C")-bundle on H. This bundle is preserved
by V and hence induces a connection V in H*®). The covariant constant sections of
H® with respect to V will, under the embedding induced by the coordinates, be
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identified with the Theta functions. Since now V has a global frame of covariant
constant sections it is flat. Remember that H is contractible, so since parallel
transport with a flat connection only depend on the homotopy class of the curve
transported along, we get a canonical way to identify all H(My, £%), and hence
there is no ambiguity in defining the quantum space of geometric quantization to
be H°(My, £%). Since the Theta functions are covariant constant, they explicitly
realize this identification. The usual action of Sp(2n,Z) on Theta functions induce
an action of A’ = ker(Sp(2n, Z) — Sp(2n, Z/27)) on the bundle H*) which covers
the A’-action on H ~ 7. This is the subgroup of A acting trivially on A/2A.

Remark 6.1. Instead of the above connection V in H® over H, we could have
rolled out the machinery of Theorem 2.6 to get another connection in the same
bundle. This can be done even though H!(M,R) # 0. Since the torus is flat the
Ricci potential F' is 0 as is the Chern class of M. Lemma 7.1 in the appendix
shows that /(Z) is constant on M and thus is a rigid family of K&hler structures.
Thus we have a rather nice formula for the Hitchin connection

1

v _ t
Vy =V + Sk

Ag(v).

The extra factor of 27 is from the different prequantum condition. It should be
noted that explicit computations show that V is not flat like V induced by the
heat equation, but rather projectively flat.

In [A2] the inner product of two Theta functions are explicitly calculated.

Lemma 6.2. The theta functions G&k)(z, Z), a € +Z"|Z", define an orthonormal
basis with respect to the inner product on H°(Myz, L%) defined by

(51,82)y = (51,82)V2"kndet Y,
where Y =1Im Z. This is a Hermitian structure on H® compatible with V.

Let (r,s) € Z™ x Z" and consider the function F,, € C*(M) given in (z,y)-
coordinates by

F?",S(x7 y) — 627T7,(x7»+sy)

We have previously defined Toeplitz operators associated to a function f € C*°(M),
T]gk) : HO(Mg, L£Y) — HO(Mgz, £%). We shall now explicitly compute the matrix
coefficients of these operators in terms of the basis consisting of Theta functions.

To get our hands on the matrix coefficients (T}(;f) )sa We only need to calculate

S

(Fw@&k), Qgg)), since this indeed is the coefficient. This is also calculated in [A2]
and is done in the exact same way as in Lemma 6.2,

(6.1) (BP0 )y = Gampipie 7 7TeT i A BT

)
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where [7] is the residue class of { mod Z". A simple rewriting gives

Tlp.s _—2mis-a

(k) _ _
(Tf(T,sﬂZ)(k)Fr,s)ﬂa *604—/@,—[%}6 ke )

where
f(r, s, Z)(k) — eﬁ(s—XT).Y—l(s—Xr)eﬁr.yr.

Remark 6.3. The Toeplitz operators ngi)s are sections of End(H®) over H.
The flat connection V induces a flat connection V¢ in the bundle End(H®),
)

with respect to which we see that Tg:s is not covariant constant. However the

operators T]EI(?& 2)(k) ., BTC covariant constant. Since the pure phases F,., r,s € Z"

is a Fourier basis for C*°(M ), we have that T ;18 5.7)(k) Py, 18 covariant constant with
respect to V¢ for all f € C®(M).

It should also be noted that the coefficient f(r,s, Z)(k) is not so arbitrary as
it looks. This is the content of the following

Proposition 6.4. Let Ajz) be the Laplace operator with respect to the metric
g[(Z)('a ) =2mw(-, 1(Z))

on M. Then )
e*@A”Z)FT’S = f(r,s,2)(k)F, .

Proof. Recall that

10 0. .., 0 0. 0 0
AI(Z)__<(a_y_X%).Y (8_y_X8x)+8x Yax)

27
Now it is a simple calculation, which we will omit, to show the equality. O
As remarked in Remark 6.3, T;l(?s 2)(K)Fs is covariant constant with respect

to V. If we define
Bz = e 12100 . (M) — C*(M)

we see that

~e (k)
v e (nam)

for all vector fields V' on H and all functions f € C*°(M) since the pure phase
functions consitute a Fourier basis. We furthermore see that E is Sp(2n,Z)-
equivariant, since for all U € Sp(2n,Z) we have that

=0,

\I’* (¢] E] = E\p([)‘l/*
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That T gj)( n is covariant constant with respect to V¢ can be interpreted as Ej is
a formal parametrization for the formal Hitchin Connection which we know exists
by Theorem 1.6. If V@-Tg?( ) = 0 Equation (1.2) and Theorem 3.2 imply that

DV(EI(f)) =0

for all vector fields on H and all f € C°(M), so by Definition 1.7, E; is a formal
trivialization of the formal connection D. We compare this with the explicit
formula for the first order term of P in Theorem 5.9, and see that they agree since
the Ricci potential F'is 0.

Now since the Ricci potential is 0 we reduce the formula in Theorem 5.6 for
the formal Hitchin connection.

Theorem 6.5. Let (M,w,I(Z)) be a principal polarized variety, then the formal
Hitchin connection is given by

1

Dyf=VI[f]— S_WhAé(V)(f),

and if Z is normal, we get explicit formulas for AG(V)' Ifi#j

Ag o =21V oV o +2iV o Vo and Az o \ =21V 2V o +2i1V o V o,
G( BZij ) 9z; 8Zj az]' 9z, G( ) 0z; azj sz 0z;

97,

and if i = j

Aé(%):%V%V% and Aé(%ﬁ):%v%v%.

This theorem is proved in the appendix. It should be noted that the require-
ment on Z to be normal, only is to ease the calculations, and it will not be used
anywhere else in the rest of this paper.

With this formal trivialization we use Theorem 5.11 and create an I inde-
pendent star product on C*°(M) which all Berezin—-Toeplitz star products are
equivalent to. This is done in [A2] Theorem 5 where it is shown that the I inde-
pendent star product actually is the Moyal-Weyl product

1
frg=poexp(=5hQ)(f®y9),
where p : C®°(R*™) @ C*(R*) — C*°(R?*") given by multiplication f ® g — fg

and 9 9 9 _d
Q:;ami@)ayi_ayi@axi‘

Again we see that this is exactly as in Theorem 5.12.
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Abelian Chern—Simons Theory

In 241 dimensional Chern—Simons theory, the 2-dimensional part of the theory is a
modular functor, which is a functor from the category of compact smooth oriented
surfaces to the category of finite dimensional complex vector spaces, which satisfy
certain properties. In the gauge-theoretic construction of this functor one first
fixes a compact Lie group G and an invariant non-degenerate inner product on
its Lie algebra. The functor then associates to a closed oriented surface the finite
dimensional vector space one obtains by applying geometric quantization to the
moduli space of flat G-connections on the surface (see e.g. [Wi] and [At]). In the
abelian case G = U(1) at hand this concretely means the following. For a closed
oriented surface ¥ the moduli space of flat U(1)-connections

M = Hom(m(X),U(1)) = H'(X,R)/H (%, Z)

has a symplectic structure given by the cup product followed by evaluation on
the fundamental class of . This symplectic structure is by Poincar??? duality
integral and is unimodular over the lattice H'(X,Z). A subgroup of the mapping
class group I' of ¥ acts on M via the induced homomorphism

p: T — Aut(HY (X, Z),w) = Sp(2n, Z).

Define IV = p~1(A’) and
p=plp: T — A.

The homomorphism p’ is surjective and has the Torelli subgroup of I" as its kernel.

If we use the above theory we construct a Hermitian vector bundle H®) over
the space of complex structures 7 on H'(X,R). As discussed this bundle has a
flat connection, and an action of action of Aut(H'(X,Z),w) that preserves the
Hermitian structure and the flat connection. In this case the modular functor
is defined by associating to X, the vector space Z®*)(X) consisting of covariant
constant sections of H*) over 7. So through the representation p, we get a
representation p; of the mapping class group I' of ¥ on Z®)(X). In the SU(n)-
case in the introduction this representation was denoted Z,E”’d).

The 2 + 1 dimensional Chern—Simons theory also fits into a TQFT setup.
Suppose Y is a compact oriented 3-manifold such that 0Y = (=) U X, where
Y1 and Y5 are closed oriented surfaces and —>; is XJ; with reversed orientation.
Assume furthermore that ~ is a link inside Y — Y. Then the TQFT-axioms
states that there should be a linear morphism Z®(Y,~) : Z®(2)) — Z®)(%,),
which satisfies that gluing along boundary components goes to the corresponding
composition of linear maps.

Definition 6.6. The curve operator

ZW(Y, 7)1 ZW(2)) — ZW(5,),
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is defined to be w
(k) . plk
Z0) =Ty, ) a(2)

where N, is the holonomy function associated to .

To a simple closed curve v on X the holonomy function h, € C*°(M) is a pure
phase function, i.e. h, = F, ; where r, s € Z". Note that we do not label v with
an irreducible U(1)-representation A.

Using this definition we could give the exact same proof as of Theorem 1.3
and obtain a classical theorem from the theory of theta functions.

Theorem 6.7. Elements in the Torelli subgroup ker p are exactly those who are
in the kernels of all ps,

ﬂ ker p;, = ker p/.

k=1

To this end we want to give a proof of Theorem 1 from [A9] in the case of
abelian moduli spaces. We do this by studying the Hilbert-Schmidt norm of the
curve operators.

Definition 6.8. The Hilbert—Schmidt inner product of two operator A, B is
(A, B) = Tr(AB").
If we introduce the notation

nk(,r,’ 8) — Re(e—%T-Zre—Qm's-ae—WQ(s—ZT’)~(27TkY)’1(s—Zr))

—X7r)Y Y (s—Xr)+rYr)

= e 2k ((S

and recall the matrix coefficients of the Toeplitz operators T}’ji in terms of the
basis of theta functions then

(FT780£[]€)7 eék))y — 5a—ﬁ,—[%]6_27”‘8'066_%7"'877]9 (’]"’ S)

Note that f(r,s, Z)(k) = nx(r, s)~'. Here we suppress the Z dependence in n;,(r, s)
since we from now only consider fixed Kahler structure.

Lemma 6.9.

* knnk (Ta S)nk (ta u)e(r, S, tv u) (T7 S) = (ta u) mod k
Te(T3) (T5))) = {0 o

where €(r,s,t,u) € {£1} and is 1 for (r,s) = (t,u).
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Proof. We start by calculating the matrix coefficients of the product of the Toeplitz
operators

k k) \x k) N
(TR (T ) Vg0 = > (T8 56(TH) Vs

n
= 5a—ﬁ,—[r;t}e’Q“ia'(S*“)e’%(’"’572”%“)7716(7’, $)Me(t, u).

Now when taking the trace @ = (3 and to get something non-zero we must have
=t mod k. In that case

Tr(Tgi)S (T}fl)*) e(r, s, t,u)n(r, s)me(t, u)e Fre(s—u) Z —2mia(s—u)

the € is obtained since t = r + kv only determines the equality

6—%(r~s—2s-t+t~u) — ie%(r'(s_u))

up to a sign. Now if s  u the last term is zero since it is n sums of all k’th roots
of unity, and hence 0. If s = u each term in the sum is 1, and we get the desired
result. O]

Using the above lemma and the following limits

(6.2) lim n(r,s) =1 and lim ny(r + kt, s + ku) = 0,

k—oo k—oo

for all r, s € Z", we can prove the following

Theorem 6.10. For any two smooth functions f,g € C*°(M) and any Z € H

one has that : 0
(k k
(frg) = Jim £~ < 7.2 )ng,I<Z)>’

k—oo

where the real dimension of M is 2n.

Proof. From Lemma 6.9 we get in particular

17 [l = k7720 Te(T2 (T )*) = me(r, ),

and :
(k
IITE,(F s =1,

where ||-|[x = k7/2,/(-,-) is the k-scaled Hilbert-Schmidt norm.
Let f,g € C*°(M) be an arbitrary elements and expand them in Fourier series

f = Z Ar,sFr,s and Z He, uFt U

(r,s)€Z2™ (t,u)ez2n
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ne(r, s) and ny(t,u) decays very fast for increasing r, s € Z™ and we have
—n k * -n — k k) \x*
E T (TP (T0)) = k ST Nl TH(TR (T )%)
(r,s),(t,u) €220

Z A st ulli (1, 5)?

( Z2n

+ Z )\r,sﬂr+kt,s+kunk(r7 S)’f]k(T + kt, s+ kU)E(T, S, t, U)
(t,u)#(0,0)

This sum converges uniformly so if we take the large k£ limit we can interchange
limit and summation. Now by Equation 6.2 and since

lim Mr 4kt s4+-ku = 0
k—o0

by pointwise convergence of the Fourier series we finally get

hm k™ Tr(T(k T(k Z Ar shhrs-
(r,s)€Z2n
Now since the pure phase functions are orthogonal we get to desired result. [

It should be remarked that Theorem 6.10 just is a particular case of a theorem
of the same wording, with M being a compact Kéhler manifold, see e.g. [A9].
Theorem 6.10 was also proved in [BHSS] but only for a small class of principal
polarized abelian varieties.

As a corollary to the proof of Theorem 6.10 we have

Corollary 6.11.

— b g (7 ®) )
(f,9) = lim k <TE1(f)’TE1(9)>'

We can interpret Corollary 6.11 in terms of TQFT curve operators. Since we

defined a curve operator Z®*) (2, v) to be ng)(h’y) where h, is the corresponding

holonomy function of v we immediately get
<h’717 h'Y2> = kh—{go k™ <Z(k)<2a 71)7 Z(k)(za ’-)/2)> )

which was proved in [A9] and [MN].

Another interpretation is that gluing two cylinders (X x [0,1],7v;) and (¥ X
[0,1],72) along ¥ x {0} and —3 x {0} and again at the top ¥ x {1} along —X x {1},
we obtain the closed three manifold ¥ x S with the link v; U~3 embedded. Here
5 means 7y, with reversed orientation. The TQFT gluing axioms now say that

Z(k)<2 X Sl? nu 7;) = Tr<Z(k)(E X [07 1]7 ’71>Z(k)(2 X [Oa 1]7 72)*)
If we now define Z®) (X x S, 74, U~3) to be exactly this, we see that if we take v,
and ¥, to be the empty links we have
ZM(8 x 1) = Te(TH (T = k" = dim(ZW(%)),

as it should be according to the axioms.
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7 Appendix

In this appendix we provide the calculations needed to prove the explicit formuli
for the formal Hitchin connection given in Theorem 6.5.

We first observe that the theorem will follow from Equation 2.2 if we can show
that for ¢ # j

~ 0 0 0 0 0 =, 0 .0 0 0 3}
Gz, =25, %, T g, O, o Clgg) =2, @g g g
and for i = j

=0 .0 0 -, 0 8 8

Since the family of Kahler structures parametrized by H is holomorphic we just
have to solve the equations

) 01(2) 0 9I(Z)

. = d — . = —

G(

Lemma 7.1. The Kahler structure associated to a Z = X + 1Y € H is

_(-Y'X —(Y + XY 'X)
[(Z) - ( Yfl XYfl )
where we have written it as tensor in the frame -2 B f of the tangent bundle T'M .

Proof. This follows from the fact that the complex frame of T'M are eigenvectors
for 1(Z), that is

and that
0 450 18 (A 1.,,0
o 1., 9 R i .0
0z 2zY Z8x+ Y 8y72'(Y X+Z)8:c+2y oy’
]
a9 0

In the above we used the vector notation 7~ meaning an n-tuple of vectors pr
This convention eases the following calculations and will be used in the followmg
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Proof of Theorem 6.5. To this end we also need to recall the following derivation
property for matrices. If A = (a;;) is a symmetric invertible n x n-matrix then
OA~1 0A

= AT AT = AN AT
da; da; R

where A;; is an n X n-matrix with all entries 0 except the i7'th and ji'th which is
1, if ¢ # 7 and Ay; is an n X n-matrix with all entries 0 except the ii’th diagonal
entry which is 1. This follows easily from A7'A = Id. Using this rule and that
Y1 =2i(Z - Z)"! we get

oyt 1

= ——Y AV
8Zij 21

Derivation of the above equations with respect to Z;; becomes rather messy if
we do not also require Z to be normal, that is since Z is symmetric [Z, Z] = 0,
which is equivalent to [X,Y] =0, or [X,Y '] = 0. A consequence of this is, that
everything will commute even [Y !, A;;] = 0 since the imaginary part of derivation
of ZZ = ZZ with respect to Z; give YA;; = A;;Y, and hence [Y 1, A;] =

Written as a tensor
orzy 1., L (Z Z?
= —Y A;Y = .
0Z;; 21 J -1 —Z

The symplectic form w = 211 Z L wijdz; A dz; where Y1 = W = (wy;), should

be contracted with GG ( ) we want to know its appearance in the Z-dependent

882 , 88_ frame. It is clear frorn above that
oI(Z), 0 1_81( ) 0 1 ,01(Z)
—) = Y J—(—)+ =Y —) =
and an easy calculation shows that
oI(Z), o 1 0
—)=-Y A
aZl’j (82) gl a

In other words

8I(Z) )~ Zzzl(wki% X dfk + wkja% X dfk) for ¢ 7é]
0Z; — > Wi ® dz, fori=j

Remark that since 1(Z)? = —Id, 22 and I(Z) anti-commute. This is clearly

" 0Zy
reflected in the above expressions for %Iéz) Now since G(52-) is defined by

0Z;;

9 . 1 _0I(2)
0Zy" 2

_G(
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it is

G

8Zij

o _ 2@%@%%@%@% for i # j
QZaZ ® az for v = j.

With G (%) being expressed in complex coordinates, we should mentioned that
ij

the family of Kahler structures parametrized by H in the way described above,

actually is rigid, i.e. 97(G(V)z) = 0 for all vector field V on H. This is clear since

G(%) is zero in Z; directions and G(z5- ) = O

We could do exactly the same thing w1th =2 and obtain

orzy 1 ... o.(Z Z?
0Z; 5y MY\ )

Again it is clear that

01(Z)
07,

85?)_0 and = YA —

In a similar way as above we obtain

G

_ 0 ) = 226%@54—2@8, ®F for i # 7
8Zij

QZaZ ®8z for v = j.
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1 Introduction

The main focus of these lectures is of direct relevance in two of the most impor-
tant directions of developments in geometry and topology of the 20th century,
the applications of the theory of integrable systems and the applications of the
ideas of quantum physics. The most visible result of the first direction is the so-
lution of the Schottky problem [1], based on the conjectures of S.P. Novikov. The
challenge of characterizing Jacobians among other principally-polarized abelian
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varieties has been resolved in terms of non-linear equations: as expression in
the #-function satisfies the KP equation if and only if the corresponding abelian
variety is the Jacobian of an algebraic curve. A further development of this di-
rection was the proof of the Welters conjecture [2] on Jacobian matrices in terms
of trisecant of Kummer variety. A second major layer of results is associated to
applications of quantum field theory in the challenge to construct topological in-
variants. Jones-Witten invariants or more generally — quantum topological field
theory — generalizes the traditional invariants: Alexander polynomials and Jones
polynomials. The invariants in these cases are constructed as correlation func-
tions for some quantum field theory [3]. The theory of Donaldson invariants [4]
and its development by Seiberg and Witten is another important example of an
application of quantum physics in topology.

This work is devoted to constructing quantum analogues of algebraic-geometric
methods which are applicable in solving classical integrable systems. These meth-
ods are based on the spectral curve concept and the Abel transform. In addition
to applications in topology, the explicit description of solutions for quantum in-
tegrable systems is directly linked to such problems as the calculation of the
cohomology of the #-divisor for abelian varieties [6], calculation of cohomology
and characteristic classes for moduli spaces of stable holomorphic bundles [7], and
further generalizations [8].

In these lectures we propose a quantum analog of the spectral curve method
for the rational and elliptic Gaudin models [9]. These cases correspond to genus 0
and 1 base curves in Hitchin classification. The material is related to topological
invariants of quantum field theory type, as well as it is closely connected with geo-
metric properties of the moduli spaces, to a certain part with the goal to describe
the spectrum of quantum systems. The results are based on the methodological
approach based on the concept of the quantum spectral curve. They show up
in the explicit construction of discrete group symmetries for the corresponding
spectral systems.

Classical integrable systems.

Interactions between the theory of integrable systems and algebraic geometry
appeared quite early. A pioneering work, linking these areas of mathematics, was
due to Jacoby [12]. It solved the problem of geodesics on ellipsoid in terms of
the Abel transform for some algebraic curve. The extent of this observation was
recognized in the 1970s by the S.P. Novikov school [10, 13]. Later the univer-
sal geometric description of the phase space of a wide class of finite-dimensional
integrable systems in terms of the cotangent bundle to some moduli space of

holomorphic bundles on an algebraic curve was given in the work of N. Hitchin
[14].
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The algebraic point of view on integrable systems, which evolved in paral-
lel, was based on the principles of Hamiltonian Dynamics and Poisson geometry.
The significant progress made within the classical theory of integrable systems
was related to the invention of the inverse scattering method in the 60s of last
century [16]. It turned out that the Lax representation is an extremely effective
description of dynamical systems [17]. This language relates Hamiltonian flows
with a corresponding Lie algebra action. This point of view allows to introduce
the notion of the spectral curve and use methods of algebraic geometry to con-
struct explicit solutions [18], to solve dynamical systems in algebraic terms by the
projection method [19], or by a little bit more general construction of the Sato
grassmannian and the corresponding 7-function [20].

Further, we use the term “the spectral curve method” for the method of solving
dynamical systems having Lax representation in terms of the Abel transform for
the curve defined by the characteristic polynomial of the Lax operator.

The first part of the work is dedicated to a construction of a generalization
of the Hitchin type systems in case that the base curves has singularities and
fixed points. The main example of the here proposed quantization technique, the
Gaudin model, is a particular case of a Hitchin system of generalized nature.

Quantization.

The examples of quantum integrable models discussed here, have an inde-
pendent physical meaning as spin chain quantum-mechanical systems describing
one-dimensional magnets.

However, the main focus of these lectures is to study the structural role of
integrable systems including the quantum level, where their role as symmetries of
more complex objects is also evident. In particular, spin chains that describe one-
dimensional physical systems are associated to 2D problems of statistical physics
[9]. A principal method of quantum systems called quantum inverse scattering
method (QISM) was established in the 70s of the 20th century by the school of
L. D. Faddeev [21]. In many aspects this method relies on the classical inverse
problem method, in particular with respect to the Hamiltonian description. Using
QISM, several examples of quantum integrable systems were constructed: quan-
tum nonlinear Schroedinger equation, the Heisenberg magnet and the sine-Gordon
model (it is equivalent to the massive Thirring model). The asymptotic correla-
tion functions for these models were found in [47]. Many of the results regarding
QISM were aware of the earlier framework of the Bethe ansatz method discovered
in 1931 [22].

QISM was considerably generalized by the theory of quantum groups devel-
oped by Drinfeld [23]. The language of Hopf algebras is very convenient for
working with algebraic structures of the theory of quantum integrable systems,
specifically for generalizations of the ring of invariant polynomials on the group.
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One can consider the QISM as the quantum analog of the algebraic part of the
theory of integrable systems. The second part of the lectures concerns the quan-
tum spectral curve method, whose central object is the quantum characteristic
polynomial for the quantum Lax operator. We propose a construction for the
sl, Hitchin-type systems for base curves of genus 0 and 1 with marked points.
The elliptic spin Calogero-Moser system is a particular case of the considered
families. The quantum characteristic polynomial is a generating function for the
quantum Hamiltonians. The construction is based on quantum group methods,
in particular, the theory of Yangians and the Felder’s elliptic dynamical quantum
algebras.

As noted above QISM has not provided substantial progress in solving quan-
tum systems on the finite scale level. Despite the fact that separated variables
were found for some models, the analogue of the Abel transform as transition from
the divisor space to the Jacobian has not been found in the quantum case. In part
three a family of geometric symmetries on the set of quantum system solutions is
constructed, essentially using the quantum characteristic polynomial of the model.
The alternative formulation of the Bethe system is used to construct this family.
The formulation is given in terms of a family of special Fuchsian systems with
restricted monodromy representations. In turn, these differential operators are
scalar analogues of the quantum characteristic polynomial. This permits to re-
alize quantum symmetries in terms of well-known Schlesinger transformations in
the theory of isomonodromic deformations [24], and apply known solutions of the
differential equations of Painleve type to describe variations of the spectrum of the
quantum systems, changing the inhomogeneity parameters. In a sense to build a
family of symmetries of the spectrum is an analogue of the Abel transform.

Quantum method of the spectral curve and other areas of modern
mathematics.

The study of the quantum characteristic polynomial for the Gaudin models
was systematized and gave much more efficient methods for solving quantum
integrable systems. The constructed discrete symmetries of the spectral systems
provide generalized angle operators, meaning that one can build eigenvectors of the
model recurrently. The significance of the results in geometry and topology is the
possibility to apply this technique to field theoretic models arising in topological
quantum field theories and field theories used in the construction of Donaldson and
Seiberg-Witten invariants. In addition, the results on the solutions of quantum
systems have direct application for the description of cohomologies of moduli
spaces of holomorphic bundles, analogues of the Laumon spaces, as well as affine
Jacobians.

The method have got influences in numerous relations and application in other
areas of modern mathematics and mathematical physics. In the representation
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theory of Lie algebras the results are related to the effectivization of the multiplic-
ity formula. Applications of this type occur thanks to special limits of the Gaudin
commutative subalgebras which are interpreted as subalgebras of central elements
in U(sl,)®" [25]. Another result of this technique is an explicit description of the
center of the universal enveloping algebra of the affine algebra at the critical level
for sl,,. It is also worth noting that the quantum spectral curve method is also im-
portant in the geometrical Langlands program over C [26], in the booming field of
Noncommutative Geometry, mathematical physics and condensed matter theory.
Some of the applications are presented in Section 5.

Thanks The author is very grateful to the staff of the Chair of Higher Geome-
try and Topology of the Mechanics and Mathematics Faculty of the Moscow State
University for the fruitful atmosphere and valuable observations during the prepa-
ration of the lectures. The author is grateful to the 170-th and 197-th laboratories
of the Institute for Theoretical and Experimental Physics for stimulating conversa-
tions. The author expresses special thanks to O. Babelon, V.M. Buhshtaber, A.P.
Veselov, A. M. Levin, S.A. Loktev, M.A. Olshanetsky, [.LE. Panov, V.N. Rubtsov,
A.V. Silantiev, A.V. Chervov, G.I. Sharygin. This work is partially supported by
the Foundation “Dynasty”, RFBR grant 09-01-00239 and the grant for support
of scientific school 5413.2010.1.

2 The classical spectral curve method

2.1 Lax representation

This topic describes the classical spectral curve method for finite-dimensional
integrable systems. The explanation begins with the Lax representation [17],
which has led to the formulation of the inverse problem method in the theory of
integrable systems. It turns out that a very wide class of integrable systems is of
Lax type

(2.1) L(z) = [M(2), L(2)]

where M(z), L(z) are matrix-valued functions of the formal variable z, those ma-
trix elements are, in turn, the functions on the phase space of the model. In
other words, the phase space of a system may be embedded into some space of
matrix-valued functions where the dynamics is described by the Lax equation
(2.1).

Locally, this property is fulfilled for all integrable systems due to the existence
of local “action-angle” variables ([28], 2 4 Example 1). In general, the Lax ex-
pression is known for: harmonic oscillator, integrable tops, the Newman model,
the problem of geodesics on an ellipsoid, the open and periodic Toda chains, the
Calogero-Moser systems for all types of root systems, the Gaudin model, nonlinear
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hierarchies: KdV, KP, Toda, as well as their famous matrix generalizations. The
Lax representation demonstrates that the Hamiltonian vector field L = {h, L}
can be expressed in terms of the Lie algebra structure on the space of matrices.
This property is at the heart of many algebraic analytic techniques, in particular
of the r-matrix approach and the decomposition problem [29].

The Lax representation means that the characteristic polynomial of the Lax
operator is preserved by the dynamics. The spectral curve is defined by the
equation

(2.2) det(L(z) — A) = 0.

It turns out that the solution of equations that allow the Lax representation
simplifies using the so-called linear problem

(2.3) L(2)U(z) = \T(2).

The Lax equation is equivalent to the compatibility condition of the following
equations:

M) = LE)V(E),
U(z) = M(2)¥(2).

If we interpret this auxiliary linear problem as a way of specifying a line bundle on
a spectral curve, the system can be solved by means of linear coordinates on the
moduli space of line bundles on the spectral curve identified with the associated
Jacobian.

Further on, a Hitchin scheme and some of its generalizations sets out pretend-
ing to the classification description in the theory of finite-dimensional integrable
systems. In this section we also define the Gaudin model, and give details of
the classical method of spectral curve for the system and separation variables
technique.

2.2 The Hitchin description

Let ¥y be an algebraic curve and M = M, 4(X¢) be the moduli space of holomor-
phic stable bundles over ¥ of rank r and the determinant bundle d [30]. Let us
consider the canonical holomorphic symplectic form on the cotangent bundle to
the moduli space T* M.

The deformation theory [31] allows to explicitly describe fibers of the cotangent
bundle. A tangent vector to the moduli space at E corresponding to the infinites-
imal deformation in terms of the Cech cocycle can be realized by an element of
H'Y(End(E)), in turn the cotangent vector at F to the moduli space M through
the Serre duality is an element of the cohomology space ® € H(End(E) ® K);
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here K denotes the canonical bundle on ¥g. In this description the following family
of functions can be defined on 7T* M

(2.4) hi s T*M — H°(K®); hi(E,®) = %trqﬂ.
The direct sum of the collection of mappings h;
h:T"M — & HO(K®)
is called the Hitchin map [14] and defines a Lagrangian fibration of the phase
space of the integrable system.
2.2.1 Spectral curve

The spectral curve method provides an explicit method of solution in terms of
some geometric objects on a certain algebraic curve. Consider the (nonlinear)
bundle map

(2.5) char(®) : K — K",
defined by the expression
(2.6) char(®)(u) = det(® — p* Id)

where 1 is a point of K, and Id € End(FE) is the unit. The spectral curve is defined
as the preimage of the zero section of ®". The preimage defines an algebraic curve
> in the projectivization of the total space of .

2.2.2 Line bundle

Solution to the Hitchin type system can be constructed in terms of the follow-
ing line bundle. Consider the projection map 7 corresponding to the canonical
bundle K

K — X
and the inverse image map
d—jixId

mTE — 1 (E®K),

where [i is the tautological section 7*/C. Let us also consider the quotient F,
corresponding to the inclusion

(2.7) 0— B "' EBEeK) — F —0.



Quantum spectral curve method 211

The support of F coincides with the spectral curve ¥ defined below. Let us restrict
the exact sequence (2.7) to ¥

0 — L — 7"El|x o T(E®K)|ly — Flz — 0.
It turns out that £ specifies a line bundle on the spectral curve associated with
eigenvectors of the Lax operator.

Let us define the Abel transform as follows: let {ai,...,a,,b1,...,b,} be a
basis in H; (X, Z) with the intersection indexes (a;, b;) = 6;;, {w;} be the basis of
holomorphic differentials in H°(K) normalized by the condition fﬁai w; = 0;5, and
let B;; = fbi w; be the matrix of b-periods. Then we define the lattice A in CY
generated by the Z9 and the lattice generated by the columns of the matrix B.
Fixing a point P € ¥ one can define the Abel transform by the formula

P
fPO w1
(2.8) A: Y — Jacy = CI/A; A(P) = :
P
J Py Y
This definition does not depend on the integrating path due to the factorization

and generalizes to the map from the space of divisor classes to the moduli space
of line bundles.

Theorem 2.1 ([14]). The linear coordinates on the Jacobian Jac(X) applied to
the image of the Abel transform A(L) are the "‘angle”” variables for the Hitchin
system.

2.3 The Hitchin systems on singular curves
2.3.1 Generalizations

The Hitchin construction can be generalized to the case of singular curves and
curves with fixed points [32], [33]. This generalization permits to give explicit
parametrization to the wide class of integrable systems preserving the geometric
analogy with the intrinsic ingredients of the original Hitchin system.

e Fixed points: It can be considered the moduli space of holomorphic bundles
on an algebraic curve with additional structures, namely with trivializations
at fixed points. This moduli space can be obtained as the quotient of the
space of gluing functions by the trivialization change group with the condi-
tion of preserving trivializations at fixed points. Let us denote this moduli
space by M, 4(z1,...,2). The tangent vector to the space M, 4(z1,. .., 2x)
at the point E in an element of the space

k
TpMoa(z, ... %) ~ H' (End(E) @ O(= ) _ z)).

=1
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The cotangent vector can be identified with the following element

k
® € H'(End(E) 9 K® O()_ z)).
=1

e Singular points: The moduli space of bundles can be considered on curves
with singularities of the types: double point, cusp or the so-called scheme
double point. In this situation the consistent Hitchin system formalism
can be established. This results in constructing a large class of interesting
integrable systems. The description of the dualizing sheaf and the moduli
space of bundles in this case turns out to be more explicit then in the case
of nonsingular curve of the same algebraic genus.

2.3.2 Scheme points

Let us describe in detail the Hitchin formalism on curves with double scheme
points.

The singularities class Let us consider a curve Y™ obtained by gluing 2
subschemes A(e), B(e) of CP! (i.e. a curve obtained by adding the point oo to
the affine curve X%/ = Spec{f € C[z] : f(A(e)) = f(B(¢))}, where ¥ =0 ).
Calculating the algebraic genus (dimH?!(O)) we obtain:

e Nilpotent elements: A(e) =€, B(e) =0, g= N — 1.
e Roots of unity: A(e) = ¢, B(e) = ae, where af =1, 9= N—1—[(N —1)/k].
e Different points:

Ale) = ag + are + ... +an_1€" 7, Ble) = by + bre + ... + by_1eV

supposing ag # by, g = N.

Holomorphic bundles The most convenient way to describe the moduli space
of holomorphic bundles for singular curves is an algebraic language, due to the
duality between a bundle and the sheaf of its sections, which is a sheaf of locally-
free and thus projective modules over the structure sheaf of an algebraic curve.

The geometrical characterisation of a projective module in the affine chart
without oo of the normalized curve is made in terms of the submodule M, of rank
r in the trivial module of vector-functions s(z) on C satisfying the condition:

where A(e) = D2, no1 A€t is a matrix-valued polynomial. The projectivity
condition of this module M} is expressed as follows:
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e Nilpotent elements: A(e) = €, B(e) = 0, condition: Ag = Id.

e Roots of unity: A(e) = ¢, B(e) = ae, where af =1,
condition:

A(e)A(ae)...A(a"e) = Id.
e Different points:
Ale) = ag + are + ... +an_1€" 1, Ble) = by + bre + ... + by_1eV 7
condition: Ag is invertible.
The open cell of the moduli space of holomorphic bundles for 7"/ is the quo-

tient space of the space of A(e) in generic position satisfying the above condition
with respect to the adjoint action of GL,.

Dualizing sheaf and global section In smooth situation the canonical class IC
is determined by the line bundle of the highest order forms on complex analytical
variety M. To reconstruct this object in the singular case we axiomatize the Serre
duality condition

H*(F)x H""(F*® K) = C

for a coherent sheaf F. In the present case the dualizing sheaf can be defined
by its global sections. The global sections of the dualizing sheaf on ¥P" can be
described in terms of meromorphic differentials on C of the form

gle)dz  ¢(e)dz
(2.9) wy = Itesc (z —Ale)  z-— B(e)) ’

for an element ¢(e) = >, y_; ¢izrr. In (2.9), fractions should be understood
as geometric progression:

1 1 1
z = A(E> Z—Qap — a1€ — a2€2 —_ (Z — CLQ)(l _ 0164;12;024-...)
1 are+ ase> + ... aje+ ase + ..
= ——(+——= +(—— 24,
(Z_GO) Z — Qg Z — ap

The symbol Res. means the coefficient at % It turns out that for an arbitrary
¢(€) the above expression gives a holomorphic differential on the singular curve
Yrroi - and in addition any differential is obtained in this way. Let us describe
the Serre pairing for the structure sheaf. Let us consider the covering consisting
of two opens Uy = X%/ and U, - an open disk centered at oo. The intersection
Up N Uy can be identified with the punctured disk U3 also centered at oo. Let
s € Oys_ be a representative of H'(O). The pairing is determined by the formula:

2.10 < Wy, S >= WeS.
( ¢ 6
UoNUso

It is easy to see that the pairing is correctly defined on classes of cohomology.
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The endomorphisms of the module M, are described by polynomial matrix-
valued functions ®(z) satisfying the condition

©(A(e) = Ae)R(B(e))Ale) "

The action of ®(z) on a section s(z) is given by the formula : s(z) — ®(z)s(2).
The space H'(End(M,)) is described as the quotient of the space of matrix-valued
polynomial functions by two subspaces:

End,; = {x(2) € Mat,[z]|x(z) = const}
and
Endin = {x(2) € Mat,[2]|x(A(€))) = Ae)x(B(€))A(e) '}
Elements of H'(End(M,)) are treated as tangential vectors to the moduli space

of holomorphic bundles at M,. The infinitesimal deformation corresponding to
an element x(z) is defined by the formula

(2.11) Ox(z)A€) = x(A(€))Ae) — Ale)x(B(e))-

Global sections H°(End(M,) ® K) are described by the expressions:

(2.12) d(2) = Res, (%dz - A(i__@é?ﬁ;\(e) dz> ,

where

Resc(A(e)®(e)A(e) ™ — ®(e)) = 0

and ®(e) = >, ®;=4r is a polynomial matrix-valued function. The expression
(2.12) also implies a decomposition of the denominator in the geometric progres-
sion. It turns out that all global sections of H%(End(M,) ® K) are of this form.

Symplectic form on the cotangent bundle to the moduli space of holomorphic
bundles can be described in terms of Hamiltonian reduction with respect to the
adjoint action of G'L, of the symplectic form on the space of pairs A(e), ®(e), given
by the expression:

(2.13) Res Trd(A(e) '®(e)) A dA(e).

Integrability The Hitchin system on X" in now defined as a system with
phase space which is the Hamiltonian quotient of the space of pairs A(e), D(e).
The symplectic form is given by the formula (2.13). The reduction is considered
with respect to the adjoint action of the group G L,,. The Lax operator is defined by
the formula 3.42. The Hamiltonians are defined by the coefficients of the function
Tr(®(2)*) subject to some basis of holomorphic k-differentials (i.e. sections of
H°(KF)). Let us remark that Vz,w, k, [ the following commutativity condition is
fulfilled: Tr(®(2)*) and Tr(®(w)") commute on the nonreduced space.
The integrability proof realizes the r-matrix technique.
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Example 2.2. Consider a rational curve with a double point z; < 25 (the ring of
rational functions on a curve is a subring of rational functions f on CP! satisfying
the condition f(z1) = f(22)) With one marked point z3. The dualizing sheaf has
the global section dz(ﬁ P L), Consider the moduli space M of holomorphic
bundles E of rank n on X,,,4e Wlth fixed trivialization at z3. There is the following
isomorphism of linear spaces

TeM = H' (End(E) ® O(—p)).

Let us restrict ourself to the open sell of the moduli space of equivalence classes
of matrices A with different eigenvalues. The cotangent space is isomorphic to the
space of holomorphic sections of End*(F) ® K ® O(p). This space can be realized
by the space of rational matrix-valued functions on z of the following type

@(2)2( LI + 23 >dz,

zZ— 21 Z — Z9 Z — Z3

with the following conditions on residues
(blA == A@Q ??? (bl - (I)Q + @3 = 0

The phase space of the system is parameterized by elements of U € GL(n) giving
a trivialization at z3, matrix A describing the projective module over O(3,,04¢),
residues of the Higgs field ®;. In these coordinates the canonical symplectic form
on 7*M can be expressed as follows

w=Tr(d(A'®) AdA) + Tr(d(U '®3) AdU).

After Hamiltonian reduction with respect to the group GL(n) action (the right
action on U and the adjoint action on ®;, A) one obtains the space parameterized
by the matrix elements (®3);; = fi;,i # j; eigenvalues e*” of the matrix A and the
diagonal elements of the matrix (®4);; = p; with the following Poisson structure

{l‘i:pj} = 51‘;‘, {fij7 fkl} = 5jkfiz - 5ilfkj-

The Hamiltonian of the trigonometric spin Calogero-Moser system related with
the finite-zone solutions of the matrix generalization for the KP equation [34] can
be obtained as the coefficient of Tr®?(z) at 1/(z — z;)?

H=Trd? = sz 42 _ Juli

sinh?(z; — ;)
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2.4 The Gaudin model
2.4.1 The Lax operator

The Gaudin model was proposed in [9] (section 13.2.2) as a limit of the XXX
Heisenberg magnet. It describes a one-dimensional chain of interacting particles
with spin. The Gaudin model can be considered as a generalization of the Hitchin
system for the rational curve ¥ = CP! with N marked points zi,...,zy. The
Higgs field (the Lax operator) can be represented by a rational section ® = L(z)dz
where

P;
(2.14) L(z)= )

) z — Zi.
i=1...N

The residues of the Lax operator ®; are matrices n x n whose matrix elements lie
ingl,®...®gl, (P;)x coincides with the ki-th generator of the i-th copy of gl,,.
The generators of the Lie algebra are interpreted as functions on the dual space
gl*. The symmetric algebra S(gl,)®" ~ Clgl’ @ ... ® g[’] is equipped with the
Poisson structure given by the Kirillov-Kostant bracket:

U Py (P5)mn} = 6ij (O1m(Pi)kn — Onk(Pi)ma)-

2.4.2 R-matrix bracket

R- matrix representations of Poisson structures turned out to be a key element
of the theory of quantum groups. In some sense the existence of an R-matrix
structure is equivalent to integrability. It should be noted that in the theory of
quantum groups [35] an important concept of quasitriangular or braided bialgebra
arises. Let us introduce the notation:

e {e;} - the standard basis in C";
e {E;;} - the standard basis in End(C"), (E;jex = (Siei);

° 6(8)

N
;; - generators of the s-th copy gl,, C &7 gl,.

The Lax operator can be represented as

N el
L(z) = ;Ew ® ; zi—JzS
The Poisson structure can be described in terms of generating functions:
{L(z) ® L(w)} = [Ria(z — ), L(2) ® 1 + 1 ® L(u)] € End(C")** @ S(gt,,)*",
with the classical Yang R-matrix

_ Pro
z

R(’Z) ) P12U1®7}2 = U2 ® vy, P12:ZEij®Eji-
ij
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2.4.3 The integrals

The integrals of motion can be retrieved as the characteristic polynomial coeffi-
cients

(2.15) det(L Z I (z)A" k.

It is often used the alternative basis of symmetric functions of eigenvalues of the
Lax operators

Je(2) = TrL*(2), kE=1,...,n

Traditional quadratic Hamiltonians can be obtained as follows

2Tr P, D (k) ,(4)
Hyp = Resz:szTLQ(z) = Z ﬁ - QZ M
ik j

They describe the magnet model that consists of a set of pairs of interacting

particles. It is known that

Proposition 2.3. The coefficients of the characteristic polynomial of L(z) com-
mute with respect to the Kirillov-Kostant bracket

{Ie(2), I;n(u)} = 0.
Let us present here the baseline of the proof.
Proof
Let Ly(z) = L(2) ® 1 and Lo(u) = 1 ® L(u).
() Jn() = Trof L@ @ LW}
- e Z LA B){LE) © L) ()25 77 W)

(2.16) = Tri Z Li( w)Ryo(z — u) LA (2) LY 77 (w)
+ Trio Z L( w)Rys(z — u) LA (2) Ly (u)
(2.17) — Tryy Z LY (2) L (u) Rig(z — w) P (2) LY 77 (w)

_ TmZLZ VLE (w) Rig(z — w) LYY (2) LY ().

In particular,

(2.16) + (2.17) = T'ry, ZL (u)Ria(z — u) LAY (2) Ly~ (), Ly (2)].

The last expression is zero because it is trace of a commutator.
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2.4.4 Algebraic-geometric description

This section describes the basic algebraic-geometrical components of the gener-
alized Hitchin system for curves with marked points. Namely it is constructed
a pair {3, L} — the spectral curve and the line bundle on it, which makes it
possible to resolve the classical Gaudin model.

Spectral curve The spectral curve of the Gaudin system X is described by
the equation

(2.18) det(L(z) — \) = 0.

To build a nonsingular compactification of that curve one should consider the
total space of the bundle where the Lax operator takes values

(2.19) ®(2) = L(2)dz € H'(CP',End(O") ® A)
where A = (k) = O(k — 2). We define a compactification of ¥ by the equation
(2.20) det(P(z) — A) = 0.

This curve is a subvariety of the rational surface Sy_o, obtained by compactifica-
tion of the total space of the line bundle O(k—2) over CP!, or as a projectivisation
P(O(k—2)@0) over the rational curve. This rational surface contains three types
of divisors: F,, — the infinite divisor, C' — the fiber of the bundle and Ey — the
base curve, with the following intersections

Ey-Ep=k—2,
Ey-C =1,
C-C=0,
E. C=1.

To determine the genus of the curve ¥ we use the adjunction formula. First let
us calculate the canonical class of Si_5. It corresponds to the class of divisors

ICSk_Q == —2E0 + (l{ - 4)0

Let the class of ¥ be equal to [X] = niEy + noC. ¥ is n-folded covering of CP!.
Hence [X] - C' = n and ny = n. To calculate ny it is sufficient to use the fact that
¥ is a spectral curve of a holomorphic section of End(O") ® A and hence does not

intersect F,,. We obtain

By the adjunction formula we have

29-2 = K, [B1+[X][¥]
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(—2Ey + (k — 4)C) - nEy + n*Ey - Eq
—2(k —2n+ (k —4)n + (k — 2)n>.
This allows to calculate the genus of the spectral curve

(k—2)n(n—1)
2

(2.21) 9(D) = —(n—1).

Line bundle Let us recall the sequence defining the line bundle on the spectral
curve

(2.22) 0—L— 0% — O05((k—2)C+ Ey)ly — Fx — 0,
where £ and Fy, are line bundles. We also obtain the following
X(£) = x(0%) = x(O((k = 2)C + Ex)[) + x(Fx)
Let us denote the divisor (kK —2)C' + E,, C S as D. Then
X(0%) = n(l-g),
X(Os(D)ly) = nD-[X]+n(l-g)

= n*(k—2)+n(l—yg),
X(Fs) = x(7mO0"(k —2) ® Os(Ex)) — x(OF)

1
(2.23) = ni(D-D—DJCS) =n(k—1).
Hence x(£) = —n?*(k —2) + n(k — 1). Calculating the number of branching points
v=2(g+n—1)=(k—2)(n? —n) we obtain
Lemma 2.4.

deg(L)=g+n—1—r.

The dimension of the commutative family On the affine chart without {z;}
and oo the spectral curve is given by the equation

(2.24) R(z,A) =0,  R(z,\) = (=1)"\" + i AR, (2),

m=0

where

The number of free coefficients is equal 7"\ k(n — m) = k@ The central
functions (the symmetric polynomials of eigenvalues for corresponding orbits) are
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the highest coefficients of R,,(z) of the total number kn — 1. The Lax operator
has double zero at infinity

1 1

It follows that R,,(z) has zero of order 2(n — m) at infinity. This observation, in
turn, imposes additional conditions

—_

3

(2(n —m) — 1) = n?

3
]

on the values of Hamiltonians. Thus, the dimension of the commutative family is

1 —1

k
2 2

2.5 Separated variables

For the wide class of integrable systems the separated variables are associated with
the divisor of the line bundle £ on the spectral curve. Namely pairs of coordinates
of the divisor points are separated. Typically, the divisor is the divisor for the
Baker function. A construction of separated variables for some class of integrable
systems is given in [36]. In the case of slr-Gaudin model separated variables were
known before [37], and can be found even more explicitly.

2.5.1 sly-Gaudin model

Let us remind that sl,-Gaudin model is obtained from the gl, model (2.14) choos-
ing orbits with tr = 0. The Lax operator in this case is:

r=(eh A0)

We will consider the characteristic polynomial as a function of parameters z, A
and values of the Hamiltonians:

det(L(z) — A\) = R(z, A\, ha, ..., ha).
Let us define the variables y; as zeroes of C'(z). For dual variables we take
w; = A(y;)-
This set of variables defines the Darboux coordinates of the phase space:

i, wj} = 04
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Let us consider the generating function S(/,y) of the canonical transformation
from the variables y;, w; to the ”‘action-angle”” variables I;, ¢;

w; = 8ij, ¢j = 8IjS.

The point with coordinates (y;,w;) is a point of the spectral curve by definition.
The fact that ”‘action”’ variables are functions of Hamiltonians allows to separate
variables in the problem of finding the canonical transformation S

S(I7y17"'7yd) :HS<[7yi)7

where each factor s(I, z) solves the equation

R(z,@zs, hl, ce ,hd) =0.

3 The quantization problem

The quantization problem has physical motivation, it is related to the quantum
paradigm in modern physics. In mathematical context this problem can be for-
mulated in different ways: in [38] it was considered the problem of deformation of
an algebra of functions on a symplectic manifold satisfying the so-called ”‘corre-
spondence principle”’. The particular case of the deformation quantization for the
cotangent bundle to a Lie group used in these lectures was considered in [39]. Fur-
ther on, the methods of deformation quantization, x-product, the Moyal product
and the geometric quantization were generalized to wider class of examples. One
of the structure results in this field was the formality theorem by M. Kontsevich
[40] which demonstrates the existence of the quantization. Another ensemble of
important results in this domain are due to Fedosov [41].

In this work it is proposed radically more strong quantization problem, de-
manding not only the deformation of an algebra of functions but of a pair: Pois-
son algebra + Poisson commutative subalgebra, representing an integrable sys-
tem. Let us refer to this problem as to the algebraic part of integrable system
quantization. Moreover it is stated a problem of constructing quantum analogs
of the essential geometric objects from the point of view of algebraic-geometric
methods in integrable systems. In general the problem is to find an associative
deformation of a Poisson algebra such that the Poisson-commutative subalgebra
remains commutative, and moreover the deformation of the spectral curve pro-
vides quantum separated variables. The last part of the quantization problem is
called ”‘algebraic-geometric”” quantization.
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3.1 The deformation quantization
3.1.1 Correspondence

The traditional scheme of deformation quantization supposes a construction of
an associative algebra starting with a Poisson algebra. A Poisson algebra is a
commutative algebra A, with multiplication denoted by -, furnished by an anti-
symmetric bilinear operation called the Poisson bracket {o, o}, such that A, is a
Lie algebra and both structures are compatible by the Leibniz rule:

{f,g-hy=A{f9}-h+g-{f h}.

A Poisson algebra is an infinitesimal version of an associative algebra. Due to the
so-called Drinfeld e-construction it is not hard to note that the space Aye]/e?
with multiplication

frg=f-g+elf. g}

is an associative algebra. The quantization of the Poisson algebra A, with the
structure defined by operations (-,{o,0}) which is called the algebra of classical
observables is an associative algebra A with multiplication (x), satisfying the
following conditions:

A ~ A,[[h]] as linear spaces.

Moreover, if the algebra of classical observables and the space of constants in A
are identified, the following structure compatibility is required:

axb = a-b+ O(h),
axb—bxa = hia,b}+O(h?).
The map
lim: A— Ay : h—0
is called the classical limit.

Example 3.1. Let us consider the Poisson algebra S(gl,,) on the space of symmet-
ric algebra of the Lie algebra gl,, defined by the Kirillov-Kostant bracket. This has
a canonical quantization, realizing the concept of the deformation quantization:
let Uy(gl,,) be the deformed universal enveloping algebra

Un(gl,) = T (gL, )[[M]/{z ®y —y © x — h[z, y]}.

The classical limit is defined as the limit h — 0 which is correctly defined on
the family of algebras Uy (gl,,). The existence of a limit follows from the common
Poincare-Birkhoff-Witt basis for this family.
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3.1.2 Quantization of an integrable system

An integrable system is a pair: a Poisson algebra A, and a Poisson commuta-
tive subalgebra H, of the dimension dim(Spec(Hy)) = 1/2dim(Spec(Ay)). An
algebraic problem of quantization is the following correspondence

HClCAd@HCA

satisfying the conditions

o A~ A,[[h]] as linear spaces, the map lim : A — A is called the classical
limit;
e H is commutative;

e lim:H ="Hgy

Remark 3.2. In the case of quantization for the symmetric algebra of the Lie
algebra gl,, the correspondence can be simplified. Let us consider U(gl,), which
is a filtered algebra (the filtration is given by degree) {F;}. The projection map
to the associated graded algebra induces a Poisson structure:

(3.1) U(gl,) — Gr(U(gl,)) = @:F:i/Fi-1 = S(gl,).

We will associate this map with the classical limit operation. On generators a € F;
and b € F; the induced commutative multiplication and the Poisson bracket are
given by the following expressions:

a-b=axbmod Fiy;_1, {a,b} =a*xb—bx*amod Fj_o.

3.1.3 The Gaudin model quantization problem
The classical part is defined by the following objects

Aa = S(al,)*" ~Clgly @ ... @ gl}],
H. — the subalgebra generated by the Gaudin Hamiltonians(2.15).

The algebraic part of the quantization problem is reduced to constructing a
pair with the quantum observables algebra coinciding with the tensor power of
the universal enveloping algebra:

A=U(gl,)*",

such that the commutative subalgebra H is a deformation of the subalgebra gen-
erated by the classical Gaudin Hamiltonians.
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3.2 Quantum spectral curve
3.2.1 Noncommutative determinant

Let us consider a matrix B =), i FE;; ® B;; whose elements are elements of some
generally speaking not commutative associative algebra B;; € A. We will use the
following definition for the noncommutative determinant in this case
1 TO
det(B) = — > (=1 Br(yor) - Briw) oto-

" r,0€X,

This definition is the same as the classical one for matrices with commuting ele-
ments. There is an equivalent definition. Let us introduce the operator A,, of the
antisymmetrization in (C™)®"

1 g
Anvl®...®’vn:mzs(—1) Vo(1) @ - .. & Vg(n)-
gEon

The definition above is equivalent to the following
det(B) = TTl...nAnBl . Bn,
where By denotes an operator in End(C")®™ ® A given by the inclusion

Bi=) 1®...® E; ®...®1® By,
i e

the trace is taken on End(C™)®".

3.2.2 Quantum spectral curve

Let us call a quantum Lax operator for the Gaudin system the following expres-
sion:

N el
ij s=1 §

L(z) is a rational function in the variable z with values in End(C") ® U(gl,,)
Let us define a quantum characteristic polynomial of the quantum Lax operator
by the formula

QN

n

(3.2) det(L(z) — 0.) = Y _ QIi(2)dr7*.

k=0

The following theorem says that this generalization of the classic characteristic
polynomial (2.15) makes it possible to construct quantum Hamiltonians.
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Theorem 3.3 ([42]). The coefficients QIx(z) commute
[QIk(2), QI (u)] = 0
and quantize the classical Gaudin Hamiltonians in the following sense
lim(QIy) = I.

The proof of this fact uses significant results of the theory of quantum groups
such as the construction of the Yangian, the Bethe subalgebras and generally fits
into the concept of quantum inverse scattering method. The following sections
introduce the necessary definitions and provide an outline of the proof of the
theorem of quantization of the Gaudin model.

3.2.3 Yangian

This Hopf algebra was constructed in [23] and plays an important role in the
problem of description of rational solutions to the Yang-Baxter equation. Y (gl,,)

first and foremost is an associative algebra generated by the elements tl(»f) (in this
sectioni=1,...,n; j=1,...,n; k=1,...,00). Let us introduce the generating
function

T(u,h) € Y(gl,) ® End(C™)[[u"", h]],

which takes the form

T(u, h) = Z Ez'j (%9 tij (U, h), tij (u, h) = 52‘]' + Z tl(f)hku_k,

1,J k

where E;; are the matrix units in End(C"). The relations can be written with the
help of the Yang R-matrix

h
R(u)=1-— EZE” ® Ej;
.3
and take the form
(3.3) R(z —u,h)T1(z,h)T(u, h) = To(u, h)T1(z, h)R(z — u, h).
Both parts are regarded as elements of
End(C")** @ Y (gl,))[[= ™", z,u™", u, h]],

the rational function ﬁ in the R-matrix formula has an expansion

1 S
Z—u :Zzl“'
1=0
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We use the following notation

T1<Z, h) = ZEZ] &® 1 X tij(z, h), TQ('LL, h) = Z 1 &® Eij &® tij(u, h)

i,9 ,J

The Yangian is a Hopf algebra whose comultiplication is given in terms of the
generating function by the following formula

(id ® AT (2, h) = T (=, h)T?(z, h),
where we use the notation

T1<Z, h) = ZEZJ X tij(Z, h) & 1, TF2(Z7 h) = ZE” ®1® tij(Z, h)
0]

1,J

The evaluation representation Let us remind the construction of the so-
called evaluation homomorphism p : Y (gl,,) — U(gl,,). To do this we consider a
rational function on u, h with values in End(C") ® U(gl,,) given by the formula

h def h®
3.4 T.(u,h)=1+ — E;; i =1+ —,
(3.4) (u, h) "’u; j & €ij + W

where e;; are the generators of gl,. T¢,(u, h) satisfy RTT relations (3.3), hence the

map {tgjl-) — € tz(»j’?) +— 0 with £ > 1} determines an algebra homomorphism.
Let us consider the tensor product U(gl,,)*~[[h, h~!]] and the generating func-

tion (3.4) for the evaluation representation to the [-th component of the product

T! (u—2z, h). It turns out that for an arbitrary set of complex numbers (21, . .., zy),

the expression

(3.5) T(u,h) =T (u — 21, h)T2 (v — 29, h) ... T (u — 2y, h),

which is a rational function on u and h with values in End(C") @ U(gl,)*",

determines a homomorphism p, : Y (gl,) — U(gl,)®*"[[h,h™!]]. More precisely,

the following lemma is true.

Lemma 3.4. The map, defined on the Yangian generators tgf)

element of the expansion coefficient of T®(u,h)h™* at u=* in u = oo gives an
algebra homomorphism

as the ij-th matrix

pa 1 Y (gl,) — U(gl,)*V[[h,h "]

This lemma follows from the properties of the comultiplication homomorphism
and the evaluation homomorphism.
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3.2.4 The Bethe subalgebra

This subalgebra is closely related with Quantum Inverse Scattering Method (QISM)
[21, 44, 45], namely its generators are quantum integrals of the Heisenberg XXX
model [44, 43]. Here we use the description from [46] (section 2.14): let us consider
an n X n-matrix C' and T'(u, h) - a generating function for the Yangian generators
Y (gl,). Let us also use the notation A, for the antisymmetrization operator in

(C™)®" and the following elements of End(C™)*" @ Y (gl,,)[[u, u™", h]]

To(u,h) = 1®.. @10 E; ®1®... @ 1@ t;(u,h).
i

It turns out [46] (section 2.14), that the expressions of the form
(3.6)m(u, h) = TrA,Ti(u,h)To(u —h,h) .. . Tp(u—h(k—1),h)Cry1...Cp

for k = 1,...n, which are called the Bethe generators, constitute a commutative
family in Y (gl,,)[[v,w™!, h]] in the following sense:

[7:(u, h), 7 (v, h)] = 0.

In addition, this family is maximal if the matrix C' has simple spectrum. The
trace in the formula (3.6) is meant over matrix components End(C™)*", the series
expansion of T,,,(u — h(m — 1), h) is realized at u = oo, for example

1 =, hm
Toh = 2 g

m=0

Next we will consider an identity matrix C' and images of the Bethe generators
with the evaluation homomorphism. For simplicity, we refer to the same letters

(3.7) me(u,h) =TrA, T (u,N)Ts'(u—hh) ... T (u—h(k—1),h) k=1,...n.

3.2.5 The commutativity proof

The presence of the comultiplication structure in the theory of quantum groups
allows to use the so-called ”‘fusion”’” method to construct non-trivial integrable
systems. Literally, the method is as follows: let us consider the image T'(z) by
the evaluation homomorphism in composition with comultiplication operations
P ® . @ P AN

TH(z) =T. (2)...TN (z) € End(C") ® U(gl,,)*".

The image of the Bethe subalgebra raises to some commutative subalgebra which
can be described by the generating function:

Qlzh) = TrA(e "= h) — 1), (e o1z h) — 1)
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= Y7z —hh) (1) I

(3.8) = det(e MRz h) - 1).

The expression (3.8) can be represented as a series of 0,. From the commutativity
of the Bethe generators it follows that the coefficients of this series which are
rational functions on u with values in U(gl,)®V[[h]] also commute at different
values of the parameter u. Hence the lowest coefficients on h also commute. These
are exactly the coefficients of the characteristic polynomial of the Gaudin model.
It turns out that the highest coefficient of the expression (3.8) on h has the form

det(e NP=TR(2 h) — 1) = hdet(L(2) — 8.) + O(h™+1)
in virtue of the expansion:
e Ry 1 = h(L(2) — 8.) + O(h?).

Remark 3.5. It should be noted that the independence of the quantum Hamil-
tonians directly follows from the independence of their classic limits, since the
algebraic relations on the constructed operators in U(gl,,)®*”" induces a nontrivial
relation on their symbols. The maximality follows from the maximality on the
classical level.

3.3 Traditional solution methods

The traditional methods solving a quantum integrable system on finite scale are
reduced to the Bethe ansatz method or the method of separated variables which
in turn allow to express the condition on the quantum model spectrum in terms of
the solutions of some system of algebraic equations or the monodromy properties
of some Fuchsian system. Those methods do not suppose any way of solving the
substituting problems. However there is quite rich material in solving quantum
integrable systems in various limits.

Further we explain two basic methods in the case of the simplest Gaudin
model.

3.3.1 Bethe ansatz

Let us consider the quantum sl Gaudin model. The Lax operator in this case

takes the form AG) B o
b= ( (=) —A(:) ) =2

7

hz/2 €;
0= (" i)

where
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The quantum characteristic polynomial is a differential operator of the second
order with values in the algebra of quantum observables:

d PR S il
et(L(Z)_ z): 2_52(2_%)2_;2—%'

2

The Gaudin Hamiltonians are the residues

o = Z hih;/2 + eif; + €jfz"
i#] S
The coefficients at the poles of second order are also elements of the commutative
subalgebra but of trivial nature - they are central in the quantum algebra.

The Bethe ansatz method was firstly proposed for the Heisenberg model but
fits well for a wide class of systems. The Bethe ansatz method for the Gaudin
model was realized in [9]. Let us outline the construction. We consider the sly
Gaudin model in fixed representation V) = V), ®...® V), where V), are the finite
dimensional irreducible representations of highest weights \;.

Lemma 3.6. The vector .

0= HC’(uj)]vac >

j=1
1s the common eigenvector for the ensemble of Gaudin Hamiltonians if the set of
parameters p; (called the Bethe roots) satisfies the system of Bethe equations

1 A 1 .
(3.9) = + =0, j=1,...,M.
25— A T

%

The eigenvalues of H; on the vector 2 are expressed as follows

1 1 Aj
H?:—)\z(Z , _§ZZ_JZ>
j g Y

2 — [y

Proof
In this case the quantum characteristic polynomial takes the form:

det(L(z) — 0,) = 0% — A*(2) — C(2)B(2) + A'(2) = 0? — H(z).

The following commutation relations on the matrix elements of the Lax operator
are also true:

[A(2), B(z)] = =B'(2),  [A(2),Cu)] = (C(2) = C(u)),

[A(2),C(2)] = C'(2),  [B(2),C(u)] = (A(2) = A(u)).



230 Talalaev D.V.

Using this relation and the condition:

H(z)vac >= (i(z - izZZ)2 _ %Z (z—A—Zzl)?> lvac >= hy(z2)|vac >

K3 K3

we obtain:

M 1 1

P

+ 20y, ——T[clm) (Z

=1 2T M Py

+ A(Mj)) -

He — M

Let us remark that the Bethe equations can be rephrased in the form:

S Ay = 0.

vy Mk — M

This proves the lemma.

3.3.2 Quantum separated variables

Let us consider the quantum sl, Gaudin model as in the previous section. An
irreducible representation of this type can be realized as the quotient of the Verma
module C[t;] /)", such that the generators of sl, act as differential operators:

0 o
A = 2t — 4 A, ¥ =

0
R —_— —_— (S) pry
Ot b ot2 A ot,’ / b

Let us explore the problem in the tensor product of the Verma modules which is
realized in this case on the space of polynomials on N variables Clty, ..., ty]. Let
us introduce the set of variables y;, defined by the formula:

Hj(z —Yj)
[Ti(z — =)
They are elements of some algebraic extension of the ring Clty,...,tx]. Let us
denote by the same symbols functions and operators of multiplication by those

functions.
Let €2 be a common eigenvector for the Gaudin Hamiltonians in 777 Clty, ..., tx]

(3.10) H(2)Q2 = h(2)Q2.

C(Z) = C()

Considering both parts of (3.10) as rational functions on z and substituting z = y;
from the left we obtain:

H(y;) = Ay;) — A'ly;)
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1 1 1
hihg 4+ = —hyg.
yj— ) 2 Zk: (yj — =) "

(3.11) = iz v

i %

Using the definition of the separated variables let us express the partial derivatives:

ot t
(3.12) 8y, = L0, =Y ——0,.

A dy; YT %k

Substituting 3.12 in 3.11 we obtain:

(—awéz & )Q—h@jm.

e YTk

Hence the common eigenfunction for the Gaudin Hamiltonians factorizes, its de-
pendence on y; is separated:

Q= Hw(yj).

Each of the factors w(z) is related to the solution to the Sturm-Liouville equation
(02 = h(2))@(2) =0

as follows:

3.3.3 The monodromy of Fuchsian systems

The results of traditional separation of variables in quantum integrable systems
discussed above demonstrate that the spectrum description is closely related with
the families of Fuchsian equations obeying special monodromy properties. These
properties are quite natural in the Heisenberg approach explained in [47], and
correspond to existence of globally defined wave-functions.

In the considered sl Gaudin model it was obtained that if €2 is a common
Bethe eigenvector with values H{* then the equation

(3.13) <02 — }LZ —A(Z(A_ ;)22) — Z £—2> U(z)=0

has a solution of the form
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where the set of parameters ji; satisfy the system of Bethe equations.
This observation was generalized in [48]. Let us consider the quantum charac-
teristic polynomial:

) c@ H;
detlL(2) =0 =0 =3 s =D

)

Let ‘H be the algebra generated by the coefficients of the quantum characteristic
polynomial. A character y of the algebra H is called 77?admissible??? if it takes
values y(C?) = (i +2)\; on central elements.

Theorem 3.7 ([48]). There is a one-to-one correspondence between the set of
7admissible”’ characters x for which the differential equation

2”9

x(det(L(z) = 9:))¥(z) =0

has monodromy +1, and the set of common eigenvectors of the Gaudin model in
the representation V.

In contrast with the traditional Bethe ansatz and separation of variables meth-
ods this spectrum characterization can be generalized to the sl,, case.

3.4 Elliptic case

It turns out that the elements of the algebraic-geometric part of the quantization
problem can the constructed also in the case of the Elliptic Gaudin model: the
quantum spectral curve and the quantum separated variables. Let us remark that
the elliptic Gaudin model can be obtained in generalized Hitchin system frame-
work. This corresponds to the moduli space of holomorphic semistable bundles
with the trivial determinant bundle over an elliptic curve with a set of marked
points. A modified algebraic structure is applicable for this problem, namely
the dynamical gl, RLL equation corresponding to the ”‘elliptic quantum group
E. 1(gl,), defined in [50].

The commutativity in this case is meant modulo the Cartan subalgebra. To
obtain an integrable system one should restrict the constructed family to the zero
weight subspace with respect to the diagonal action of the Lie algebra.

279

3.4.1 The notation

Let us define the so-called odd Riemann 6-functions on an elliptic curve. Let
7 € C, Im7 > 0 be the parameter of elliptic curve C/I", where I' = Z + 77Z - is
the periods lattice. The odd f-function #(u) = —f(—u) is defined by the relations

(3.14) Ou+1) = —0(u), O(u+7) = —e 2"UTTTY(y), 0'(0) = 1.
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Let us also introduce some matrix notation. Let

T:th~a1,j®...®a]v,j
J

be a tensor over an algebra R, where ¢; € R and a;; are elements of the space
EndC". Then the notation 7t*~) corresponds to the following element of
R ® (End C™)*M for numbers M > N:

TRk =N "4 19 ... 0, ®.. ®ay; ®... @ L
J
Here each element a; ; is placed in the £;-th tensor component, the numbers k£; are
pairwise different and the following condition fulfills 1 < k; < M.

Let F(A) = F(A1,...,\,) be a function on n parameters )y, taking values in
an algebra R: i.e. F': C" — R. In this case we define special shifts

FA+P) = FM+P,.... 0+ P

1 8'L’1+.,.+inﬁ’(}\17 . 7/\n) . .
315 = _ : P’L1 .. Pzn

for some set P = (Py,...,P,), P. € R. We do not discuss here the convergency
questions, in our context all such expressions will be well defined.

3.4.2 Felder algebra

Let us introduce the notion of the elliptic L-operator, corresponding to the Felder
R-matrix.

We use the notations {e;}, {E;;} from the section 2.4.2. Let h be a commu-
tative algebra of dimension n. In [50] it was constructed an element of End C" ®
End C", meromorphically depending on the parameter u and n dynamical param-
eters A1, ..., A\,

0(u+h) <
(3.16) R(u; A) = R(uz Ap, ..., \,) = (z(—l_)) Z Ey @ Byt
i=1

where \;; = A; — ;. This element is called the dynamical Felder R-matrix. It
satisfies the dynamical Yang-Baxter equation

R (uy — ug; \) R (uy — ug; A+ REP)R® (uy — ug; \) =
R® (uy — ug; A+ REMYRYD) (uy — ug; \)RI? (uy — ug; A + RE®),
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and the additional conditions

R(21)(—u; )\)R(12)(u; )\) _ 0(“ + h)g(u B h)

(B + BY)R(wA) = R(u; (B + EY),
(D + D")R(u; A) = R(u: \/(DS + DY),
where . .
D=3 Fuae, DY =Y B2
— ToNT TN RN,
We should mention that, in the above formulas, A denotes a vector \q,...,\,,

and the expression A+ hE®) implies a shift of the type (3.15) with the parameters
values P; = hEi(:).

Let R be a C[[h]]-algebra, L(u; A) an invertible n x n matrix over 8 depending
on the spectral parameter u and n dynamical parameters Ay,..., \,. Let Ay, ...,
hn, be a set of pairwise commuting elements of . L(u; ) is called an elliptic
dynamical L-operator corresponding to the set of Cartan elements hy if L(u;\)
satisfies the dynamical RLL relation

R (y — v; )LD (u; A + RE@)LP (; \)
(3.17) = L\ + REW)LW (u; \) R (u — v; A + hh),

and a condition of the form

Let us introduce an equivalent but more symmetric form of RLL relations. For
an L-operator we define the expression:

(3.18) Lp(u) = e_hf)*L(u; A).
The equation (3.17) can be rewritten in the new notation as follows:
319  R®@(u—v; NIV W)LY () = LY () LY ()R (u — v: A + Rh).

The next lemma plays the role analogous to the fusion method in the rational
case, namely it describes a method of elliptic L-operators construction.

Lemma 3.8. If Li(u; \) € End(C") ® Ry and La(u; A) € End(C") ® Ry are
two elliptic dynamical L-operators with respect to two sets of Cartan elements:
h'' = (hi,...,hl) and h? = (h%,... h2), then the product Ly(u; \)Li(u; A+ hh?) €
End(C") ® Ry ® Ry is also an elliptic dynamical L-operator with respect to the
set h = h' +h? = (hl + h2,... kL + h2). Hence, if Li(u; ), ..., Ln(u; ) are
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elliptic dynamical L-operators with the sets of Cartan elements h', ..., h™, then
the matrix

«— m
(3.20) II Zitwr+n D Y
m2j>1 I=j+1

s also an elliptic dynamical L-operator with the following set of Cartan elements
h=>"hi.
i=1

Remark 3.9. The arrow in the above product denotes the order of multipliers
F
with growing indexes: for example, the expression H3>i>1 A; means A3A5A;.

The main example of elliptic dynamical L-operator is given by the Felder R-
matrix: L(u) = R(u —v; A). In this case the second space End(C") takes the role
of the algebra R. Here v is a complex number and the Cartan elements coincide
with the diagonal matrices hy = E,(i) Lemma 3.8 makes it possible to generalize

this example: let vy, ..., v, be a set of complex numbers, then the matrix
— ) m
(3.21) RO (u; {v;};\) = H R (y—vj; A+ h Z W)
m>j>1 I=j+1

is a dynamical elliptic L-operator with the Cartan elements hy = > E,il,z
=1
A more general class of dynamical elliptic L-operators is related with the so-

called small elliptic quantum group e, (gl,) constructed in [51]. This represents
a C[[W)]((A1, ..., A\,))-algebra generated by #;; and hy with relations

tijhie = (hi — O + 1) 5,
tiihe — (Ak — Aty =0,
(3.22) tijlie — tirti; = 0,
oL + 1)
o —h)
o + h, 0 +m), O+ ATHo(m)
o T eI T e

tiktjn — tixti = 0, i # 7,

tiatr; = 0,

withi # &, j # 1, where t;; = 0+ iy, AT = \— A, A = N\ =\ — i+ kb, it
is also supposed that hy, ..., hg, A1, ..., Ax commute. One constructs a generating
function for these generators T'(—u)
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Representing this matrix in the form
(3.24) T(—u) = 9(_u)67h2220(hk+Ekk)aAk Lo(u; )\)ehzgzo hida,

we obtain a dynamical elliptic L-operator Lo(u; A) for the algebra T = e, x(gl,,)[[0]]
with the Cartan elements h = (hi,..., h,), where C[[0\]] = C[[0),, ..., 0),]]. The

elements 0,, = % commute with h; and do not commute with ¢;;.

3.4.3 Commutative algebra

Let us consider a dynamical elliptic L-operator L(u; A) with a set of Cartan ele-
ments hg. This function takes values in the algebra End C" ® fR.
Let us introduce the operators

(3.25) L[m,N]({ui}; )\) _ efhﬁ;m+1>L(m+1)(um+l; )\) .. efhf)(XN)L(N)(uN; )\)7

where m < N. Let us consider a particular case with the parameters values

L s A) = L (s =+ h(i = a = 1)} )

for a < b. Let A, = C((M1,...,An)) be the completed function space. The
operators 13,\ act on the space A, ® C", in turn the operators L%*(u; \) act from
A, ® (C™)®=9) to the space A, ® (C")?t~%) @ NR: fixing u we obtain L (u; \) €
End(C")®¢t=%) @ 2,,, where 2, = A, [e*"] @ R. Let us consider a subalgebra
h C R C AU, generated by the elements hy and its normalizer 2,,:

(3.26) N, = Ny, () = {z € A, | b C A,b}.

Observe that 2A,h is a two-sided ideal in 91,. In [49] the following statement is
proved

Theorem 3.10. Let us define U,,-valued functions
(3.27) tm(u) = tr(A[O’m]L[O’m](u; A),

where we suppose the trace operation over m spaces C". These expressions com-
mute with the Cartan elements hy,:

(3.28) hictm(10) =t (1) P

Hence they are elements of the subalgebra N,,. Moreover these generators commute
modulo the ideal A, C N,,:

(3.29) b (u)ts(v) = ts(v)tm(u) mod 2L,,b.
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3.4.4 Characteristic polynomial

As in the rational case the generators t,,(u) can be organized into a generating
function called the quantum characteristic polynomial. This generating function
is constructed as a ”‘determinant”’ of the corresponding L-operator.

Proposition 3.11. Let us consider the matriz M = e_hﬁ*L(u; )\)eh%. Then the
determinant of 1 — M generates the family t,,(u) in the following sense:
(3.30) P(u, ") = det(1 — e "D L(u; N)e"dn) = 37 (< 1)t (w)e™ 50,

m=0
where to(u) = 1. This property induces the commutativity of the quantum charac-
teristic polynomial with elements hy, and the pairwise commutativity modulo A,.b
of the generating functions:

(3.31) [P(u, e, hy] =0, [P(u,e™), P(v,e")] =0 mod A,b.

3.4.5 The limit and the Gaudin model

Let us consider degenerated elliptic dynamical RLL relations at A — 0. This
limit describes the elliptic quantum Gaudin model. To do this we use a shift of
the L-operator. The limit of the generating function for the generic family gives
the generating function for the Hamiltonians of the elliptic Gaudin model. The
result obtained generalizes the works [52],[53].

Let L(u; A) be a dynamical elliptic L-operator of the form

(3.32) L(u; A) = 1+ hA(u; A) + o(h),

those matrix elements are elements of the algebra Ry = PR/AR. The matrix
A(u; A\) is called a classical dynamical elliptic L-operator. It satisfies the rLL-
relations

W) — DD A@ .y _ D@ ﬂ e )) —
(3.33) [AD(u;A) = DV, A®(v; \) — D) ;hka)\r(u v;\) =
= [AD(w; \) + AP (03 \), r(u — v; \)]

with the classical dynamical elliptic r-matrix

0' (1) &
E; ® E;
o) 2

0'(A\ij)
(3.34) +
= (5

ij

r(u; A)

0(u)0(—Ai;)

Eu® B+ Ey;® E]> .

The matrix (3.34) is related with the Felder R-matrix (3.16) by the formula
(3.35) R(u; \) = 14 hr(u; A) + o(h).
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Theorem 3.12. Let A, = Ro @ A, [0h\] 777 N, =Ny, (h) ={z € A, | hbx C
A.b}, where A, = C((A\1,..., ). Let us define a set of N,-valued functions
Sm(u) by the formula

(3.36) Ou,d,) = det((% — Dy + Alu; A)) ism(u)<§u>nm,

m=0

where so(u) = 1. They commute with the Cartan elements hy:
(3.37) hiSm(u) = spm(u)hg

and moreover pairwise commute modulo A,b:

(3.38) Sm(u)s;(v) = s1(v)8,(u) mod A,b.

The values of the functions s;(u), sa(u), ..., s,(u) generate a commutative
subalgebra in N, on the level h, = 0. This means that the images of these
elements with respect to the canonical homomorphism N,, — N,/ A,b pairwise
commute.

The quantum elliptic Gaudin model is defined with the help of the Lax operator

0" (N\ir)

(3.39) Ay (u; N) = eji(u; N), Nii(u; N) = e(uy N) + Z 8 0w0)

ki

hk7

with coefficients expressed by the formulas:

0 (u =)™ 0 (u)\m
(3.40) eii(u) = 9(( ))e Z(ml) (6(<U)>> ez,

Olu—z+XNj) (=)™ /0(u+ )\ ™
(341)  ey(w ) = M—me,j_% — <e(u)9(xij)> €12

An analog of the evaluation representation is the homomorphism to the small
elliptic quantum group defined by the generating function (3.24). Let us consider
an expansion on the parameter A of the dynamical L-operator corresponding to
the tensor power of the small elliptic group. It turns out that the coefficient at i
of this expansion coincides with the elliptic Gaudin model L-operator.

3.4.6 The explicit form of the sl, elliptic Gaudin model

The L-operator of the elliptic sly Gaudin model considered in [52, 53, 54] has the
form

o Ay = (M2 B
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where A = A\j3 = A\; — Ay and the currents are expressed by the formulas

The fact that the L-operator depends only on the difference A = \; — Ay allows
to restrict the generating function of the commutative subalgebra Q(u, d,) to the
space A = {a € Ay | (O\, + 0),)a = 0} C A, coinciding with C((\12)). Let
A =Ry @ A[0,] then the values of s,,(u) are elements of N' = Ny ((h) = {z € A|
hz € Ah}. In virtue of the representation p: hy + hy — 0 the operator lA)A has
the form HO\, where H = E1; — FEs».

Let us find the quantum characteristic polynomial in this case:

Q(u,dy) = det(% - ﬁ)\ + /~\(u, ) — 0'(A) ﬁ) -

(N) 2
oy [ On )/ =GR/ 1)
B e (u) 2+ 0h — bt (uw)/2 — GRN/2
(3.43)= (a%)2 - 998; h% — Sy(u),

where h = hy — hy. Sy(u) is an N-valued function
Sx(u) = (0x — h(w)/2)* + Duh(u) /2 + ex(u) f(u) mod Ah.

The commutativity condition can be formulated in terms of this generating func-
tion as follows:

[Sa(u), Sx(v)] =0 mod Ah.

Using the commutation relations

0

[eX (), S (W)] = =3P (u) + (

one can simplify this generating function:

(3.44)  Sy(uw) = (0x — h(u)/2)2 + (ex(w) fa(u) + fa(w)ex(u)) /2 mod Ah.
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4 Solution for quantum integrable systems

As was mentioned above the traditional methods of solving quantum integrable
systems on the finite scale in some cases allow to solve the Hamiltonian diagonal-
ization problem in terms of solutions of a system of algebraic equations (the Bethe
system). However, the system of equations itself, in cases where it can be deduced,
turns out to be quite complicated and hypothetically admits no algebraic solu-
tion. In this section we use an equivalent formulation for quantum eigenproblem
in terms of Fuchsian systems with special monodromy representation. In turn the
construction of relevant Fuchsian systems uses the quantum characteristic poly-
nomial of a model. This observation also distinguishes the quantum characteristic
polynomial among others generating function for the commutative subalgebra.

4.1 Monodromic formulation
4.1.1 A scalar and a matrix Fuchsian equation

Consider a Fuchsian system defined by a connection in trivial bundle of rank 2 on
the disk with punctures:

(4.1) Az) = ( ann(z) aia(2) ) _ i A;

921 (Z) GQQ(Z)

with residues satisfying the conditions:

—K

(42)  Tr(A)=0; Det(A)=—d5 S A= ( . 0 ) .

The Fuchsian system is written by the equation
(4.3) (0, — A(2))¥(z) = 0.
The components of this system may be represented as follows

1/)1 = any; + ate,
wé = a1 + axns.

The first vector component satisfies the second order equation
| = (alp/ai2)¥ + wibn,
where

! 2 /
U = aqq + aj; — (111((112/a12) + a12a9;.
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With the following variable change: ® = 41 /x, where x = /a2, we obtain the
equation

"+ UP =0,
with the potential defined by the formula
(4.4) U =x"/x = (diy/ar2)x'/x — u.

Introducing the expression for y to U we obtain:

(4.5) U 1 (ay, " P ? + P / 2
. = = | — — = | — 11— — A1 — Q77 — Q120921 .
9 1o 4 s 11 1o 11 11 12421

Let us suppose that a13(z) has no multiple poles
k-2

Hj:l (z —wy)

.

[Tisi (= — 2)

We should note that the number of zeros agrees with the normalization (4.2). The
expression for the logarithmic derivative can be simplified:

az(z) =c¢

k—2 k

a/
4.6 12 _
( ) a12 ]Zl Z — Wj zzl z — ZZ
The potential U takes the form
k—2 k—2 k
—3/4 1/4 + detA; H,
4.7) U = — -
(47) (z—w])2+,Z (z — 2)? Zz—wj Zz—zl’
7j=1 =1 1 =1
in which
1 1 1
Hw - s - )
;= )+ (; Ay _ZZ>
1 , 1 Tr(AA;) +diy +al, + 1/2
H, = (=+4d —
= (3ra) S-S —

Let us remark that the coefficients at (z — z;) ™2 take values

In what follows we identify these factors with the values of the quadratic Casimir
elements of the Lie algebras sly in the representations of highest weights \; (\; =
2d; — 1 in our case).
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4.1.2 Dual equation

As was shown in previous calculations, the matrix form of the connection leads to
the Sturm-Liouville operator with additional poles at points w;. A consideration
of the second vector component of a solution of the matrix equation W, leads to
another scalar differential operator with poles at points z; and additional points
w;, determined by the formula

ans(z) = A= E )

[Timi(z — =) '

Let us call the corresponding Sturm-Liouville operator

P —U

z

the dual sls-oper. In this case, the potential is expressed by the formula

o

-2

k—
(4.9) T = i+21/4+dem Zl

g A ()

.~
i,
+Z—z—z,-'

wj i=1

<.
Il

4.1.3 Backup

In this section we construct an inverse map, namely for a Sturm-Liouville operator
that has trivial monodromy we construct a rank 2 connection of the form (4.3)
with the monodromy representation in the subgroup Z/27Z C GL(2) of scalar
matrices £1.

Let us consider an ansatz for the solution of the matrix linear equation (4.3)

(0, — A(2)¥ =0

of the type
k
(4.10) P = H(z —z) " ii(2), =12
i=1
which satisfy
M
¢ = H(Z - ’7])
j=1
Mo
(4.11) P2/ 1 = —.

Let us rewrite the system (4.3) taking into account the new parameterization
(4.11)

(4.12) 01 [Yr = ar1 + arad2/ 91,
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(4.13) (001 /Y1) (@2/ 1) + O0-(d2/D1) = ao1 + axnd2/¢1.

Let us represent these equations more precisely:

(4.14) _Zziizi—i_z 1 =fo;+zza_hzizzf@;
) ? J

Z_ .
A i '7]

S; 1 Q; %
(‘ZZ_ZﬁZ )Z ey

Z_ . 2_ .
7 i j j

(415 > Za_% - Z ZCElZi ZJ: e ij%,

The comparison of residues in both parts of (4.14), (4.15) at the points z = z;
gives:

. . o
(4.16) —si = djy diy,y —
J

Y
Zi = j

(4.17) —Z e s = aél—a’ilz %

j i ’Y] ] i '7]

These equations coupled with the condition of zero trace al; + ab, = 0 lead to
a condition that s; must be one of the eigenvalues of A;, in particular, can be
adopted as s; = d;. Let us consider the behavior at the poles z = ;. Let us
note that the second order poles of the equation (4.15) at these points cancel.
Calculating residues of both sides of the equations (4.14) and (4.15) we obtain

(4.18) 1= o)

(4.19) o5 <_Z%iz,+z >+Z Q; _ _ajz aj,
i b P

vy Vi — Vi 'Vj_zi‘
Let us recall that one of the normalization condition controls the diagonal form
of the residue at oo

i
P

)
Vi i

YTV

k

(4.20) D al, =0,
1=1
k

(4.21) > ah, = 0.

i=1
We also note that the choice of the Sturm-Liouville operator poles involves zeros
of the rational function aj2(2), which is determined up to a constant:

[ (2 — wy)
H?:1(Z — zi) .

a2(z) =c¢
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Then the condition (4.20) will be satisfied automatically. The coefficients a}, are
expressed by the formula

c H](Zz — w;)
Hj;éi(’zi —zj)

The coefficients a}; are expressed by the following formula in virtue of (4.16)

Hj:l(zi — w;) Qq

Hj;éi(zi — %) AT o8

(4.22) aly =

(4.23) al, = —s; —c

Let us substitute the expressions for a}, and ai; to the equations (4.18), (4.19).
Then expressing «; from the first and substituting to the second we obtain:

B 25y, (e = wi) [ (m — 25)
Xk: A ; Z ~ s (2 = 20) TL(ym — ws) (05 = )

IL,( — wi) Hi(% ) _0
[Li0y = z) o ILGOw —wi) (s =)

+

An equivalent form can be obtained if one divides both sides by %

_ 25k 12— wi) [ (v — 25)
Z '_Zk+z +an¢kzk_zl>ns(7m— '—Zk)

ws) (7
! % [1:( % —w; ('y W Gy —2)

Let us consider the left-hand side of equality as a rational function F(vy;) and
calculate its primitive fractions decomposition at poles zx, wg, 7 and oo. It
turns out that this decomposition will look like:

(421)  Fly) = - 223“1—2

Vi — %k

+2Z

— W
Vi k z;é] Vi

Thus, the equality is equivalent to an equation of the Bethe system. Let us
demonstrate, for example, the residue calculating at the point ; = w;

[T (zk —w1) Hs;ék( = 2s)
Hz#;(zk - 21) Hs#i(wl ws) (w; — 2k)
[ (wi — 2) [1,(zx — wi)
[ L zi(wi — ws) 5= T (zn — 20) (wy — 21)*

Res’?j:wz‘F(’Vj) =

(4.25) =
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Let us write down the expression on the right side of the equality

(Res.—y, ®(2)) 7! Z Res,—,, ®(z),

where

_ Hz(z - wl)
RS s NP ron R

and therefore is —1.
The sufficiency condition was proved in [55].

Theorem 4.1. If the set of numbers ~;, where i =1,..., M, satisfies the system
of Bethe equations (3.9) with the set of poles z1, ..., zx and wy, ..., wx_o, and the
set of highest weights 2s1 — 1,...,2s, — 1 and 1,...,1 as parameters, then the
vector

o eeflean(2)

where
M
§Z51 = H(Z - ’7])7
j=1
Mo
4.27 = J
( ) (b?/(bl ]2:; s 7]7

solves the matriz linear problem (4.3), where the connection coefficients are given
by

Hj (2 — wy)

Hj;éi(zi — zj)’

and the coefficients a', and ab, are determined form (4.16), (4.17). The conditions
of normalization (4.2) are fulfilled.

(4.29) aly, =

Proof. Actually, we should prove just that normalization condition (4.21) does
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not depend on the choice of the parameter ¢, in particular, it may be taken equal
to 1. Indeed, on the basis of (4.16), (4.17) we obtain:

Vi Hj;éi(zz - zj) Zi =g

We need to prove that

(4.31) ) 2s; Z

+ZHJ#% ZZ_Z) (;Zﬁ'_j%) -

Then the first summand of (4.31) using the Bethe equations can be converted to
the following:

-3 =

Zi —

;25122 -
(4.32) Zaj (—Z ! +Z%_wz—2z >

Vi — Zi

Now we will simplify the second summand (4.31) changing the order

[1;(zi —wy)
ZO"”O‘IZHW —z3><zi— )

—y Vm)<'z%

(4.33) + Z ) Z T Z])(:j)_

J#Z

Vim)?
Considering the second summand (4.33) let us note that

H]‘ (i — wy)

(454 [Late— %)@ — )

= _a'Ymél (ﬁym)7

i

where

w]) o Hj(’ym_wj)
(4.35) H(m) Z Hm o )( =) ILOm—2)

Therefore, the expression (4.34) becomes:

Hj(%n_wj) 1 1
(4.36) Tom=2) <¥7m_w —XS:%_ZS>,

s
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which is reduced with the relevant part of (4.32). Let us consider the first sum-
mand (4.33), this also can be simplified:

[1;(zi —wy)
Hj;éz‘(zi — 2i)(zi — ) (2i — W)
_ Hj(% — w;) B Hj(fym — wy)
(4.37) T ILoi- )00  ILOw = 2)0m =)

i

Substituting the expression in (4.33) we finish the proof [J

4.2 Schlesinger transformations

There is a discrete group of transformations that preserve the connection form
(4.3) and, moreover, do not change the class of monodromy representation. How-
ever, these changes shift characteristic exponents at fixed points by half-integer
values. Such transformations are called Schlesinger, Hecke or Backlund transfor-
mations depending on the context. They have simple geometric interpretation
explained in the beginning of this section.

4.2.1 Action on bundles

Let us consider a curve C, a holomorphic bundle F on it, the corresponding sheaf
of sections F, the additional set of data x € C' and a point of the dual space to the
fiber [ € F. Then the lower Hecke transform T, ;) E is defined by the subsheaf
F'={s € F:(s(x),l) =0}, which in turn corresponds to a certain holomorphic
bundle on the curve C.

The equivalent definition can be defined in terms of gluing functions. Let us
consider the action on holomorphic bundles on CP!. In virtue of the Birkhoff-
Grothendieck theorem [56] any holomorphic bundle on CP! of rank n is isomor-
phic to the sum of line bundles O(k;) @ ... ® O(k,) for a specific set of integers
(k1, ..., ky) called the type of a bundle and determined up to the symmetric group
action. Let us consider the open covering of CP! consisting in: U, - a disk around
oo which does not contain z = z;, i = 1,..., N and the domain Uy = CP"\{oc}.
We consider holomorphic rank 2 bundles and parameterize them by gluing func-
tion G(z) which is a holomorphically invertible function on Uy N Uy with values
in GL(2). Let us say that a pair Sy (2) € O (Uy,) and Sy(2) € OP(Uy) defines
a global section if Sp(z) = G(2)Sx(2).

We describe the transformation on bundles in terms of actions on correspond-
ing gluing functions defined as a multiplication on the left by an element

(4.38) Gi(z) =G, ( e ) G

for some constant matrix G5 and some point z, € U
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Remark 4.2. The action on the space of gluing functions can be reduced to
the action on the isomorphism classes of holomorphic bundles if one chooses G
appropriately. If changing a trivialization in Uy by T'(z) we change also the matrix
G as follows: T'(z5)Gs. This is obviously referring to the invariant definition above.

We will investigate the composition of these changes applied at two points.

Lemma 4.3. A composition of two transformations specified by an expression
Gi(z)Gj_l(z), for a generic choice of matrices G;, G preserves the trivial bundle.

Proof It is sufficient to find a decomposition for G(z) = Gi(2)G; ' (z) with
G(z) = Gij(2)Go(2), where Gyj(2), Goo(2) are invertible at Uy, U, respectively.
The thought-consideration for this evidence is the cohomological dimension count
in families at a generic point. Indeed, for a particular choice G} 1Gj =1 we
get a trivial bundle which is semistable and hence minimizes the dimension of
H°(End(V)) for V of degree 0. In this context, the trivial bundle is generic in the
family of bundles for different G.

Despite the general argument here we propose a proof in spirit of the decom-
position lemma in [56]. Let us introduce the notation

(4.39) G; = ( yl 551 ) .

We can decompose the product

. ' z 0 —1,v (Z — 1)_1 0 1
(4.40) G(z) = G; ( 01 )Gi Gj ( 0 1 G
into the alternative product
G(z) = Gij(2)Goo(2),

where G;;(2), Goo(2) are holomorphically invertible functions on Uy, Uy, respec-
tively. The conventional calculations enable us to present the second factor in the
form

Yi—2Y;+T;YiY;
(1—=z;y:)(1-22;y; +;y5) 1-zjy;

2(l—zjys) A—ajy;)—o; (i =2y —54iy;) T
Goo(z> _ (1=2z;y;+z;v;)(1—z;y;) (1—z;y;)(2—1) (l—zjyi)(ll—mjyj)(z—l) )

4.2.2 The action on connections

The action of Hecke transformations on classes of holomorphic bundles can be
extended to the space of pairs: (bundle, connection) when certain conditions are
satisfied. Let us describe in detail the induced action. A connection is a sheave
map satisfying Leibniz rule with respect to the action of the structure sheaf:

A:F—FeQ.
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Hecke transformations can be defined on the space of connections preserving the
space Ann; = {v € F, :<l,v >=0}

A, Annp — Anng ® Qi

In our case we consider the composition of pairs of Hecke transformations
localized at z;, zj, preserving the trivial rank 2 bundle.

As is mentioned above, the action can be defined by using the gluing functions
language. Let us consider the trivial bundle specified by the gluing function 1.
Hecke transformation change the bundle structure, the global section is defined
by the pair Sy, S, such that Sy = GS, where G = G;;G. One can define the
action on connections as follows: let 0, — A be a connection in the trivial bundle,
determined by this expression on both opens, the transformed object is the pair
of connection forms:

0,— A over Uy,
G(0.— AG™  over U

After the basis change in Uy, of the type S‘; = (G S~ We obtain the connection
of the form

(4.41) 0, — A — G0, — A)GL.
The trivialization change in Uy of the kind §0 = Gi_leO gives the following
(4.42) G0, - AG' — Gi_le(&z — A)G7'Gy = G (0, — A)G.

Therefore, the transformed connection is of the same type as the initial one. The
analytic properties at oo are preserved in virtue of the fact that G, is holomor-
phically invertible in U,.

Using the results of the previous sections we calculate explicitly the Hecke
action. To preserve the normalization condition A(z) at oo it is necessary to
consider transformations of the kind

G(z) = G (00)Gu(2)

[oe)
1 z1(yo—2y1+z1yoy1) z1(1—2z1y0+T191)
— _ (I1—=z1y0)(1—z1y1) (1—z1y0)(1—z191)
(4'43) VI | < Yo—2y1+Z1yoy1 1-2z1y0+z131 :
(I=z1yo)(1—z191)  (I—z1y0)(1—21Y1)

Then one just needs to apply the gauge transformation é(z) to the connection
A G(2)AG™Y(2) + 0.G(2)G7(2).

The complete family of Hecke transformations in the case of 3 points associated
with the analysis of the Painleve VI equation was described in [57].
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Remark 4.4. The choice of the highest weights 1 in moving poles w; is not
obligatory, but in certain respect, the most general. One can consider a potential
of the form

k

m k—2 k
(4‘4M:Z—1/4(nj+2)77j +Z 1/4 + detA; +Z Hy, +Z H.,
i=1 '

G-wP & TG-ap
with the higher values of weights. It can be implemented if one requires that a12(2)
have zeroes w; with multiplicities 7; satisfying the condition » 7" n; = k — 2.

The local analysis at the poles shows that the eigenvalues of residues A; trans-
form according to the 4 following rules depending on the choice of the low and
upper Hecke transformations subspaces:

oo Ay ) — (oL — 1,0,
oo e Ay e) = (it L A+ 1,000,
(oM hgy ) — (=1 — 1,00,
oo Ay ) — (=1 A+ 1,.00).

The result obtained makes it possible to treat recurrent relations on the space
of solutions for the Bethe equation system. The most interesting in the pro-
gram of explicit solving of quantum systems is the set of transformations lowering
the highest weight values at both points. The consecutive application of these
transformations could reduce the highest weight to zero, which corresponds to
the trivial representation of the quantum algebra and hence the trivial quantum
problem.

4.3 Elliptic case

The elliptic sl Gaudin model is provided by a similar technique of quantum model
solution including the quantum spectral curve, quantum separated variables and
Hecke symmetries on the spectrum.

4.3.1 Separated variables

Let us recall a conventional method of separation of variables for this system
[53], [59]. As in the rational case we consider the sl Gaudin model with fixed
representation V =V, ®...® V; of the quantum algebra U(sly)®*, where V; is the
finite dimensional irreducible representation of the highest weight A;. V; can be
realized as the quotient of the Verma module C[t;] /¢, such that the generators
of sly act by differential operators:

9
ot

2 9
B — o, Ay
o2 Mo

+ A, e = —¢ & =t
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Let us start with study of the quantum problem on the tensor product of Verma
modules W = Cl[ty, ..., t;]. We introduce the variables C,{y;} defined by:

b Ou—us—A) i O(u — ys)
; B —u)0(—N) "~ CSHI 0 —uy)

Let us now represent the elliptic Gaudin model eigenvector as a function of intro-
duced variables:

(4.45) SA(W)UC Y1y yk) = Sx(W)QUC Y1, .o Yk)-

In this formula s)(u) is a scalar-valued function on u of the form

(4.46) sy(u) = > ciplu—u) + 3 diw. ¢ = N2/4+ A2,

uz) ’
Setting u = y; in (4.45) we obtain:
k /
< J0 1 0 (y; — us)

2
— — = A) Q = Q0 i
ayj 92 9<y] — us) 8) (Ov Y1, ayk) S)x(y]) (07 Y1, 7yk)

This equation induces a factorization of an eigenvector:

Q(Cv Y1y ayk’) =C* Hw(yj)a
J

moreover it may be argued that the expression w(u) = [[*_, (u — us)~*/%w(u)

associated with the component of the eigenvector satisfies the equation
(4.47) (92 — sa(w)w(u) =0

Therefore, each equation (4.47) of the form (4.46) having solution s, (u) with half-
integer exponents at {uq, ..., u;} and meromorphic outsides these points, corre-
sponds to an eigenvector for the elliptic Gaudin Hamiltonians in representation
V, obtained by projecting the vector (2.

Conjecture 4.5. There is a one-to-one correspondence between this kind of dif-
ferential operators and the eigenvectors of the model in the representation V.

Through the following sections we will consider only such eigenvectors for
the Gaudin model that correspond to elliptic Sturm-Liouville operators with the
described analytic properties.
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4.3.2 Bethe ansatz

The traditional Bethe ansatz method in the elliptic case [59] can be obtained
considering the following particular solution with simple zeroes

(4.48) (u) = H 0N (u — w;) H 0(u—;)

for the elliptic Sturm-Liouville equation

(4.49) 92— ciplu—u) —Zd-M W(u) =0
: u i 1 1 i 2 0<U . UZ> .
This condition is equivalent to the following system of equations:

_ Wi —
.o (Zm )

) N0 (u; — uy)

— %; 20(u; — u;) )’
0/ j U; z

(4.50) 0 = ZA/Q 90 u; Ze

(’Yj z
the latter is called the elliptic Bethe system.

4.3.3 Matrix form of the Bethe equations

In this section we find a matrix Fuchsian system equivalent to the elliptic Sturm-
Liouville equation (4.49),

(4.51) (O — A(w))¥(u) = 0,

v = (120

i 0 (u—=z;) u—z;—N\)
Alu) = (an(u) CL12(U)) ( Zallgu Z) Zamg(u 21)9 ))

agi(u) ag(u) Zame ; Zil);{\;) Yo al 0 (u Zl).

The equivalence relation of the matrix and scalar systems is the following: the
function w = 11/ /a2 solves the equation w” — Uw = 0, of the same form as
(4.47), with the potential whose highest term is given by the formula:

Uu) == (1/4+det(A))p(u— z) + Y 3/4p(u—w;) + ...

where
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Here the points w; are defined by the condition

A1 0(u —wi)
H 9(“ - ZZ)

In turn, A; are defined as residues of A(u) at z;.

CL12(U)

Remark 4.6. Note that the sets of poles of the Sturm-Liouville operator and of
the matrix problem do not match, the first one is compiled from two subsets

{ug, ... ,uy} ={z1,...,z,w1,...,w}.

It turns out that the method of construction of the solution to the ma-
trix problem given a solution to the Sturm-Liouville equation is also explicit.
Let us consider a scalar problem that corresponds to the set of marked points
{z1,...,z;,w1,...,w}, the set of highest weights 2s; — 1,...,2s;, — 1,1,...,1}
and the set of Bethe roots {71,...,7,}. Then the 2-vector function ¥ with com-
ponents:

k p
P = H U — u;) Hﬁu—%
i=1 j=1
"L aif(u — 5+ A
(4.52) g = Y U 0(1{“ _V;J)r L,
=1 !

where coefficients «; are given by the formula

o = [, 0(v; —wi)
T ILOGy —w)
satisfies the matrix equation (4.51).

An explicit calculation shows that the equation (4.51) for W given by the
expression (4.52) is equivalent to the following system of equations:

at < al
det( 11' Si 12 ) — 0,
ay a22

l

~Yes - g - S e g <o
wi)

k ( i uk k 1#£] — i

I 9(%
Hz 0(7J - uZ)
The system of equations means that exponents are eigenvalues of the residues of

the connection and the set of v; satisfy the elliptic Bethe system (4.50) corre-
sponding to the set of marked points

= Oéj.

{uy, .. up,wy, ... wi}

and the set of highest weights {2s; — 1,...,2sx — 1,1,...,1}.
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4.3.4 Hecke transformations

Let us describe in more details how the Hecke transformations are calculated
over an elliptic curve. The most suitable way of parameterization of holomorphic
bundles for an elliptic curve X is the lift of a bundle to the universal covering C
([58] (2,6)). The monodromy group Z? acts by homomorphisms on the sheaf of
sections *& corresponding to the bundle £. In case of the degree 0 line bundle
the only multiplier set, up to equivalence, is the set of quasiperiodic factors of the
expression:

fe) = o

for A € 2. Let us denote the corresponding line bundle by O,. The Hecke transform
at a point w supposes considering the subsheaf of O, taking values 0 at w. This
sheaf is isomorphic to the sheaf of sections of some line bundle of degree 1

s(2)
0(z —w)

s(z) —

This map is an isomorphism due to the property that 6(z) has a unique zero at z =
0. The Hecke transformations on connections on the rank 2 bundle Oy, ® O_y 2
construct connections on a bundle O, , ® O_, /> as follows. Let the residues of
the connection have the decomposition:

A = a% a(f%)') —G@-<di : )G-l
%Z1 —af 0 —d; '

where G; are constant matrices. Then the connection is transformed by the gauge
transformation with the group element

(1 0 - 0~1(z—2) 0 1
Giﬂ'(z)_Gi(o 0> — z) )Gi Gﬂ‘( 0 1 )G

where

~ 0z, —z) 0 _

GZZG]( (0 J) 1>GJ1GZ
As well as in the rational case we consider a pair of Hecke transformations at
different points u,;, u; with different signs 7T;; = T(;il,li)T(uij) acting on rank 2
bundles with trivial determinant. Depending on the choice of subspaces of upper
and lower transformations we get the following action of 7;; on the variety of
highest weights of the Gaudin model
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(,)\Z,,)\],) — (,)\Z—l,,AJ—l,%
— (7>\Z—1,,)\]+1,)

As in the rational case, the family of transformations that lower the weights of
all representations, thus simplifying the diagonalization problem, is of particular
interest.

5 Applications

This section is devoted to the two main applications of the quantum spectral curve
method. The first application is related to the geometric Langlands correspon-
dence, and mainly consists of an effective description of the center U, (gl,,) which
in turn plays a key role in the Beilinson-Drinfeld quantization of the Hitchin sys-
tem. Let us note that this problem is closely related to the representation theory
of affine Lie algebras.

5.1 Geometric Langlands correspondence
5.1.1 The center of U(QT[;) on the critical level

We introduce the following notation Um-t(g[;) for the local completion U ( QT[:L) J{C—
crit}, where C' is a central element and crit = —hY = —n is the critical level
inverse to the dual Coxeter number of the Lie algebra sl,. It was proved in [61]

—

that U..;+(gl,,) has a center isomorphic to the polynomial ring of the Cartan alge-
bra as a linear space. Despite the geometric description of the center there was
no explicit construction for the generators of this commutative algebra. For this
purpose we use the Adler-Kostant-Symes scheme [60]. This approach plays an im-
portant role in the theory of integrable systems: it can be exploited to construct
a wide family of commutative algebras, makes it possible to establish a relation of
integrable systems to decomposition problems and provides an algebraic interpre-
tation for the Lax representation, and r-matrix structures. The AKS scheme can
be generalized to the quantum level and plays an important role in description,
solution and classification of quantum integrable models. The most simple case is
that of finite dimensional Lie algebra allowing a decomposition g = g, & g_ into
the sum of two Lie subalgebras. To each choice of normal ordering one can attach
an isomorphism of linear spaces

¢:U(g) — Ulgy) ®U(g-).

Let us introduce a notation g for the inverse Lie algebra structure to the space
g_ defining by the formula —{o,0}. Let us denote the Lie algebra g, & g” by
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the symbol g,. The corresponding enveloping algebras can be identified as linear
spaces with the help of the Poincare-Birkhoff-Witt basis:

U(g?) ~ U(g-).

Lemma 5.1. The center 3(U(g)) is mapped by ¢ to a commutative subalgebra in
U(g+) ® U(g?).

Proof Let is denote the commutator in U(gy) ® U(g?) as follows [*, %] g. Let
1, ¢y be two central elements in U(g) represented as follows

¢ = ng-i)yj(.i) xg-i) e Ulgy), yj(-i) e Ul(g-).
J

The result of calculating the modified commutator is as follows
1 (1 2) (2
e dlelr = Doy > aun
j k

(2 1 (2 @) (1) (2
= > Y e u? + 7 Y 9k
jk

In virtue of the definition above we have

(1) (2)]

(2)]R = [o\V, 2}

1 1 2 1 2
2, 2 ) @ m) @)

[z ;" v 1R = —ly; 7, U

[9(c1), p(c2)]r = Z[Cl, xf)]y,(f) - Z x§1)[y§1), ca)

k J
The last expression is equal to zero since ci, ¢y are central elements. [

Remark 5.2. In what follows we will be interested in applying this scheme to
Uerit(gl,,). To use the result of the AKS lemma in the infinite dimensional case one
should choose an appropriate completion of the algebra. In our case we use the
completion corresponding to the bigrading deg(gt*) = (k,0), deg(gt=") = (0, k)
for k£ > 0. One needs to prove that the considered central elements belong to this
completion U, ., (gl,,). This is a matter of fact due to the classical limit argument.
In what follows we omit the completion in notation UM(;T[;), U(g,) and the
tensor products for the sake of simplicity.

One considers also the linear space map

s:U(g) = Ulgy) @ U(g)g-

defined by the direct sum decomposition for the Lie algebra. Let us denote by ¢
the projector to the first subspace U(g, ).
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Lemma 5.3. The image of 3(U(g)) with respect to ¢ is a commutative subalgebra
of U(g+)-

Proof Let ¢q,co € Z.

[e1 = pler), 2 = ple2)] = [p(cr), p(e2)]

The r.h.s. belongs to U(g.); the Lh.s in an element of U(g)g_; this takes issue in
vanishing of both sides L

We will identify U..;;(gl,,) with the loop algebra as linear spaces. Let us list
several important facts about the loop algebra.

Proposition 5.4. Let us consider g = gl [t,t7'] = gl,[t7'] © tgl,[t] whose gener-
(k)

ators e;;" = ei;t* can be represented by the generating series

(5.1) Lya(z) = > @z

§=—00,00

where

ij

Here, as above, e;; are generators of the Lie algebra gl,,, and E;; are matriz units.
The Lie algebra structure on g, can be described by the following commutation
relations

Py

(5.2) {Lpun(2) @ Lpuu(u)} = [ﬂ, Lyun(2) @ 1 +1® Lyu(u)]

Let us remark that these relations are the same as for the Gaudin Lax operator

(Section 2.42).

The center of (Um-t(g/(g)) and a commutative subalgebra in U(tgl,[t]) Let
us also introduce the ”‘positive”’ Lax operator:

L(z) = ) &zt

799

which satisfies the following R-matrix relations:

P12

(5.3) {L(2) @ L(u)} = | L(2)®1+1® L(u)].

Theorem 5.5. The commutative subalgebra in U(tgl,[t]) defined by the set of
coefficients of the quantum characteristic polynomial det(L(z)—0,) coincides with

the image of 3(Uwir(gh,)) by the projection ¢ : Uni(gh,) — Utgl, [1]).



258 Talalaev D.V.

Proof The proof is based on the results of [62] where it was proved that the
centralizer of the set of quadratic Gaudin Hamiltonians H} in U (tgl,[t]) coincides

with the projection of U (gA[n) on the critical level.

Remark 5.6. This particular property, namely the fact that the quadratic gener-
ators determine the complete commutative subalgebra is known also in the theory
of Fomenko-Mishenko subalgebras [63] and in the theory of the Calogero-Moser
system [64].

Following the proposed logic and using the fact that the subalgebra defined
by the coefficients of det(L(z) — d,) commute with Hi, one can show that this
subalgebra is a subalgebra of the algebra obtained from the center. In order to
prove their coincidence it is sufficient to consider the classical limit []

Remark 5.7. The analogous strategy is applicable in the case of projection to
U(gl,[t]). One needs to take into account that both algebras are invariant with
respect with the GL(n) action.

5.1.2 Explicit description of the center of Umt(g/[;))

Theorem 5.8. The center of Uy (5@) is isomorphic to a subalgebra in U(gl,[t~1]®
tgl;P[t]) defined by the coefficients of th quantum characteristic polynomial det(L ., (z)—
0.). The isomorphism is induced by the mapping

(5.4) I:U(gl,[t™"]) @ Utgl[t]) — Usa(gl,),  I:hy ®hy — hyhy

Proof follows the same lines as that in [62]. Let us firstly show that the algebra
generated by the coefficients of the characteristic polynomial of the Lax operator
L u(2) coincide with the centralizer of its quadratic elements. Further using the
Sugawara formula for the quadratic center generators we prove that their image
in U(gl,[t7']) ® U(tgl,[t]) coincide with the quadratic elements of the quantum
characteristic polynomial. For proving the first statement we consider a special
limit of the commutative family.

Using the commutation relations 5.2, 5.3 and the traditional r-matrix calcula-
tions we show that TrL'., () are central in the symmetric algebra S(gl,[t,t7'])
and moreover T L', ;,(z) generate the commutative Poisson subalgebra in S(gl,, [t~
tgl’[t]).

Let us consider the family of automorphisms of the algebra Ul(gl,[t7!]) ®
U(tglP[t]) defined in terms of the Lax operator as follows: let K is a generic
diagonal n x n matrix. The Lax operator

Lu(2) = Lyan(2) + hE

also satisfies the r-matrix relations (5.2). This automorphism family is parame-
terized by h.
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Let us consider the family of commutative subalgebras
M" C U(gl,[t™"]) ® U(tal?[t])

defined by the generating function det(L},;(2) — 0.). M" centralizes the set of

quadratic generators QIy(L%,;(2)). QIx(z,h) has the following leading term in
expansion on h

QI.(2,h) = KFTrA K\ K, ... K + O(R*).
Changing the basis
QLi(2,h) = QIy(z, h) = (QIy(2, h) — F*TrA K Ky ... )R~
and considering the limit A — oo
QI (2, h) — Tr(Lyau(z) K*)
we obtain that these expressions generate the Cartan subalgebra
H=9-0H, =UOL]) @ Uth[]).

Let us demonstrate that this subalgebra coincide with the centralizer of its quadratic
generators

H3(2) = limp—ocQly(2, 1) = > Tr(®;K)z"""",

1=—00,00

Obviously $ C Z(H$(z)). Let us introduce the notations (ki,...,k,) for the
diagonal elements of K. Let us also denote by h; € $ the sum of the form

n

hi = Z(q)i)ssk57

s=1

then H3°(2) = 3 ,__ o hiz”'~'. The centralizer elements should commute with
hy and h_y. Let > ° _ x;y; be the infinite series such that x; € U(g[t™']), v €
Ul(tg[t]). We also suppose that this series is an element of the considered comple-
tion, i.e. such that it contains only finite number of elements of each bigrading.
The operators [hy, %] and [h_y, *] are homogeneous of bigrading (0,1) and (1,0).
Hence the centralizer description question is reduced to the analogous question in
the polynomial algebra. The answer is given by the formulas

Z(h) =U(gL,[t7) @91, Z(hoa) = H- @ U(tgl?[t]).

An intersection of these subspaces in a completed sense coincides with the Cartan
subalgebra §.
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Summarizing we obtain that in the generic point A of the family the commu-
tative subalgebra M" belongs to the centralizer of the set QI, and in the limit
h — oo generates the centralizer. From the arguments analogous to those of
[62] at the generic point M" should coincide with the centralizer of the quadratic

generators. To finish the proof let us remind the Sugawara formula Ucrit(a;)
ea(2) = Tr(L3,u(2)) :

This uses the normal ordering symbol : : for currents in sly. These elements
project to QI(z) up to a central elements in U(gl,[t™!]) ® U(tgl,[t]) A

5.1.3 The Beilinson-Drinfeld scheme

In [65] it was proposed a universal construction for the Hitchin system quantiza-
tion. Let ¥ be the connected smooth projective curve over C of genus g > 1, G
- a semisimple Lie group, g - the corresponding Lie algebra, Bung - the moduli
stack of principal G-bundles on Y. Let us also define the Langlands dual group
L@ as a group determined by the dual root data, namely such that its root lattice
coincides with the dual lattice for G.

The main result of [65] can be reduced to the following:

e There exists a commutative ring of differential operators on 3(X,G), act-
ing on sections of the canonical bundle Kp,,, such that the symbol map
produces the commutative subalgebra of classical Hitchin Hamiltonians on
T*Bung.

e The spectrum of the ring 3(3, G) is canonically isomorphic to the moduli
space of Lg-opers (for the G = SL, case an Tg-oper is just the Sturm-
Liouville operator on S; in general case this is a flat connection in a principal
L@ bundle with a parabolic structure).

e To each “g-?7?7per one can correspond a D-module on Bung by fixing eigen-
values of the Hitchin Hamiltonians. This D-module is an eigensheaf for the
Hecke action defined naturally on the moduli stack of bundles. Moreover
the eigenvalue in this case coincide with the corresponding “g-oper.

The basement of this construction is the natural action of the center of U, (g)
on the loop group of the corresponding Lie group. This action can induce an action
by differential operators on Bung(X) in virtue of one of the realizations of the
moduli stack of principal bundles

Bung(X) ~ G(F)\G(Ar)/G(OF) ~ Gi\G|[z, 271 /G ous

where Gy, and G,,; denote the subgroups of function converging in U;, and U,,,,
where U;, and U,,; determine a covering of ¥ of the type: U, is an open disk



Quantum spectral curve method 261

centered in P with the local parameter z, U,,; = X\ P. The middle part of the
equality represents the so-called adelic realization of the moduli stack of principal
G-bundles for an algebraic group G. The construction uses the adell group G(Ar)
for the field F' of rational functions on ¥, the group of entire adeles G(Op) and
the group of principal adeles G(F'). This realization is convenient for describing
the complex geometry analogy between the arithmetic Langlands correspondence
and the quantum Gaudin model.

5.1.4 Correspondence

Historically, the Langlands hypothesis generalizes the field-class theory [66, 67],
one of whose principal results is the following statement in the case of a number
field. Namely let F be a number field (this means a finite extension of Q), F -
its maximal algebraic extension, F'% - its maximal abelian extension. The Galois
group of an extension F' C F’ is

Gal(F',F) = {oc€ Aut(F'):o(z)=x Vz € F}.

The abelian reciprocity law
There exists a group isomorphism

Gal(F®, F) ~ The group of connectivity components of F*\ A%

where A7 is the idele group of the ring F, F'* is the group of invertible elements
of F. The topology of of the completion product is considered.

The Langlands hypothesis is formulated as an n-dimensional (non-commutative)
generalization of the abelian reciprocity law. Namely it is assumed the isomor-
phism between the category of the Galois group representations of the maximal
algebraic extension of a ring and the category of automorphic representations for
the corresponding idele group. By an automorphic representation we mean a
GL,(Ap) - representation realized on the space of functions on

GLn(F)\GLn(Ar),

meet some additional conditions [68, 69]. The right part is traditionally called
automorphic for the following reason. For n = 2 these representations are re-
lated with the theory of modular functions. It should be reminded that modular
functions are functions on the upper-half Siegel plain matching the condition

f((az +b)/(cz +d)) = x(a)(cz + d)* f(2) < CCL Z ) € SLy(Z).

In particular, the modular functions can be represented as functions on the fol-
lowing quotient space

The Langlands program covers the following types of fields F"
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e A number field.

e Field of functions on an algebraic curve over the finite field F,, (In this case,
the hypothesis was proven in [70]).

e Field of functions on an algebraic curve over C. This is called the geometrical
case over C. The following papers are on the subject [71].

The correspondence over C:

In this case on the Galois side one considers classes of representations of the
fundamental group or classes of flat connections in a holomorphic bundle of rank
n. The automorphic side deals with the Hitchin D-module on

GL(F)\GL(Ar)/GL(OF) ~ Bun,(%).

The results of [65] and [61] ensures the correspondence between Hitchin D-modules
and flat connections related to “g-opers. Due to the construction of the quantum
characteristic polynomial for the loop algebra, as well as an explicit construction
for the center of U..(gl,) in theorem 5.8 the correspondence for the Lie algebra
gl,, can be realized in a more effective way. The following scheme demonstrates
the correspondence

Hitchin D-module © <" Character X on 3(Ucm(g/[;)) 4 xdet(L s — 0,).

Remark 5.9. The construction of a character on 3(Um~t(g/[;)) by a Hitchin D-
module is a corollary of the Feigin and Frenkel theorem on existence of the center
and the Beilinson and Drinfeld quantization. To obtain the explicit description
for the corresponding flat connection [26] one should exploit the identification
of commutative algebras: the commutative subalgebra in U(gl,[t7!]) @ U(tgl,[t])
defined by the coefficients of the quantum characteristic polynomial on one side
and the image of the center of 3(Ue..+(g)) by the AKS map on another side.

5.2 Non-commutative geometry

The main plot of these lectures is relevant to the emerging field of Noncommutative
Geometry, substantive issues of which consist in geometric interpretation of alge-
braic structures in which the commutativity property is weakened. In this context
the quantum characteristic polynomial is a natural generalization of classical one.
Some properties of this object, in particular the role played by quantum charac-
teristic polynomial in the program of effective solution of the quantum integrable
models, suggest it to be a natural noncommutative generalization of an algebraic
curve, the spectral curve of an integrable system. This section describes some
linear algebraic properties of the quantum characteristic polynomial obtained in

[27].
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5.2.1 The Drinfeld-Sokolov form of the quantum Lax operator

Let L(z) € Mat, ® U(gl,)®" ® Fun(z) be the quantum Lax operator for the
Gaudin model (2.14), here and further Fun(z) means the space of rational func-
tions on a parameter z. Let us denote by Lm(z) quantum powers of the Lax
operator defined by the formula:

L = Id,
L = L[i_l]L—i—azL[i_l].

Theorem 5.10. The expression C(z) € Mat, @ U(gl,)®" @ Fun(z) defined by
the formula

(5.5) C(z) = o ;
L1

where v € C" is a generic vector defines a gauge transformation

0 1 0 0
0 0 1 0

(5.6) C(2)(L(z)—d.) = SRR [ B WoTe% )
0 0 .. 0 1

QH, QH,.1 .. QHy QH

where the r.h.s. lower line coefficients are determined by the coefficients of the
quantum characteristic polynomial

det(L(z) — 0,) = TrAu(Li(z) —8.)...(Ly(z) — 8.)
(5.7) = (-0 =) QH,_0L).

)

Knizhnik-Zamolodchikov equation Here and below we denote by V' a finite-
dimensional representation of U(gl,)®". It was shown in [72] that there exists a
relation between solutions of the Knizhnik-Zamolodchikov (KZ) equation [73]

(L(z) = 8.)5(2) = 0,
where S(z) is a function with values in C" ® V, solutions of the Baxter equation
(5.8) det(L(z) — 0.)¥(z) =0

where U(z) is a function with values in V. To make this relation clear it is sufficient
to take the antisymmetric projection of U(z) = v1 ®...®v,-1 ® S(z) where v; are
some vectors in C™. In particular, for a special choice of such vectors one obtains
that vector components of S(z) solve the equation (5.8).
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Proof of theorem 5.10 Let us consider both sides of (5.6) applied to a function
S(z) e C"®V ® Fun(z),
<wv,LS—0,5 >
[1] _
(5.9) LHS=C(L-9.,)8 = <, LW(LS - 0.5 > |

< v, L-(LS — 3.5) >

<wv,LS —0.5 >
(5.10) R.H.S = (Lps — 0,)CS = <, Li-1g B éz(L["*Q]S) -
<0, QH, ;LS — 9. (LI"18) >
Using the definition for quantum powers we obtain
LS — o, (LF1g) = LF1(LS — 9.9).

The difference (5.10) - (5.9) takes the form

0
(5.11) "
<u, N QH, LS — LIS >
Let us now consider this expression if S(z) is a solution for the KZ equation

L(2)S(z) = 0.5(2).

Let ®(z) = C(2)S5(z), where C(z) is given by the formula (5.5). Then

Oi(2) = <v,5(z2) >
Dy(2) = <vL(2),5(2) >=<v,0,5(2) >

Op(2) = <o(LFYIL(z)+ 0. L% S(2) >
<oL*10,5(2) > + <00, LF YU S(2) >= 0,0;_1(2)

One of the consequences of [72] is that ®;(z) =< v,S5(z) > solves the Baxter
equation

n—1
(5.12) > QH, i0.01(2) — 07y (2) = 0
i=0

for each solution S(z) of the KZ equation and each vector v € C". The general
position argument allows to claim that the n-th element of (5.11) vanishes iden-
tically on S(z) € C" ® V ® Fun(z). Theorem 2.5.7 [74] induces the equality of
universal differential operators with values in the quantum algebra. Bl
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5.2.2 Caley-Hamilton identity

Corollary 5.11. The quantum powers of the Lax operator satisfy the quantum
version of the Caley-Hamilton identity

(5.13) LMz ZQH YL ().

Proof Let us consider the last line of the equation (5.6)

n

UL[n—l}(Z)(L(Z) —9,) = Z UQHi(z)L[”—i](z) — ﬁva[n—I](z).

=1

The result follows from the general choice of the vector v € C™. [J
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